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Part 0 e Basic geometry — pseudo-Riemannian geometry and
space-time geometry,

Part |: @ The motivation for, and classical approach to, conformal
compactification.

Part 1I: @ Conformal geometry and tractor calculus.

e The geometry of scale and it's use to understand and extend the
theory of space-time compactification.

Warning
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Pseudo-Euclidean space

An obvious variant of Euclidean space E” arises by replacing the
usual dot product on R” with a pseudo-Euclidean metric,

n=p+q

Z XiYi — ZX,y,, signature (p, q) ~ EP9.

i=q+1

E.g. M" = E"~11 arises by replacing () with the signature
(n — 1,1) Minkowski inner product:

n(x,y) = —xiy1 + xay2 + - -+ + Xn¥n

Then 3 null vectors: x # 0 s.t. n(x,x) =0,
in fact a null cone of such. This is fixed )
by the group O(n) = O(n — 1,1) preserving 7. W
So E3! models a space-time geometry where
the “speed of light is the same in all frames”

as required by Michelson—Morley experiments. e\
Hence Einstein's special relativity. w>
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Riemannian and pseudo-Riemannian geometry

Above is vastly generalised by pseudo-Riemannian geometry =
manifold M plus point dependent pseudo-Euclidean structure:

That is M is equipped with a metric g = point dependent inner
product, of signature (p, q), on TM = U,cpm(TxM) — tangent
bundle. E.g. Idea of GR is space-time is well modelled by a
Lorentzian signature pseudo-Riemannian manifold.

Local geom./analysis: g determines a unique connection V& on
TM that sat. V&g = 0 — i.e. way of transporting vectors along
curves. Then g, ~» V& ~» notion of curvature, invariants and
natural operators/eqns - e.g. geometric Laplacian

A8 = g?PV_V,: Einstein eqn Ric = \g .
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Part |I: A pseudo-Riemannian problem — Taming big spaces

A general question: Suppose we have an infinite space-time - or
space (i.e. non-compact manifold, geodesically complete):

How do we deal with the “far region”? Can we make a notion of

“infinity” that is mathematically useful? If so what geometry does
it have? Are there many ways to do such things, or is any success
essentialy unique?

A Compactification of a non-compact (“large”) topological space
M is an embedding of M as a dense subset of a compact (“small”

space M: So| M < M injective cts and a homeo. onto its image |
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Example: Euclidean space

Problem: Euclidean d-space E? is a big place for certain
problems. How can we effectively treat all of it mathematically?

One solution: strategically add points! E? is non-compact.
Idea: add points (not too many?) somehow so the result is
compact. Observe that the d-sphere S9 is E¢ U {one point}:

Stereographic projection p : S¢\ {N} — E? a diffeo. S¢ = one
point conformal compactification of E.
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Compactification, boundary calculus, and applications

Compactification: M — M smooth injective, M open dense. (In
general M may be a manifold with boundary, a manifold with
corners,) . . . Question: What is a right way to do this when
geometry is involved?

In many simple cases the result is

a manifold with boundary M so

that M is the interior and

OM has codimension 1.

|
BN

Questions: How do we find the geometry on OM?

Boundary calculus: Relate the geometries/fields on OM and M?
Applications: 1. Discovery new links between the different
geometries on M and M; A more geometric and conceptual
approach to the PDE boundary problems; scattering and non-local
operators; . . .
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Example: A compactification of Minkowski space

R x S"1

Figure: The standard embedding of n-dimensional Minkowski space M"
into the Einstein cylinder. This is conformal: gyiink = Q281 orentzian eyin
Questions: Is this essentially the only way to conformally
compactify M? Is it forced that i* and i are points? That .7 is
an open subset of OM? Why is OM different to OE 1?7
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Penrose's “generalisation” and conformal infinity

Definition
A smooth (time- and space-orientable) spacetime (M., g+ ) is
called asymptotically simple if there exists another smooth
Lorentzian manifold (M, g) such that
@ M, is an open submanifold of M with smooth boundary
oM, = .7;
@ there exists a smooth scalar field Q on M, such that
g =%, on M,, and so that Q =0, dQ # 0 on .#;
@ every null geodesic in M acquires a future and a past endpoint
on ..

An asymptotically simple spacetime is called asymptotically flat if
in addition Ric®* = 0 in a neighbourhood of ..

Questions: How would we re-discover the Einstein cylinder
compactification or this useful definition? Treat other geometries
similarly?
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Conformal compactification

Henceforth in these talks, conformal compactification of
pseudo-Riemannian manifold (M9, g, ) is a smooth manifold M
with boundary OM s.t.:

e dgon M, with

e g. = r2g, where r a defining function for M. (i.e.

OM = r~1(0) and dr non-vanishing on 9M.)

\
\

T
M ™ g0

M=>M+ M (\4“\ \eomehri
= canonical conformal structure on boundary (OM, [glam])
(where dr not null).

e g, then called conformally compact. | will say it is a
Poincaré-Einstein metric if also g is Einstein. (Not nec. neg.
Einstein.
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Conformal geometry

Question: Why is OE"*1 =one point, whereas oM™+ =*a
cone”? What geometry does latter have? How do we generalise to
other infinite (= complete non-compact) manifolds? We need:

’Conformal geometry = geometry with “angle but not length”.

More precisely: a conformal manifold consists of
(M, )
where M is a smooth manifold (dim d =n+ 12> 3) and c is an
equivalence class of metrics
g~g if g=rF¢g
where f a positive function.
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Not so crazy — Conformal geometry in math and phys

Physics: The equations of electromagnetism — the Maxwell
equations 6*F = 0 — are not just Lorentz invariant but conformally
invariant (Bateman 1909).

e More generally the Yang-Mills equations govern weak and strong
force — are also conformally invariant in dimension 4.

e AdS/CFT correspondence of String Theory.

Mathematics: Complex analysis — Riemann surfaces are 2-d
conformal manifolds.

e The geometry of smooth domain boundaries in C” — CR
geometry (— “almost conformal”).

e Most important: g determines [g] = ¢ — has a deep role in
aspects pseudo-Riemannian geometry. E.g. Yamabe problem and
its generalisations (uniformisation), Symmetry and dynamics . .

e Scattering.
e A tool for geometric compactification.
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Part Il: Conformal geometry and the geometry of scale

Because there is no distinguished metric on (M“, c) an important
role is played by the density bundles. Note (A9 TM)? is an
oriented real line bundle . We write £[w] for the roots

Elw] =Kz, so K =E&[2d]

&[0] := & (the trivial bundle with fibre R), and £ [w] for the
positive elements. With this notation there is tautologically a
conformal metric

g€ S’T*M[2], sothat g% :=c2gcc, ocTl(E1]),
and @9g : (NTTM)? =5 £[2d].

There is 1-1 relation between sections o of £, [1] and metrics g7 in
c (via g7 := 02g € c) we call

o el (&EL[1]) a strict scale.
The Levi-Civita connection V&, for g € c, acts on £[2d] and
Ve o =0.

So o is parallel for the Levi-Civita connection it determines.
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The Problem

Problem: Conformal geometry is not as rigid as
pseudo-Riemannian geometry. This has benefits but is also a big
problem. How do we “get a handle on it"? The geometry, the
geometric analysis, etc :

’There is no metric on TM and no connection on TM.

On (M, c), for each g € c there is V&. But if g = f2g then for
& n € X(M)

VEy = VE + T(E)n+ T(n)¢ — g(&,m)TF where T =Vlogf.

soeg. Aéu=Ff2(A8u+(n—2)TVu).

“Error terms” as on the RHS here increase exponentially with
order of calculations.

Solution: |t turns out that:
There is a metric on and a connection on 7 = TM®(a bit).‘
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The conformal sphere = the (Riemannian) model

’Conformal sphere is ray projectivisation of forward null cone: ‘

S9 with ¢

e Affine parallel transport on R9+2 gives a conformally invariant
connection on (59 c) (!1)

This tractor connection V7 is on a v. bundle 7 where, at each
x€S =M T, 2T,RIFZP2R® TMaR, for pe x C Nj.
T has a Lorentzian metric h that is preserved by V7: V7 h = 0.
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The conformal S x S" = the Lorentzian model

Now take RYt2 with bilinear form

-1

The null cone/quadric is
2., 2 _ 2 2
X +X{ =X+ Xgqa-

The ray projectivisation has a Lorenztian sig. conformal
structure that includes the metric induced on the section

G +xf=1=x3+ x5, (so S* x §") with its induced
Lorentzian signature metric.

So the tractor bundle (7, h,V7) on (S! x S", ¢) has signature
(d,2). d=n+1
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General curved conformal manifolds

On a general conformal manifold there is a canonical structure
which generalises the above (Thomas 1926-31 and cf Cartan 1923,
BEG 1989):

Theorem

On a conformal manifold (M, c) of dimension d > 3 and signature
(p, q) there is, canonically, a tractor bundle

T = €[] & TM[-1] & &[-1]

with a connection (i.e. parallel transport) V7T, and a signature
(p+1,q + 1) metric h that is preserved by V7 :

vTh=0.

There is also a canonical (or position) tractor X € I'(7[1]) that
gives the filtration of T:

X:E[-1] =T and  X*:T = &[]

Rod Gover. background: Curry, G-. - - - Conformal Geometry - Compactification and boundary calc



The tractor connection

So although on a conformal manifold (M, c) there is no
distinguished connection on TM — we have the conformally
invariant tractor bundle 7 and connection V7. Given g € c this
is given by

TEeN e "M@ E[-1],  &[1] = (A TM)z
VZ(U7 ,u’b7p) = (VQU — Ha, V/,Lb + PabO' + gabpa Vap - Pabe)7
and V7 preserves a conformally invariant tractor metric h

T 3V = (0,16, p) = 20p + pppi® = h(V, V).

There is also a second order Thomas operator:

[ (d+2w —2)wf
F(E[w]) € f— Daf £ (d 42w —2)V.f
—(Af + wlf)

where J is trace8(P,p), so a number times Sc(g).
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Parallel standard tractors

Note that from the formula

V0,16, p) = (Va0 — ptas Viip+ Pab0 + 8apps Vap — Pappt®),
if Iy £ (o, pa, p) is a parallel tractor then p, = V,0, and
p = —(Ao + wlo). This gives the first statement of:

Proposition

| parallel implies I = %DAO'. So | # 0 = o is nonvanishing on an
open dense set Myo. On Mg, g° = o—2g is Einstein.
Conversely if g° = 0~ 2g is Einstein then | := %DO‘ is parallel.

On M, we have locally +0 € [(E4[1]) so pa = Va0 =0 for
V = V&’ . Thus

P
Pas+ L., =0.
ab T+ O_gab

The converse is easy. Ol

So we say (M, c) with parallel / # 0 is almost_Einstein.
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A canonical stratification — strata called “Curved orbits”

Concerning My = Z(o). (Here and throughout 12 = [414.)

Theorem

An almost Einstein manifold (M, c, 1) is stratified according to the
strict sign of o = [sXA. The zero locus satisfies:

o IfI?2 #0 (i.e. g° Einstein and not Ricci flat) then Z(o) is
either empty or is a smoothly embedded separating
hypersurface.

o IfI>=0 (i.e. g° Ricci flat) then Z(o) is either empty or,
after excluding isolated points from Z(o), is a smooth
embedded hypersurface.

The local aspects follow from the general curved orbit theorem in
L2. But mainly they are also easily recovered directly as we shall
see. []
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The picture so far

Thus if 12 # 0 and I, is parallel we have the picture:

o<0 >0

We will see below that M \ M. are conformally compact and
hence Poincaré-Einstein (PE). Conversely all Poincaré-Einstein
manifolds arise this way. (The almost Einstein manifold M is a

glueing of the PE parts along their conformal infinities.)
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Almost pseudo-Riemannian geometry

We now drop the PE condition to understand all conf. compact

For convenience we say that a structure
(M9 c,0) where o € T(E[1])
is almost pseudo-Riemannian if the tractor

1 . def. | .
la := —=Dpo is nowhere zero </ is a scale tractor

Note then that o is non-zero on an open dense set, since Dao
encodes part of the 2-jet of o. So on an almost
pseudo-Riemannian manifold there is the pseudo-Riemannian
metric g° = 0—2g on the same open dense set. In the following
the notation / will always refer to a scale tractor, so | = %DO’, for
some o € [(£[1]). Then we often mention [ instead of o and refer
to (M,c, /) as an almost pseudo-Riemannian manifold. Evidently:

A conf. compact mfld is an almost Riemannian manifold (M, c,o)
with boundary (M = M, U OM. ) such that o defines OM_.
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Generalised scalar curvature

Now recall from the formula for I and the metric we have
2
1Py =: 17 £ g25(V,0) (Vo) — EO'(J + A)o (1)

where g is any metric from ¢ and V its Levi-Civita connection.
This is well-defined everywhere on an almost pseudo-Riemannian
manifold. Where o is non-zero, it computes
g

12 = —%Jgo = _d(flc—l) where g° =o0"°g.
Thus /2 gives a generalisation of the scalar curvature (up to a
constant factor —1/d(d — 1)); it is canonical and smoothly
extends the scalar curvature to include the zero set of . We shall
use the term ASC manifold (where ASC means almost scalar
constant) to mean an almost pseudo-Riemannian manifold with
I? = constant. Since the tractor connection preserves h, then [
parallel implies /% = constant. So an almost Einstein manifold is
ASC, just as Einstein manifolds have constant scalar curvature.

o
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Non-zero generalised scalar curvature.

Much of the almost Einstein curved orbit picture remains in the
almost pseudo-Riemannian setting when /2 is non-vanishing:

Theorem

Let (M,c,1) be an almost pseudo-Riemannian manifold with I?
nowhere zero. Then Z(o), if not empty, is a smooth embedded
separating hypersurface. This has a spacelike (resp. timelike)
normal if g° has negative scalar (resp. positive) scalar curvature.
If ¢ has Riemannian signature and I1?> < 0 then Z(o) is empty.

Key aspect of Proof.

From 12 £ g (V,0)(V,0o) — 20(J+ A)o: Along Z(o) we have
12 = g (V,0) (Vo).

in particular Vo is nowhere zero on Z(0), and so o is a defining

density. Thus Z(o) is a smoothly embedded hypersurface by the
implicit function theorem.
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The updated picture if 4 = %DAO' st 12 #£0:

oc<0 >0

(M, c) equipped with a scale tractor | = %Da, with /2 nowhere
zero has | nowhere zero and so is almost pseudo-Riemanian.
Where o = X”I, is nonzero (almost everywhere) there is the
pseudo-Riemannian metric g° = 0~2g, and ¢ is a defining density
for the separating hypersurface My = Z(o0). Hence M\ My is
conformally compact with conf. infinity (Mo, c|p,). Conversely
all conformally compact manifolds arise this way*.
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Moral: Replace (M, g) with (M, c, ) where | is the scale
tractor. This generalises our notion of geometry in a
way that builds in the compactification data.

E.g.(x) (M, g,) a conformal compactification, with the
scalar curvature bounded away from zero, means just
(M,c, 1) where M = M + M, OM = Z(c) and I? non-
vanishing. (On M, g, = 02g.)

In pseudo-Riemannian geometry the metric g produces ge-
ometric operators “A8 = g?® + Y, + V,". Now we want
to instead couple o and I5 to conformal operators . . .

THANKS.

The END of lecture one
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L2: Part |. @ Applications of the conformal approach to
understanding the space-time boundary (at infinity) geometry.
e Applications of the conformal approach to boundary problems
and scattering.

Refs:

G-.; Nurowski, Obstructions to conformally Einstein metrics in n
dimensions. J. Geom. Phys. (2006)

G-. Almost Einstein and Poincaré-Einstein manifolds in
Riemannian signature. J. Geom. Phys. (2010)

G-. ; Waldron, Boundary calculus for conformally compact
manifolds. Indiana Univ. Math. J. (2014)

Part Il. @ A conceptual approach to geometric compactification.
Examples and (space-time) models.

(v:ap; G-,; Hammerl, Holonomy reductions of Cartan geometries
and curved orbit decompositions. Duke Math. J. (2014)
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Part |: Geometry of the boundary at infinity

Given a conformally compact manifold:

AN ,. N

‘\\
™ P
M M a))

M=>M+ ™M Phsical
Questions: Given

meh
\eome

a certain ééametry of g4 — e.g. Asymptotically
de Sitter, Asymptotically hyperbolic, Poincaré-Einstein, what can
we say about the:

@ Intrinsic geometry of (OM, c|apm)?

@ Extrinsic geometry of (M, c|om)?

© Conformal geometry of (M, ¢) near OM?
@ Asymptotics of g, near OM?

To (start to) treat these questions we will need to understand
some basic conformal geometry of hypersurfaces.
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Hypersurfaces in conformal geometry - a digression

A
1

To treat boundary calculus we need to understand the
mathematics of hypersurfaces.

Defn: hypersurface ¥ in a manifold M means a smoothly
embedded codimension 1 submanifold of (M, c).

e we restrict to X with the property that the any conormal field
along X is nowhere null (i.e. to nondegenerate hypersurfaces).
Then:

e restriction of any g € c gives metric g on ¥ ~» ¢ induces € on X.
e |t is natural to work with a weight 1 co-normal n, along &
satisfying g#n,np = +1.
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Basic hypersurface invariants

For g € c, the second fundamental form L, is the restriction of
Vanpto TE X TE C (TM x TM)|x, where V = V&, i.e.

L.y := Vanp F nyn°Ven, along X.

This is not conformally invariant. But under a conformal rescaling,
g — g = e*“g, L, transforms according to

Lgb = Lfb + 8. Ten", where T =dw
Thus:

Proposition

The trace-free part of the second fundamental form

. 1
Lab = Lab - HEaba Where7 H .= miCchd

is conformally invariant.

Here d = n+ 1 is the dimension of the ambient manifold M.

Rod Gover. background: Curry, G-. - - - Conformal Geometry - Compactification and boundary calc



The normal tractor

Evidently, under a conformal rescaling g — g = €*“g, the mean
curvature Hé€ transforms to H8 = H8 4+ n®T ;. Thus we obtain a
conformally invariant section N of T|x

0
Na £ UF] )
_He
and h(N,N) = £1 along X. This is the normal tractor of

Bailey-Eastwood-G. Differentiating N tangentially along ¥ using
V7, we obtain the following result.

Proposition (Conformal Shape operator)

where Y is the pullback to ¥ of the ambient tractor connection.
Thus ¥ is totatally umbilic iff N is parallel along .
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Conformal hypersurface calculus

The classical Gauss formula

Vv =Vl Fnbl,ove  vel(TI) c(TM),
is the basis of pseudo-Riemannian hypersurface calculus.
We want the conformal analogue. First we need this:

Proposition (Branson-G., Grant)

There is a natural conformally invariant (isometric) isomorphism
T|s D Nt = T = std tractor bdle of (X, ).

Proof.

Calculating in a scale g on M the tractor bundle 7, and hence also
N+, decomposes into a triple. Then the mapping of the
isomorphism is

g o
INIg> [ s | = | wsFHnpo | €[Tle
o) p=t %H20
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The tractor Gauss equation

The above reveals two connections on 7 22 N that we can

compare. Namely the intrinsic tractor connection v
determined by (X, <€), and the projected ambient tractor
connection V. The latter is defined by

V,UB :=NENSv.UC) U el (NY) extended arb. off ¥

where I'I and [1§ are the orthog. projections due to N and n.
Includlng the tractor derivative of I'IC gives:

Proposition (Tractor Gauss formula — Stafford,Vyatkin)

V,VEB=V,vBF+S.B vEFNBL, VE,
where S.gc = Xgc€Fac, (XBCC an invariant bundle injector), and

° L2 .
Fab = ﬁ(Wacbdncnd + L2 2(‘d‘ 1)gab>

Recall L,c = V_N¢. This shows that F,j is a conformal invariant
of hypersurfaces. It is the so-called Fialkow tensor.

Rod Gover. background: Curry, G-. - - - Conformal Geometry - Compactification and boundary calc



Geometry of conformal infinity

We return now to conformally compact geometries (M, c, /).
Recall the scale tractor / is given | = (o, Vo, —1(Ac + Jo)).
We will consider in particular (M, c, /) which near the conformal
infinity are asymptotically of constant nonzero scalar
curvature. By imposing a constant dilation we may assume that
I? approaches +1, asymptotically hyperbolic/AdS resp.
asymptotically de Sitter.

The o, equivalently scale tractor /, strongly links the geometry of
Y = Z(o0) to the ambient by a beautiful agreement of / and the
normal tractor:

Proposition

Let (M9 c,1) be an almost pseudo-Riemannian structure with
scale singularity set ¥ # () and 1> = 1 + o°f for some smooth
(weight —2) density f. Then ¥ is a smoothly embedded
hypersurface and, with N denoting the normal tractor for ¥, we
have N = [|5.
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Proof.

For simplicity assume the case /2 = £1 (so f = 0 and the
structure is ASC). As usual let us write o := h(X, ). Along Z(0o)

0
1

Ia==-Dac £ | Vo = g%(V.,0)Vpo ==+1
d 1

so n, := V40 is the unit conormal and a computation gives
1 _ 1 _abj& _ _ g
A0 = —;=—58%"L;, = —HE. ]

Corollary

Let (M9 c,1) be an almost pseudo-Riemannian structure with
scale singularity set . # (), and that is asymptotically Einstein in
the sense that 12\2 = =1, and V,lg = of,g for some smooth
(weight —1) tractor valued 1-form f,g. Then ¥ is a totally
umbilic hypersurface.

A\
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Agreement of tractor connections

If we assume the stronger asymptotics: /%]y = +1, and
V.lg = 0%f,g Then along ¥, Ig is parallel to the given order, and
so the tractor curvature satisfies

HabCD/D = KJabCDND =0 anng >.
This implies

W,pSqn? = 0|, along ¥ = Z(0)
l“ 2

.. Fialkow F,p = i(Wacbdncnd + Zgb — 2~(,,Li|,1)§ab) vanishes, &

Theorem

Let (M92% c, 1) be an almost pseudo-Riemannian structure with
scale singularity set © # (), and that is asymptotically Einstein in
the sense that I?|s = &1, and V,lg = o?f,g. Then the tractor
connection of (M, c) preserves the intrinsic tractor bundle of ¥,
where the latter is viewed as a subbundle of the ambient tractors:
Ts C T. Furthermore the restriction of the parallel transport of
V7T coincides with the intrinsic tractor parallel transport of VT==T .
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Summary to this point

An almost pseudo-Riemannian manifold with non-zero
generalised scalar curvature has ¥ = Z(o) smoothly embedded.
Questions: E.g. g = 0~2g — is asymptotically Einstein then:
© Asymptotics of g near ¥ = dM?:
I? = 4+1 + of so g is asymptotically of constant scalar
curvature and is resp. asymp. de Sitter/asyp. hyperbolic.

becd = +(8ac8bd — 8ad8bc) + 0(0_3)
@ Extrinsic geometry of (M, c|om)?:
Ly =0, Fap=0,---(see: arXiv : 2107.10381)

Conformal geometry of (M, c) near OM, e.g. W,,4n? = 0.
@ Intrinsic geometry of (OM, c|op)?:

For d odd, n even and V/ = 0 to high order (approx. o

then

dfl)

0=B, = AV W ,cbg + lower order
the Fefferman-Graham obstruction tensor of (OM, c|snm)
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Scattering of scalar fields in conformally compact mflds

Suppose on the interior one wants to solve

(A& +s(n— s)?)f =0

where A& is, as usual, the wave operator or metric Laplacian
gV ,V,, for the conformally compact metric

g=gr=o0g
that is singular at the boundary M. What are the right
“Dirichlet” and “"Neumann” boundary conditions? Mapping

between these is one idea in scattering. Then s is the spectral
parameter.

Rod Gover. background: Curry, G-. - - - Conformal Geometry -

Compactification and boundary calc



Differential operators by prolonged coupling

On an almost pseudo-Riemannian manifold (M, c, /) there is a
canonical differential operator by coupling /* to D4 , namely

I-D := I*Da.
This acts on any weighted tractor bundle, preserving its tensor
type but lowering the weight:
I-D: E°[w] — E¥[w — 1].
It will be useful to define define the weight operator w: if
B € I'(B[wy]) we have

w3 = wyp.
Then on £®[w] we have
w(d + 2w — 2)
IDE( —LY(Ao+Jo) Vo o) Va(d+2w-2)
—(A+ Jw)

w

=—0A+(d+2w —2)[(Vi0)V, 7

(Ac)] — 27W(d +w—1)oJ
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The canonical degenerate Laplacian

Now on M\ Z(o) in the metric g+ = o~2g, with densities
trivialised accordingly, we have

I.-D & _<Agﬂ: + 2w(d ZW _ l)Jgi>_

In particular if gy satisfies J& = ¥4 (i.e. Sc8* = Fd(d — 1) or
equivalently /2 = £1) then, relabeling d +w — 1 =: s and
d — 1 =: n, we have

I-DE — (A& £s(n—5s)) |

so solutions are eigenvectors of the Laplacian (and s is called
the spectral parameter) as in scattering theory.

But on ¥ = Z(o) # 0, the conformal infinity, /-D degenerates and
there the operator is first order. In particular if the structure is
asymptotically ASC, in the sense that /2 = +1 + ¢°f, for some
smooth f, then along X

’ I-D = (d+2w —2)§; ‘, 51 £ n?VE—wHE = conformal Robin

Thus I-D is a degenerate Laplacian, natural to (M.c. ).
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The s/(2)-algebra

(M, c) be a conformal structure of dimension d > 3, o € [(£[1])
and I, = %DAO' (as usual). Then a direct computation gives

Acting on any section of a weighted tractor bundle we have

[I-D, 0] = I%(d + 2w),
where w is the weight operator.

Thus with only the restriction that generalised scalar
curvature is non-vanishing we have:
Proposition (G.-Waldron)
Suppose that (M, c, ) is such that I? is nowhere vanishing.
Setting x =0, y := —I%I-D, and h := d + 2w we obtain the
commutation relations

[h7X]:2X7 [h,y]:—2y, [Xay]:hv
of standard s/(2)-algebra generators.
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Application: Conformal Laplacian powers

Let E® be any tractor bundle and k € Z>1. Then, for each
k € Z>1, along X = Z(0)

k- k- 1\
[ pamil " givenby Pyi= (-40) (2)

2 2 /2

is a tangential differential operator, and so determines a canonical
differential operator Py : E®[%5"]|x — E®[=5-"]|5. For k even
this takes the form

1= €%

P, = A+ lower order terms. (3)

Proof.

From the s/(2)-identities we have [x, y¥] = y*“1k(h — k + 1).
Thus on £°[£57]

Pi(f 4+ oh) = y¥(f 4+ xh) = Pif + o Pyh.
So Py is tangential. Expanding the /-Ds yields (3). O
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Natural boundary problems

Suppose on a conformally compact manifold M, (with

My UOMy = M) we wish to study solutions to
2w(d +w —1)
d

E.g. this is what is studied in the usual Poincaré-Einstein
scattering program.

Pf = (Ag+ + Jg+) f=0.

Then one needs to fix suitable boundary conditions. E.g. in the
case of Riemannian signature one wants some elliptic boundary
problem. Since the boundary OM, is at infinity, with g singular
along OM,., this is non-trivial.

But if we view f as the trivialisation of a density of weight w then
Pf & |.-Df and I-D is well defined on all of M (and its smooth
extension to M beyond OM,.). Thus it is natural to study the /-D
problem. We do this formally.

First we treat an obvious Dirichlet-like problem where we view f|x
as the initial data.
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Asymptotic solutions of the first kind

Given f|s, and an arbitrary extension fy of this to £®[wy] over M,
find f; € E®[wo — i] (over M), i =1,2,---, so that

fO = f+0fi + 06+ + 0(c)

solves I-Df = O(a*), off ¥, for £ € N U oo as high as possible.

I-Df =0 & —I%I-Df = 0 so we recast this via 5[(2) = (x, y, h).
Set hg = d + 2wp. By the identity [x¥,y] = x*"Tk(h + k — 1):

yfED = yf O — <A+ 1)(h+ Ofey + O().
Now hfipy = (ho — 2(€ + 1)) fis1, thus
yFED = VO 5804 1) (hg — € — 2)frpq + O(x1). (4)

By assumption yf() = O(x%), thus if | £ # hg — 2| we can solve

yfHD) = O(x*1) and this uniquely determines f,,1|s.
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The obstruction on conformally compact manifolds

So we can solve to all orders provided we do not hit £ = hg — 2 i.e.
provided wo ¢ {457 : k € Z>1}. Otherwise (4) shows that

(=hg—2 = yf)= y(f(g)—i—x“lfgﬂ), modulo O(x‘*1),

regardless of f;, 1. It follows that the map fy — X_ny(g) is
tangential and x_gyf(e)b: is the obstruction to solving

yfEHD = O(x™*1). Then by a simple induction this is seen to be a
non-zero multiple of y“*1fy|s:

Proposition

If £ = hg — 2 then the smooth extension is (in general) obstructed
by Pyy1fo|s, where Ppyq = (—,%/-Df)”:l is a tangential operator
on densities of weight wy.

If £ = hg — 2 then the extension can be continued with log terms.
If M is almost Einstein to sufficiently high order then:

e the odd order P, ; vanish identically; and

e the even order Py are the GJMS operators on (OM., ).
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(Formal) solutions of the second kind

Now we consider the more general type of solution:

Problem

Given foly € TE ¢[Wo: a]|s and an arbitrary extension fo of this
to FE®[wy — a] over M, find f; € E®[wy — o — i] (over M),
i=1,2,---, so that

fi=0*(fot+ofi+o’fat -+ 0(c"h)) (5)

solves | - Df = O(a*+%), off OM.., for £ € NU co as high as
possible.

Now «, if not integral, this Problem takes us outside the realm of
the universal enveloping algebra U/(g) and its modules. But it is
straightforward to show that for any o € R:

[x*, y] = x*ta(h+ a — 1). (6)
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It follows immediately from (6) that / - Df = 0 has:
e no solution if a ¢ {0, hg — 1}, where hf = hof; and
e ifa=nhy—1and f=0c% then

I-DF = 6®1-Df | So f is a solution iff f is!

So in this way second solutions arise from first and vv.

For wo ¢ {557 : k € Z>1}, and writing F = f, G = 0~*f we can

combine these to a general solution
F+4+ch=1G = F 4 o"2mG
or, trivialising the densities on M, using the generalised scale o:
f=0""F+0°G=0""(F+0M1G)

where s := wy + n. Which is the form of solution used in the
scattering theory (of Graham-Zworski, Mazzeo-Melrose, - - - ).
The sl(2) approach above solves the asymptotics of F and G.
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Part Il: Toward analogous theories

Note Stereographic projection

ﬁ,

is not a very good compactification for Euclidean scattering, or for
the representation theory of the Euclidean group. As the “one
point” has little room for information.

We have used conformal geometry to understand the
compactification of space-times and more generally
pseudo-Riemannian manifolds, and also some related problems.
Are there other similar tools based around geometries other than
conformal? Let's first revisit our conformal theory.
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Conformal compactification of H"! — the Poincaré ball

Escher’s circle limit

HY embedded conformally

in Euclidean E9 — Poincaré-Ball

H2 = H? + OH?

The embedding gives the
compactification

HI = HY + oH?
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Poincaré compactification via P (nullcone)

Conformal compactification of HY by symmetry breaking:

=0 51 sn — aHd

S9 =P, (N Cc RI+2\ {0}) is model of flat conformal geometry.

G := SO,(d + 1,1) acts transitively. / € R9*2, spacelike h(/,1) =1

Symmetry reduction by /: = H = SO,(d, 1) orbits. Right hemi. is conform
compactification M. of HY; o = 0 conformal oo with conformal str.
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Minkowski, de Sitter, and AdS

Recall that the Lorentzian conformally flat model is (S* x S”, c)
arising as the ray projectivisation

SIxS" =P ({¢+xf = x4+ - x312}) + G = S0,(d,2)acts trans”

of the null quadric in

—1

RYt2  with bilinear form - ! _

1

Then /4 € R9t2 — constant < parallel tractor with:

e /2= —1: Two copies of conf. compactified de Sitter on
interval x S™;

e /2 =0: Two copies of conf. compactified Minkowski, as in
Ein. cyl.

e /2 =1: Two copies of c.c. anti-de Sitter on S* x hemisphere.
— Respectively H =: S0,(d, 1), Poincaré grp, and S0,(d —1,2)
orbit decompositions.
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Bigger groups: H vs G and Orbit Decompositions

In each example above there is implicitly a larger group G D H:

e Poincaré ball and compactifying boundary arise as two
H = SO.(d,1) orbits on S = G/P where

\ G =50,(d+1,1) and P maximal parabolic in G |

The larger homogeneous space G/P encodes how the orbits
smoothly fit together — i.e. the conformal compactification.

Similarly:

e Stereographic (conformal) compactification of E"*! arises as
two H = Euclidean group orbits on S"*! = G /P — with same G
and P. le. ‘Stereo. encoded by H — G‘
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Curving homogeneous spaces

For a Lie group G and closed Lie group P, homogeneous spaces
G /P are geometries in the sense of Klein. There are often
canonical curved generalisations:

Theorem (Cartan,Tanaka, ---)

If P is a parabolic subgroup of a semisimple Lie group G then
there is a canonical notion of geometry

G « P G « P
d modelled on 1
M G/P

where G is equipped with a Cartan connection w — viz. a suitably
equivariant Lie(G )-valued 1-form, cf. Maurer-Cartan form on G.

E.g. Conformal geometry, projective DG, CR geometry, - - -
For conformal DG: G = SO,(p+ 1,9 + 1), and P subgroup
stabilising a ray in RPT9+2,
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Tractor bundles

If we have a representation V of the group G then we have an
associated vector bundle G xp V with a linear connection V.
This is the associated tractor connection. In fact for (G,w)
modelled on (G, P), with G semi-simple, P parabolic:

Theorem (Cap+G.)
Cartan bundle G + connection w < Tractor bundle and tractor
connection.

Then:

parallel tractors lead to curved analogues of orbit decompositions.

The point is that, even on the model, we can think of the orbit
decomposition as arising from a parallel tractor of some type.
Then the corresponding parallel tractor leads to a corresponding
stratification of the curved manifold.
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Theorem (Curved orbit decomposition - Cap,G., Hammerl)

Suppose (G,w) — M is a Cartan geometry (modelled on

G — G/P) endowed with a parallel tractor field h giving a Cartan
holonomy reduction with holonomy group H. Then:

(1) M is canonically stratified M = UieH\G/P M; in a way locally
diffeomorphic to the the H-orbit decomposition of G/P; and
(2) there 3 a Cartan geometry on M; of the same type as the
model.

Thus there is a general way to define a curved analogue of an
orbit decomposition of a homogeneous space.
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Compactification Programme

Given some non-compact geometry of interest (e.g.
pseudo-Riemannian):

Part 1 (homogeneous): Identify a homogeneous model

Xi = H/K of the geometry as an open H < G orbit M in a
compact homogeneous space X = G/P. (E.g. G semi-simple and
P parabolic.) Then the topological closure X; C X is a
compactification of X;.

Part 2 (curved 1): Given a compact Cartan geometry (G,w) — M
modelled on G — G/P, with a Cartan holonomy reduction with
holonomy group H and an open curved orbit M; (with same
Cartan geometry type as X;), then M; is its compactification.

’The Cartan/tractor machinery relates geometries of M; & OM,; etc‘

Part 3 (curved Il): Typically the geometry on M; has restrictions
on e.g. Einstein or symmetries, . . . (as a normal solution of a
BGG equation holds on M). In some cases we can drop
restrictions yet still exploit the Cartan/tractor machinery.
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Lecture Three

L3: e Projective compactification of spacetimes (and applications).
Warning: Dimension n now (not d = n+ 1)

Refs, e.g.:

Cap; G-. Projective compactifications and Einstein metrics. J.
Reine Angew. Math. (2016)

Cap, G-. Projective compactness and conformal boundaries. Math.
Ann. (2016)

Flood, G-., Metrics in projective differential geometry: the
geometry of solutions to the metrizability equation. J. Geom.
Anal. (2019)
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Projective compactification of hyperbolic space

W=ST= Wi
Y acks kal\@ma“x’

—H acks kx\

{somekries

The Klein ball is a compactification of H" linked to projective
geometry.
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S" =P, (R"1\ {0}) is model of flat projective geometry.

Symmetry reduction by h (plus timet): = North polar cap is projective
compactification of H"; 7 = 0 projective oo with conformal str. — also
for: equatorial region which is compact'tion of de Sitter space

NB: Embeddings relate the orbits — also encoded in H — G.
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Projective compactification of A”

NB: Many geometries in one picture. How can we link all and
understand how one “degenerates” into another?

Affine = H — G = SL(n + 1) as isotropy of | € (R"1)*.
(Poincare = H if also fix W8 :=diag(—1,1,---,1,0), MBlg=0.)
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Projective structure

Given an affine connection V and a one-form T on some manifold,
write

V=V+T

for the projectively modified connection defined by
Ven=Ven+T(n+Tm)s,  &n e X(M).

Two connections are related in this way if and only if they have the
same geodesics up to parameterisation.

Defn: (M, p) a projective manifold means p = [V] is an
equivalence class of projectively related (torsion free) affine
connections.

Many equations have good projective properties, but not such
good conformal properties, e.g. the geodesic equation, the Killing
equation and its generalisations, the equations controlling
deformations of pseudo-Riemannian geometry.

Rod Gover. background: Curry, G-. - - - Conformal Geometry - Compactification and boundary calc



Curving: Projective DG

On a general (M, p) there is no distinguished V on TM. But there
is on the tractor bundle 7 which extends TM:

0 e(-1) X5 74 2 Tm(-1) > 0,

given by
b b b
VZ’( Ijo > — < Vvly —;p%b ) . < standard tractor connection
aP — Mab

Here (A"TM)? = £(2n + 2) and £(w) are roots, P,, =projective
Schouten (~ Ricci).
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Projective geometry with SO(p, g) holonomy

Theorem (Cap,G.,Hammerl)

h tractor metric sig. (p, q) and parallel on (M, p) implies

e I[f g =0 then (M,p, h) & (M, g) Einstein with positive scalar
curvature.

e If p,q # 0 then M is stratified M = My U My U M_ according to
strict sign of T = h(X, X).

o If My # () then it is a smooth embedded separating hypersurface
with a conformal structure c of signature (p — 1,9 — 1).

e On the open submanifolds ML, h induces metrics g+ which are
positive/negative Einstein of signature (p — 1,q)/ resp. (p,q — 1).
(Complete if M closed.)

Rod Gover. background: Curry, G-. - - - Conformal Geometry - Compactification and boundary calc



A notion of projective compactification?

Q: In general, is there a good general notion of
compactification based on projective geometry?

E.g. Given a manifold with boundary, and such that the interior is
equipped with a complete pseudo-Riemannian metric what should
it mean to to say that M is a projective compactification of

(M. g)?

Need: (1) Projective class [V&] of Levi-Civita V& extends
smoothly to M,

(2) Some uniformity in how the metric and Levi-Civita connection
degenerate asymptotically [— as in conformal compactification].
(3) Analytic handle on the infinity analogous to conformal
compactification, contrast: Eardley-Sachs J. Math.Phys. 1973.
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Projective compactification

~

I M

o
Defn: A torsion-free affine connection V on M"+1 is projectively
compact of order o € R if 3 a defining function p for OM s.t.

extends smoothly as an affine connection to M.

Proposition

If V preserves a volume density vol on M then | vol = p~ o vol

where vol a volume density on M.

Idea of proof:

Vvol = 0 < V vol = 0 therefore vol extends to M. m
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Completeness and metrics

Theorem (Result related to completeness)

If @ < 2 then boundary OM at oo according to geodesics for V.

: - Fro.
Defn. Metric g projectively compact order « %L Levi-Civita V&
projectively compact order .

Theorem

Let a € (0,2], s.t. % € 7Z, and a metric g on M. Suppose 3 a
defining function p for OM s.t.

dp®dp

h= p2/ag_ ¢ p2/a ’

C # 0 constant (7)
extends smoothly to the OM with h|gp metric on TOM. Then g
is projectively compact of order o. Converse: g projectively
compact of order o = 2 then we have (7).
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Metric features

Idea of proof =-:.

Use the Koszul formula for Levi-Civita V&, then show directly that

V := V& + dp/(ap) extends smoothly to M. O
Re-expressing above
(dp)?
8= TC
NB: e For a = 2 condition (7) is independent of defining function

— thus:

OM is equipped with a canonical conformal structure.

e For a < 2 can absorb constant C into p, but p then determined
up +0(p?) .. get metric on OM.

e For a =1 and C =1, g has appeared in literature (R. Melrose)
as Euclidean-like “scattering metric”.

e o = 2 in scattering work of Vasy; noted by Fefferman-Graham as
proj. cpct & linked to their “Ambient Metric'.
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The converse

g = g +C- (‘L@)Q. <« g projectively compact o = 2

Idea. Assume g projectively compact o = 2.

Given a defining function p for OM and
o dp
V=V+_—
o , 2p. 2
we say a vector field y is a strict geodetic transversal if V= 0

and dp(p) =1 in nghd of OM. Key step: We can find such p, p

and p?g(u, 11) is constant along int. curves of u

Choose product coordinates via t = p, and x’ on M. Then

t2gi = C(x). Further C(x) non-zero on open dense set of 9M. So
0:(t°g:t) = 0 etc. Via link to Levi-Civita Christoffel symbols and
projective compactness we show, where C(x) not zero it is
constant C, then tgj; and tgj;, smooth to M. This plus volume
growth implies result.

Ol
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Some Asymptotics

Theorem

If p a defining function for OM and g = g +C- (dp’;)2 then, the
curvature of g satisfies:

(i) The scalar curvature R admits a smooth extension to the
boundary, with boundary value the constant %.

(i) The tensor field Rap, + ;=825 Smoothly extends to OM.

(i) Up to terms which admit a smooth extension to the boundary,

the curvature of gap, is given by

Rapa — *271)25[Capb]l)d — 5600bd-

Key aspect of proof:

For any a = 2 proj. compact V the section 2pP,, + ipapb

extends smoothly to the boundary with value there V,p, — and
this a representative of the projective second fundamental form.

But it can be shown that —%pgab + ipapb has the same
boundary limit (uses Koszul formula with asympt. form of g). [
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Scalar curvature

For a metric with scalar curvature bounded away from zero we
need only assume the projective structure extends:

Theorem

Let g be a metric on M whose projective structure smoothly
extends to M, but s.t. V& does not admit a smooth extension to
any neighborhood of a boundary point. Then

e the scalar curvature S of g extends smoothly to OM.
Furthermore for x € OM, the following are equivalent

S(x)#0
@ g is projectively compact of order o« = 2 around x.

© The boundary value of S is a non—zero constant locally
around x, and g admits an asymptotic form

d h
g = Ci_i_,

with a constant C (related to g ).
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Pseudo-Riemannian metrics and projective geometry

When are affine geodesics the geodesics of a metric? That is:
’Q: What does it mean for there to be a Levi-Civita connection in p?‘
An analytic answer (n > 2):

Theorem (Mikes, Sinjukov)

A special torsion-free V is projectively equivalent to a Levi-Civita
connection V& if and only if there is a non-degenerate solution o°°
to the equation

trace-free (Vaabc) =0, o € T(S2TM(-2)). (8)

e This equation is projectively invariant — even if ¢ is not
non-degenerate.

e In a metric projective compactification M = M U OM the
boundary OM = D(c’) where D(o) is the degeneracy locus of a
solution.

o 7 :=det(0) € [E(2) is zero along the degeneracy. locus.
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The equivalent tractor equation

Theorem (Eastwood-Matveev)

The solutions to the metrisability equation trace-free (Vaabc) are
in one-to-one correspondence with solutions of the following
projectively invariant system on ST :

O.bc O.bc 1 0
Vol wb | =VT wb | +5 Wabgo@ | =0. (9)
P p 1 _2Yabc0bc

Here Yape := VaPpe — VpPac is the projective Cotton tensor, and
W,cPy is the projective Weyl tensor.
And solutions of (9) are in the image of the BGG splitting operator

g gbe b
Lo)=| wb | = < Wb > € S°T.
p
where pf = n+2VU andp—m(vv + (n+2)Pj;)o"
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Scalar curvature extends

L(c) a section of ST, .- a bundle metric on T*. Thus
S :=det(L(c)) is well-defined and generalises scalar curv.:

On the interior M, 0 = 771g? and in the scale g

T—lgbc

L( lgab) 1 0 )
w7 &Py
Thus, on M, S = det(L(c)) is the scalar curvature (up to const.
#0). But L(77'g?") preserved by V hence extends smoothly to
OM, thus so does S and T_lgab.

NB: 0 # S = det(L(0)) < L(o) is non-degenerate.

The Proof of the theorem S(x) # 0 < g projectively compact of
order 2 : follows by analysing L(c) and L(c)~!
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Projective “almost pseudo-Riemannian”

The notion of conformal almost pseudo-Riemannian has a
projective analogue.

Namely: Consider (M, p) equipped with a solution

¢ €T(S?TM ® £(—2)) of the the metrisability equation

Trace-Free(V,¢*¢) =0

such that either
@ L(¢) is everywhere non-degenerate — i.e. the generalised scalar
curvature is nowhere zero; or
@ L(¢) is everywhere of co-rank 1 — then the generalised scalar
curvature is zero and (Thm) ¢ has rank n almost
everywhere. < —— This would be impossible if the co-rank
was > 1.

Then we have the following results:
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Metrisability solutions with non-vanishing scalar curvature

Problem 1:. Suppose (M, p) with (%€ s.t. Trace-Free(V,(?¢) =0
& det L(¢) nowhere zero. What is D(()? Geometry on it? Answer:

Theorem (Flood+G.)

Suppose L(¢) of sig. (p,q). Either D(¢) =0 or D(() is a smoothy
embedded separating hypersurface My. Then:

(i) M = My UMy U M_ where ( has signature (p,q — 1),
(p—1,q9), and (p— 1,9 —1,1) on My, M_, and My, respectively.
(ii) D({) = My has a conformal structure.

(iii)) On M, ¢ induces a pseudo-Riemannian metric g+ of the
same signature as , where g2 = sgn(7)7¢? |y, ; here T = det(C).
(iv) If M is closed, My and M_ are projectively compact of order
2, with boundary My. (And .:. asympt Einstein.)

Proof: Again analyse L(¢)™!.
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Sc& = 0: Metrisability solutions with rank(L({)) = n

Problem 2:. linked to Sc& = 0 metrics we consider ME solutions (
s.t. rank(L(¢)) = n. Then what is D({)? Geometry on it? Answer:

Theorem (Flood+G)

Let (M, p) be an orientable, connected, and equipped with a ME
solution ¢?” s.t. signat(L(¢)) = (p,q,1), p+q = n. Then

(1) D(C) = 0 or My := D(C) is smoothly embedded hypersurface.
If My orientable then M = M U My U M_.

(i) (M+, g+) are each scalar flat, pseudo-Riemannian manifolds
with metric gap, of signature (p, q), where g3® = sgn(7)7¢®| ..,
where T := det(¢?P). If M is closed then M\ M. are projectively
compact of order 1 with boundary Mjy.

(i) X := My inherits a projective structure p and a solution (ab of
the metrisability equation with D(C) a smoothly embedded
separating hypersurface with a conformal structure, and off this we
have order two projectively compact metrics g-..
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Idea of the proof

So the Theorgm says we have &// ) C:; S
a curved version of the model: /\/% o (L —
‘/ , ~ c//

m
Mosel

\"” e

Proof: Part (i) My := D(() is smoothly embedded hypersurface:
There is a parallel tractor volume form: €a,4,...4, s.t. Ve = 0.
Using this, form the (tractor) adjugate

HaoB, = (—1)q6A0A1.‘.AnEBOBI..ABnhAlBl A
Then H symmetric rank n implies
Hag = Ialg where h*Blg =0, & Ig nowhere 0.

Then

Rod Gover. background: Curry, G-. - - - Conformal Geometry - Compactification and boundary calc



Idea of the proof ctd

Part (ii): the metrics are evident, as is the compactification
because o is both the scale determining these (where o # 0) and it
is also a weight 1 defining density for My — using a result of
G+Cap.

Part (iii) There are several parts:

e We show prolonged system for ( solves ME implies VI = f - |
along My. This shows Mj is totally geodesic in (M, p). Thus we
have a projective structure (Mo, p).

e Then ( restricts along to f a solution to ME along M.

A~

e Can argue as for Theorem 32 that D(() is a smooth hypersurface
in My. Then results follow almost as in that Theorem. O
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Boundary calculus and scattering

In the setting of a Problem 2 solution, or equivalently an order 2
projectively compact (M, g)

. 1

_—

[CEE S (Mo, e

there is again a boundary calculus and sl(2) surrounding the
scattering Laplacian — Thesis of Sam Porath (U. Auckland), in
progress.

Jack Borthwick, in his PhD Thesis (Brest), has extended this to
Proca type equations/wave equations on differential forms.
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Thank you for Listening!

THE END
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