
On variational approach to conformal geodesics

Wojciech Kryński
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Overview
In the Riemannian geometry geodesics are distinguished curves
characterized (locally) by the length minimizing property. They are
solutions to a system of second order ODEs, derived from a first order
Lagrangian by methods of the calculus of variations.
In the conformal geometry there is also a distinguished class of curves,
already known to Yano, called conformal circles (or conformal geodesics).
They are solutions to a third order system of ODEs which makes a
variational approach problematic. In this talk I’d like to show how one can
deal with the difficulties.

Joint work with Maciej Dunajski
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Conformal geodesics
Let (M, [g ]) be a conformal n-dim manifold. A curve γ : [t0, t1]→ M is a
conformal geodesic if it satisfies the third order ODE (Bailey-Eastwood
formulation):

E ≡ ∇UA− 3g(U,A)
|U|2 A + 3|A|2

2|U|2 U − |U|2P](U) + 2P(U,U)U = 0.

where ∇ is the Levi-Civita connection for g ,

P = 1
n − 2

(
Ric − 1

2(n − 1)Sg
)
,

is the Schouten tensor, g(P](U),V ) = P(U,V ), and

U = γ̇, A = ∇UU.

The equation is conformally invariant.
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Variational formulation
Goal: characterize conformal geodesics as critical points of a functional.

Ingredients:
functional I, usually integral of a Lagrangian L along a curve

I(γ) =
∫ t1

t0
L(t, γ(t), γ̇(t), . . .)

a class of variations γs , i.e. a class of 1-parameter families of curves
satisfying certain conditions: e.g. curves joining fixed points, or
submanifolds; or e.g. more complicated non-holonomic constraints in
the sub-Riemannian geometry
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General approach
Compute

δI(γ) = d
ds I(γs)|s=0

Integrating by parts as many times as needed one gets

δI(γ) =
∫ t1

t0
F (t, γ(t), γ̇(t), . . .)V + BT

where BT are boundary terms and V = d
ds γs |s=0 is a vector field along γ

and F depends on derivatives of γ up to the order 2k provided that L is a
Lagrangian of order k (non-degenerate case).

If γ is a critical point of I then δI = 0 for all admissible V . The
fundamental lemma of the calculus of variations implies that F = 0
(provided that one considers arbitrary variations with BT = 0).
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Generalization
Stop integration by parts earlier and aim for δI in the form

δI(γ) =
∫ t1

t0
F (t, γ(t), γ̇(t), . . .)D(V ) + BT

where D is a differential operator along γ acting on V .

Then adjust a class of variations such that a variant of the fundamental
lemma of the calculus of variations can be applied for W = D(V ) instead
of V and conclude that γ is a critical point of I for this specific class of
variations iff F = 0 which now is of order lower than 2k (precisely 2k − s,
where s is the order of D).

One may expect: larger class of variations −→ lower order of ODEs.

In the case of the conformal geodesics all ingredients (differential operator,
boundary terms, class of variations etc.) have to be conformally invariant.
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Conformally invariant differential operator
The following first-order differential operator

D(V ) = ∇UV + |U|−2(g(A,V )U − g(U,V )A− g(A,U)V )

is conformally invariant along a given curve γ.

It depends on the second jet of curve γ.
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Invariant Lagrangian
First candidate by Bailey-Eastwood

LBE = 1
2
|A|2
|U|2 −

g(U,A)2

|U|4 + P(U,U).

LBE is conformally invariant up to a differential of a function, which is
sufficient if one considers variations vanishing at the endpoints.

LBE can be extended to a conformally invariant third order Lagrangian

L = LBE + 2g(U,∇UA)
|U|2 + 2g(A,A)

|U|2 − 4g(U,A)2

|U|4

In fact the additional term is a differential, so L and LBE differ only by a
boundary term and L and LBE give exactly the same fourth order
Euler-Lagrange equations.
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Invariant Lagrangian
L can be put in the following compact form

L = g(E ,U)
|U|2 .

It proves that L is conformally invariant.
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Variation of the functional

Theorem
The first variation of the functional I is given by

δI =
∫ t1

t0
|U|−2(g(K ,V )− g(E − 2LU,D(V )))dt + BT (V )|t1

t0 ,

where K is a vector field along γ given, in terms of the Weyl tensor W , by

K e = gec(Wbca
d UaUbAd − 2|U|2∇[cPa]bUaUb),

and
BT (V ) = |U|−2(g(U,D2(V ))− g(E − 2LU,V )),

Note that E − 2LU vanishes if and only if E = 0.
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Class of variations
In the flat case K = 0 and we consider variations satisfying

BT (V )|t1
t0 = 0

which for γ being a conformal geodesic gives a second order condition
g(D2(V ),U) = 0 at the endpoints.

In the general case we need the following

BT (V )|t1
t0 = −

∫ t1

t0
|U|−2g(K ,V )dt.

Note that the right hand side is a well defined linear functional acting on
variations V .
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Equations

Theorem
A curve γ is a critical point of I in the class of variations satisfying

BT (V )|t1
t0 = −

∫ t1

t0
|U|−2g(K ,V )dt.

if and only if γ is a conformal geodesic.
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Thank you for your attention!
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