Conformal Einstein's equations

Wojciech Kamiński

Uniwersytet Warszawski

Scream workshop

August 18, 2021

W. Kamiński

Asymptotically simple solutions

Asymptotically de Sitter spacetimes

Future asymptotically simple solutions to Einstein equations:

$$g_{\mu\nu} = \Omega^{-2} \hat{g}_{\mu\nu}, \qquad G_{\mu\nu}[g] = \Lambda g_{\mu\nu}, \quad \Lambda > 0$$

and $\Omega = 0$ at a Cauchy surface of $\hat{g}_{\mu\nu}$ (Penrose compactification).

Goal

Classify such solutions, application to stability of de Sitter and similar spacetimes (long time behaviour of solutions).

Einstein's equations written in terms of $\hat{g}_{\mu\nu}$ are singular at $\Omega = 0$ surface and we cannot impose easily initial conditions nor say something about dynamics.

イロト イヨト イヨト イヨト

Conformal method of Friedrich

Friedrich's approach

Find set of equations which

- are more general i.e. every solution to Einstein's equation is also a solution to these equations,
- Itransform nicely under conformal transformations,
- Ithe system is hyperbolic (after imposing suitable gauge),
- () the scale factor Ω and properties of being conformal to Einsteinian metric propagate by hyperbolic equation too.

Stability follows from stability of hyperbolic equations. Friedrich's solution invented for 3 + 1.

イロト イヨト イヨト イヨト

Anderson's proposition (dimension d even)

Vanishing of Fefferman-Graham obstruction tensor $H_{\mu\nu}$ follows from Einstein's equations

$$G_{\mu\nu} = \Lambda g_{\mu\nu} \implies H_{\mu\nu} = 0$$

Anderson's version, any even dimension $d \ge 4$

Use equation $H_{\mu\nu} = 0$. Nice conformal transformations and

 $H^{\mu}_{\mu} = 0, \qquad \nabla^{\mu} H_{\mu\nu} = 0, \quad \text{Lagrangean formulation}$

Complicated high order tensor.

Question

Is this equation well-posed (after fixing gauge)?

In d = 4 proved by Guenther '70. Proofs in higher dimensions nontrivial (Anderson, Anderson-Chruściel).

W. Kamiński

イロト イヨト イヨト イヨト 三日

Choquet-Bruhat's method for Einstein's equations

Gauge freedom (diffeomorphisms): gauge fixing needed.
 Constraints on the initial data surface G_{μν}n^μ = 0.
 We decompose Ricci tensor into gauge fixed part E_{μν} and the rest

$$R_{\mu\nu} = E_{\mu\nu} + \frac{1}{2} \left(\nabla_{\mu} F_{\nu} + \nabla_{\nu} F_{\mu} \right), \quad E_{\mu\nu} = -\frac{1}{2} \Box g_{\mu\nu} + \dots,$$

 $\Box = g^{\mu\nu} \nabla_{\mu} \nabla_{\nu} \text{ and harmonic gauge } F_{\mu} = g^{\xi\chi} \left(\partial_{\xi} g_{\chi\mu} - \frac{1}{2} \partial_{\mu} g_{\xi\chi} \right) = \Box x_{\mu}.$ Bianchi identities

$$0 = \nabla^{\mu} G_{\mu\nu} = \nabla^{\mu} \left(E_{\mu\nu} - \frac{1}{2} g_{\mu\nu} E \right) + \left(\frac{1}{2} \Box + \dots \right) F_{\nu}$$

so $E_{\mu\nu} = 0$ implies $F_{\nu} = 0$ if it holds on Σ (this due to constraints).

Quasi-linear wave equation is well-posed

Equation of the form $\Box_{g(u)}u + F(D^1u) = 0$ is well-posed (existence and uniqueness of the local development, propagation with a speed of light, continuity in some finite time).

W. Kamiński

Anderson's proposition

Similar Bianchi identity $\nabla^{\mu}H_{\mu\nu}=0$

Gauge freedom: diffeomorphisms and conformal transformations

 $F_{\mu} = \Box x_{\mu} = 0, \quad R = 0$ (gauge fixing, always possible)

• Constraints $H_{\mu\nu}n^{\mu}|_{\Sigma} = 0$ for initial data $D^{d-1}g_{\mu\nu}|_{\Sigma}$ The gauge fixed equation is now

$$\Box_g^{\frac{d}{2}}g_{\alpha\beta} + F(D^{d-1}g) = 0$$

Higher order equations

Multiple characteristics of the principal symbol $(p_{\mu}p^{\mu})^{d/2}$ of the equation $\Box_{g(u)}^{d/2} u + F(D^{d-1}u) = 0$. Not necessary well-posed (one needs to control many lower order terms), different then Euclidean signature where it is automatically elliptic.

Similar phenomenon for GJMS operator: $P\phi = \Box_g^{d/2}\phi + \dots$

W. Kamiński

・ロ・・ 日・・ 日・・ 日・ 日・

Fefferman-Graham ambient metric construction

Ambient metric on $\mathbb{R}_+ \times M \times \mathbb{R}$ with coordinates t, x^{μ}, ρ indices $I = 0, \mu, \infty$.

$$\mathbf{g}_{IJ}dx^{I}dx^{J} = 2\rho dt^{2} + 2tdtd\rho + t^{2}\tilde{g}_{\mu\nu}(x^{\mu},\rho)dx^{\mu}dx^{\nu}$$

Conformal Killing vector $\mathbf{T} = t\partial_0$, where $\tilde{g}_{\mu\nu}$ is a ρ -dependent metric on M.

Graham-Jenne-Mason-Sparling (GJMS) equation

$$P\phi = 0 \iff \Box \phi = O(\rho^{d/2}), \ \mathcal{L}_{\mathbf{T}}\phi = 0$$

where $\phi = \sum_{n=0}^{d/2-1} \phi^{[n]} \rho^n + \dots$ and $\phi = \phi^{[0]}_{t=1}$.

Equivalent formula for $\tilde{\phi} = \phi|_{t=1}$, (recursive)

$$[\Box_{\tilde{g}}\tilde{\phi}]^{[n]} + (d-2-2n)(n+1)\tilde{\phi}^{[n+1]} = 0.$$

It allows use to determine $\tilde{\phi}^{[n]}$ for $1 \le n \le d/2 - 1$ and plug recursively to obtain $P\phi = 0$.

W. Kamiński

GJMS operators as evolution system

Equivalent formula for $\tilde{\phi} = \phi|_{t=1}$

$$[\Box_{\tilde{g}}\tilde{\phi}]^{[n]} + (d-2-2n)(n+1)\tilde{\phi}^{[n+1]} = 0.$$

Instead of eliminating higher orders, let us keep them as independent variables $\tilde{\phi}^{[n]},\,n\leq d/2-1.$

GJMS operators as evolution system

Equivalent formula for $\tilde{\phi} = \phi|_{t=1}$

$$[\Box_{\tilde{g}}\tilde{\phi}]^{[n]} + (d-2-2n)(n+1)\tilde{\phi}^{[n+1]} = 0.$$

Instead of eliminating higher orders, let us keep them as independent variables $\tilde{\phi}^{[n]},\,n\leq d/2-1.$

Evolution equation

$$\begin{bmatrix} \Box & 0 & \cdots & 0 \\ * & \Box & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ * & * & \cdots & \Box \end{bmatrix} \begin{bmatrix} u^{[0]} \\ u^{[1]} \\ \vdots \\ u^{\left\lfloor \frac{d}{2} - 1\right\rfloor} \end{bmatrix} + L \begin{bmatrix} c_0 u^{[1]} \\ c_1 u^{[2]} \\ \vdots \\ 0 \end{bmatrix} + \ldots = 0$$

We introduce $\tilde{\phi}^{[k]} = L^k u^{[k]}$, $L = \sqrt{1 + \Delta}$.

Well-posed system, but in skewed Sobolev spaces (Leray hyperbolic). Recursive \implies Solution also to $P\phi = 0$.

W. Kamiński

Fefferman-Graham ambient metric

The obstruction tensor is related to Einstein's equations in higher dimension. Vanishing of the obstruction tensor

9 Geometric: Conformal Killing $\nabla_I \mathbf{T}_J = \mathbf{g}_{IJ}$, introduce $\rho = \frac{1}{2} \mathbf{T}_I \mathbf{T}^J$

 $\mathbf{g}_{IJ}|_{\{\boldsymbol{\rho}=0\}}$ tautological bundle of the conformal structure for $h_{\mu\nu}$

Condition on the Einstein tensor

$$\mathbf{G}_{IJ}\mathbf{X}^{I}\mathbf{X}^{J}=O(oldsymbol{
ho}^{d/2}), \quad orall \mathbf{X}^{I} ext{ tangent to } \{oldsymbol{
ho}=0\}$$

2 Gauge: $\mathbf{T} = t\partial_0$ and ∂_∞ null geodesic (locally)

$$\mathbf{g}_{IJ}dx^{I}dx^{J} = 2\rho dt^{2} + 2t dt d\rho + t^{2}\tilde{g}_{\mu\nu}(x^{\mu},\rho)dx^{\mu}dx^{\nu}, \quad \boldsymbol{\rho} = \rho t^{2}$$

Over Normalization: $\mathbf{R}_{\infty\infty}^{[d/2-2]} = 0$. It is non-dynamical condition on $\operatorname{tr} \tilde{g}^{[d/2]}$. Then $(\mathbf{R}_{0I} = 0)$

$$\mathbf{R}_{\mu\nu} = O(\rho^{d/2}), \quad \mathbf{R}_{\mu\infty} = O(\rho^{d/2-1}), \quad \mathbf{R}_{\infty\infty} = O(\rho^{d/2-1}).$$

W. Kamiński

・ロト ・ 日 ト ・ ヨ ト ・ ヨ

Tension between FG gauge and the harmonic gauge

• Excessive gauge fixing. The propagation of the gauge in Choquet-Bruhat method uses Bianchi identity. Here Bianchi identity already used to recover

$$\mathbf{R}_{\mu\infty}=O(
ho^{d/2-1})$$
 and $\mathbf{R}_{\infty\infty}=O(
ho^{d/2-1})$

from $\mathbf{R}_{\mu\nu} = O(\rho^{d/2})$. This last condition allows us to recursively determine $\tilde{g}_{\mu\nu}^{[k]}$ for $k = 0, \ldots, d/2 - 1$ and tr $\tilde{g}^{[d/2]}$. We construct gauge fixing functions from $\mathbf{R}_{\mu\infty}$ and $\mathbf{R}_{\infty\infty}$.

9 Nondynamical fields. Trace $\operatorname{tr} \tilde{g}_{\mu\nu}^{[d/2]}$ is nondynamical (it appears only without derivatives). It can be cancelled from equations.

イロト イヨト イヨト イヨト 三日

Gauge fixing

Introduce,

$$\tilde{S}_{\mu\nu} := \mathbf{R}_{\mu\nu}|_{t=1}, \quad \tilde{S}_{\mu\infty} := \mathbf{R}_{\mu\infty}|_{t=1}, \quad \tilde{S}_{\infty\infty} := \mathbf{R}_{\infty\infty}|_{t=1}.$$

Define gauge fixing functions $(\partial_{\infty}^{-1} \text{ formal integration in } \rho)$

$$\tilde{\gamma} = -\frac{1}{2}\tilde{g}^{[0]\xi\chi}\tilde{g}^{[1]}_{\xi\chi} + \partial_{\infty}^{-1}\tilde{S}_{\infty\infty},$$
$$\tilde{G}_{\mu} = \tilde{F}^{[0]}_{\mu} + 2\partial_{\infty}^{-1}\tilde{S}_{\mu\infty} - \partial_{\mu}\partial_{\infty}^{-1}\tilde{\gamma},$$

and the gauge fixed tensor

$$\tilde{E}_{\mu\nu} = \tilde{S}_{\mu\nu} - \frac{1}{2} (\tilde{\nabla}_{\mu} \tilde{G}_{\nu} + \tilde{\nabla}_{\nu} \tilde{G}_{\mu}) - \tilde{g}_{\mu\nu} \tilde{\gamma}.$$

Remark

If the metric is Fefferman-Graham then zero order terms of gauge functions:

$$\tilde{\gamma}^{[0]} \propto R, \qquad \tilde{G}^{[0]}_{\mu} = F_{\mu} = \Box x_{\mu}.$$

W. Kamiński

The AFG equation is well-posed

• The equation
$$\tilde{E}_{\mu\nu} = \tilde{S}_{\mu\nu} - \frac{1}{2} (\tilde{\nabla}_{\mu} \tilde{G}_{\nu} + \tilde{\nabla}_{\nu} \tilde{G}_{\mu}) - \tilde{g}_{\mu\nu} \tilde{\gamma} = O(\rho^{d/2})$$

 $\tilde{E}_{\mu\nu}^{[n]} = -\frac{1}{2} \left[\Box_{\tilde{g}} \tilde{g}_{\mu\nu} \right]^{[n]} + \ldots + c_n \tilde{g}_{\mu\nu}^{[n+1]},$

where $c_{d/2-1} = 0$ (recursive and generalized hyperbolic system for $\tilde{g}_{\mu\nu}^{[k]}$ for $k = 0, \ldots, d/2 - 1$).

Bianchi identity gives hyperbolic equations for the gauge

$$-\frac{1}{2}\Box_{\tilde{g}}\tilde{\gamma} + \ldots = O(\rho^{d/2-1}), \quad -\frac{1}{2}\Box_{\tilde{g}}\tilde{G}_{\mu} + \ldots = O(\rho^{d/2}).$$

Vanishing of the initial condition for this system follows from vanishing of R and F_{μ} to sufficient order on Σ and constraints on Σ .

3 Nondynamical
$$\tilde{\gamma}^{[d/2-1]} \propto \tilde{S}_{\infty\infty}^{[d/2-2]}$$
.

Well-posedness in this gauge follows from standard gluing technique the same way as in case of the Einstein's equations.

W. Kamiński

Propagation of almost Einstein structure

Infinite order ambient Ricci flat extensions (Fefferman-Graham)

If $H_{\mu\nu} = 0$ then the infinite order Ricci flat extensions

$$\mathbf{R}_{IJ} = O(\rho^{\infty})$$

are in 1-1 correspondence with symetric 2-tensors $k_{\mu\nu}:={\rm tf}\,\tilde{g}^{[d/2]}_{\mu\nu}$ such that

$$k^{\mu}_{\mu} = 0, \quad \nabla^{\mu} k_{\mu\nu} = D_{\nu}$$

for some given D_{ν} .

- On Lorentzian manifold such extensions always exist (for example it can be propagated from a Cauchy surface by some hyperbolic equation).
- We can assume Ricci flat extension.

W. Kamiński

イロト イヨト イヨト イヨト 三日

Propagation of almost Einstein structure

Conformally almost Einstein (Gover, Graham-Willse)

Existence of the covariantly constant covector

$$oldsymbol{
abla}_I \mathbf{I}_J = O(
ho^{d/2-1})$$
 then $I_I = \mathbf{I}_I^{[0]}|_{t=1}$

We have $\Omega = I_0$ and $\mathbf{I}_I \mathbf{I}^I \propto \Lambda + O(\rho^{d/2-1})$.

For the solution to Einstein equation we can choose extension

$$\tilde{g}_{\mu\nu} = (1 + \lambda \rho)^2 h_{\mu\nu}, \quad \lambda \propto \Lambda$$

then $\mathbf{I}_I = \partial_I \boldsymbol{\sigma}$ where $\boldsymbol{\sigma} = t(1 - \lambda \rho)$ and $\boldsymbol{\nabla}_I \mathbf{I}_J = 0$.

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

Propagation of almost Einstein structure

Conformally almost Einstein (Gover, Graham-Willse)

Existence of the covariantly constant covector

$$\mathbf{
abla}_I \mathbf{I}_J = O(
ho^{d/2-1})$$
 then $I_I = \mathbf{I}_I^{[0]}|_{t=1}$

We have $\Omega = I_0$ and $\mathbf{I}_I \mathbf{I}^I \propto \Lambda + O(\rho^{d/2-1})$.

Propagation $(\mathbf{I}_I = \partial_I \boldsymbol{\sigma})$ depends on the extension

$$\Box \boldsymbol{\sigma} = O(\rho^{d/2+1}), \quad \mathcal{L}_{\mathbf{T}} \boldsymbol{\sigma} = \boldsymbol{\sigma}.$$

• If $\Box \sigma = O(
ho^{d/2+1})$ and $\mathbf{R}_{IJ} = O(
ho^{\infty})$ then (recursive)

$$(\Box + \ldots) \nabla_I \mathbf{I}_J = O(\rho^{d/2-1})$$

If the initial data vanish then $\nabla_I \mathbf{I}_J = O(\rho^{d/2-1})$ everywhere. Reduces to standard condition $D^{d-1} \operatorname{tf}(\nabla_\mu \nabla_\nu \Omega - P_{\mu\nu}\Omega)|_{\Sigma} = 0.$

• Additional properties $\nabla^{I} \mathbf{I}_{I} = O(\rho^{d/2+1}), \ \nabla_{[I} \mathbf{I}_{J]} = 0.$

W. Kamiński

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Summary

- The AFG equation (vanishing of the Fefferman-Graham obstruction tensor) is a well-posed system (in □x_µ = 0 and R = 0 gauge).
- The almost Einstein condition propagates by hyperbolic equation too, thus we have stability of future or past asymptotically simple solutions (Anderson, Anderson-Chruściel).
- Application to other equations constructed by ambient metric like conformal powers of d'Alembertians (GJMS), Q-curvature etc.

Thank you!

イロト イヨト イヨト イヨト

Non-strictly hyperbolic problems

Example of ill-posed problem

On $\mathbb{R}\times S^1$

$$\Box^{3}\phi + \partial_{2}(\partial_{1} + \partial_{2})^{3}\phi = 0, \qquad \Box = \partial_{1}^{2} - \partial_{2}^{2}$$

Example mode solutions $\phi_k(x^1, x^2) = e^{i(\omega(k)x^1 + kx^2)}$ with $\omega(k) = \frac{-1 - i\sqrt{3}}{2}k^{1/3}$.

$$\partial_1^n \phi|_{\Omega} = \sum_{k=0}^{\infty} i^n \omega(k)^n e^{-k^{1/4}} e^{ikx^2}, \quad n = 0 \dots 5$$

does not admit Cauchy development.

••

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで