# Conformal and projective techniques in General Relativity

### Rod Gover.

background:

- Curry, **G-.** · · · Conformal Geometry · · · GR· · · , LMS Series, Cambridge, arXiv:1412.7559
- Čap, G-. Hammerl: Holonomy reductions etc, *Duke Math. J.* 163 (2014) 1035–1070.
  - G-. J. Geom. Phys., 60 (2010), 182–204.

University of Auckland, Department of Mathematics

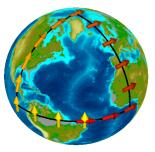
#### SCREAM, Poland 2021

Part 0 • Basic geometry – pseudo-Riemannian geometry and space-time geometry,

Part I:  $\bullet$  The motivation for, and classical approach to, conformal compactification.

Part II: • Conformal geometry and tractor calculus.

• The geometry of scale and it's use to understand and extend the theory of space-time compactification.



Warning 
$$d=n+1$$

### Pseudo-Euclidean space

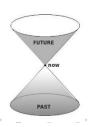
An obvious variant of Euclidean space  $\mathbb{E}^n$  arises by replacing the usual dot product on  $\mathbb{R}^n$  with a **pseudo-Euclidean metric**,

$$\eta(x,y) = \sum_{i=q+1}^{n=p+q} x_i y_i - \sum_{i=1}^{q} x_i y_i, \quad \text{signature } (p,q) \rightsquigarrow \mathbb{E}^{p,q}.$$

E.g.  $\mathbb{M}^n = \mathbb{E}^{n-1,1}$  arises by replacing (\*) with the **signature** (n - 1, 1) **Minkowski** inner product:

$$\eta(x,y) = -x_1y_1 + x_2y_2 + \cdots + x_ny_n$$

Then  $\exists$  **null vectors:**  $x \neq 0$  s.t.  $\eta(x, x) = 0$ , in fact a **null cone** of such. This is fixed by the group  $O(\eta) \cong O(n-1,1)$  preserving  $\eta$ . So  $\mathbb{E}^{3,1}$  models a **space-time** geometry where the "speed of light is the same in all frames" as required by Michelson–Morley experiments. Hence Einstein's **special relativity**.



# Riemannian and pseudo-Riemannian geometry

Above is vastly generalised by **pseudo-Riemannian geometry** = manifold M plus point dependent pseudo-Euclidean structure:



That is M is equipped with a **metric** g = point dependent inner product, of signature (p, q), on  $TM = \bigcup_{x \in M} (T_x M)$  – tangent bundle. E.g. Idea of **GR** is space-time is well modelled by a Lorentzian signature pseudo-Riemannian manifold.

**Local geom./analysis:** g determines a unique **connection**  $\nabla^g$  on TM that sat.  $\nabla^g g = 0$  – i.e. way of transporting vectors along curves. Then  $g, \rightsquigarrow \nabla^g \rightsquigarrow$  notion of **curvature**, **invariants** and natural operators/eqns - e.g. geometric Laplacian  $\Delta^g := g^{ab} \nabla_a \nabla_b$ ; **Einstein eqn**  $Ric = \lambda g$ .

# Part I: A pseudo-Riemannian problem – Taming big spaces

**A general question:** Suppose we have an infinite space-time - or space (i.e. non-compact manifold, geodesically complete):



How do we deal with the "far region"? Can we make a notion of "infinity" that is mathematically useful? If so what geometry does it have? Are there many ways to do such things, or is any success essentialy unique?

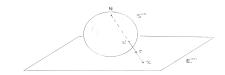
A **Compactification** of a non-compact ("large") topological space M is an embedding of M as a dense subset of a compact ("small") space  $\overline{M}$ : So  $M \hookrightarrow \overline{M}$  injective cts and a homeo. onto its image.

### Example: Euclidean space

**Problem:** Euclidean *d*-space  $\mathbb{E}^d$  is a big place for certain problems. How can we effectively treat **all of it** mathematically?



One solution: strategically add points!  $\mathbb{E}^d$  is non-compact. Idea: add points (not too many?) somehow so the result is compact. Observe that the *d*-sphere  $S^d$  is  $\mathbb{E}^d \cup \{\text{one point}\}$ :

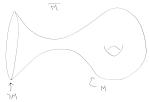


Stereographic projection  $p: S^d \setminus \{N\} \to \mathbb{E}^d$  a diffeo.  $S^d =$  one point <u>conformal</u> compactification of  $\mathbb{E}^d$ .

# Compactification, boundary calculus, and applications

**Compactification:**  $M \hookrightarrow \overline{M}$  smooth injective, M open dense. (In general  $\overline{M}$  may be a manifold with boundary, a manifold with corners,) . . . **Question:** What is a right way to do this when geometry is involved? In many simple cases the result is

a manifold with boundary M so that M is the interior and  $\partial M$  has codimension 1.



**Questions:** How do we find the geometry on  $\partial M$ ? **Boundary calculus:** Relate the geometries/fields on  $\partial M$  and M? **Applications:** 1. Discovery new links between the different geometries on  $\partial M$  and M; A more geometric and conceptual approach to the PDE boundary problems; scattering and non-local operators; . . .

# Example: A compactification of Minkowski space

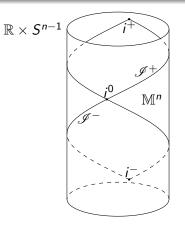


Figure: The standard embedding of *n*-dimensional Minkowski space  $\mathbb{M}^n$  into the Einstein cylinder. This is **conformal**:  $g_{\text{Mink}} = \Omega^2 g_{\text{Lorentzian cyln}}$ 

**Questions:** Is this essentially the only way to conformally compactify  $\mathbb{M}$ ? Is it forced that  $i^{\pm}$  and  $i^{0}$  are points? That  $\mathscr{I}$  is an open subset of  $\partial \mathbb{M}$ ? Why is  $\partial \mathbb{M}$  different to  $\partial \mathbb{E}_{\mathbb{P}}^{n+1}$ ?

# Penrose's "generalisation" and conformal infinity

### Definition

A smooth (time- and space-orientable) spacetime  $(M_+, g_+)$  is called **asymptotically simple** if there exists another smooth Lorentzian manifold  $(\overline{M}, \overline{g})$  such that

- $M_+$  is an open submanifold of  $\overline{M}$  with smooth boundary  $\partial M_+ = \mathscr{I}$ ;
- **2** there exists a smooth scalar field  $\Omega$  on M, such that  $\overline{g} = \Omega^2 g_+$  on  $M_+$ , and so that  $\Omega = 0$ ,  $d\Omega \neq 0$  on  $\mathscr{I}$ ;
- **③** every null geodesic in  $\overline{M}$  acquires a future and a past endpoint on  $\mathscr{I}$ .

An asymptotically simple spacetime is called *asymptotically flat* if in addition  $\operatorname{Ric}^{g_+} = 0$  in a neighbourhood of  $\mathscr{I}$ .

**Questions:** How would we re-discover the Einstein cylinder compactification or this useful definition? Treat other geometries similarly?

# Conformal compactification

Henceforth in these talks, **conformal compactification** of pseudo-Riemannian manifold  $(M^d, g_+)$  is a smooth manifold  $\overline{M}$  with boundary  $\partial M$  s.t.:

- $\exists \overline{g}$  on  $\overline{M}$ , with
- $g_+ = r^{-2}\overline{g}$ , where *r* a **defining function** for  $\partial M$ . (i.e.  $\partial M = r^{-1}(0)$  and *dr* non-vanishing on  $\partial M$ .)



⇒ canonical conformal structure on boundary:  $(\partial M, [\overline{g}|_{\partial M}])$  (where *dr* not null).

•  $g_+$  then called **conformally compact**. I will say it is a **Poincaré-Einstein** metric if also  $g_+$  is **Einstein**. (Not nec. neg. Einstein.)

### Conformal geometry

**Question:** Why is  $\partial \mathbb{E}^{n+1}$  =one point, whereas  $\partial \mathbb{M}^{n+1} =$  "a cone"? What geometry does latter have? How do we generalise to other infinite (= complete non-compact) manifolds? We need:

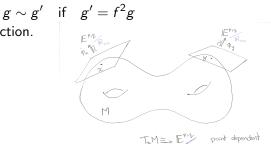
**Conformal geometry** = geometry with "angle but not length".

More precisely: a conformal manifold consists of

$$(M, \boldsymbol{c})$$

where *M* is a smooth manifold (dim  $d = n + 1 \ge 3$ ) and *c* is an **equivalence class** of metrics

where f a positive function.



# Not so crazy – Conformal geometry in math and phys

**Physics:** The equations of electromagnetism – the Maxwell equations  $\delta^* F = 0$  – are not just Lorentz invariant but conformally invariant (Bateman 1909).

• More generally the Yang-Mills equations govern weak and strong force – are also conformally invariant in dimension 4.

• AdS/CFT correspondence of String Theory.

**Mathematics:** Complex analysis – Riemann surfaces are 2-d conformal manifolds.

• The geometry of smooth domain boundaries in  $\mathbb{C}^n$  – CR geometry (– "almost conformal").

• Most important: g determines [g] = c – has a deep role in aspects pseudo-Riemannian geometry. E.g. Yamabe problem and its generalisations (uniformisation), Symmetry and dynamics .

イロト イポト イヨト イヨト

3

- Scattering.
- A tool for geometric compactification.

# Part II: Conformal geometry and the geometry of scale

Because there is no distinguished metric on  $(M^d, \mathbf{c})$  an important role is played by the **density bundles**. Note  $(\Lambda^d TM)^2$  is an oriented real line bundle  $\mathcal{K}$ . We write  $\mathcal{E}[w]$  for the roots

$$\mathcal{E}[w] = \mathcal{K}^{\frac{w}{2d}}, \quad \text{so} \quad \mathcal{K} = \mathcal{E}[2d],$$

 $\mathcal{E}[0] := \mathcal{E}$  (the trivial bundle with fibre  $\mathbb{R}$ ), and  $\mathcal{E}_+[w]$  for the positive elements. With this notation there is tautologically a **conformal metric** 

 $g \in S^2 T^* M[2]$ , so that  $g^{\sigma} := \sigma^{-2} g \in \mathbf{c}$ ,  $\sigma \in \Gamma(\mathcal{E}_+[1])$ , and  $\otimes^d g : (\Lambda^d T M)^2 \xrightarrow{\simeq} \mathcal{E}[2d]$ . There is 1-1 relation between sections  $\sigma$  of  $\mathcal{E}_+[1]$  and metrics  $g^{\sigma}$  in  $\mathbf{c}$  (via  $g^{\sigma} := \sigma^{-2} g \in \mathbf{c}$ ) we call  $\sigma \in \Gamma(\mathcal{E}_+[1])$  a strict scale.

The Levi-Civita connection  $abla^g$ , for  $g \in \mathbf{c}$ , acts on  $\mathcal{E}[2d]$  and

$$\nabla^{g^{\sigma}}\sigma=0.$$

# The Problem

**Problem:** Conformal geometry is not as rigid as pseudo-Riemannian geometry. This has benefits but is also a big problem. How do we "get a handle on it"? The geometry, the geometric analysis, etc :

There is **no metric** on *TM* and **no connection** on *TM*.

On (M, c), for each  $g \in c$  there is  $\nabla^g$ . But if  $\widehat{g} = f^2 g$  then for  $\xi, \eta \in \mathfrak{X}(M)$ 

$$\nabla_{\xi}^{\widehat{g}}\eta = \nabla_{\xi}^{g}\eta + \Upsilon(\xi)\eta + \Upsilon(\eta)\xi - g(\xi,\eta)\Upsilon^{\sharp} \quad \text{where} \quad \Upsilon = \nabla \log f.$$

so e.g. 
$$\Delta^{\hat{g}} u = f^{-2} \left( \Delta^g u + (n-2) \Upsilon^c \nabla_c u \right).$$

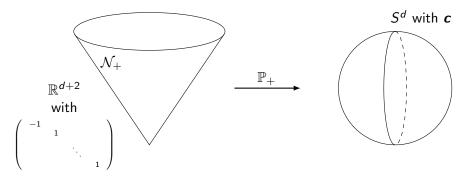
"Error terms" as on the RHS here increase exponentially with order of calculations.

#### Solution: It turns out that:

There is a metric on and a connection on  $\mathcal{T} = TM \oplus (a \text{ bit})$ .

# The conformal sphere = the (Riemannian) model

Conformal sphere is ray projectivisation of forward null cone:



• Affine parallel transport on  $\mathbb{R}^{d+2}$  gives a conformally invariant connection on  $(S^d, \mathbf{c})$  (!!)

This **tractor connection**  $\nabla^{\mathcal{T}}$  is on a v. bundle  $\mathcal{T}$  where, at each  $x \in S^d = M$ ,  $\mathcal{T}_x \cong \mathcal{T}_p \mathbb{R}^{d+2} \cong \mathbb{R} \oplus \mathcal{T}_x M \oplus \mathbb{R}$ , for  $p \in x \subset \mathcal{N}_+$ .  $\mathcal{T}$  has a Lorentzian **metric** h that is preserved by  $\nabla^{\mathcal{T}}_{\mathcal{T}}$ :  $\nabla^{\mathcal{T}}_{\mathcal{T}} h = 0$ .

# The conformal $S^1 \times S^n$ = the Lorentzian model

Now take  $\mathbb{R}^{d+2}$  with bilinear form

$$h=\left(egin{array}{cccc} -1 & & & & \ & -1 & & & \ & & 1 & & \ & & & \ddots & \ & & & & 1 \end{array}
ight)$$

The null cone/quadric is

$$x_0^2 + x_1^2 = x_2^2 + \cdots + x_{d+1}^2$$
.

The ray projectivisation has a **Lorenztian sig. conformal structure** that includes the metric induced on the **section**  $x_0^2 + x_1^2 = 1 = x_2^2 + \cdots + x_{d+1}^2$  (so  $S^1 \times S^n$ ) with its induced Lorentzian signature metric.

So the tractor bundle  $(\mathcal{T}, h, \nabla^{\mathcal{T}})$  on  $(S^1 \times S^n, c)$  has signature (d, 2). d = n + 1

# General curved conformal manifolds

On a general conformal manifold there is a canonical structure which generalises the above (Thomas 1926-31 and cf Cartan 1923, BEG 1989):

#### Theorem

On a conformal manifold  $(M, \mathbf{c})$  of dimension  $d \ge 3$  and signature (p, q) there is, canonically, a tractor bundle

 $\mathcal{T} = \mathcal{E}[1] \oplus \mathcal{T}M[-1] \oplus \mathcal{E}[-1]$ 

with a connection (i.e. parallel transport)  $\nabla^{\mathcal{T}}$ , and a signature (p+1, q+1) metric h that is preserved by  $\nabla^{\mathcal{T}}$ :

$$\nabla^{\mathcal{T}} h = 0.$$

There is also a canonical (or position) tractor  $X \in \Gamma(\mathcal{T}[1])$  that gives the filtration of  $\mathcal{T}$ :

 $X: \mathcal{E}[-1] \to \mathcal{T}$  and  $X^*: \mathcal{T} \to \mathcal{E}[1].$ 

### The tractor connection

So although on a conformal manifold  $(\overline{M}, \mathbf{c})$  there is no distinguished connection on TM – we have the conformally invariant **tractor bundle**  $\mathcal{T}$  and **connection**  $\nabla^{\mathcal{T}}$ . Given  $\overline{g} \in \mathbf{c}$  this is given by

$$\mathcal{T} \stackrel{\overline{g}}{=} \mathcal{E}[1] \oplus \mathcal{T}^* \mathcal{M}[1] \oplus \mathcal{E}[-1], \qquad \mathcal{E}[1] := (\Lambda^d T \mathcal{M})^{\frac{2}{2d}}$$
$$\nabla^{\mathcal{T}}_{a}(\sigma, \mu_b, \rho) = (\nabla_a \sigma - \mu_a, \ \nabla \mu_b + P_{ab}\sigma + \mathbf{g}_{ab}\rho, \ \nabla_a \rho - P_{ab}\mu^b),$$
and  $\nabla^{\mathcal{T}}$  preserves a conformally invariant tractor metric  $h$ 
$$\mathcal{T} \ni \mathcal{V} = (\sigma, \mu_b, \rho) \mapsto 2\sigma\rho + \mu_b\mu^b = h(\mathcal{V}, \mathcal{V}).$$

There is also a second order **Thomas operator**:

$$\Gamma(\mathcal{E}[w]) \in f \mapsto D_{\mathcal{A}}f \stackrel{\overline{\mathcal{B}}}{=} \left( \begin{array}{c} (d+2w-2)wf \\ (d+2w-2)\nabla_{\boldsymbol{a}}f \\ -(\Delta f+wJf) \end{array} \right)$$

where J is  $\operatorname{trace}^{\overline{g}}(P_{ab})$ , so a number times  $\operatorname{Sc}(\overline{g})$ .

### Parallel standard tractors

Note that from the formula

$$\nabla_{a}^{\mathcal{T}}(\sigma,\mu_{b},\rho) = (\nabla_{a}\sigma - \mu_{a}, \ \nabla\mu_{b} + P_{ab}\sigma + \mathbf{g}_{ab}\rho, \ \nabla_{a}\rho - P_{ab}\mu^{b}),$$
  
if  $I_{A} \stackrel{g}{=} (\sigma,\mu_{a},\rho)$  is a parallel tractor then  $\mu_{a} = \nabla_{a}\sigma$ , and  
 $\rho = -(\Delta\sigma + w J\sigma)$ . This gives the first statement of:

### Proposition

I parallel implies  $I_A = \frac{1}{d}D_A\sigma$ . So  $I \neq 0 \Rightarrow \sigma$  is nonvanishing on an open dense set  $M_{\sigma\neq0}$ . On  $M_{\sigma\neq0}$ ,  $g^o = \sigma^{-2}g$  is Einstein. Conversely if  $g^o = \sigma^{-2}g$  is Einstein then  $I := \frac{1}{d}D\sigma$  is parallel.

### Proof.

On  $M_{\sigma \neq 0}$  we have locally  $\pm \sigma \in \Gamma(\mathcal{E}_+[1])$  so  $\mu_a = \nabla_a \sigma = 0$  for  $\nabla = \nabla^{g^{\sigma}}$ . Thus  $P_{ab} + \frac{\rho}{\sigma} g_{ab} = 0.$ 

The converse is easy.

So we say  $(M, \mathbf{c})$  with parallel  $I \neq 0$  is almost Einstein.

### A canonical stratification - strata called "Curved orbits"

Concerning  $M_0 = \mathcal{Z}(\sigma)$ . (Here and throughout  $I^2 = I^A I_A$ .)

#### Theorem

An almost Einstein manifold  $(M, \mathbf{c}, \mathbf{l})$  is stratified according to the strict sign of  $\sigma = I_A X^A$ . The zero locus satisfies:

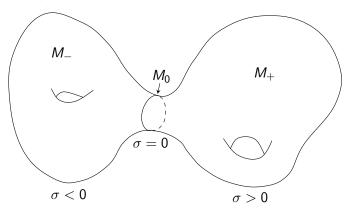
- If I<sup>2</sup> ≠ 0 (i.e. g° Einstein and not Ricci flat) then Z(σ) is either empty or is a smoothly embedded separating hypersurface.
- If I<sup>2</sup> = 0 (i.e. g<sup>o</sup> Ricci flat) then Z(σ) is either empty or, after excluding isolated points from Z(σ), is a smooth embedded hypersurface.

#### Proof.

The local aspects follow from the general curved orbit theorem in L2. But mainly they are also easily recovered directly as we shall see.

# The picture so far

Thus if  $I^2 \neq 0$  and  $I_A$  is **parallel** we have the picture:



We will see below that  $M \setminus M_{\pm}$  are **conformally compact** and hence **Poincaré-Einstein (PE)**. Conversely all Poincaré-Einstein manifolds arise this way. (The almost Einstein manifold M is a glueing of the PE parts along their conformal infinities.)

### Almost pseudo-Riemannian geometry

We now drop the PE condition to understand all conf. compact

For convenience we say that a structure

 $(M^d, \mathbf{c}, \sigma)$  where  $\sigma \in \Gamma(\mathcal{E}[1])$  is almost pseudo-Riemannian if the tractor

 $I_A := \frac{1}{d} D_A \sigma$  is nowhere zero  $\stackrel{def.}{\leftrightarrow} I$  is a scale tractor Note then that  $\sigma$  is non-zero on an open dense set, since  $D_A \sigma$ encodes part of the 2-jet of  $\sigma$ . So on an almost pseudo-Riemannian manifold there is the pseudo-Riemannian metric  $g^o = \sigma^{-2}g$  on the same open dense set. In the following the notation I will always refer to a scale tractor, so  $I = \frac{1}{d} D\sigma$ , for some  $\sigma \in \Gamma(\mathcal{E}[1])$ . Then we often mention I instead of  $\sigma$  and refer to  $(M, \mathbf{c}, I)$  as an almost pseudo-Riemannian manifold. Evidently:

#### Lemma

A conf. compact mfld is an almost Riemannian manifold  $(\overline{M}, \mathbf{c}, \sigma)$ with boundary  $(\overline{M} = M_+ \cup \partial M_+)$  such that  $\sigma$  defines  $\partial M_+$ 

### Generalised scalar curvature

Now recall from the formula for I and the metric we have

$$I^{A}I_{A} =: I^{2} \stackrel{g}{=} \boldsymbol{g}^{ab}(\nabla_{a}\sigma)(\nabla_{b}\sigma) - \frac{2}{d}\sigma(\mathbf{J} + \Delta)\sigma \tag{1}$$

where g is any metric from **c** and  $\nabla$  its Levi-Civita connection. This is well-defined everywhere on an almost pseudo-Riemannian manifold. Where  $\sigma$  is non-zero, it computes

$$I^2 = -rac{2}{d}\mathsf{J}^{g^o} = -rac{\mathsf{Sc}^{g^o}}{d(d-1)}$$
 where  $g^o = \sigma^{-2} \boldsymbol{g}.$ 

Thus  $l^2$  gives a generalisation of the scalar curvature (up to a constant factor -1/d(d-1)); it is canonical and smoothly extends the scalar curvature to include the zero set of  $\sigma$ . We shall use the term **ASC manifold** (where ASC means **almost scalar constant**) to mean an almost pseudo-Riemannian manifold with  $l^2 = constant$ . Since the tractor connection preserves *h*, then *l* parallel implies  $l^2 = constant$ . So an almost Einstein manifold is ASC, just as Einstein manifolds have constant scalar curvature.

### Non-zero generalised scalar curvature.

Much of the almost Einstein curved orbit picture remains in the almost pseudo-Riemannian setting when  $I^2$  is non-vanishing:

#### Theorem

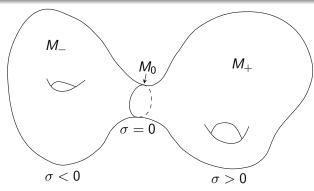
Let  $(M, \mathbf{c}, I)$  be an almost pseudo-Riemannian manifold with  $I^2$ **nowhere zero**. Then  $\mathcal{Z}(\sigma)$ , if not empty, is a smooth embedded separating hypersurface. This has a spacelike (resp. timelike) normal if  $g^o$  has negative scalar (resp. positive) scalar curvature. If  $\mathbf{c}$  has Riemannian signature and  $I^2 < 0$  then  $\mathcal{Z}(\sigma)$  is empty.

#### Key aspect of Proof.

From 
$$I^2 \stackrel{g}{=} \boldsymbol{g}^{ab}(\nabla_a \sigma)(\nabla_b \sigma) - \frac{2}{d}\sigma(\mathbf{J} + \Delta)\sigma$$
: Along  $\mathcal{Z}(\sigma)$  we have  
 $I^2 = \boldsymbol{g}^{ab}(\nabla_a \sigma)(\nabla_b \sigma).$ 

in particular  $\nabla \sigma$  is nowhere zero on  $\mathcal{Z}(\sigma)$ , and so  $\sigma$  is a **defining density**. Thus  $\mathcal{Z}(\sigma)$  is a smoothly embedded hypersurface by the implicit function theorem.

The updated picture if  $I_A = \frac{1}{n} D_A \sigma$  s.t  $I^2 \neq 0$ :



(M, c) equipped with a scale tractor  $I = \frac{1}{d}D\sigma$ , with  $I^2$  nowhere zero has I nowhere zero and so is almost pseudo-Riemanian. Where  $\sigma = X^A I_A$  is nonzero (almost everywhere) there is the pseudo-Riemannian metric  $g^o = \sigma^{-2}g$ , and  $\sigma$  is a defining density for the separating hypersurface  $M_0 = Z(\sigma)$ . Hence  $M \setminus M_{\pm}$  is **conformally compact** with conf. infinity  $(M_0, c|_{M_0})$ . Conversely all conformally compact manifolds arise this way  $(\sigma) = (z + z)^{-1}$ . **Moral:** Replace (M, g) with (M, c, I) where I is the scale tractor. This generalises our notion of geometry in a way that builds in the compactification data.

E.g.(\*)  $(\overline{M}, g_o)$  a conformal compactification, with the scalar curvature bounded away from zero, means just  $(\overline{M}, \boldsymbol{c}, \boldsymbol{l})$  where  $\overline{M} = M + \partial M$ ,  $\partial M = \mathcal{Z}(\sigma)$  and  $\boldsymbol{l}^2$  non-vanishing. (On M,  $g_o = \sigma^{-2}\boldsymbol{g}$ .)

In pseudo-Riemannian geometry the metric g produces geometric operators " $\Delta^g = g^{ab} + \nabla_a + \nabla_b$ ". Now we want to instead couple  $\sigma$  and  $I_A$  to conformal operators . . .

# THANKS.

# The END of lecture one

### Lecture Two

L2: Part I. • Applications of the conformal approach to understanding the space-time boundary (at infinity) geometry.

• Applications of the conformal approach to boundary problems and scattering.

Refs:

G-.; Nurowski, Obstructions to conformally Einstein metrics in n dimensions. J. Geom. Phys. (2006)
G-. Almost Einstein and Poincaré-Einstein manifolds in Riemannian signature. J. Geom. Phys. (2010)
G-. ; Waldron, Boundary calculus for conformally compact manifolds. Indiana Univ. Math. J. (2014)

Part II. • A conceptual approach to geometric compactification. Examples and (space-time) models.

Čap; G-,; Hammerl, Holonomy reductions of Cartan geometries and curved orbit decompositions. Duke Math. J. (2014)

# Part I: Geometry of the boundary at infinity

Given a conformally compact manifold:

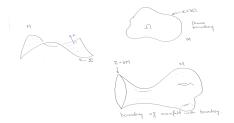
 $\frac{1}{\sqrt{M}} = 2M + M, \qquad (M_{u}, d),$ 

**Questions:** Given a certain geometry of  $g_+$  – e.g. Asymptotically de Sitter, Asymptotically hyperbolic, Poincaré-Einstein, what can we say about the:

- **1 Intrinsic geometry** of  $(\partial M, c|_{\partial M})$ ?
- **2** Extrinsic geometry of  $(\partial M, c|_{\partial M})$ ?
- **Solution** Conformal geometry of (M, c) near  $\partial M$ ?
- Asymptotics of  $g_+$  near  $\partial M$ ?

To (start to) treat these questions we will need to understand some basic conformal geometry of **hypersurfaces**.

# Hypersurfaces in conformal geometry - a digression



To treat boundary calculus we need to understand the mathematics of hypersurfaces.

**Defn:** hypersurface  $\Sigma$  in a manifold M means a smoothly embedded codimension 1 submanifold of  $(M, \mathbf{c})$ .

• we restrict to  $\Sigma$  with the property that the any conormal field along  $\Sigma$  is nowhere null (i.e. to nondegenerate hypersurfaces). Then:

- restriction of any  $g \in \mathbf{c}$  gives metric  $\overline{g}$  on  $\Sigma \rightsquigarrow \mathbf{c}$  induces  $\overline{\mathbf{c}}$  on  $\Sigma$ .
- It is natural to work with a weight 1 co-normal  $n_a$  along  $\Sigma$  satisfying  $\mathbf{g}^{ab}n_an_b = \pm 1$ .

### Basic hypersurface invariants

For  $g \in \mathbf{c}$ , the second fundamental form  $L_{ab}$  is the restriction of  $\nabla_a n_b$  to  $T\Sigma \times T\Sigma \subset (TM \times TM)|_{\Sigma}$ , where  $\nabla = \nabla^g$ ; i.e.

$$L_{ab} := \nabla_a n_b \mp n_a n^c \nabla_c n_b \quad \text{along} \quad \Sigma.$$

This is not conformally invariant. But under a conformal rescaling,  $g \mapsto \hat{g} = e^{2\omega}g$ ,  $L_{ab}$  transforms according to  $L_{ab}^{\hat{g}} = L_{ab}^{g} + \overline{g}_{ab} \Upsilon_{c} n^{c}$ , where  $\Upsilon = d\omega$ 

### Thus:

Proposition

The trace-free part of the second fundamental form

$$\mathring{L}_{ab} = L_{ab} - H\overline{oldsymbol{g}}_{ab}, \hspace{1em} \textit{where}, \hspace{1em} H := rac{1}{d-1}\overline{oldsymbol{g}}^{cd}L_{cd}$$

is conformally invariant.

Here d = n + 1 is the dimension of the ambient manifold  $M_{\Xi}$ ,  $\Xi$  or

### The normal tractor

Evidently, under a conformal rescaling  $g \mapsto \hat{g} = e^{2\omega}g$ , the **mean** curvature  $H^g$  transforms to  $H^{\hat{g}} = H^g + n^a \Upsilon_a$ . Thus we obtain a conformally invariant section N of  $\mathcal{T}|_{\Sigma}$ 

$$N_A \stackrel{g}{=} \left( \begin{array}{c} 0 \\ n_a \\ -H^g \end{array} 
ight),$$

and  $h(N, N) = \pm 1$  along  $\Sigma$ . This is the **normal tractor** of Bailey-Eastwood-G. Differentiating N tangentially along  $\Sigma$  using  $\nabla^{\mathcal{T}}$ , we obtain the following result.

#### Proposition (Conformal Shape operator)

$$\mathbb{L}_{aB} := \underline{\nabla}_{a} N_{B} \stackrel{g_{cb}}{=} \begin{pmatrix} 0 \\ \mathring{L}_{ab} \\ -\frac{1}{d-2} \nabla^{b} \mathring{L}_{ab} \end{pmatrix}$$

where  $\underline{\nabla}$  is the pullback to  $\Sigma$  of the ambient tractor connection. Thus  $\Sigma$  is **totatally umbilic** iff N is parallel along  $\Sigma$ .

# Conformal hypersurface calculus

The classical Gauss formula

$$\underline{\nabla}_{a}v^{b} = \overline{\nabla}_{a}v^{b} \mp n^{b}L_{ac}v^{c} \qquad v \in \Gamma(T\Sigma) \subset \Gamma(TM),$$

is the basis of pseudo-Riemannian hypersurface calculus.

We want the conformal analogue. First we need this:

Proposition (Branson-G., Grant)

There is a natural conformally invariant (isometric) isomorphism  $\mathcal{T}|_{\Sigma} \supset N^{\perp} \xrightarrow{\simeq} \overline{\mathcal{T}} = std tractor bdle of (\Sigma, \overline{c}).$ 

#### Proof.

Calculating in a scale g on M the tractor bundle  $\mathcal{T}$ , and hence also  $N^{\perp}$ , decomposes into a triple. Then the mapping of the isomorphism is

$$[N^{\perp}]_{g} \ni \begin{pmatrix} \sigma \\ \mu_{b} \\ \rho \end{pmatrix} \mapsto \begin{pmatrix} \sigma \\ \mu_{b} \mp Hn_{b}\sigma \\ \rho \pm \frac{1}{2}H^{2}\sigma \end{pmatrix} \in [\overline{\mathcal{T}}]_{\overline{g}}.$$

Rod Gover. background: Curry, G-. · · · Conformal Geometry · C

### The tractor Gauss equation

The above reveals two connections on  $\overline{\mathcal{T}} \cong N^{\perp}$  that we can compare. Namely the **intrinsic tractor connection**  $\overline{\nabla}^{\overline{\mathcal{T}}}$  determined by  $(\Sigma, \overline{\mathbf{c}})$ , and the **projected ambient tractor connection**  $\overline{\nabla}$ . The latter is defined by

 $\tilde{\nabla}_{a}U^{B}:=\Pi^{B}_{C}(\Pi^{c}_{a}\nabla_{c}U^{C}) \qquad U\in \Gamma(N^{\perp}) \text{ extended arb. off }\Sigma$ 

where  $\Pi_C^B$  and  $\Pi_a^c$  are the orthog. projections due to N and n. Including the tractor derivative of  $\Pi_C^B$  gives:

Proposition (Tractor Gauss formula – Stafford, Vyatkin)

$$\underline{\nabla}_{a}V^{B} = \overline{\nabla}_{a}V^{B} \mp S_{a}{}^{B}{}_{C}V^{C} \mp \mathrm{N}^{B}\mathbb{L}_{aC}V^{C},$$

where  $S_{aBC} = \overline{\mathbb{X}}_{BC}{}^{c}\mathcal{F}_{ac}$ ,  $(\overline{\mathbb{X}}_{BC}{}^{c}$  an invariant bundle injector), and

$$\mathcal{F}_{ab} = \frac{1}{d-2} \Big( W_{acbd} n^c n^d + \mathring{L}^2_{ab} - \frac{|\mathring{L}|^2}{2(d-1)} \overline{\boldsymbol{g}}_{ab} \Big).$$

Recall  $\mathbb{L}_{aC} = \underline{\nabla}_a N_C$ . This shows that  $\mathcal{F}_{ab}$  is a conformal invariant of hypersurfaces. It is the so-called **Fialkow tensor**  $\mathbb{E}_{ab} = \mathbb{E}_{ab}$ 

# Geometry of conformal infinity

We return now to conformally compact geometries  $(M, \mathbf{c}, I)$ . Recall the scale tractor I is given  $I = (\sigma, \nabla \sigma, -\frac{1}{d}(\Delta \sigma + J\sigma))$ . We will consider in particular  $(M, \mathbf{c}, I)$  which near the conformal infinity are asymptotically of constant nonzero scalar curvature. By imposing a constant dilation we may assume that  $I^2$  approaches  $\pm 1$ , asymptotically hyperbolic/AdS resp. asymptotically de Sitter.

The  $\sigma$ , equivalently scale tractor I, strongly links the geometry of  $\Sigma = \mathcal{Z}(\sigma)$  to the ambient by a beautiful agreement of I and the normal tractor:

### Proposition

Let  $(M^d, \mathbf{c}, I)$  be an almost pseudo-Riemannian structure with scale singularity set  $\Sigma \neq \emptyset$  and  $I^2 = \pm 1 + \sigma^2 f$  for some smooth (weight -2) density f. Then  $\Sigma$  is a smoothly embedded hypersurface and, with N denoting the normal tractor for  $\Sigma$ , we have  $N = I|_{\Sigma}$ .

#### Proof.

For simplicity assume the case  $I^2 = \pm 1$  (so f = 0 and the structure is ASC). As usual let us write  $\sigma := h(X, I)$ . Along  $\mathcal{Z}(\sigma)$ 

$$I_{A} = \frac{1}{d} D_{A} \sigma \stackrel{g}{=} \begin{pmatrix} 0 \\ \nabla_{a} \sigma \\ -\frac{1}{d} \Delta \sigma \end{pmatrix} \Rightarrow \boldsymbol{g}^{ab} (\nabla_{a} \sigma) \nabla_{b} \sigma = \pm 1$$

so  $n_a := \nabla_a \sigma$  is the unit conormal and a computation gives  $-\frac{1}{d}\Delta\sigma = -\frac{1}{d-1}\boldsymbol{g}^{ab}L^{g}_{ab} = -H^{g}.$ 

#### Corollary

Let  $(M^d, \mathbf{c}, I)$  be an almost pseudo-Riemannian structure with scale singularity set  $\Sigma \neq \emptyset$ , and that is asymptotically Einstein in the sense that  $I^2|_{\Sigma} = \pm 1$ , and  $\nabla_a I_B = \sigma f_{aB}$  for some smooth (weight -1) tractor valued 1-form  $f_{aB}$ . Then  $\Sigma$  is a totally umbilic hypersurface.

イロト イボト イヨト イヨト

## Agreement of tractor connections

If we assume the stronger asymptotics:  $I^2|_{\Sigma} = \pm 1$ , and  $\nabla_a I_B = \sigma^2 f_{aB}$  Then along  $\Sigma$ ,  $I_B$  is parallel to the given order, and so the tractor curvature satisfies

$$\kappa_{ab}{}^{C}{}_{D}I^{D} = \kappa_{ab}{}^{C}{}_{D}N^{D} = 0$$
 along  $\Sigma$ .

This implies

$$W_{ab}{}^{c}{}_{d}n^{d}=0$$
, along  $\Sigma=\mathcal{Z}(\sigma)$ 

 $\therefore \text{ Fialkow } \mathcal{F}_{ab} = \frac{1}{n-2} (W_{acbd} n^c n^d + \mathring{L}^2_{ab} - \frac{|\mathring{L}|^2}{2(n-1)} \overline{\boldsymbol{g}}_{ab}) \text{ vanishes, } \&$ 

#### Theorem

Let  $(M^{d\geq 4}, \mathbf{c}, \mathbf{l})$  be an almost pseudo-Riemannian structure with scale singularity set  $\Sigma \neq \emptyset$ , and that is asymptotically Einstein in the sense that  $I^2|_{\Sigma} = \pm 1$ , and  $\nabla_a I_B = \sigma^2 f_{aB}$ . Then the tractor connection of  $(M, \mathbf{c})$  preserves the intrinsic tractor bundle of  $\Sigma$ , where the latter is viewed as a subbundle of the ambient tractors:  $\mathcal{T}_{\Sigma} \subset \mathcal{T}$ . Furthermore the restriction of the parallel transport of  $\nabla^{\mathcal{T}}$  coincides with the intrinsic tractor parallel transport of  $\nabla^{\mathcal{T}_{\Sigma}=\overline{\mathcal{T}}}$ .

# Summary to this point

An almost pseudo-Riemannian manifold with **non-zero** generalised scalar curvature has  $\Sigma = \mathcal{Z}(\sigma)$  smoothly embedded.

**Questions:** E.g.  $g = \sigma^{-2}g$  – is asymptotically Einstein then: **Asymptotics of** g near  $\Sigma = \partial M$ ?:

 $I^2 = \pm 1 + \sigma f$  so g is asymptotically of constant scalar curvature and is resp. asymp. de Sitter/asyp. hyperbolic.

$$R^g_{abcd} = \pm (g_{ac}g_{bd} - g_{ad}g_{bc}) + O(\sigma^{-3})$$

**2** Extrinsic geometry of  $(\partial M, c|_{\partial M})$ ?:

$$\mathring{L}_{ab}=0, \quad \mathcal{F}_{ab}=0, \cdots$$
 (see : arXiv : 2107.10381)

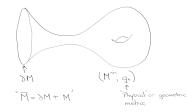
**Conformal geometry** of (M, c) near  $\partial M$ , e.g.  $W_{ab}{}^{c}{}_{d}n^{d} = 0$ . **Solution** Intrinsic geometry of  $(\partial M, c|_{\partial M})$ ?:

For d odd, n even and  $\nabla I = 0$  to high order (approx.  $\sigma^{d-1}$ ) then

$$0 = \overline{B}_{ab} = \overline{\Delta}^{n/2-2} \overline{\nabla \nabla W}_{acbd} + \text{lower order}$$

the Fefferman-Graham obstruction tensor of  $(\partial M, \boldsymbol{c}|_{\partial M})$ 

# Scattering of scalar fields in conformally compact mflds



Suppose on the interior one wants to solve

$$\left(\Delta^g + s(n-s)\frac{J^g}{d}\right)f = 0$$

where  $\Delta^{g}$  is, as usual, the **wave operator** or metric **Laplacian**  $g^{ab}\nabla_{a}\nabla_{b}$  for the conformally compact metric

$$g = g_+ = \sigma^{-2}g$$

that is singular at the boundary  $\partial M$ . What are the right "Dirichlet" and "Neumann" boundary conditions? Mapping between these is one idea in scattering. Then *s* is the **spectral parameter**.

### Differential operators by prolonged coupling

On an almost pseudo-Riemannian manifold  $(M, \mathbf{c}, I)$  there is a canonical differential operator by **coupling**  $I^A$  **to**  $D_A$ , namely  $I \cdot D := I^A D_A$ .

This acts on any weighted tractor bundle, preserving its tensor type but lowering the weight:

$$I \cdot D : \mathcal{E}^{\Phi}[w] \to \mathcal{E}^{\Phi}[w-1].$$

It will be useful to define define the *weight operator*  $\mathbf{w}$ : if  $\beta \in \Gamma(\mathcal{B}[w_0])$  we have

$$\mathbf{w}\,\beta = w_0\beta.$$

Then on  $\mathcal{E}^{\Phi}[w]$  we have

$$I \cdot D \stackrel{g}{=} \left( \begin{array}{c} -\frac{1}{d} (\Delta \sigma + \mathsf{J}\sigma) \quad \nabla^{\mathsf{a}}\sigma \quad \sigma \end{array} \right) \left( \begin{array}{c} \mathsf{w}(d+2\mathsf{w}-2) \\ \nabla_{\mathsf{a}}(d+2\mathsf{w}-2) \\ -(\Delta+\mathsf{J}\mathsf{w}) \end{array} \right).$$
$$= -\sigma \Delta + (d+2w-2) [(\nabla^{\mathsf{a}}\sigma)\nabla_{\mathsf{a}} - \frac{w}{d} (\Delta \sigma)] - \frac{2w}{d} (d+w-1)\sigma \mathsf{J}$$

### The canonical degenerate Laplacian

Now on  $M \setminus \mathcal{Z}(\sigma)$  in the metric  $g_{\pm} = \sigma^{-2} \boldsymbol{g}$ , with densities trivialised accordingly, we have

$$I \cdot D \stackrel{g_{\pm}}{=} - \Big( \Delta^{g_{\pm}} + rac{2w(d+w-1)}{d} \mathsf{J}^{g_{\pm}} \Big).$$

In particular if  $g_{\pm}$  satisfies  $J^{g_{\pm}} = \pm \frac{d}{2}$  (*i.e.*  $Sc^{g_{\pm}} = \pm d(d-1)$  or equivalently  $I^2 = \pm 1$ ) then, relabeling d + w - 1 =: s and d - 1 =: n, we have

$$I \cdot D \stackrel{g_{\pm}}{=} - (\Delta^{g_{\pm}} \pm s(n-s))$$
.

so solutions are **eigenvectors of the Laplacian** (and *s* is called the **spectral parameter**) as in **scattering theory**.

But on  $\Sigma = \mathcal{Z}(\sigma) \neq \emptyset$ , the conformal infinity, *I*·*D* degenerates and there the operator is first order. In particular if the structure is asymptotically ASC, in the sense that  $I^2 = \pm 1 + \sigma^2 f$ , for some smooth *f*, then along  $\Sigma$ 

 $I \cdot D = (d + 2w - 2)\delta_1$ ,  $\delta_1 \stackrel{g}{=} n^a \nabla_a^g - w H^g = \text{ conformal Robin}$ 

Thus *I*·*D* is a **degenerate Laplacian**, natural to (*M*, **c**, *t*): <=> = つへの Rod Gover. background: Curry, G. . . . . Conformal Geometry - Compactification and boundary calc

# The $\mathfrak{s}I(2)$ -algebra

 $(M, \mathbf{c})$  be a conformal structure of dimension  $d \ge 3$ ,  $\sigma \in \Gamma(\mathcal{E}[1])$ and  $I_A = \frac{1}{d} D_A \sigma$  (as usual). Then a direct computation gives

#### Lemma

Acting on any section of a weighted tractor bundle we have

$$I \cdot D, \sigma] = I^2(d + 2\mathbf{w}),$$

where w is the weight operator.

Thus with **only the restriction that generalised scalar curvature is non-vanishing** we have:

#### Proposition (G.-Waldron)

Suppose that  $(M, c, \sigma)$  is such that  $I^2$  is nowhere vanishing. Setting  $x := \sigma$ ,  $y := -\frac{1}{I^2}I \cdot D$ , and  $h := d + 2\mathbf{w}$  we obtain the commutation relations

$$[h, x] = 2x, \quad [h, y] = -2y, \quad [x, y] = h,$$

of standard  $\mathfrak{sl}(2)$ -algebra generators.

200

# Application: Conformal Laplacian powers

#### Theorem

Let  $\mathcal{E}^{\Phi}$  be any tractor bundle and  $k \in \mathbb{Z}_{\geq 1}$ . Then, for each  $k \in \mathbb{Z}_{\geq 1}$ , along  $\Sigma = \mathcal{Z}(\sigma)$ 

$$P_k: \mathcal{E}^{\Phi}[rac{k-n}{2}] o \mathcal{E}^{\Phi}[rac{-k-n}{2}] \quad \text{given by} \quad P_k:=\left(-rac{1}{l^2}hD\right)^k \ (2)$$

is a tangential differential operator, and so determines a canonical differential operator  $P_k : \mathcal{E}^{\Phi}[\frac{k-n}{2}]|_{\Sigma} \to \mathcal{E}^{\Phi}[\frac{-k-n}{2}]|_{\Sigma}$ . For k even this takes the form

$$P_k = \overline{\Delta}^k + lower \ order \ terms.$$
 (3)

#### Proof.

From the  $\mathfrak{s}/(2)$ -identities we have  $[x, y^k] = y^{k-1}k(h-k+1)$ . Thus on  $\mathcal{E}^{\Phi}[\frac{k-n}{2}]$   $P_k(f + \sigma h) = y^k(f + xh) = P_kf + \sigma \widetilde{P}_kh$ . So  $P_k$  is **tangential**. Expanding the *I*·*D*s yields (3).

Rod Gover. background: Curry, G-. · · · Conformal Geometry · Compactification and boundary calc

### Natural boundary problems

Suppose on a conformally compact manifold  $M_+$  (with  $M_+ \cup \partial M_+ = \overline{M}$ ) we wish to study solutions to

$$\mathsf{P} f := \Big(\Delta^{\mathsf{g}_+} + rac{2w(d+w-1)}{d}\mathsf{J}^{\mathsf{g}_+}\Big)f = 0.$$

E.g. this is what is studied in the usual Poincaré-Einstein scattering program.

Then one needs to fix suitable boundary conditions. E.g. in the case of Riemannian signature one wants some elliptic boundary problem. Since the boundary  $\partial M_+$  is at infinity, with  $g_+$  singular along  $\partial M_+$ , this is non-trivial.

But if we view f as the trivialisation of a density of weight w then  $Pf \stackrel{g_+}{=} I \cdot Df$  and  $I \cdot D$  is well defined on all of  $\overline{M}$  (and its smooth extension to M beyond  $\partial M_+$ ). Thus it is natural to study the  $I \cdot D$  problem. We do this **formally**.

First we treat an obvious Dirichlet-like problem where we view  $f|_{\Sigma}$  as the initial data.

# Asymptotic solutions of the first kind

#### Problem

Given  $f|_{\Sigma}$ , and an arbitrary extension  $f_0$  of this to  $\mathcal{E}^{\Phi}[w_0]$  over M, find  $f_i \in \mathcal{E}^{\Phi}[w_0 - i]$  (over M),  $i = 1, 2, \cdots$ , so that

$$f^{(\ell)} := f_0 + \sigma f_1 + \sigma^2 f_2 + \dots + O(\sigma^{\ell+1})$$

solves  $I \cdot Df = O(\sigma^{\ell})$ , off  $\Sigma$ , for  $\ell \in \mathbb{N} \cup \infty$  as high as possible.

$$\begin{split} I \cdot Df &= 0 \Leftrightarrow -\frac{1}{l^2} I \cdot Df = 0 \text{ so we recast this via } \mathfrak{sl}(2) = \langle x, y, h \rangle. \\ \mathbf{Set} \ h_0 &= d + 2w_0. \text{ By the identity } [x^k, y] = x^{k-1}k(h+k-1): \\ yf^{(\ell+1)} &= yf^{(\ell)} - x^{\ell}(\ell+1)(h+\ell)f_{\ell+1} + O(x^{\ell+1}). \\ \text{Now } hf_{\ell+1} &= (h_0 - 2(\ell+1))f_{\ell+1}, \text{ thus} \\ yf^{(\ell+1)} &= yf^{(\ell)} - x^{\ell}(\ell+1)(h_0 - \ell - 2)f_{\ell+1} + O(x^{\ell+1}). \end{split}$$
(4) By assumption  $yf^{(\ell)} = O(x^{\ell})$ , thus if  $\ell \neq h_0 - 2$  we can solve  $yf^{(\ell+1)} = O(x^{\ell+1})$  and this **uniquely determines**  $f_{\ell+1}|_{\Sigma}$ .

Rod Gover. background: Curry, G-. · · · Conformal Geometry · Compactification and boundary calc

# The obstruction on conformally compact manifolds

So we can solve to all orders provided we do not hit  $\ell = h_0 - 2$  i.e. provided  $w_0 \notin \{\frac{k-n}{2} : k \in \mathbb{Z}_{\geq 1}\}$ . Otherwise (4) shows that  $\ell = h_0 - 2 \implies yf^{(\ell)} = y(f^{(\ell)} + x^{\ell+1}f_{\ell+1}), \quad \text{modulo } O(x^{\ell+1}),$ 

regardless of  $f_{\ell+1}$ . It follows that the map  $f_0 \mapsto x^{-\ell} y f^{(\ell)}$  is tangential and  $x^{-\ell} y f^{(\ell)}|_{\Sigma}$  is the obstruction to solving  $y f^{(\ell+1)} = O(x^{\ell+1})$ . Then by a simple induction this is seen to be a non-zero multiple of  $y^{\ell+1} f_0|_{\Sigma}$ :

#### Proposition

If  $\ell = h_0 - 2$  then the smooth extension is (in general) obstructed by  $P_{\ell+1}f_0|_{\Sigma}$ , where  $P_{\ell+1} = (-\frac{1}{l^2}I \cdot Df)^{\ell+1}$  is a tangential operator on densities of weight  $w_0$ .

If  $\ell = h_0 - 2$  then the extension can be continued with **log terms**. If  $\overline{M}$  is **almost Einstein** to sufficiently high order then:

- the odd order  $P_{\ell+1}$  vanish identically; and
- the even order  $P_{\ell+1}$  are the GJMS operators on  $(\partial M_+, \bar{\mathbf{c}})$ .

=

# (Formal) solutions of the second kind

Now we consider the more general type of solution:

#### Problem

Given  $\overline{f}_0|_{\Sigma} \in \Gamma \mathcal{E}^{\Phi}[w_0 - \alpha]|_{\Sigma}$  and an arbitrary extension  $\overline{f}_0$  of this to  $\Gamma \mathcal{E}^{\Phi}[w_0 - \alpha]$  over  $\overline{M}$ , find  $\overline{f}_i \in \mathcal{E}^{\Phi}[w_0 - \alpha - i]$  (over  $\overline{M}$ ),  $i = 1, 2, \cdots$ , so that

$$\overline{f} := \sigma^{\alpha} \left( \overline{f}_0 + \sigma \,\overline{f}_1 + \sigma^2 \,\overline{f}_2 + \dots + O(\sigma^{\ell+1}) \right) \tag{5}$$

solves  $I \cdot D\overline{f} = O(\sigma^{\ell+\alpha})$ , off  $\partial M_+$ , for  $\ell \in \mathbb{N} \cup \infty$  as high as possible.

Now  $\alpha$ , if not integral, this Problem takes us outside the realm of the universal enveloping algebra  $\mathcal{U}(\mathfrak{g})$  and its modules. But it is straightforward to show that for any  $\alpha \in \mathbb{R}$ :

$$[x^{\alpha}, y] = x^{\alpha - 1} \alpha (h + \alpha - 1).$$
(6)

It follows immediately from (6) that  $I \cdot D\overline{f} = 0$  has:

- no solution if  $\alpha \notin \{0, h_0 1\}$ , where  $h\overline{f} = h_0\overline{f}$ ; and
- if  $\alpha = h_0 1$  and  $\overline{f} = \sigma^{\alpha} f$  then

$$I \cdot D\overline{f} = \sigma^{\alpha} I \cdot Df$$
 So  $\overline{f}$  is a solution iff  $f$  is!

So in this way second solutions arise from first and vv.

For  $w_0 \notin \{\frac{k-n}{2} : k \in \mathbb{Z}_{\geq 1}\}$ , and writing F = f,  $G = \sigma^{-\alpha}\overline{f}$  we can combine these to a general solution

$$F + \sigma^{h_0 - 1}G = F + \sigma^{n + 2w_0}G$$

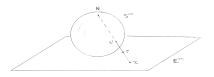
or, trivialising the densities on  $M_+$  using the generalised scale  $\sigma$ :

$$f = \sigma^{n-s}F + \sigma^s G = \sigma^{-w_0}(F + \sigma^{h_0-1}G)$$

where  $s := w_0 + n$ . Which is the form of solution used in the scattering theory (of Graham-Zworski, Mazzeo-Melrose,  $\cdots$ ). The  $\mathfrak{sl}(2)$  approach above solves the asymptotics of F and G.

### Part II: Toward analogous theories

#### Note Stereographic projection

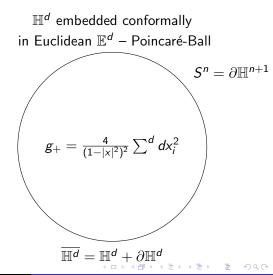


is not a very good compactification for Euclidean scattering, or for the representation theory of the Euclidean group. As the "one point" has little room for information.

We have used conformal geometry to understand the compactification of space-times and more generally pseudo-Riemannian manifolds, and also some related problems. Are there other similar tools based around geometries other than conformal? Let's first revisit our conformal theory. Escher's circle limit

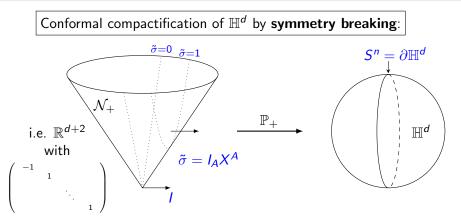


The embedding gives the compactification



Rod Gover. background: Curry, G-. · · · Conformal Geometry · Compactification and boundary calc

# Poincaré compactification via $\mathbb{P}_+(nullcone)$



 $S^d = \mathbb{P}_+(\mathcal{N}_+ \subset \mathbb{R}^{d+2} \setminus \{0\})$  is model of flat conformal geometry.  $G := SO_o(d+1,1)$  acts transitively.  $I \in \mathbb{R}^{d+2}$ , spacelike h(I,I) = 1Symmetry reduction by  $I: \Rightarrow H = SO_o(d,1)$  orbits. Right hemi. is conform compactification  $\overline{M}_c$  of  $\mathbb{H}^d$ ;  $\sigma = 0$  conformal  $\infty$  with conformal str.

# Minkowski, de Sitter, and AdS

Recall that the Lorentzian conformally flat model is  $(S^1 \times S^n, c)$  arising as the ray projectivisation

 $S^1 \times S^n = \mathbb{P}_+(\{x_0^2 + x_1^2 = x_2^2 + \cdots + x_{d+2}^2\}) \quad \leftarrow G = S0_o(d, 2) \texttt{acts trans}^{\mathsf{y}}$ 

of the null quadric in

$$\mathbb{R}^{d+2}$$
 with bilinear form  $h = \begin{pmatrix} -1 & & & \\ & -1 & & \\ & & 1 & \\ & & \ddots & \\ & & & 1 \end{pmatrix} \quad \boxed{d := n+1}$ 

Then  $I_A \in \mathbb{R}^{d+2}$  – constant  $\Leftrightarrow$  **parallel tractor** with:

- $I^2 = -1$ : Two copies of **conf. compactified de Sitter** on *interval*  $\times S^n$ ;
- $I^2 = 0$ : Two copies of **conf. compactified Minkowski**, as in Ein. cyl.
- $I^2 = 1$ : Two copies of **c.c. anti-de Sitter** on  $S^1 \times$  hemisphere. - Respectively  $H =: SO_o(d, 1)$ , Poincaré grp, and  $SO_o(d - 1, 2)$ orbit decompositions.

Bigger groups: H vs G and Orbit Decompositions

In each example above there is implicitly a larger group  $G \supset H$ :

• Poincaré ball and compactifying boundary arise as two  $H = SO_+(d, 1)$  orbits on  $S^d = G/P$  where

 $G = S0_+(d+1,1)$  and P maximal parabolic in G.

The larger homogeneous space G/P encodes how the orbits **smoothly** fit together – i.e. the conformal compactification.

Similarly:

• Stereographic (conformal) compactification of  $\mathbb{E}^{n+1}$  arises as two H = Euclidean group orbits on  $S^{n+1} = G/P$  – with same G and P. I.e. Stereo. encoded by  $H \hookrightarrow G$ 

### Curving homogeneous spaces

For a Lie group G and closed Lie group P, homogeneous spaces G/P are **geometries** in the sense of **Klein**. There are often canonical curved generalisations:

#### Theorem (Cartan, Tanaka, · · · )

If P is a parabolic subgroup of a semisimple Lie group G then there is a **canonical** notion of geometry

$$egin{array}{cccc} \mathcal{G} &\leftarrow P & & \mathcal{G} &\leftarrow P \ \downarrow & & \textit{modelled on} &\downarrow \ \mathcal{M} & & & \mathcal{G}/P \end{array}$$

where G is equipped with a Cartan connection  $\omega$  – viz. a suitably equivariant Lie(G)-valued 1-form, cf. Maurer-Cartan form on G.

E.g. Conformal geometry, projective DG, CR geometry,  $\cdots$ For **conformal DG**:  $G = SO_o(p+1, q+1)$ , and P subgroup stabilising a ray in  $\mathbb{R}^{p+q+2}$ .

### Tractor bundles

If we have a representation  $\mathbb{V}$  of the group G then we have an associated **vector bundle**  $\mathcal{G} \times_P \mathbb{V}$  with a **linear connection**  $\nabla$ . This is the associated **tractor connection**. In fact for  $(\mathcal{G}, \omega)$  modelled on  $(\mathcal{G}, P)$ , with G semi-simple, P parabolic:

Theorem (Čap+G.)

Cartan bundle  $\mathcal{G}$  + connection  $\omega \Leftrightarrow$  Tractor bundle and tractor connection.

Then:

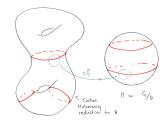
parallel tractors lead to curved analogues of orbit decompositions.

The point is that, even on the model, we can think of the orbit decomposition as arising from a parallel tractor of some type. Then the corresponding parallel tractor leads to a corresponding stratification of the curved manifold.

#### Theorem (**Curved orbit decomposition** - Čap,G., Hammerl)

Suppose  $(\mathcal{G}, \omega) \to M$  is a Cartan geometry (modelled on  $G \to G/P$ ) endowed with a parallel tractor field h giving a Cartan holonomy reduction with **holonomy group** H. Then: (1) M is canonically stratified  $M = \bigcup_{i \in H \setminus G/P} M_i$  in a way locally diffeomorphic to the the H-orbit decomposition of G/P; and (2) there  $\exists$  a Cartan geometry on  $M_i$  of the same type as the model.

Thus there is a general way to define a curved analogue of an orbit decomposition of a homogeneous space.



# Compactification Programme

Given some non-compact geometry of interest (e.g. pseudo-Riemannian):

**Part 1 (homogeneous):** Identify a homogeneous model  $X_i = H/K$  of the geometry as an open H < G orbit M in a compact homogeneous space X = G/P. (E.g. G semi-simple and P parabolic.) Then the topological closure  $\overline{X}_i \subset X$  is a compactification of  $X_i$ .

**Part 2 (curved I):** Given a compact Cartan geometry  $(\mathcal{G}, \omega) \to M$  modelled on  $G \to G/P$ , with a Cartan holonomy reduction with **holonomy group** H and an open curved orbit  $M_i$  (with same Cartan geometry type as  $X_i$ ), then  $\overline{M_i}$  is its compactification.

The Cartan/tractor machinery relates geometries of  $M_i \& \partial M_i$  etc

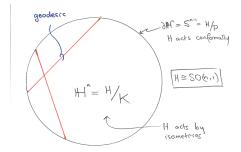
**Part 3 (curved II):** Typically the geometry on  $M_i$  has restrictions on e.g. Einstein or symmetries, . . . (as a **normal solution of a BGG equation holds on** M). In some cases we can drop restrictions yet still exploit the Cartan/tractor machinery,

L3: • Projective compactification of spacetimes (and applications).

**Warning:** Dimension *n* now (not d = n + 1)

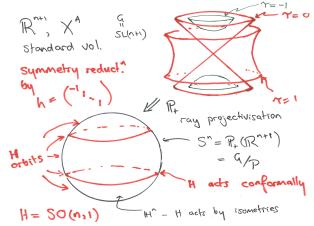
Refs, e.g.:
Čap; G-. Projective compactifications and Einstein metrics. J.
Reine Angew. Math. (2016)
Čap, G-. Projective compactness and conformal boundaries. Math.
Ann. (2016)
Flood, G-., Metrics in projective differential geometry: the geometry of solutions to the metrizability equation. J. Geom.
Anal. (2019)

### Projective compactification of hyperbolic space

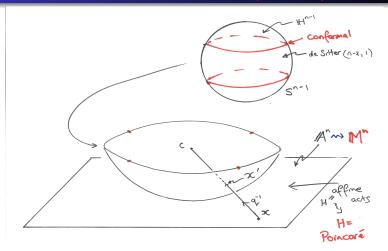


The Klein ball is a **compactification** of  $\mathbb{H}^n$  linked to projective geometry.

### H = SO(n, 1) orbits on the sphere



 $S^n = \mathbb{P}_+(\mathbb{R}^{n+1} \setminus \{0\})$  is model of flat projective geometry. Symmetry reduction by h (plus time $\uparrow$ ):  $\Rightarrow$  North polar cap is projective compactification of  $\mathbb{H}^n$ ;  $\tau = 0$  projective  $\infty$  with conformal str. – also for: equatorial region which is compact'tion of **de Sitter** space **NB:** Embeddings relate the orbits – also encoded in  $H \hookrightarrow G$ . Projective compactification of  $\mathbb{A}^n$  (and  $\mathbb{M}^n$ )



**NB:** Many geometries in one picture. How can we link all and understand how one "degenerates" into another? Affine =  $H \hookrightarrow G = SL(n+1)$  as isotropy of  $I \in (\mathbb{R}^{n+1})^*$ . (*Poincare* = H if also fix  $h^{AB} := \text{diag}(-1, 1, \cdots, 1, 0)$ ,  $h^{AB}_{\cong} I_{B} = 0$ .)

### Projective structure

Given an affine connection  $\nabla$  and a one-form  $\Upsilon$  on some manifold, write

$$\widehat{\nabla} = \nabla + \Upsilon$$

for the projectively modified connection defined by

$$\widehat{
abla}_{\xi}\eta = 
abla_{\xi}\eta + \Upsilon(\xi)\eta + \Upsilon(\eta)\xi, \qquad \xi,\eta\in\mathfrak{X}(M).$$

Two connections are related in this way if and only if they have the **same geodesics up to parameterisation**.

**Defn:**  $(M, \mathbf{p})$  a projective manifold means  $\mathbf{p} = [\nabla]$  is an equivalence class of projectively related (torsion free) affine connections.

Many equations have good projective properties, but not such good conformal properties, e.g. the geodesic equation, the Killing equation and its generalisations, the equations controlling deformations of pseudo-Riemannian geometry.

On a general (M, p) there is no distinguished  $\nabla$  on TM. But there is on the **tractor bundle** T which extends TM:

$$0 
ightarrow \mathcal{E}(-1) \stackrel{X^A}{\longrightarrow} \mathcal{T}^A \stackrel{Z^a_A}{\longrightarrow} \mathcal{T}M(-1) 
ightarrow 0,$$

given by

$$\nabla_{a}^{\mathcal{T}} \begin{pmatrix} \nu^{b} \\ \rho \end{pmatrix} = \begin{pmatrix} \nabla_{a}\nu^{b} + \rho\delta_{a}^{b} \\ \nabla_{a}\rho - P_{ab}\nu^{b} \end{pmatrix}. \quad \leftarrow \text{ standard tractor connection}$$

Here  $(\Lambda^n TM)^2 = \mathcal{E}(2n+2)$  and  $\mathcal{E}(w)$  are roots,  $P_{ab}$  =projective Schouten (~ Ricci).

# Projective geometry with SO(p, q) holonomy

#### Theorem (Cap,G.,Hammerl)

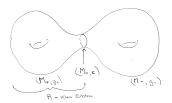
h tractor metric sig. (p,q) and parallel on (M,p) implies

• If q = 0 then  $(M, p, h) \Leftrightarrow (M, g)$  Einstein with positive scalar curvature.

• If  $p, q \neq 0$  then M is stratified  $M = M_+ \cup M_0 \cup M_-$  according to strict sign of  $\tau = h(X, X)$ .

• If  $M_0 \neq \emptyset$  then it is a smooth embedded separating hypersurface with a conformal structure c of signature (p - 1, q - 1).

• On the open submanifolds  $M_{\pm}$ , h induces metrics  $g_{\pm}$  which are positive/negative Einstein of signature (p - 1, q)/ resp. (p, q - 1). (Complete if M closed.)



# A notion of projective compactification?

# Q: In general, is there a good general notion of compactification based on projective geometry?

E.g. Given a manifold with boundary, and such that the interior is equipped with a complete pseudo-Riemannian metric what should it mean to to say that  $\overline{M}$  is a projective compactification of (M,g)?

**Need:** (1) Projective class  $[\nabla^g]$  of Levi-Civita  $\nabla^g$  extends smoothly to  $\partial M$ ;

(2) Some uniformity in how the metric and Levi-Civita connection degenerate asymptotically [— as in conformal compactification].

(3) Analytic handle on the infinity analogous to conformal compactification, contrast: Eardley-Sachs J. Math. Phys. 1973.

### Projective compactification

**Defn:** A torsion-free affine connection  $\nabla$  on  $M^{n+1}$  is *projectively compact* of order  $\alpha \in \mathbb{R}_+$  if  $\exists$  a defining function  $\rho$  for  $\partial M$  s.t.

$$\overline{\nabla} = \nabla + \frac{d\rho}{\alpha\rho}$$

extends smoothly as an affine connection to  $\overline{M}$ .

If  $\nabla$  preserves a volume density vol on M then  $vol = \rho^{-\frac{n+2}{\alpha}} \overline{vol}$ 

where  $\overline{vol}$  a volume density on  $\overline{M}$ .

Idea of proof:

Proposition

$$\nabla vol = 0 \Leftrightarrow \overline{\nabla} \overline{vol} = 0$$
 therefore  $\overline{vol}$  extends to  $\overline{M}$ .

### Theorem (Result related to completeness)

If  $\alpha \leq 2$  then boundary  $\partial M$  at  $\infty$  according to geodesics for  $\nabla$ .

**Defn.** Metric g projectively compact order  $\alpha \stackrel{\text{def}}{\Leftrightarrow}$  Levi-Civita  $\nabla^{g}$  projectively compact order  $\alpha$ .

#### Theorem

Let  $\alpha \in (0,2]$ , s.t.  $\frac{2}{\alpha} \in \mathbb{Z}$ , and a metric g on M. Suppose  $\exists$  a defining function  $\rho$  for  $\partial M$  s.t.

$$h := 
ho^{2/lpha} g - C rac{d
ho \odot d
ho}{
ho^{2/lpha}}, \qquad C 
eq 0 \quad constant$$
 (7)

イロト イボト イヨト イヨト

extends smoothly to the  $\partial M$  with  $h|_{\partial M}$  metric on  $T\partial M$ . Then g is projectively compact of order  $\alpha$ . Converse: g projectively compact of order  $\alpha = 2$  then we have (7).

# Metric features

#### Idea of proof $\Rightarrow$ :.

Use the Koszul formula for Levi-Civita  $\nabla^g$ , then show directly that  $\overline{\nabla} := \nabla^g + d\rho/(\alpha\rho)$  extends smoothly to  $\overline{M}$ .

Re-expressing above

$$g = \frac{h}{\rho^{2/\alpha}} + C \cdot \frac{(d\rho)^2}{\rho^{4/\alpha}}$$

**NB:** • For  $\alpha = 2$  condition (7) is independent of defining function  $\rho$  - thus:

Theorem

 $\partial M$  is equipped with a canonical conformal structure.

• For  $\alpha < 2$  can absorb constant *C* into  $\rho$ , but  $\rho$  then determined up  $+O(\rho^2)$   $\therefore$  get metric on  $\partial M$ .

- For  $\alpha = 1$  and C = 1, g has appeared in literature (R. Melrose) as Euclidean-like "scattering metric".
- $\alpha = 2$  in scattering work of Vasy; noted by Fefferman-Graham as **proj. cpct** & linked to their "Ambient Metric'  $\alpha + \alpha = 1$

### The converse

$$g = \frac{h}{\rho} + C \cdot \frac{(d\rho)^2}{\rho^2}$$
.  $\Leftarrow g$  projectively compact  $\alpha = 2$ 

#### Idea. Assume g projectively compact $\alpha = 2$ .

Given a defining function  $\rho$  for  $\partial M$  and  $\overset{
ho}{
abla} = 
abla + rac{d
ho}{2
ho}$ we say a vector field  $\mu$  is a strict geodetic transversal if  $\nabla_{\mu}\mu = 0$ and  $d\rho(\mu) = 1$  in nghd of  $\partial M$ . Key step: We can find such  $\mu, \rho$  $\rho^2 g(\mu, \mu)$  is constant along int. curves of  $\mu$ and Choose product coordinates via  $t = \rho$ , and  $x^i$  on  $\partial M$ . Then  $t^2 g_{tt} = C(x)$ . Further C(x) non-zero on open dense set of  $\partial M$ . So  $\partial_t(t^2g_{tt}) = 0$  etc. Via link to Levi-Civita Christoffel symbols and projective compactness we show, where C(x) not zero it is constant C, then  $tg_{it}$  and  $tg_{ii}$ , smooth to  $\partial M$ . This plus volume growth implies result.

### Some Asymptotics Theorem

If  $\rho$  a defining function for  $\partial M$  and  $g = \frac{h}{\rho} + C \cdot \frac{(d\rho)^2}{\rho^2}$  then, the curvature of g satisfies:

(i) The scalar curvature R admits a smooth extension to the boundary, with boundary value the constant  $\frac{-n(n+1)}{4C}$ . (ii) The tensor field  $R_{ab} + \frac{n}{4C}g_{ab}$  smoothly extends to  $\partial M$ . (iii) Up to terms which admit a smooth extension to the boundary, the curvature of  $g_{ab}$  is given by

$$R_{ab}{}^{c}{}_{d} = -\frac{1}{2\rho^2}\delta^{c}_{[a}\rho_{b]}\rho_{d} - \frac{1}{2C\rho}\delta^{c}_{[a}h_{b]d}.$$

#### Key aspect of proof:

For any  $\alpha = 2$  proj. compact  $\nabla$  the section  $2\rho P_{ab} + \frac{1}{2\rho}\rho_a\rho_b$ extends smoothly to the boundary with value there  $\overline{\nabla}_a\rho_b$  – and this a representative of the projective second fundamental form. But it can be shown that  $-\frac{1}{2C}\rho g_{ab} + \frac{1}{2\rho}\rho_a\rho_b$  has the same boundary limit (uses Koszul formula with asympt. form of g).

### Scalar curvature

For a metric with scalar curvature bounded away from zero we need only assume the projective structure extends:

#### Theorem

Let g be a metric on M whose projective structure smoothly extends to  $\overline{M}$ , but s.t.  $\nabla^g$  does not admit a smooth extension to any neighborhood of a boundary point. Then

- the scalar curvature S of g extends smoothly to  $\partial M$ . Furthermore for  $x \in \partial M$ , the following are equivalent
  - $(x) \neq 0$

и

- **2** g is projectively compact of order  $\alpha = 2$  around x.
- The boundary value of S is a non-zero constant locally around x, and g admits an asymptotic form

$$g=Crac{d
ho^2}{
ho^2}+rac{h}{
ho}$$
vith a constant C (related to S).

# Pseudo-Riemannian metrics and projective geometry

When are affine geodesics the geodesics of a metric? That is: **Q**: What does it mean for there to be a Levi-Civita connection in p? An analytic answer  $(n \ge 2)$ :

#### Theorem (Mikes, Sinjukov)

A special torsion-free  $\nabla$  is projectively equivalent to a Levi-Civita connection  $\nabla^g$  if and only if there is a non-degenerate solution  $\sigma^{bc}$  to the equation

trace-free 
$$\left( \nabla_{a} \sigma^{bc} \right) = 0, \qquad \sigma \in \Gamma(S^{2} TM(-2)).$$
 (8)

• This equation is **projectively invariant** – even if  $\sigma$  is not non-degenerate.

• In a metric projective compactification  $\overline{M} = M \cup \partial M$  the boundary  $\partial M = \mathcal{D}(\sigma)$  where  $\mathcal{D}(\sigma)$  is the **degeneracy locus** of a solution.

•  $au := \det(\sigma) \in \Gamma \mathcal{E}(2)$  is zero along the degeneracy locus.

#### Theorem (Eastwood-Matveev)

The solutions to the metrisability equation trace-free  $(\nabla_a \sigma^{bc})$  are in one-to-one correspondence with solutions of the following projectively invariant system on  $S^2T$ :

$$\tilde{\nabla}_{a} \begin{pmatrix} \sigma^{bc} \\ \mu^{b} \\ \rho \end{pmatrix} = \nabla_{a}^{\mathcal{T}} \begin{pmatrix} \sigma^{bc} \\ \mu^{b} \\ \rho \end{pmatrix} + \frac{1}{n} \begin{pmatrix} 0 \\ W_{ac}{}^{b}{}_{d}\sigma^{cd} \\ -2Y_{abc}\sigma^{bc} \end{pmatrix} = 0.$$
(9)

Here  $Y_{abc} := \nabla_a P_{bc} - \nabla_b P_{ac}$  is the projective Cotton tensor, and  $W_{ac}{}^b{}_d$  is the projective Weyl tensor.

And solutions of (9) are in the image of the BGG splitting operator

$$L(\sigma) = \begin{pmatrix} \sigma^{bc} \\ \mu^{b} \\ \rho \end{pmatrix} = \begin{pmatrix} \sigma^{bc} & \mu^{b} \\ \mu^{b} & \rho \end{pmatrix} \in S^{2}\mathcal{T}.$$
  
where  $\mu^{b} = -\frac{1}{n+2}\nabla_{i}\sigma^{ib}$  and  $\rho = \frac{1}{(n+1)(n+2)}(\nabla_{i}\nabla_{j} + (n+2)\mathsf{P}_{ij})\sigma^{ij}$ .

### Scalar curvature extends

 $L(\sigma)$  a section of  $S^2T$ ,  $\therefore$  a bundle metric on  $T^*$ . Thus  $S := \det(L(\sigma))$  is well-defined and **generalises scalar curv.**:

On the interior *M*,  $\sigma^{ab} = \tau^{-1}g^{ab}$  and in the scale *g* 

$$\mathcal{L}(\tau^{-1}g^{ab}) = \begin{pmatrix} \tau^{-1}g^{bc} \\ 0 \\ \frac{1}{n+1}\tau^{-1}g^{ij}P_{ij} \end{pmatrix}$$

Thus, on M,  $S = \det(L(\sigma))$  is the scalar curvature (up to const.  $\neq 0$ ). But  $L(\tau^{-1}g^{ab})$  preserved by  $\tilde{\nabla}$  hence extends smoothly to  $\partial M$ , thus so does S and  $\tau^{-1}g^{ab}$ .

**NB:**  $0 \neq S = \det(L(\sigma)) \Leftrightarrow L(\sigma)$  is non-degenerate.

The **Proof** of the theorem  $S(x) \neq 0 \Leftrightarrow g$  projectively compact of order 2 : follows by analysing  $L(\sigma)$  and  $L(\sigma)^{-1}$ .

### Projective "almost pseudo-Riemannian"

The notion of conformal almost pseudo-Riemannian has a projective analogue.

Namely: Consider  $(M, \mathbf{p})$  equipped with a solution  $\zeta \in \Gamma(S^2 TM \otimes \mathcal{E}(-2))$  of the the metrisability equation

$$\mathsf{Trace}\operatorname{-}\mathsf{Free}(
abla_{a}\zeta^{bc})=\mathsf{0}$$

such that either

- L(ζ) is everywhere non-degenerate i.e. the generalised scalar curvature is nowhere zero; or
- L(ζ) is everywhere of co-rank 1 then the generalised scalar curvature is zero and (Thm) ζ has rank n almost everywhere. < -- This would be impossible if the co-rank was > 1.

Then we have the following results:

# Metrisability solutions with non-vanishing scalar curvature

**Problem 1:** Suppose  $(M, \mathbf{p})$  with  $\zeta^{bc}$  s.t. Trace-Free $(\nabla_a \zeta^{bc}) = 0$  & det  $L(\zeta)$  nowhere zero. What is  $\mathcal{D}(\zeta)$ ? Geometry on it? Answer:

#### Theorem (Flood+G.)

Suppose  $L(\zeta)$  of sig. (p, q). Either  $\mathcal{D}(\zeta) = \emptyset$  or  $\mathcal{D}(\zeta)$  is a smoothy embedded separating hypersurface  $M_0$ . Then: (i)  $M = M_+ \cup M_0 \cup M_-$  where  $\zeta$  has signature (p, q - 1), (p - 1, q), and (p - 1, q - 1, 1) on  $M_+$ ,  $M_-$ , and  $M_0$ , respectively. (ii)  $\mathcal{D}(\zeta) = M_0$  has a conformal structure. (iii) On  $M_{\pm}$ ,  $\zeta$  induces a pseudo-Riemannian metric  $g_{\pm}$  of the same signature as  $\zeta$ , where  $g_{\pm}^{ab} = \operatorname{sgn}(\tau)\tau\zeta^{ab}|_{M_{\pm}}$ ; here  $\tau = \det(\zeta)$ . (iv) If M is closed,  $M_+$  and  $M_-$  are projectively compact of order 2, with boundary  $M_0$ . (And  $\therefore$  asympt Einstein.)

**Proof:** Again analyse 
$$L(\zeta)^{-1}$$
.

# $Sc^{g} = 0$ : Metrisability solutions with rank $(L(\zeta)) = n$

**Problem 2:**. linked to  $Sc^g = 0$  metrics we consider ME solutions  $\zeta$  s.t. rank $(L(\zeta)) = n$ . Then what is  $\mathcal{D}(\zeta)$ ? Geometry on it? Answer:

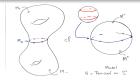
#### Theorem (Flood+G)

Let  $(M, \mathbf{p})$  be an orientable, connected, and equipped with a ME solution  $\zeta^{ab}$  s.t. signat $(L(\zeta)) = (p, q, 1), p + q = n$ . Then (i)  $\mathcal{D}(\zeta) = \emptyset$  or  $M_0 := \mathcal{D}(\zeta)$  is smoothly embedded hypersurface. If  $M_0$  orientable then  $M = M_+ \cup M_0 \cup M_-$ . (ii)  $(M_+, g_+)$  are each scalar flat, pseudo-Riemannian manifolds with metric  $g_{ab}$  of signature (p,q), where  $g^{ab}_{+} = \operatorname{sgn}(\tau)\tau\zeta^{ab}|_{M_{+}}$ , where  $\tau := \det(\zeta^{ab})$ . If M is closed then  $M \setminus M_+$  are projectively compact of order 1 with boundary  $M_0$ . (iii)  $\Sigma := M_0$  inherits a projective structure  $\hat{\mathbf{p}}$  and a solution  $\hat{\zeta}^{ab}$  of the metrisability equation with  $\mathcal{D}(\hat{\zeta})$  a smoothly embedded separating hypersurface with a conformal structure, and off this we have order two projectively compact metrics  $\hat{g}_+$ .

ヘロト ヘヨト ヘヨト

# Idea of the proof

So the Theorem says we have a curved version of the model:



**Proof:** Part (i)  $M_0 := \mathcal{D}(\zeta)$  is smoothly embedded hypersurface: There is a parallel tractor volume form:  $\epsilon_{A_0A_1\cdots A_n}$  s.t.  $\nabla \epsilon = 0$ . Using this, form the (tractor) adjugate

$$\mathcal{H}_{A_0B_0} = (-1)^q \epsilon_{A_0A_1\cdots A_n} \epsilon_{B_0B_1\cdots B_n} h^{A_1B_1} \cdots h^{A_nB_n}$$

Then H symmetric rank n implies

$$\mathcal{H}_{AB}=\mathit{I}_{A}\mathit{I}_{B}$$
 where  $\mathit{h}^{AB}\mathit{I}_{B}=0,$  &  $\mathit{I}_{B}$  nowhere 0.

Then

$$I_B = \begin{pmatrix} \sigma \\ \mu_b \end{pmatrix}, \quad \mathcal{D}(\zeta) = \mathcal{Z}(\sigma) \text{ and } \zeta \text{ solves ME } \Rightarrow \quad I_B = \begin{pmatrix} \sigma \\ \nabla_b \sigma \end{pmatrix}$$

Part (ii): the metrics are evident, as is the compactification because  $\sigma$  is both the *scale* determining these (where  $\sigma \neq 0$ ) and it is also a weight 1 defining density for  $M_0$  – using a result of G+Čap.

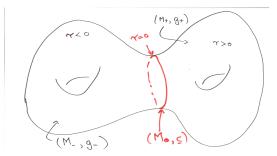
Part (iii) There are several parts:

• We show prolonged system for  $\zeta$  solves ME implies  $\nabla I = f \cdot I$ along  $M_0$ . This shows  $M_0$  is totally geodesic in  $(M, \mathbf{p})$ . Thus we have a projective structure  $(M_0, \hat{p})$ .

- Then  $\zeta$  restricts along to  $\hat{\zeta}$  a solution to ME along  $M_0$ .
- Can argue as for Theorem 32 that  $\mathcal{D}(\hat{\zeta})$  is a smooth hypersurface in  $M_0$ . Then results follow *almost* as in that Theorem.  $\Box$

### Boundary calculus and scattering

In the setting of a Problem 2 solution, or equivalently an order 2 projectively compact (M, g)



there is again a boundary calculus and sl(2) surrounding the scattering Laplacian – Thesis of Sam Porath (U. Auckland), in progress.

Jack Borthwick, in his PhD Thesis (Brest), has extended this to Proca type equations/wave equations on differential forms.

# Thank you for Listening!

( )

THE END

Rod Gover. background: Curry, G-. · · · Conformal Geometry · Compactification and boundary calc