Differential invariants of Kundt spacetimes

Eivind Schneider (joint with Boris Kruglikov)

Department of Mathematics
University of Hradec Králové
August 18, 2021

Kundt spacetimes

Kundt spacetimes

A Lorentzian metric g on an n-dimensional manifold M is a Kundt metric if there exists a vector field ℓ such that

$$
\|\ell\|_{g}^{2}=0, \quad \nabla_{\ell}^{g} \ell=0, \quad \operatorname{Tr}\left(\nabla^{g} \ell\right)=0, \quad\left\|\nabla^{g} \ell^{\text {sym }}\right\|_{g}^{2}=0, \quad\left\|\nabla^{g} \ell^{\mathrm{alt}}\right\|_{g}^{2}=0
$$

where ∇^{g} is the Levi-Civita connection given by g.

Kundt spacetimes

A Lorentzian metric g on an n-dimensional manifold M is a Kundt metric if there exists a vector field ℓ such that

$$
\|\ell\|_{g}^{2}=0, \quad \nabla_{\ell}^{g} \ell=0, \quad \operatorname{Tr}\left(\nabla^{g} \ell\right)=0, \quad\left\|\nabla^{g} \ell^{s y m}\right\|_{g}^{2}=0, \quad\left\|\nabla^{g} \ell^{\text {alt }}\right\|_{g}^{2}=0,
$$

where ∇^{g} is the Levi-Civita connection given by g. We call g a degenerate Kundt metric if, in addition,

- The Riemann tensor Riem is aligned and of algebraically special type $I I$, and
- $\nabla^{g}($ Riem $)$ is aligned and of algebraically special type $I I$.

Kundt spacetimes

A Lorentzian metric g on an n-dimensional manifold M is a Kundt metric if there exists a vector field ℓ such that

$$
\|\ell\|_{g}^{2}=0, \quad \nabla_{\ell}^{g} \ell=0, \quad \operatorname{Tr}\left(\nabla^{g} \ell\right)=0, \quad\left\|\nabla^{g} \ell^{s y m}\right\|_{g}^{2}=0, \quad\left\|\nabla^{g} \ell^{\text {alt }}\right\|_{g}^{2}=0
$$

where ∇^{g} is the Levi-Civita connection given by g. We call g a degenerate Kundt metric if, in addition,

- The Riemann tensor Riem is aligned and of algebraically special type $I I$, and
- $\nabla^{g}(\mathrm{Riem})$ is aligned and of algebraically special type $I I$.

For any Kundt metric, there exist local coordinates $u, x^{1}, \ldots, x^{n-2}, v$ in which g takes the form

$$
g=d u\left(d v+H(u, x, v) d u+W_{i}(u, x, v) d x^{i}\right)+h_{i j}(u, x) d x^{i} d x^{j} .
$$

Kundt spacetimes

A Lorentzian metric g on an n-dimensional manifold M is a Kundt metric if there exists a vector field ℓ such that

$$
\|\ell\|_{g}^{2}=0, \quad \nabla_{\ell}^{g} \ell=0, \quad \operatorname{Tr}\left(\nabla^{g} \ell\right)=0, \quad\left\|\nabla^{g} \ell^{s y m}\right\|_{g}^{2}=0, \quad\left\|\nabla^{g} \ell^{\text {alt }}\right\|_{g}^{2}=0
$$

where ∇^{g} is the Levi-Civita connection given by g. We call g a degenerate Kundt metric if, in addition,

- The Riemann tensor Riem is aligned and of algebraically special type $I I$, and
- ∇^{g} (Riem) is aligned and of algebraically special type $I I$.

For any Kundt metric, there exist local coordinates $u, x^{1}, \ldots, x^{n-2}, v$ in which g takes the form

$$
g=d u\left(d v+H(u, x, v) d u+W_{i}(u, x, v) d x^{i}\right)+h_{i j}(u, x) d x^{i} d x^{j}
$$

In these coordinates, $\ell=\partial_{v}$, and g is a degenerate Kundt metric if and only if $\left(W_{i}\right)_{v v}=0$ and $H_{v v v}=0$.

The equivalence problem

The equivalence problem

We say that two Kundt metrics g and \tilde{g} on M are equivalent if there exists a diffeomorphism $\varphi: M \rightarrow M$ such that $\varphi^{*}(\tilde{g})=g$.

The equivalence problem

We say that two Kundt metrics g and \tilde{g} on M are equivalent if there exists a diffeomorphism $\varphi: M \rightarrow M$ such that $\varphi^{*}(\tilde{g})=g$.

Important task: To recognize equivalent Kundt metrics and distinguish inequivalent ones.

The equivalence problem

We say that two Kundt metrics g and \tilde{g} on M are equivalent if there exists a diffeomorphism $\varphi: M \rightarrow M$ such that $\varphi^{*}(\tilde{g})=g$.

Important task: To recognize equivalent Kundt metrics and distinguish inequivalent ones.

One of the standard ways is to use polynomial curvature invariants, i.e. total contractions of the curvature tensor and its covariant derivatives. However, not all spacetimes are separated by such invariants. In particular, in dimension $n=4$ the degenerate Kundt spacetimes are exactly those that can not separated by polynomial curvature invariants (Coley, Hervik, Pelavas 2009).

The equivalence problem

We say that two Kundt metrics g and \tilde{g} on M are equivalent if there exists a diffeomorphism $\varphi: M \rightarrow M$ such that $\varphi^{*}(\tilde{g})=g$.

Important task: To recognize equivalent Kundt metrics and distinguish inequivalent ones.

One of the standard ways is to use polynomial curvature invariants, i.e. total contractions of the curvature tensor and its covariant derivatives. However, not all spacetimes are separated by such invariants. In particular, in dimension $n=4$ the degenerate Kundt spacetimes are exactly those that can not separated by polynomial curvature invariants (Coley, Hervik, Pelavas 2009).

Therefore we need to use other invariants!

Shape－preserving transformations

Shape-preserving transformations

To simplify the problem, we will use the coordinates in which g takes the form

$$
\begin{equation*}
g=d u\left(d v+H(u, x, v) d u+W_{i}(u, x, v) d x^{i}\right)+h_{i j}(u, x) d x^{i} d x^{j} \tag{1}
\end{equation*}
$$

Shape-preserving transformations

To simplify the problem, we will use the coordinates in which g takes the form

$$
\begin{equation*}
g=d u\left(d v+H(u, x, v) d u+W_{i}(u, x, v) d x^{i}\right)+h_{i j}(u, x) d x^{i} d x^{j} \tag{1}
\end{equation*}
$$

Then we must also restrict to diffeomorphisms preserving this form.

Shape-preserving transformations

To simplify the problem, we will use the coordinates in which g takes the form

$$
\begin{equation*}
g=d u\left(d v+H(u, x, v) d u+W_{i}(u, x, v) d x^{i}\right)+h_{i j}(u, x) d x^{i} d x^{j} \tag{1}
\end{equation*}
$$

Then we must also restrict to diffeomorphisms preserving this form.

Theorem

The transformations preserving the form of (1) are given by

$$
\left(u, x^{i}, v\right) \mapsto\left(C(u), A^{i}(u, x), \frac{v}{C^{\prime}(u)}+B(u, x)\right), \quad \operatorname{det}\left[A_{x^{j}}^{i}\right] \neq 0, C^{\prime}(u) \neq 0
$$

Shape-preserving transformations

To simplify the problem, we will use the coordinates in which g takes the form

$$
\begin{equation*}
g=d u\left(d v+H(u, x, v) d u+W_{i}(u, x, v) d x^{i}\right)+h_{i j}(u, x) d x^{i} d x^{j} \tag{1}
\end{equation*}
$$

Then we must also restrict to diffeomorphisms preserving this form.

Theorem

The transformations preserving the form of (1) are given by

$$
\left(u, x^{i}, v\right) \mapsto\left(C(u), A^{i}(u, x), \frac{v}{C^{\prime}(u)}+B(u, x)\right), \quad \operatorname{det}\left[A_{x^{j}}^{i}\right] \neq 0, C^{\prime}(u) \neq 0
$$

The Lie algebra \mathfrak{g} corresponding to this Lie pseudogroup consists of the vector fields

$$
c(u) \partial_{u}+a^{i}(u, x) \partial_{x^{i}}+\left(b(u, x)-c^{\prime}(u) v\right) \partial_{v}
$$

Sections of a bundle

Sections of a bundle

The Kundt metrics of form (1) can be considered as sections of a bundle

$$
\pi: M \times F \rightarrow M
$$

where $F \subset \mathbb{R}^{N}$ with $N=\binom{n}{2}$.

Sections of a bundle

The Kundt metrics of form (1) can be considered as sections of a bundle

$$
\pi: M \times F \rightarrow M
$$

where $F \subset \mathbb{R}^{N}$ with $N=\binom{n}{2}$. Let $u, x^{1}, \ldots, x^{n-2}, v$ be coordinates on M and $h_{i j}, W_{i}, H$ be coordinates on \mathbb{R}^{N}, where $1 \leq i \leq j \leq n-2$.

Sections of a bundle

The Kundt metrics of form (1) can be considered as sections of a bundle

$$
\pi: M \times F \rightarrow M
$$

where $F \subset \mathbb{R}^{N}$ with $N=\binom{n}{2}$. Let $u, x^{1}, \ldots, x^{n-2}, v$ be coordinates on M and $h_{i j}, W_{i}, H$ be coordinates on \mathbb{R}^{N}, where $1 \leq i \leq j \leq n-2$. The domain $F \subset \mathbb{R}^{N}$ is defined by the requirement that the matrix $h_{i j}$ is positive definite.

Sections of a bundle

The Kundt metrics of form (1) can be considered as sections of a bundle

$$
\pi: M \times F \rightarrow M
$$

where $F \subset \mathbb{R}^{N}$ with $N=\binom{n}{2}$. Let $u, x^{1}, \ldots, x^{n-2}, v$ be coordinates on M and $h_{i j}, W_{i}, H$ be coordinates on \mathbb{R}^{N}, where $1 \leq i \leq j \leq n-2$. The domain $F \subset \mathbb{R}^{N}$ is defined by the requirement that the matrix $h_{i j}$ is positive definite.

The vector fields of \mathfrak{g} can be lifted to $F \times M$ by requiring the lifts to preserve the horizontal symmetric form

$$
G=d u\left(d v+H d u+W_{i} d x^{i}\right)+h_{i j} d x^{i} d x^{j}
$$

Sections of a bundle

The Kundt metrics of form (1) can be considered as sections of a bundle

$$
\pi: M \times F \rightarrow M
$$

where $F \subset \mathbb{R}^{N}$ with $N=\binom{n}{2}$. Let $u, x^{1}, \ldots, x^{n-2}, v$ be coordinates on M and $h_{i j}, W_{i}, H$ be coordinates on \mathbb{R}^{N}, where $1 \leq i \leq j \leq n-2$. The domain $F \subset \mathbb{R}^{N}$ is defined by the requirement that the matrix $h_{i j}$ is positive definite.

The vector fields of \mathfrak{g} can be lifted to $F \times M$ by requiring the lifts to preserve the horizontal symmetric form

$$
G=d u\left(d v+H d u+W_{i} d x^{i}\right)+h_{i j} d x^{i} d x^{j}
$$

The lift \hat{X} of the vector field $X=c(u) \partial_{u}+a^{i}(u, x) \partial_{x^{i}}+\left(b(u, x)-c^{\prime}(u) v\right) \partial_{v}$ is found by setting $\hat{X}=X+A_{i j} \partial_{h_{i j}}+B_{i} \partial_{W_{i}}+C \partial_{H}$, and determining the coefficients from the equation $L_{\hat{X}} G=0$:

Sections of a bundle

The Kundt metrics of form (1) can be considered as sections of a bundle

$$
\pi: M \times F \rightarrow M
$$

where $F \subset \mathbb{R}^{N}$ with $N=\binom{n}{2}$. Let $u, x^{1}, \ldots, x^{n-2}, v$ be coordinates on M and $h_{i j}, W_{i}, H$ be coordinates on \mathbb{R}^{N}, where $1 \leq i \leq j \leq n-2$. The domain $F \subset \mathbb{R}^{N}$ is defined by the requirement that the matrix $h_{i j}$ is positive definite.

The vector fields of \mathfrak{g} can be lifted to $F \times M$ by requiring the lifts to preserve the horizontal symmetric form

$$
G=d u\left(d v+H d u+W_{i} d x^{i}\right)+h_{i j} d x^{i} d x^{j}
$$

The lift \hat{X} of the vector field $X=c(u) \partial_{u}+a^{i}(u, x) \partial_{x^{i}}+\left(b(u, x)-c^{\prime}(u) v\right) \partial_{v}$ is found by setting $\hat{X}=X+A_{i j} \partial_{h_{i j}}+B_{i} \partial_{W_{i}}+C \partial_{H}$, and determining the coefficients from the equation $L_{\hat{X}} G=0$:

$$
\begin{align*}
\hat{X}= & c \partial_{u}+a^{i} \partial_{x^{i}}+\left(b-c^{\prime} v\right) \partial_{v}-\left(a_{i}^{l} h_{l j} \partial_{h_{i j}}+a_{i}^{l} h_{l i} \partial_{h_{i i}}\right) \\
& -\left(c^{\prime} W_{i}+a_{i}^{j} W_{j}+b_{i}+2 a_{u}^{j} h_{i j}\right) \partial_{W_{i}}-\left(2 c^{\prime} H-c^{\prime \prime} v+b_{u}+a_{u}^{j} W_{j}\right) \partial_{H} \cdot_{\bar{\Xi}}
\end{align*}
$$

The space of jets

The space of jets

Let $J^{k} \pi$ denote the space of k-jets of sections of π.

The space of jets

Let $J^{k} \pi$ denote the space of k-jets of sections of π. The choice of coordinates on $F \times M$ gives a natural set of coordinates on $J^{k} \pi$. For example, on $J^{1} \pi$ we get the following coordinates:

$$
u, x^{i}, v, h_{i j}, W_{i}, H,\left(h_{i j}\right)_{u},\left(h_{i j}\right)_{x^{k}},\left(h_{i j}\right)_{v},\left(W_{i}\right)_{u},\left(W_{i}\right)_{x^{k}},\left(W_{i}\right)_{v}, H_{u}, H_{x^{k}}, H_{v}
$$

The space of jets

Let $J^{k} \pi$ denote the space of k-jets of sections of π. The choice of coordinates on $F \times M$ gives a natural set of coordinates on $J^{k} \pi$. For example, on $J^{1} \pi$ we get the following coordinates:

$$
u, x^{i}, v, h_{i j}, W_{i}, H,\left(h_{i j}\right)_{u},\left(h_{i j}\right)_{x^{k}},\left(h_{i j}\right)_{v},\left(W_{i}\right)_{u},\left(W_{i}\right)_{x^{k}},\left(W_{i}\right)_{v}, H_{u}, H_{x^{k}}, H_{v}
$$

If g is a section of π given by $h_{i j}=\tilde{h}_{i j}(u, x, v), W_{i}=\tilde{W}_{i}(u, x, v), H=\tilde{H}(u, x, v)$, then it prolongs naturally to a section $j^{1} g$ of the bundle $J^{1} \pi \rightarrow M$:

The space of jets

Let $J^{k} \pi$ denote the space of k-jets of sections of π. The choice of coordinates on $F \times M$ gives a natural set of coordinates on $J^{k} \pi$. For example, on $J^{1} \pi$ we get the following coordinates:

$$
u, x^{i}, v, h_{i j}, W_{i}, H,\left(h_{i j}\right)_{u},\left(h_{i j}\right)_{x^{k}},\left(h_{i j}\right)_{v},\left(W_{i}\right)_{u},\left(W_{i}\right)_{x^{k}},\left(W_{i}\right)_{v}, H_{u}, H_{x^{k}}, H_{v}
$$

If g is a section of π given by $h_{i j}=\tilde{h}_{i j}(u, x, v), W_{i}=\tilde{W}_{i}(u, x, v), H=\tilde{H}(u, x, v)$, then it prolongs naturally to a section $j^{1} g$ of the bundle $J^{1} \pi \rightarrow M$:

$$
\left(h_{i j}\right)_{u}=\frac{\partial \tilde{h}_{i j}}{\partial u}(u, x, v), \quad\left(h_{i j}\right)_{x^{k}}=\frac{\partial \tilde{h}_{i j}}{\partial x^{k}}(u, x, v), \quad \cdots, \quad H_{v}=\frac{\partial \tilde{H}}{\partial v}(u, x, v)
$$

The space of jets

Let $J^{k} \pi$ denote the space of k-jets of sections of π. The choice of coordinates on $F \times M$ gives a natural set of coordinates on $J^{k} \pi$. For example, on $J^{1} \pi$ we get the following coordinates:

$$
u, x^{i}, v, h_{i j}, W_{i}, H,\left(h_{i j}\right)_{u},\left(h_{i j}\right)_{x^{k}},\left(h_{i j}\right)_{v},\left(W_{i}\right)_{u},\left(W_{i}\right)_{x^{k}},\left(W_{i}\right)_{v}, H_{u}, H_{x^{k}}, H_{v}
$$

If g is a section of π given by $h_{i j}=\tilde{h}_{i j}(u, x, v), W_{i}=\tilde{W}_{i}(u, x, v), H=\tilde{H}(u, x, v)$, then it prolongs naturally to a section $j^{1} g$ of the bundle $J^{1} \pi \rightarrow M$:

$$
\left(h_{i j}\right)_{u}=\frac{\partial \tilde{h}_{i j}}{\partial u}(u, x, v), \quad\left(h_{i j}\right)_{x^{k}}=\frac{\partial \tilde{h}_{i j}}{\partial x^{k}}(u, x, v), \quad \cdots, \quad H_{v}=\frac{\partial \tilde{H}}{\partial v}(u, x, v)
$$

In a similar way g prolongs to a section $j^{k} g$ of the bundle $J^{k} \pi \rightarrow M$.

The space of jets

Let $J^{k} \pi$ denote the space of k-jets of sections of π. The choice of coordinates on $F \times M$ gives a natural set of coordinates on $J^{k} \pi$. For example, on $J^{1} \pi$ we get the following coordinates:

$$
u, x^{i}, v, h_{i j}, W_{i}, H,\left(h_{i j}\right)_{u},\left(h_{i j}\right)_{x^{k}},\left(h_{i j}\right)_{v},\left(W_{i}\right)_{u},\left(W_{i}\right)_{x^{k}},\left(W_{i}\right)_{v}, H_{u}, H_{x^{k}}, H_{v}
$$

If g is a section of π given by $h_{i j}=\tilde{h}_{i j}(u, x, v), W_{i}=\tilde{W}_{i}(u, x, v), H=\tilde{H}(u, x, v)$, then it prolongs naturally to a section $j^{1} g$ of the bundle $J^{1} \pi \rightarrow M$:

$$
\left(h_{i j}\right)_{u}=\frac{\partial \tilde{h}_{i j}}{\partial u}(u, x, v), \quad\left(h_{i j}\right)_{x^{k}}=\frac{\partial \tilde{h}_{i j}}{\partial x^{k}}(u, x, v), \quad \cdots, \quad H_{v}=\frac{\partial \tilde{H}}{\partial v}(u, x, v)
$$

In a similar way g prolongs to a section $j^{k} g$ of the bundle $J^{k} \pi \rightarrow M$.
We are not working with arbitrary sections, but with sections satisfying certain differential equations.

The PDEs

The PDEs

- For Kundt spacetimes we have

$$
\mathcal{E}^{1}=\left\{\left(h_{i j}\right)_{v}=0\right\} \subset J^{1} \pi .
$$

The PDEs

- For Kundt spacetimes we have

$$
\mathcal{E}^{1}=\left\{\left(h_{i j}\right)_{v}=0\right\} \subset J^{1} \pi
$$

Its prolongation to $J^{2} \pi$ is given by

$$
\mathcal{E}^{2}=\left\{\left(h_{i j}\right)_{v}=0,\left(h_{i j}\right)_{u v}=0,\left(h_{i j}\right)_{x^{k} v}=0,\left(h_{i j}\right)_{v v}=0\right\} .
$$

The PDEs

- For Kundt spacetimes we have

$$
\mathcal{E}^{1}=\left\{\left(h_{i j}\right)_{v}=0\right\} \subset J^{1} \pi
$$

Its prolongation to $J^{2} \pi$ is given by

$$
\mathcal{E}^{2}=\left\{\left(h_{i j}\right)_{v}=0,\left(h_{i j}\right)_{u v}=0,\left(h_{i j}\right)_{x^{k} v}=0,\left(h_{i j}\right)_{v v}=0\right\} .
$$

In a similar way we define $\mathcal{E}^{k} \subset J^{k} \pi$.

The PDEs

- For Kundt spacetimes we have

$$
\mathcal{E}^{1}=\left\{\left(h_{i j}\right)_{v}=0\right\} \subset J^{1} \pi .
$$

Its prolongation to $J^{2} \pi$ is given by

$$
\mathcal{E}^{2}=\left\{\left(h_{i j}\right)_{v}=0,\left(h_{i j}\right)_{u v}=0,\left(h_{i j}\right)_{x^{k} v}=0,\left(h_{i j}\right)_{v v}=0\right\} .
$$

In a similar way we define $\mathcal{E}^{k} \subset J^{k} \pi$.

- For degenerate Kundt spacetimes we have a sub-PDE $\tilde{\mathcal{E}}^{k} \subset \mathcal{E}^{k} \subset J^{k} \pi$ defined by

$$
\begin{gathered}
\tilde{\mathcal{E}}^{1}=\mathcal{E}^{1}, \quad \tilde{\mathcal{E}}^{2}=\mathcal{E}^{2} \cap\left\{\left(W_{i}\right)_{v v}=0\right\} \\
\tilde{\mathcal{E}}^{3}=\mathcal{E}^{3} \cap\left\{\left(W_{i}\right)_{v v}=0,\left(W_{i}\right)_{v v v}=0, H_{v v v}=0\right\}
\end{gathered}
$$

The PDEs

- For Kundt spacetimes we have

$$
\mathcal{E}^{1}=\left\{\left(h_{i j}\right)_{v}=0\right\} \subset J^{1} \pi .
$$

Its prolongation to $J^{2} \pi$ is given by

$$
\mathcal{E}^{2}=\left\{\left(h_{i j}\right)_{v}=0,\left(h_{i j}\right)_{u v}=0,\left(h_{i j}\right)_{x^{k} v}=0,\left(h_{i j}\right)_{v v}=0\right\} .
$$

In a similar way we define $\mathcal{E}^{k} \subset J^{k} \pi$.

- For degenerate Kundt spacetimes we have a sub-PDE $\tilde{\mathcal{E}}^{k} \subset \mathcal{E}^{k} \subset J^{k} \pi$ defined by

$$
\begin{gathered}
\tilde{\mathcal{E}}^{1}=\mathcal{E}^{1}, \quad \tilde{\mathcal{E}}^{2}=\mathcal{E}^{2} \cap\left\{\left(W_{i}\right)_{v v}=0\right\} \\
\tilde{\mathcal{E}}^{3}=\mathcal{E}^{3} \cap\left\{\left(W_{i}\right)_{v v}=0,\left(W_{i}\right)_{v v v}=0, H_{v v v}=0\right\}
\end{gathered}
$$

For $k>3$, we define $\tilde{\mathcal{E}}^{k} \subset J^{k} \pi$ as the prolongation of $\tilde{\mathcal{E}}^{3}$.

The PDEs

The PDEs

If g is a section of π, then the section $j^{k} g$ of $J^{k} \pi \rightarrow M$ is contained in \mathcal{E}^{k} if and only if it is a Kundt metric of the form (1).

The PDEs

If g is a section of π, then the section $j^{k} g$ of $J^{k} \pi \rightarrow M$ is contained in \mathcal{E}^{k} if and only if it is a Kundt metric of the form (1). (The same statement holds for $\tilde{\mathcal{E}}^{k}$ and degenerate Kundt metrics.

Any vector field X in \mathfrak{g} prolongs to a vector field $\hat{X}^{(k)}$ on $J^{k} \pi$ in the standard way, and $\hat{X}^{(k)}$ is tangent to \mathcal{E}^{k} and $\tilde{\mathcal{E}}^{k}$ for each k.

The PDEs

If g is a section of π, then the section $j^{k} g$ of $J^{k} \pi \rightarrow M$ is contained in \mathcal{E}^{k} if and only if it is a Kundt metric of the form (1). (The same statement holds for $\tilde{\mathcal{E}}^{k}$ and degenerate Kundt metrics.

Any vector field X in \mathfrak{g} prolongs to a vector field $\hat{X}^{(k)}$ on $J^{k} \pi$ in the standard way, and $\hat{X}^{(k)}$ is tangent to \mathcal{E}^{k} and $\tilde{\mathcal{E}}^{k}$ for each k.

We would like to distinguish sections of π satisfying \mathcal{E} or $\tilde{\mathcal{E}}$ under the equivalence relation given by the Lie algebra \mathfrak{g}. Both of these are of infinite dimension.

The PDEs

If g is a section of π, then the section $j^{k} g$ of $J^{k} \pi \rightarrow M$ is contained in \mathcal{E}^{k} if and only if it is a Kundt metric of the form (1). (The same statement holds for $\tilde{\mathcal{E}}^{k}$ and degenerate Kundt metrics.

Any vector field X in \mathfrak{g} prolongs to a vector field $\hat{X}^{(k)}$ on $J^{k} \pi$ in the standard way, and $\hat{X}^{(k)}$ is tangent to \mathcal{E}^{k} and $\tilde{\mathcal{E}}^{k}$ for each k.

We would like to distinguish sections of π satisfying \mathcal{E} or $\tilde{\mathcal{E}}$ under the equivalence relation given by the Lie algebra \mathfrak{g}. Both of these are of infinite dimension. However, each manifold $\mathcal{E}^{k}, \tilde{\mathcal{E}}^{k} \subset J^{k} \pi$ is of finite dimension, and so are \mathfrak{g}-orbits on these.

Differential invariants

Differential invariants

Definition

A differential invariant of order k is a function I on \mathcal{E}^{k} (or $\tilde{\mathcal{E}}^{k}$) which is constant on \mathfrak{g}-orbits.

Differential invariants

Definition

A differential invariant of order k is a function I on \mathcal{E}^{k} (or $\tilde{\mathcal{E}}^{k}$) which is constant on \mathfrak{g}-orbits.

Theorem (Lie-Tresse-...-Kruglikov-Lychagin)

The algebra of rational differential invariants separates orbits in general position in \mathcal{E}^{∞} and $\tilde{\mathcal{E}}^{\infty}$. It is generated by a finite number of differential invariants and invariant derivations.

The strategy

The strategy

A differential invariant I is a function on \mathcal{E}^{k}.

The strategy

A differential invariant I is a function on \mathcal{E}^{k}. By restricting it to a section g of π, we obtain a function on M :

$$
I_{g}=I \circ j^{k} g
$$

The strategy

A differential invariant I is a function on \mathcal{E}^{k}. By restricting it to a section g of π, we obtain a function on M :

$$
I_{g}=I \circ j^{k} g
$$

Now assume that we have n invariants I^{1}, \ldots, I^{n} that are independent when restricted to g, i.e.

$$
d I_{g}^{1} \wedge \cdots \wedge d I_{g}^{n} \neq 0
$$

The strategy

A differential invariant I is a function on \mathcal{E}^{k}. By restricting it to a section g of π, we obtain a function on M :

$$
I_{g}=I \circ j^{k} g
$$

Now assume that we have n invariants I^{1}, \ldots, I^{n} that are independent when restricted to g, i.e.

$$
d I_{g}^{1} \wedge \cdots \wedge d I_{g}^{n} \neq 0
$$

Then $I_{g}^{1}, \ldots, I_{g}^{n}$ can be used as coordinates on M, and we can write g in these coordinates:

$$
g=K_{i j}\left(I_{g}^{1}, \ldots, I_{g}^{n}\right) d I_{g}^{i} d I_{g}^{j}
$$

The strategy

A differential invariant I is a function on \mathcal{E}^{k}. By restricting it to a section g of π, we obtain a function on M :

$$
I_{g}=I \circ j^{k} g
$$

Now assume that we have n invariants I^{1}, \ldots, I^{n} that are independent when restricted to g, i.e.

$$
d I_{g}^{1} \wedge \cdots \wedge d I_{g}^{n} \neq 0
$$

Then $I_{g}^{1}, \ldots, I_{g}^{n}$ can be used as coordinates on M, and we can write g in these coordinates:

$$
g=K_{i j}\left(I_{g}^{1}, \ldots, I_{g}^{n}\right) d I_{g}^{i} d I_{g}^{j}
$$

Two metrics that are written in these invariant coordinates can be compared directly. They are equivalent if and only if the functions $K_{i j}\left(I_{g}^{1}, \ldots, I_{g}^{n}\right)$ are equal.

The strategy

A differential invariant I is a function on \mathcal{E}^{k}. By restricting it to a section g of π, we obtain a function on M :

$$
I_{g}=I \circ j^{k} g
$$

Now assume that we have n invariants I^{1}, \ldots, I^{n} that are independent when restricted to g, i.e.

$$
d I_{g}^{1} \wedge \cdots \wedge d I_{g}^{n} \neq 0
$$

Then $I_{g}^{1}, \ldots, I_{g}^{n}$ can be used as coordinates on M, and we can write g in these coordinates:

$$
g=K_{i j}\left(I_{g}^{1}, \ldots, I_{g}^{n}\right) d I_{g}^{i} d I_{g}^{j}
$$

Two metrics that are written in these invariant coordinates can be compared directly. They are equivalent if and only if the functions $K_{i j}\left(I_{g}^{1}, \ldots, I_{g}^{n}\right)$ are equal.

Invariants for general Kundt metrics

Generic Kundt metrics can be distinguished by polynomial curvature invariants. In particular, we may take the invariants

$$
I^{i}=\operatorname{Tr}\left(\operatorname{Ric}^{i}\right)
$$

for $i=1, \ldots, n$, where Ric: $T M \rightarrow T M$ is the Ricci operator.

Invariants for general Kundt metrics

Generic Kundt metrics can be distinguished by polynomial curvature invariants. In particular, we may take the invariants

$$
I^{i}=\operatorname{Tr}\left(\operatorname{Ric}^{i}\right)
$$

for $i=1, \ldots, n$, where Ric: $T M \rightarrow T M$ is the Ricci operator. We have

$$
\hat{d} I^{1} \wedge \cdots \wedge \hat{d} I^{n} \neq 0
$$

on a Zariski open set in \mathcal{E}^{3}.

Invariants for general Kundt metrics

Generic Kundt metrics can be distinguished by polynomial curvature invariants. In particular, we may take the invariants

$$
I^{i}=\operatorname{Tr}\left(\operatorname{Ric}^{i}\right)
$$

for $i=1, \ldots, n$, where Ric: $T M \rightarrow T M$ is the Ricci operator. We have

$$
\hat{d} I^{1} \wedge \cdots \wedge \hat{d} I^{n} \neq 0
$$

on a Zariski open set in \mathcal{E}^{3}. Here \hat{d} is the horizontal differential. It is defined on a function $f \in C^{\infty}\left(\mathcal{E}^{k}\right)$ by $\hat{d} f \circ j^{k} g=d\left(f \circ j^{k} g\right)$, or in coordinates by

$$
\hat{d f}=D_{u}(f) d u+D_{x^{i}}(f) d x^{i}+D_{v}(f) d v
$$

Invariants for general Kundt metrics

Generic Kundt metrics can be distinguished by polynomial curvature invariants. In particular, we may take the invariants

$$
I^{i}=\operatorname{Tr}\left(\operatorname{Ric}^{i}\right)
$$

for $i=1, \ldots, n$, where Ric: $T M \rightarrow T M$ is the Ricci operator. We have

$$
\hat{d} I^{1} \wedge \cdots \wedge \hat{d} I^{n} \neq 0
$$

on a Zariski open set in \mathcal{E}^{3}. Here \hat{d} is the horizontal differential. It is defined on a function $f \in C^{\infty}\left(\mathcal{E}^{k}\right)$ by $\hat{d} f \circ j^{k} g=d\left(f \circ j^{k} g\right)$, or in coordinates by

$$
\hat{d} f=D_{u}(f) d u+D_{x^{i}}(f) d x^{i}+D_{v}(f) d v
$$

On this Zariski open set, $\hat{d} I^{1}, \ldots, \hat{d} I^{n}$ form an invariant horizontal coframe.

Invariants for general Kundt metrics

Generic Kundt metrics can be distinguished by polynomial curvature invariants. In particular, we may take the invariants

$$
I^{i}=\operatorname{Tr}\left(\operatorname{Ric}^{i}\right)
$$

for $i=1, \ldots, n$, where Ric: $T M \rightarrow T M$ is the Ricci operator. We have

$$
\hat{d} I^{1} \wedge \cdots \wedge \hat{d} I^{n} \neq 0
$$

on a Zariski open set in \mathcal{E}^{3}. Here \hat{d} is the horizontal differential. It is defined on a function $f \in C^{\infty}\left(\mathcal{E}^{k}\right)$ by $\hat{d} f \circ j^{k} g=d\left(f \circ j^{k} g\right)$, or in coordinates by

$$
\hat{d} f=D_{u}(f) d u+D_{x^{i}}(f) d x^{i}+D_{v}(f) d v
$$

On this Zariski open set, $\hat{d} I^{1}, \ldots, \hat{d} I^{n}$ form an invariant horizontal coframe. There is also a dual frame of invariant derivations $\hat{\partial}_{i}=A D_{u}+B_{i}^{j} D_{x^{j}}+C D_{v}$, satisfying $\hat{d} I^{i}\left(\hat{\partial}_{j}\right)=\delta_{j}^{i}$.

Invariants for general Kundt metrics

We can express the horizontal symmetric form

$$
G=d u\left(d v+H d u+W_{i} d x^{i}\right)+h_{i j} d x^{i} d x^{j} .
$$

as

$$
G=K_{i j} \hat{d} I^{i} \hat{d} I^{j},
$$

where $K_{i j}=G\left(\hat{\partial}_{i}, \hat{\partial}_{j}\right)$ are rational differential invariants of order 3.

Invariants for general Kundt metrics

We can express the horizontal symmetric form

$$
G=d u\left(d v+H d u+W_{i} d x^{i}\right)+h_{i j} d x^{i} d x^{j} .
$$

as

$$
G=K_{i j} \hat{d} I^{i} \hat{d} I^{j},
$$

where $K_{i j}=G\left(\hat{\partial}_{i}, \hat{\partial}_{j}\right)$ are rational differential invariants of order 3.

Theorem
The algebra of rational differential invariants is generated by $I^{i}, K_{i j}$ and the invariant derivations $\hat{\partial}_{i}$.

Invariants for degenerate Kundt metrics

Invariants for degenerate Kundt metrics

The above approach does not work for degenerate Kundt metrics, because for these we have

$$
\hat{d} I^{1} \wedge \cdots \wedge \hat{d} I^{n} \equiv 0
$$

Invariants for degenerate Kundt metrics

The above approach does not work for degenerate Kundt metrics, because for these we have

$$
\hat{d} I^{1} \wedge \cdots \wedge \hat{d} I^{n} \equiv 0
$$

In general, only $n-1$ of these invariants are horizontally independent (in our adapted coordinates, we have $D_{v}\left(I^{i}\right)=0$ for all of them).

Invariants for degenerate Kundt metrics

The above approach does not work for degenerate Kundt metrics, because for these we have

$$
\hat{d} I^{1} \wedge \cdots \wedge \hat{d} I^{n} \equiv 0
$$

In general, only $n-1$ of these invariants are horizontally independent (in our adapted coordinates, we have $D_{v}\left(I^{i}\right)=0$ for all of them).

For $n-1$ horizontally independent invariants J^{1}, \ldots, J^{n-1} from the above set, let $\nabla_{1}, \ldots, \nabla_{n-1}$ be the G-duals to $\hat{d} J^{1}, \ldots, \hat{d} J^{n-1}$.

Invariants for degenerate Kundt metrics

The above approach does not work for degenerate Kundt metrics, because for these we have

$$
\hat{d} I^{1} \wedge \cdots \wedge \hat{d} I^{n} \equiv 0
$$

In general, only $n-1$ of these invariants are horizontally independent (in our adapted coordinates, we have $D_{v}\left(I^{i}\right)=0$ for all of them).

For $n-1$ horizontally independent invariants J^{1}, \ldots, J^{n-1} from the above set, let $\nabla_{1}, \ldots, \nabla_{n-1}$ be the G-duals to $\hat{d} J^{1}, \ldots, \hat{d} J^{n-1}$. The invariants can be chosen such that $\nabla_{2}, \ldots, \nabla_{n-1}$ are spacelike vector fields (after restriction to a degenerate Kundt metric), making the matrix $\left[G\left(\nabla_{i}, \nabla_{j}\right)\right]_{i=2}^{n-1}$ positive definite.

Invariants for degenerate Kundt metrics

The above approach does not work for degenerate Kundt metrics, because for these we have

$$
\hat{d} I^{1} \wedge \cdots \wedge \hat{d} I^{n} \equiv 0
$$

In general, only $n-1$ of these invariants are horizontally independent (in our adapted coordinates, we have $D_{v}\left(I^{i}\right)=0$ for all of them).

For $n-1$ horizontally independent invariants J^{1}, \ldots, J^{n-1} from the above set, let $\nabla_{1}, \ldots, \nabla_{n-1}$ be the G-duals to $\hat{d} J^{1}, \ldots, \hat{d} J^{n-1}$. The invariants can be chosen such that $\nabla_{2}, \ldots, \nabla_{n-1}$ are spacelike vector fields (after restriction to a degenerate Kundt metric), making the matrix $\left[G\left(\nabla_{i}, \nabla_{j}\right)\right]_{i=2}^{n-1}$ positive definite.

Define the nth derivation by

$$
G\left(\nabla_{1}, \nabla_{n}\right)=1, \quad G\left(\nabla_{i}, \nabla_{n}\right)=0 \text { for } i=2, \ldots, n
$$

Invariants for degenerate Kundt metrics

Invariants for degenerate Kundt metrics

Let $\omega^{1}, \ldots, \omega^{n}$ denote the horizontal coframe dual to $\nabla_{1}, \ldots, \nabla_{n}$, defined by $\omega^{i}\left(\nabla_{j}\right)=\delta_{j}^{i}$.

Invariants for degenerate Kundt metrics

Let $\omega^{1}, \ldots, \omega^{n}$ denote the horizontal coframe dual to $\nabla_{1}, \ldots, \nabla_{n}$, defined by $\omega^{i}\left(\nabla_{j}\right)=\delta_{j}^{i}$. Then we have

$$
G=L_{i j} \omega^{i} \omega^{j}
$$

where $L_{i j}=G\left(\nabla_{i}, \nabla_{j}\right)$ are differential invariants of order 3 .

Invariants for degenerate Kundt metrics

Let $\omega^{1}, \ldots, \omega^{n}$ denote the horizontal coframe dual to $\nabla_{1}, \ldots, \nabla_{n}$, defined by $\omega^{i}\left(\nabla_{j}\right)=\delta_{j}^{i}$. Then we have

$$
G=L_{i j} \omega^{i} \omega^{j}
$$

where $L_{i j}=G\left(\nabla_{i}, \nabla_{j}\right)$ are differential invariants of order 3. In this case, we have nontrivial commutation relations $\left[\nabla_{i}, \nabla_{j}\right]=c_{i j}^{k} \nabla_{k}$, where $c_{i j}^{k}$ are differential invariants of order 3 .

Invariants for degenerate Kundt metrics

Let $\omega^{1}, \ldots, \omega^{n}$ denote the horizontal coframe dual to $\nabla_{1}, \ldots, \nabla_{n}$, defined by $\omega^{i}\left(\nabla_{j}\right)=\delta_{j}^{i}$. Then we have

$$
G=L_{i j} \omega^{i} \omega^{j}
$$

where $L_{i j}=G\left(\nabla_{i}, \nabla_{j}\right)$ are differential invariants of order 3. In this case, we have nontrivial commutation relations $\left[\nabla_{i}, \nabla_{j}\right]=c_{i j}^{k} \nabla_{k}$, where $c_{i j}^{k}$ are differential invariants of order 3.

Theorem

The algebra of differential invariants is generated by the differential invariants $L_{i j}, c_{i j}^{k}$ and the invariant derivations ∇_{i}.

Other choices of generators of invariants

Other choices of generators of invariants

The above approach is very flexible regarding the choice of n invariants or n invariant derivations. All we require is that $\hat{d} I^{1} \wedge \cdots \wedge \hat{d} I^{n}$ is nonvanishing, or that $\nabla_{1}, \ldots, \nabla_{n}$ are independent, on generic points.

Other choices of generators of invariants

The above approach is very flexible regarding the choice of n invariants or n invariant derivations. All we require is that $\hat{d} I^{1} \wedge \cdots \wedge \hat{d} I^{n}$ is nonvanishing, or that $\nabla_{1}, \ldots, \nabla_{n}$ are independent, on generic points. In particular there is, for any choice of dimension n, exactly one differential invariant of order 1 which can be used as one of the generators.

Other choices of generators of invariants

The above approach is very flexible regarding the choice of n invariants or n invariant derivations. All we require is that $\hat{d} I^{1} \wedge \cdots \wedge \hat{d} I^{n}$ is nonvanishing, or that $\nabla_{1}, \ldots, \nabla_{n}$ are independent, on generic points. In particular there is, for any choice of dimension n, exactly one differential invariant of order 1 which can be used as one of the generators.

Theorem
There is one algebraically independent invariant of first order, and it is given by

$$
\left(W_{i}\right)_{v}\left(W_{j}\right)_{v} h^{i j}
$$

Other choices of generators of invariants

The above approach is very flexible regarding the choice of n invariants or n invariant derivations. All we require is that $\hat{d} I^{1} \wedge \cdots \wedge \hat{d} I^{n}$ is nonvanishing, or that $\nabla_{1}, \ldots, \nabla_{n}$ are independent, on generic points. In particular there is, for any choice of dimension n, exactly one differential invariant of order 1 which can be used as one of the generators.
Theorem
There is one algebraically independent invariant of first order, and it is given by

$$
\left(W_{i}\right)_{v}\left(W_{j}\right)_{v} h^{i j}
$$

Note that the matrix $\left[h^{i j}\right]$ is the inverse to $\left[h_{i j}\right]$. In particular, we have the determinant of the latter in the denominator of I_{1}.

Other choices of generators of invariants

The above approach is very flexible regarding the choice of n invariants or n invariant derivations. All we require is that $\hat{d} I^{1} \wedge \cdots \wedge \hat{d} I^{n}$ is nonvanishing, or that $\nabla_{1}, \ldots, \nabla_{n}$ are independent, on generic points. In particular there is, for any choice of dimension n, exactly one differential invariant of order 1 which can be used as one of the generators.

Theorem

There is one algebraically independent invariant of first order, and it is given by

$$
\left(W_{i}\right)_{v}\left(W_{j}\right)_{v} h^{i j}
$$

Note that the matrix $\left[h^{i j}\right]$ is the inverse to $\left[h_{i j}\right]$. In particular, we have the determinant of the latter in the denominator of I_{1}.

We will show another choice of generators for $n=3$.

Three-dimensional Kundt spacetimes

Three-dimensional Kundt spacetimes

We simplify our notation and use coordinates u, x, v, h, W, H on $F \times M$.

Three-dimensional Kundt spacetimes

We simplify our notation and use coordinates u, x, v, h, W, H on $F \times M$. Let us start by giving an invariant horizontal frame.

Three-dimensional Kundt spacetimes

We simplify our notation and use coordinates u, x, v, h, W, H on $F \times M$. Let us start by giving an invariant horizontal frame.

Theorem

The derivations

$$
\begin{aligned}
& \nabla_{1}=\frac{W_{v}}{W_{v v}} D_{v}, \quad \nabla_{2}=\frac{2}{W_{v}} D_{x}+\frac{h_{x} W_{v}-2 h W_{x v}}{h W_{v} W_{v v}} D_{v} \\
& \nabla_{3}=\frac{1}{W_{v}}\left(H_{v v} D_{x}-W_{v v} D_{u}+\left(W_{u v}-H_{x v}\right) D_{v}\right)
\end{aligned}
$$

are invariant, and they are independent on a Zariski open subset of \mathcal{E}^{2}.

Three-dimensional Kundt spacetimes

We simplify our notation and use coordinates u, x, v, h, W, H on $F \times M$. Let us start by giving an invariant horizontal frame.

Theorem

The derivations

$$
\begin{aligned}
& \nabla_{1}=\frac{W_{v}}{W_{v v}} D_{v}, \quad \nabla_{2}=\frac{2}{W_{v}} D_{x}+\frac{h_{x} W_{v}-2 h W_{x v}}{h W_{v} W_{v v}} D_{v} \\
& \nabla_{3}=\frac{1}{W_{v}}\left(H_{v v} D_{x}-W_{v v} D_{u}+\left(W_{u v}-H_{x v}\right) D_{v}\right)
\end{aligned}
$$

are invariant, and they are independent on a Zariski open subset of \mathcal{E}^{2}.
The derivations satisfy $\left[\hat{X}^{(\infty)}, \nabla_{i}\right]=0$ for each $X \in \mathfrak{g}$, and they were found by solving this system of PDEs.

Three-dimensional Kundt spacetimes

Three-dimensional Kundt spacetimes

If we let α^{j} denote the elements of the dual horizontal coframe $\left(\alpha^{j}\left(\nabla_{i}\right)=\delta_{i}^{j}\right)$, then the horizontal symmetric 2-form G written in terms of this coframe will have coefficients given by $G\left(\nabla_{i}, \nabla_{j}\right)$.

Three-dimensional Kundt spacetimes

If we let α^{j} denote the elements of the dual horizontal coframe $\left(\alpha^{j}\left(\nabla_{i}\right)=\delta_{i}^{j}\right)$, then the horizontal symmetric 2-form G written in terms of this coframe will have coefficients given by $G\left(\nabla_{i}, \nabla_{j}\right)$. It takes the form

$$
G=I_{1}^{-1}\left(\left(J_{1} \alpha^{3}+J_{2} \alpha^{2}-I_{1} \alpha^{1}\right) \alpha^{3}+4\left(\alpha^{2}\right)^{2}\right)
$$

Three-dimensional Kundt spacetimes

If we let α^{j} denote the elements of the dual horizontal coframe $\left(\alpha^{j}\left(\nabla_{i}\right)=\delta_{i}^{j}\right)$, then the horizontal symmetric 2-form G written in terms of this coframe will have coefficients given by $G\left(\nabla_{i}, \nabla_{j}\right)$. It takes the form

$$
G=I_{1}^{-1}\left(\left(J_{1} \alpha^{3}+J_{2} \alpha^{2}-I_{1} \alpha^{1}\right) \alpha^{3}+4\left(\alpha^{2}\right)^{2}\right)
$$

where $I_{1}=\frac{W_{v}^{2}}{h}$ is the first-order differential invariant from the previous slide and

$$
\begin{aligned}
& J_{1}=\frac{H W_{v v}^{2}+\left(-H_{v v} W+H_{x v}-W_{u v}\right) W_{v v}+H_{v v}^{2} h}{h} \\
& J_{2}=\frac{4 H_{v v} h^{2}+2\left(W_{x v}-W W_{v v}\right) h-W_{v} h_{x}}{h^{2}}
\end{aligned}
$$

are second-order differential invariants.

Three-dimensional Kundt spacetimes

If we let α^{j} denote the elements of the dual horizontal coframe $\left(\alpha^{j}\left(\nabla_{i}\right)=\delta_{i}^{j}\right)$, then the horizontal symmetric 2 -form G written in terms of this coframe will have coefficients given by $G\left(\nabla_{i}, \nabla_{j}\right)$. It takes the form

$$
G=I_{1}^{-1}\left(\left(J_{1} \alpha^{3}+J_{2} \alpha^{2}-I_{1} \alpha^{1}\right) \alpha^{3}+4\left(\alpha^{2}\right)^{2}\right)
$$

where $I_{1}=\frac{W_{v}^{2}}{h}$ is the first-order differential invariant from the previous slide and

$$
\begin{aligned}
& J_{1}=\frac{H W_{v v}^{2}+\left(-H_{v v} W+H_{x v}-W_{u v}\right) W_{v v}+H_{v v}^{2} h}{h} \\
& J_{2}=\frac{4 H_{v v} h^{2}+2\left(W_{x v}-W W_{v v}\right) h-W_{v} h_{x}}{h^{2}}
\end{aligned}
$$

are second-order differential invariants.

Theorem

For $n=3$ the algebra of differential invariants on \mathcal{E} is generated by the differential invariants I_{1}, J_{1}, J_{2} and the invariant derivations $\nabla_{1}, \nabla_{2}, \nabla_{3}$.

Three-dimensional Kundt spacetimes

Three-dimensional Kundt spacetimes

We also have the second-order differential invariants

$$
\begin{aligned}
\nabla_{3}\left(I_{1}\right) & =2 \frac{H_{v v} W_{x v}-H_{x v} W_{v v}}{h}-\frac{W_{v}\left(H_{v v} h_{x}-W_{v v} h_{u}\right)}{h^{2}} \\
J_{3} & =\frac{W_{v v}^{2}\left(h_{u}^{2}-2 h h_{u u}\right)}{h^{3}}-\frac{2 W_{v v}\left(H_{v} W_{v v}-H_{v v} W_{v}\right) h_{u}}{h^{2}} \\
& -\frac{\left(\left(H_{v} W-H_{x}+W_{u}\right) W_{v v}^{2}-W_{v}\left(H_{v v} W-H_{x v}+W_{u v}\right) W_{v v}+2 H_{v v}^{2} h W_{v}\right) h_{x}}{h^{3}} \\
& +\frac{\left(-2 H_{x} W_{v}+2 H_{v} W_{x}+2 H_{x v} W-2 H_{x x}+2 W_{u x}\right) W_{v v}^{2}}{h^{2}} \\
& +\frac{\left(\left(-2 H_{v v} W+2 H_{x v}-2 W_{u v}\right) W_{x v}-4 H_{x v} H_{v v} h\right) W_{v v}+4 H_{v v}^{2} h W_{x v}}{h^{2}}
\end{aligned}
$$

which, together with I_{1}, J_{1}, J_{2}, constitute a transcendence basis for the field of second-order differential invariants on \mathcal{E}^{2}.

Three-dimensional degenerate Kundt spacetimes

Three-dimensional degenerate Kundt spacetimes

Let us now consider degenerate kundt metrics.

Three-dimensional degenerate Kundt spacetimes

Let us now consider degenerate kundt metrics. We still have the invariant $I_{1}=\frac{W_{v}^{2}}{h}$. We define the following functions:

$$
I_{2 a}=H_{v v}, \quad I_{2 b}=\frac{W_{v} h_{x}-2 h W_{x v}}{h^{2}}, \quad K_{2 a}=\frac{H_{x v}-W_{u v}}{W}, \quad K_{2 b}=\frac{W_{v} h_{u}-2 h W_{u v}}{W h}
$$

The functions $I_{2 a}$ and $I_{2 b}$ are second-order differential invariants on $\tilde{\mathcal{E}}^{2}$.

Three-dimensional degenerate Kundt spacetimes

Let us now consider degenerate kundt metrics. We still have the invariant $I_{1}=\frac{W_{v}^{2}}{h}$. We define the following functions:

$$
I_{2 a}=H_{v v}, \quad I_{2 b}=\frac{W_{v} h_{x}-2 h W_{x v}}{h^{2}}, \quad K_{2 a}=\frac{H_{x v}-W_{u v}}{W}, \quad K_{2 b}=\frac{W_{v} h_{u}-2 h W_{u v}}{W h}
$$

The functions $I_{2 a}$ and $I_{2 b}$ are second-order differential invariants on $\tilde{\mathcal{E}}^{2}$. We also define

$$
\begin{aligned}
Q & =\frac{\left(2 I_{2 a} K_{2 b}+I_{2 b} K_{2 a}-I_{2 a} I_{2 b}\right) W}{I_{1}} \\
R & =\frac{I_{2 b} H W_{v}^{2}}{I_{1}}-\frac{\left(I_{2 b} I_{2 a}^{2}-2 K_{2 a}\left(I_{2 b}-2 K_{2 b}\right) I_{2 a}+I_{2 b} K_{2 a}^{2}\right) W^{2}}{4 I_{2 a}^{2}} .
\end{aligned}
$$

Three-dimensional degenerate Kundt spacetimes

Let us now consider degenerate kundt metrics. We still have the invariant $I_{1}=\frac{W_{v}^{2}}{h}$. We define the following functions:

$$
I_{2 a}=H_{v v}, \quad I_{2 b}=\frac{W_{v} h_{x}-2 h W_{x v}}{h^{2}}, \quad K_{2 a}=\frac{H_{x v}-W_{u v}}{W}, \quad K_{2 b}=\frac{W_{v} h_{u}-2 h W_{u v}}{W h}
$$

The functions $I_{2 a}$ and $I_{2 b}$ are second-order differential invariants on $\tilde{\mathcal{E}}^{2}$. We also define

$$
\begin{aligned}
Q & =\frac{\left(2 I_{2 a} K_{2 b}+I_{2 b} K_{2 a}-I_{2 a} I_{2 b}\right) W}{I_{1}} \\
R & =\frac{I_{2 b} H W_{v}^{2}}{I_{1}}-\frac{\left(I_{2 b} I_{2 a}^{2}-2 K_{2 a}\left(I_{2 b}-2 K_{2 b}\right) I_{2 a}+I_{2 b} K_{2 a}^{2}\right) W^{2}}{4 I_{2 a}^{2}}
\end{aligned}
$$

A fourth second-order differential invariant is given by

$$
\begin{aligned}
I_{2 c} & =\frac{1}{Q^{2}}\left(\frac{\left(I_{1}^{2} h_{u}\left(W W_{v}+h_{u}\right)-\left(h_{x}\left(H_{v} W-H_{x}+W_{u}\right) I_{1}^{2}-W_{v}^{4} I_{2 b} H\right)\right) I_{2 a} I_{2 b}}{W_{v}^{2}}\right. \\
& -2\left(W_{v} H_{x}+\left(h_{u}-W_{x}\right) H_{v}+H_{x x}-W_{u x}+h_{u u}\right) I_{1} I_{2 a} I_{2 b} \\
& \left.-W^{2} I_{1}\left(K_{2 b}\left(I_{2 b}-K_{2 b}\right) I_{2 a}-2 I_{2 b} K_{2 a}^{2}\right)\right) .
\end{aligned}
$$

Three-dimensional degenerate Kundt spacetimes

Three-dimensional degenerate Kundt spacetimes

We have $\hat{d} I_{1} \wedge \hat{d} I_{2 a} \wedge \hat{d} I_{2 c} \neq 0$ on a Zariski open set in $\tilde{\mathcal{E}}^{3}$.

Three-dimensional degenerate Kundt spacetimes

We have $\hat{d} I_{1} \wedge \hat{d} I_{2 a} \wedge \hat{d} I_{2 c} \neq 0$ on a Zariski open set in $\tilde{\mathcal{E}}^{3}$. It is possible to express G in terms of $\hat{d} I_{1}, \hat{d} I_{2 a}, \hat{d} I_{2 c}$ as before, and in this way find a generating set of invariants.

Three-dimensional degenerate Kundt spacetimes

We have $\hat{d} I_{1} \wedge \hat{d} I_{2 a} \wedge \hat{d} I_{2 c} \neq 0$ on a Zariski open set in $\tilde{\mathcal{E}}^{3}$. It is possible to express G in terms of $\hat{d} I_{1}, \hat{d} I_{2 a}, \hat{d} I_{2 c}$ as before, and in this way find a generating set of invariants.

Alternatively, we may use the following invariant derivations:

$$
\begin{aligned}
\nabla_{1} & =\frac{I_{1}}{I_{2 a} I_{2 b}} \cdot \frac{Q}{W_{v}} D_{v}, \quad \nabla_{2}=\frac{1}{W_{v}}\left(D_{x}-\frac{K_{2 a}}{I_{2 a}} W D_{v}\right) \\
\nabla_{3} & =\frac{2 I_{2 a}}{I_{1}} \cdot \frac{1}{Q W_{v}}\left(K_{2 b} W D_{x}-I_{2 b} h D_{u}+R D_{v}\right)
\end{aligned}
$$

Three-dimensional degenerate Kundt spacetimes

We have $\hat{d} I_{1} \wedge \hat{d} I_{2 a} \wedge \hat{d} I_{2 c} \neq 0$ on a Zariski open set in $\tilde{\mathcal{E}}^{3}$. It is possible to express G in terms of $\hat{d} I_{1}, \hat{d} I_{2 a}, \hat{d} I_{2 c}$ as before, and in this way find a generating set of invariants.

Alternatively, we may use the following invariant derivations:

$$
\begin{aligned}
\nabla_{1} & =\frac{I_{1}}{I_{2 a} I_{2 b}} \cdot \frac{Q}{W_{v}} D_{v}, \quad \nabla_{2}=\frac{1}{W_{v}}\left(D_{x}-\frac{K_{2 a}}{I_{2 a}} W D_{v}\right) \\
\nabla_{3} & =\frac{2 I_{2 a}}{I_{1}} \cdot \frac{1}{Q W_{v}}\left(K_{2 b} W D_{x}-I_{2 b} h D_{u}+R D_{v}\right)
\end{aligned}
$$

Theorem

The algebra of differential invariants on $\tilde{\mathcal{E}}$ is generated by the differential invariants $I_{1}, I_{2 a}, I_{2 c}$ and the invariant derivations $\nabla_{1}, \nabla_{2}, \nabla_{3}$.

References

- A. Coley, S. Hervik, N. Pelavas, Spacetimes characterized by their scalar curvature invariants, Class. Quant. Grav. 26, 025013 (2009).
- B. Kruglikov, V. Lychagin, Global Lie-Tresse theorem, Selecta Mathematica 22, 1357-1411 (2016).
This talk was based on
- B. Kruglikov, E. Schneider, Differential invariants of Kundt spacetimes, Class. Quant. Grav., https://doi.org/10.1088/1361-6382/abff9c.

