Conformal Einstein's equations

Wojciech Kamiński

Uniwersytet Warszawski

Scream workshop

August 18, 2021

Asymptotically simple solutions

Asymptotically de Sitter spacetimes

Future asymptotically simple solutions to Einstein equations:

$$
g_{\mu \nu}=\Omega^{-2} \hat{g}_{\mu \nu}, \quad G_{\mu \nu}[g]=\Lambda g_{\mu \nu}, \quad \Lambda>0
$$

and $\Omega=0$ at a Cauchy surface of $\hat{g}_{\mu \nu}$ (Penrose compactification).

Goal

Classify such solutions, application to stability of de Sitter and similar spacetimes (long time behaviour of solutions).

Einstein's equations written in terms of $\hat{g}_{\mu \nu}$ are singular at $\Omega=0$ surface and we cannot impose easily initial conditions nor say something about dynamics.

Conformal method of Friedrich

Friedrich's approach

Find set of equations which
(1) are more general i.e. every solution to Einstein's equation is also a solution to these equations,
(2) transform nicely under conformal transformations,
(3) the system is hyperbolic (after imposing suitable gauge),

- the scale factor Ω and properties of being conformal to Einsteinian metric propagate by hyperbolic equation too.

Stability follows from stability of hyperbolic equations.
Friedrich's solution invented for $3+1$.

Anderson's proposition (dimension d even)

Vanishing of Fefferman-Graham obstruction tensor $H_{\mu \nu}$ follows from Einstein's equations

$$
G_{\mu \nu}=\Lambda g_{\mu \nu} \quad \Longrightarrow \quad H_{\mu \nu}=0
$$

Anderson's version, any even dimension $d \geq 4$

Use equation $H_{\mu \nu}=0$. Nice conformal transformations and

$$
H_{\mu}^{\mu}=0, \quad \nabla^{\mu} H_{\mu \nu}=0, \quad \text { Lagrangean formulation }
$$

Complicated high order tensor.

Question

Is this equation well-posed (after fixing gauge)?
In $d=4$ proved by Guenther '70. Proofs in higher dimensions nontrivial (Anderson, Anderson-Chruściel).

Choquet-Bruhat's method for Einstein's equations

(1) Gauge freedom (diffeomorphisms): gauge fixing needed.
(2) Constraints on the initial data surface $G_{\mu \nu} n^{\mu}=0$.

We decompose Ricci tensor into gauge fixed part $E_{\mu \nu}$ and the rest

$$
R_{\mu \nu}=E_{\mu \nu}+\frac{1}{2}\left(\nabla_{\mu} F_{\nu}+\nabla_{\nu} F_{\mu}\right), \quad E_{\mu \nu}=-\frac{1}{2} \square g_{\mu \nu}+\ldots
$$

$\square=g^{\mu \nu} \nabla_{\mu} \nabla_{\nu}$ and harmonic gauge $F_{\mu}=g^{\xi \chi}\left(\partial_{\xi} g_{\chi \mu}-\frac{1}{2} \partial_{\mu} g_{\xi \chi}\right)=\square x_{\mu}$. Bianchi identities

$$
0=\nabla^{\mu} G_{\mu \nu}=\nabla^{\mu}\left(E_{\mu \nu}-\frac{1}{2} g_{\mu \nu} E\right)+\left(\frac{1}{2} \square+\ldots\right) F_{\nu}
$$

so $E_{\mu \nu}=0$ implies $F_{\nu}=0$ if it holds on Σ (this due to constraints).

Quasi-linear wave equation is well-posed

Equation of the form $\square_{g(u)} u+F\left(D^{1} u\right)=0$ is well-posed (existence and uniqueness of the local development, propagation with a speed of light, continuity in some finite time).

Anderson's proposition

Similar Bianchi identity $\nabla^{\mu} H_{\mu \nu}=0$
(1) Gauge freedom: diffeomorphisms and conformal transformations

$$
F_{\mu}=\square x_{\mu}=0, \quad R=0 \quad \text { (gauge fixing, always possible) }
$$

(2) Constraints $\left.H_{\mu \nu} n^{\mu}\right|_{\Sigma}=0$ for initial data $\left.D^{d-1} g_{\mu \nu}\right|_{\Sigma}$

The gauge fixed equation is now

$$
\square_{g}^{\frac{d}{2}} g_{\alpha \beta}+F\left(D^{d-1} g\right)=0
$$

Higher order equations

Multiple characteristics of the principal symbol $\left(p_{\mu} p^{\mu}\right)^{d / 2}$ of the equation $\square_{g(u)}^{d / 2} u+F\left(D^{d-1} u\right)=0$. Not necessary well-posed (one needs to control many lower order terms), different then Euclidean signature where it is automatically elliptic.

Similar phenomenon for GJMS operator: $P \phi=\square_{g}^{d / 2} \phi+\ldots$.

Fefferman-Graham ambient metric construction

Ambient metric on $\mathbb{R}_{+} \times M \times \mathbb{R}$ with coordinates t, x^{μ}, ρ indices $I=0, \mu, \infty$.

$$
\mathbf{g}_{I J} d x^{I} d x^{J}=2 \rho d t^{2}+2 t d t d \rho+t^{2} \tilde{g}_{\mu \nu}\left(x^{\mu}, \rho\right) d x^{\mu} d x^{\nu}
$$

Conformal Killing vector $\mathbf{T}=t \partial_{0}$, where $\tilde{g}_{\mu \nu}$ is a ρ-dependent metric on M.

Graham-Jenne-Mason-Sparling (GJMS) equation

$$
P \phi=0 \Longleftrightarrow \square \phi=O\left(\rho^{d / 2}\right), \mathcal{L}_{\mathbf{T}} \boldsymbol{\phi}=0
$$

where $\phi=\sum_{n=0}^{d / 2-1} \phi^{[n]} \rho^{n}+\ldots$ and $\phi=\phi_{t=1}^{[0]}$.
Equivalent formula for $\tilde{\phi}=\left.\phi\right|_{t=1}$, (recursive)

$$
\left[\square_{\tilde{g}} \tilde{\phi}\right]^{[n]}+(d-2-2 n)(n+1) \tilde{\phi}^{[n+1]}=0
$$

It allows use to determine $\tilde{\phi}^{[n]}$ for $1 \leq n \leq d / 2-1$ and plug recursively to obtain $P \phi=0$.

GJMS operators as evolution system

Equivalent formula for $\tilde{\phi}=\left.\boldsymbol{\phi}\right|_{t=1}$

$$
\left[\square_{\tilde{g}} \tilde{\phi}\right]^{[n]}+(d-2-2 n)(n+1) \tilde{\phi}^{[n+1]}=0
$$

Instead of eliminating higher orders, let us keep them as independent variables $\tilde{\phi}^{[n]}, n \leq d / 2-1$.

Evolution equation

$$
\left[\begin{array}{cccc}
\square & 0 & \cdots & 0 \\
* & \square & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
* & * & \cdots & \square
\end{array}\right]\left[\begin{array}{c}
\tilde{\phi}^{[0]} \\
\tilde{\phi}^{[1]} \\
\vdots \\
\tilde{\phi}^{\left[\frac{d}{2}-1\right]}
\end{array}\right]+\left[\begin{array}{c}
c_{0} \tilde{\phi}^{[1]} \\
c_{1} \tilde{\phi}^{[2]} \\
\vdots \\
0
\end{array}\right]=0
$$

GJMS operators as evolution system

Equivalent formula for $\tilde{\phi}=\left.\phi\right|_{t=1}$

$$
\left[\square_{\tilde{g}} \tilde{\phi}\right]^{[n]}+(d-2-2 n)(n+1) \tilde{\phi}^{[n+1]}=0 .
$$

Instead of eliminating higher orders, let us keep them as independent variables $\tilde{\phi}^{[n]}, n \leq d / 2-1$.

Evolution equation

$$
\left[\begin{array}{cccc}
\square & 0 & \cdots & 0 \\
* & \square & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
* & * & \cdots & \square
\end{array}\right]\left[\begin{array}{c}
u^{[0]} \\
u^{[1]} \\
\vdots \\
u^{\left[\frac{d}{2}-1\right]}
\end{array}\right]+L\left[\begin{array}{c}
c_{0} u^{[1]} \\
c_{1} u^{[2]} \\
\vdots \\
0
\end{array}\right]+\ldots=0
$$

We introduce $\tilde{\phi}^{[k]}=L^{k} u^{[k]}, L=\sqrt{1+\Delta}$.
Well-posed system, but in skewed Sobolev spaces (Leray hyperbolic). Recursive \Longrightarrow Solution also to $P \phi=0$.

Fefferman-Graham ambient metric

The obstruction tensor is related to Einstein's equations in higher dimension. Vanishing of the obstruction tensor
(1) Geometric: Conformal Killing $\nabla_{I} \mathbf{T}_{J}=\mathrm{g}_{I J}$, introduce $\rho=\frac{1}{2} \mathbf{T}_{I} \mathbf{T}^{J}$
$\left.\mathbf{g}_{I J}\right|_{\{\rho=0\}}$ tautological bundle of the conformal structure for $h_{\mu \nu}$
Condition on the Einstein tensor

$$
\mathbf{G}_{I J} \mathbf{X}^{I} \mathbf{X}^{J}=O\left(\boldsymbol{\rho}^{d / 2}\right), \quad \forall \mathbf{X}^{I} \text { tangent to }\{\boldsymbol{\rho}=0\}
$$

(2) Gauge: $\mathbf{T}=t \partial_{0}$ and ∂_{∞} null geodesic (locally)

$$
\mathbf{g}_{I J} d x^{I} d x^{J}=2 \rho d t^{2}+2 t d t d \rho+t^{2} \tilde{g}_{\mu \nu}\left(x^{\mu}, \rho\right) d x^{\mu} d x^{\nu}, \quad \boldsymbol{\rho}=\rho t^{2}
$$

(3) Normalization: $\mathbf{R}_{\infty \infty}^{[d / 2-2]}=0$. It is non-dynamical condition on $\operatorname{tr} \tilde{g}^{[d / 2]}$. Then $\left(\mathbf{R}_{0 I}=0\right)$

$$
\mathbf{R}_{\mu \nu}=O\left(\rho^{d / 2}\right), \quad \mathbf{R}_{\mu \infty}=O\left(\rho^{d / 2-1}\right), \quad \mathbf{R}_{\infty \infty}=O\left(\rho^{d / 2-1}\right)
$$

Gauge fixing

Tension between FG gauge and the harmonic gauge

(1) Excessive gauge fixing. The propagation of the gauge in Choquet-Bruhat method uses Bianchi identity. Here Bianchi identity already used to recover

$$
\mathbf{R}_{\mu \infty}=O\left(\rho^{d / 2-1}\right) \text { and } \mathbf{R}_{\infty \infty}=O\left(\rho^{d / 2-1}\right)
$$

from $\mathbf{R}_{\mu \nu}=O\left(\rho^{d / 2}\right)$. This last condition allows us to recursively determine $\tilde{g}_{\mu \nu}^{[k]}$ for $k=0, \ldots, d / 2-1$ and $\operatorname{tr} \tilde{g}^{[d / 2]}$. We construct gauge fixing functions from $\mathbf{R}_{\mu \infty}$ and $\mathbf{R}_{\infty \infty}$.
(2) Nondynamical fields. Trace $\operatorname{tr} \tilde{g}_{\mu \nu}^{[d / 2]}$ is nondynamical (it appears only without derivatives). It can be cancelled from equations.

Gauge fixing

Introduce,

$$
\tilde{S}_{\mu \nu}:=\left.\mathbf{R}_{\mu \nu}\right|_{t=1}, \quad \tilde{S}_{\mu \infty}:=\left.\mathbf{R}_{\mu \infty}\right|_{t=1}, \quad \tilde{S}_{\infty \infty}:=\left.\mathbf{R}_{\infty \infty}\right|_{t=1}
$$

Define gauge fixing functions (∂_{∞}^{-1} formal integration in ρ)

$$
\begin{aligned}
\tilde{\gamma} & =-\frac{1}{2} \tilde{g}^{[0] \xi \chi} \tilde{g}_{\xi \chi}^{[1]}+\partial_{\infty}^{-1} \tilde{S}_{\infty \infty} \\
\tilde{G}_{\mu} & =\tilde{F}_{\mu}^{[0]}+2 \partial_{\infty}^{-1} \tilde{S}_{\mu \infty}-\partial_{\mu} \partial_{\infty}^{-1} \tilde{\gamma}
\end{aligned}
$$

and the gauge fixed tensor

$$
\tilde{E}_{\mu \nu}=\tilde{S}_{\mu \nu}-\frac{1}{2}\left(\tilde{\nabla}_{\mu} \tilde{G}_{\nu}+\tilde{\nabla}_{\nu} \tilde{G}_{\mu}\right)-\tilde{g}_{\mu \nu} \tilde{\gamma}
$$

Remark

If the metric is Fefferman-Graham then zero order terms of gauge functions:

$$
\tilde{\gamma}^{[0]} \propto R, \quad \tilde{G}_{\mu}^{[0]}=F_{\mu}=\square x_{\mu} .
$$

The AFG equation is well-posed

(1) The equation $\tilde{E}_{\mu \nu}=\tilde{S}_{\mu \nu}-\frac{1}{2}\left(\tilde{\nabla}_{\mu} \tilde{G}_{\nu}+\tilde{\nabla}_{\nu} \tilde{G}_{\mu}\right)-\tilde{g}_{\mu \nu} \tilde{\gamma}=O\left(\rho^{d / 2}\right)$

$$
\tilde{E}_{\mu \nu}^{[n]}=-\frac{1}{2}\left[\square_{\tilde{g}} \tilde{g}_{\mu \nu}\right]^{[n]}+\ldots+c_{n} \tilde{g}_{\mu \nu}^{[n+1]},
$$

where $c_{d / 2-1}=0$ (recursive and generalized hyperbolic system for $\tilde{g}_{\mu \nu}^{[k]}$ for $\left.k=0, \ldots, d / 2-1\right)$.
(2) Bianchi identity gives hyperbolic equations for the gauge

$$
-\frac{1}{2} \square_{\tilde{g}} \tilde{\gamma}+\ldots=O\left(\rho^{d / 2-1}\right), \quad-\frac{1}{2} \square_{\tilde{g}} \tilde{G}_{\mu}+\ldots=O\left(\rho^{d / 2}\right)
$$

Vanishing of the initial condition for this system follows from vanishing of R and F_{μ} to sufficient order on Σ and constraints on Σ.
(0) Nondynamical $\tilde{\gamma}^{[d / 2-1]} \propto \tilde{S}_{\infty \infty}^{[d / 2-2]}$.

Well-posedness in this gauge follows from standard gluing technique the same way as in case of the Einstein's equations.

Propagation of almost Einstein structure

Infinite order ambient Ricci flat extensions (Fefferman-Graham)

If $H_{\mu \nu}=0$ then the infinite order Ricci flat extensions

$$
\mathbf{R}_{I J}=O\left(\rho^{\infty}\right)
$$

are in 1-1 correspondence with symetric 2-tensors $k_{\mu \nu}:=\mathrm{tf} \tilde{g}_{\mu \nu}^{[d / 2]}$ such that

$$
k_{\mu}^{\mu}=0, \quad \nabla^{\mu} k_{\mu \nu}=D_{\nu}
$$

for some given D_{ν}.

- On Lorentzian manifold such extensions always exist (for example it can be propagated from a Cauchy surface by some hyperbolic equation).
- We can assume Ricci flat extension.

Propagation of almost Einstein structure

Conformally almost Einstein (Gover, Graham-Willse)
Existence of the covariantly constant covector

$$
\nabla_{I} \mathbf{I}_{J}=O\left(\rho^{d / 2-1}\right) \quad \text { then } I_{I}=\left.\mathbf{I}_{I}^{[0]}\right|_{t=1}
$$

We have $\Omega=I_{0}$ and $\mathbf{I}_{I} \mathbf{I}^{I} \propto \Lambda+O\left(\rho^{d / 2-1}\right)$.
For the solution to Einstein equation we can choose extension

$$
\tilde{g}_{\mu \nu}=(1+\lambda \rho)^{2} h_{\mu \nu}, \quad \lambda \propto \Lambda
$$

then $\mathbf{I}_{I}=\partial_{I} \boldsymbol{\sigma}$ where $\boldsymbol{\sigma}=t(1-\lambda \rho)$ and $\nabla_{I} \mathbf{I}_{J}=0$.

Propagation of almost Einstein structure

Conformally almost Einstein (Gover, Graham-Willse)
Existence of the covariantly constant covector

$$
\nabla_{I} \mathbf{I}_{J}=O\left(\rho^{d / 2-1}\right) \quad \text { then } I_{I}=\left.\mathbf{I}_{I}^{[0]}\right|_{t=1}
$$

We have $\Omega=I_{0}$ and $\mathbf{I}_{I} \mathbf{I}^{I} \propto \Lambda+O\left(\rho^{d / 2-1}\right)$.
Propagation $\left(\mathbf{I}_{I}=\partial_{I} \boldsymbol{\sigma}\right)$ depends on the extension

$$
\square \boldsymbol{\sigma}=O\left(\rho^{d / 2+1}\right), \quad \mathcal{L}_{\mathbf{T}} \boldsymbol{\sigma}=\boldsymbol{\sigma} .
$$

- If $\square \boldsymbol{\sigma}=O\left(\rho^{d / 2+1}\right)$ and $\mathbf{R}_{I J}=O\left(\rho^{\infty}\right)$ then (recursive)

$$
(\square+\ldots) \nabla_{I} \mathbf{I}_{J}=O\left(\rho^{d / 2-1}\right)
$$

If the initial data vanish then $\nabla_{I} \mathbf{I}_{J}=O\left(\rho^{d / 2-1}\right)$ everywhere.
Reduces to standard condition $\left.D^{d-1} \operatorname{tf}\left(\nabla_{\mu} \nabla_{\nu} \Omega-P_{\mu \nu} \Omega\right)\right|_{\Sigma}=0$.

- Additional properties $\boldsymbol{\nabla}^{I} \mathbf{I}_{I}=O\left(\rho^{d / 2+1}\right), \nabla_{[I} \mathbf{I}_{J]}=0$.

Summary

(1) The AFG equation (vanishing of the Fefferman-Graham obstruction tensor) is a well-posed system (in $\square x_{\mu}=0$ and $R=0$ gauge).
(2) The almost Einstein condition propagates by hyperbolic equation too, thus we have stability of future or past asymptotically simple solutions (Anderson, Anderson-Chruściel).
(Application to other equations constructed by ambient metric like conformal powers of d'Alembertians (GJMS), Q-curvature etc.

Thank you!

Non-strictly hyperbolic problems

Example of ill-posed problem

On $\mathbb{R} \times S^{1}$

$$
\square^{3} \phi+\partial_{2}\left(\partial_{1}+\partial_{2}\right)^{3} \phi=0, \quad \square=\partial_{1}^{2}-\partial_{2}^{2}
$$

Example mode solutions $\phi_{k}\left(x^{1}, x^{2}\right)=e^{i\left(\omega(k) x^{1}+k x^{2}\right)}$ with $\omega(k)=\frac{-1-i \sqrt{3}}{2} k^{1 / 3}$.

$$
\left.\partial_{1}^{n} \phi\right|_{\Omega}=\sum_{k=0}^{\infty} i^{n} \omega(k)^{n} e^{-k^{1 / 4}} e^{i k x^{2}}, \quad n=0 \ldots 5
$$

does not admit Cauchy development.

