Simple nonholonomic systems on the plane

Pawel Nurowski

Center for Theoretical Physics
Polish Academy of Sciences
and
Mathematics Program
Guangdong Technion - Israel Insititute of Technology

Iława 20.08.2021

Introduction

The purpose of this lecture is to give an introduction for studies of geometries of mechanical systems obeying nonholonomic constraints. I will not talk about the dynamics of such systems. It turns out that in the nonholonomic regime, already the kinematics is quite interesting. Even in the case of systems consisting of a few points moving on the plane, the ZOO of geometric structures apearing on their configuration spaces very quickly becomes fascinating. In particular, several simple Lie groups find their realizations as symmetries of such systems.

Introduction

The purpose of this lecture is to give an introduction for studies of geometries of mechanical systems obeying nonholonomic constraints.
It turns out that in the nonholonomic regime, already the
kinematics is quite interesting. Even in the case of systems
consisting of a few points moving on the plane, the ZOO of
geometric structures apearing on their configuration spaces very quickly becomes fascinating. In particular, several simple Lie groups find their realizations as symmetries of such systems.

Introduction

The purpose of this lecture is to give an introduction for studies of geometries of mechanical systems obeying nonholonomic constraints. I will not talk about the dynamics of such systems.

```
It turns out that in the nonholonomic regime, already the kinematics is quite interesting. Even in the case of systems consisting of a few points moving on the plane, the ZOO of geometric structures apearing on their configuration spaces very quickly becomes fascinating. In particular, several simple Lie groups find their realizations as symmetries of such
``` systems.

\section*{Introduction}

The purpose of this lecture is to give an introduction for studies of geometries of mechanical systems obeying nonholonomic constraints. I will not talk about the dynamics of such systems. It turns out that in the nonholonomic regime, already the kinematics is quite interesting. Even in the case of systems consisting of a few points moving on the plane, the ZOO of geometric structures apearing on their configuration spaces very quickly becomes fascinating. In particular, several simple Lie groups find their realizations as symmetries of such systems.

\section*{Introduction}

The purpose of this lecture is to give an introduction for studies of geometries of mechanical systems obeying nonholonomic constraints. I will not talk about the dynamics of such systems. It turns out that in the nonholonomic regime, already the kinematics is quite interesting. Even in the case of systems consisting of a few points moving on the plane, the ZOO of geometric structures apearing on their configuration spaces very quickly becomes fascinating. In particular, several simple
Lie groups find their realizations as symmetries of such
systems.

The purpose of this lecture is to give an introduction for studies of geometries of mechanical systems obeying nonholonomic constraints. I will not talk about the dynamics of such systems. It turns out that in the nonholonomic regime, already the kinematics is quite interesting. Even in the case of systems consisting of a few points moving on the plane, the ZOO of geometric structures apearing on their configuration spaces very quickly becomes fascinating. In particular, several simple Lie groups find their realizations as symmetries of such systems.

\section*{Configuration space and the movement}
- In classical mechanics one usually models the movement of a mechanical system using an \(n\)-dimensional manifold M , which is interpreted as the configuration space of the system. Its points \(q \in M\) correspond to all positions that the system may assume during its evolution. The number corresponds to the number of degrees of freedom of the system.
- A movement of the system from a given position qi at time \(t_{i}\) to a position \(q_{f}\) at time \(t_{f}\) is modelled in terms of a (piecewise) smooth curve \(] t_{i}, t_{f}[\ni t \rightarrow q(t) \subset M\). The derivative \(v=\frac{\mathrm{d} q}{\mathrm{~d} t}\) represents the velocity of the system at time \(t\) in the point \(q=q(t)\) on the curve.
- All possible velocities at \(q \in M\), as tangent to all possible curves at \(q\), form the tangent space \(T_{q} M\) to \(M\) at \(q\). It is an n-dimensional vector space.

\section*{Configuration space and the movement}
- In classical mechanics one usually models the movement of a mechanical system using an \(n\)-dimensional manifold \(M\), which is interpreted as the configuration space of the system.
the system may assume during its evolution. The number corresponds to the number of degrees of freedom of the system.
- A movement of the system from a given position \(q_{i}\) at time \(t_{j}\) to a position \(q_{f}\) at time \(t_{f}\) is modelled in terms of a
(piecewise) smooth curve \(] t_{i}, t_{f}[\ni t \rightarrow q(t) \subset M\). The
derivative \(v=\frac{\mathrm{d} q}{\mathrm{~d} t}\) represents the velocity of the system at time \(t\) in the point \(q=q(t)\) on the curve.
- All possible velocities at \(q \in M\), as tangent to all possible curves at \(q\), form the tangent space \(T_{q} M\) to \(M\) at \(q\). It is an n-dimensional vector space.

\section*{Configuration space and the movement}
- In classical mechanics one usually models the movement of a mechanical system using an \(n\)-dimensional manifold \(M\), which is interpreted as the configuration space of the system. Its points \(q \in M\) correspond to all positions that the system may assume during its evolution.
corresponds to the number of degrees of freedom of the system.
- A movement of the system from a given position qi at time \(t_{j}\) to a position \(q_{f}\) at time \(t_{f}\) is modelled in terms of a
(piecewise) smooth curve \(]_{i}, t_{f}[\ni t \rightarrow q(t) \subset M\). The
derivative \(v=\frac{d q}{d t}\) represents the velocity of the system at
time \(t\) in the point \(q=q(t)\) on the curve.
All possible velocities at \(q \in M\), as tangent to all possible
curves at \(q\), form the tangent space \(T_{q} M\) to \(M\) at \(q\). It is an
n-dimensional vector space.

\section*{Configuration space and the movement}
- In classical mechanics one usually models the movement of a mechanical system using an \(n\)-dimensional manifold \(M\), which is interpreted as the configuration space of the system. Its points \(q \in M\) correspond to all positions that the system may assume during its evolution. The number \(n\) corresponds to the number of degrees of freedom of the system.

\section*{Configuration space and the movement}
- In classical mechanics one usually models the movement of a mechanical system using an \(n\)-dimensional manifold \(M\), which is interpreted as the configuration space of the system. Its points \(q \in M\) correspond to all positions that the system may assume during its evolution. The number \(n\) corresponds to the number of degrees of freedom of the system.
- A movement of the system from a given position \(q_{i}\) at time \(t_{i}\) to a position \(q_{f}\) at time \(t_{f}\) is modelled in terms of a (piecewise) smooth curve \(] t_{i}, t_{f}[\ni t \rightarrow q(t) \subset M\).

\section*{Configuration space and the movement}
- In classical mechanics one usually models the movement of a mechanical system using an \(n\)-dimensional manifold \(M\), which is interpreted as the configuration space of the system. Its points \(q \in M\) correspond to all positions that the system may assume during its evolution. The number \(n\) corresponds to the number of degrees of freedom of the system.
- A movement of the system from a given position \(q_{i}\) at time \(t_{i}\) to a position \(q_{f}\) at time \(t_{f}\) is modelled in terms of a (piecewise) smooth curve \(] t_{i}, t_{f}[\ni t \rightarrow q(t) \subset M\). The derivative \(v=\frac{\mathrm{d} q}{\mathrm{~d} t}\) represents the velocity of the system at time \(t\) in the point \(q=q(t)\) on the curve.

\section*{Configuration space and the movement}
- In classical mechanics one usually models the movement of a mechanical system using an \(n\)-dimensional manifold \(M\), which is interpreted as the configuration space of the system. Its points \(q \in M\) correspond to all positions that the system may assume during its evolution. The number \(n\) corresponds to the number of degrees of freedom of the system.
- A movement of the system from a given position \(q_{i}\) at time \(t_{i}\) to a position \(q_{f}\) at time \(t_{f}\) is modelled in terms of a (piecewise) smooth curve \(] t_{i}, t_{f}[\ni t \rightarrow q(t) \subset M\). The derivative \(v=\frac{\mathrm{d} q}{\mathrm{~d} t}\) represents the velocity of the system at time \(t\) in the point \(q=q(t)\) on the curve.
- All possible velocities at \(q \in M\), as tangent to all possible curves at \(q\), form the tangent space \(T_{q} M\) to \(M\) at \(q\). It is an

\section*{Configuration space and the movement}
- In classical mechanics one usually models the movement of a mechanical system using an \(n\)-dimensional manifold \(M\), which is interpreted as the configuration space of the system. Its points \(q \in M\) correspond to all positions that the system may assume during its evolution. The number \(n\) corresponds to the number of degrees of freedom of the system.
- A movement of the system from a given position \(q_{i}\) at time \(t_{i}\) to a position \(q_{f}\) at time \(t_{f}\) is modelled in terms of a (piecewise) smooth curve \(] t_{i}, t_{f}[\ni t \rightarrow q(t) \subset M\). The derivative \(v=\frac{\mathrm{d} q}{\mathrm{~d} t}\) represents the velocity of the system at time \(t\) in the point \(q=q(t)\) on the curve.
- All possible velocities at \(q \in M\), as tangent to all possible curves at \(q\), form the tangent space \(T_{q} M\) to \(M\) at \(q\). It is an \(n\)-dimensional vector space.

\section*{Unconstrained velocity space}
- Another manifold frequently used in classical mechanics to describe mechanical systems is the tangent bundle TM to \(M\), whose points are pairs \((q, v)\), where \(q \in M\) and \(v \in T_{q} M\). The tangent bundle TM represents all possible positions (\(q\)) and velocities (\(v\)) of the system. It can be visualised as an \(n\) dimensional manifold \(M\) of positions of the system, with an \(n\)-dimensional vector spaces of possible velocities \(T_{q} M\) attached to every point \(q \in M\).

\section*{Unconstrained velocity space}
- Another manifold frequently used in classical mechanics to describe mechanical systems is the tangent bundle TM to \(M\), whose points are pairs \((q, v)\), where \(q \in M\) and
\(v \in T_{q} M\). The tangent bundle TMM represents all possible
positions (\(q\)) and velocities \((v)\) of the system. It can be
visualised as an \(n\) dimensional manifold \(M\) of positions of
the system, with an \(n\)-dimensional vector spaces of
possible velocities TGM attached to every point q

\section*{Unconstrained velocity space}
- Another manifold frequently used in classical mechanics to describe mechanical systems is the tangent bundle TM to \(M\), whose points are pairs \((q, v)\), where \(q \in M\) and \(v \in T_{q} M\). The tangent bundle \(T M\) represents all possible positions \((q)\) and velocities \((v)\) of the system.
\[
\begin{aligned}
& \text { visualised as an } n \text { dimensional manifold } M \text { of positions of } \\
& \text { the system, with an } n \text {-dimensional vector spaces of } \\
& \text { possible velocities } T_{q} M \text { attached to every point } q \in M \text {. }
\end{aligned}
\]

\section*{Unconstrained velocity space}
- Another manifold frequently used in classical mechanics to describe mechanical systems is the tangent bundle TM to \(M\), whose points are pairs \((q, v)\), where \(q \in M\) and \(v \in T_{q} M\). The tangent bundle \(T M\) represents all possible positions (\(q\)) and velocities (\(v\)) of the system. It can be visualised as an \(n\) dimensional manifold \(M\) of positions of the system, with an \(n\)-dimensional vector spaces of possible velocities \(T_{q} M\) attached to every point \(q \in M\).

\section*{Constraints}

We have to decide if the system we want to describe does, or does not, obey any constraints. There are two different classes of constraints that we have to consider:
- First, there could be some imposed restrictions on positions, which means that there are some relations between the positions, \(F(q)=0\). We assume that locally such constraints define a submanifold of \(M\), which becomes a new, lower dimensional, configuration space of the constrained system. Restricting the movement to this submanifold, say \(N\), merely diminishes the number \(n\) of degrees of freedom, and the system can now be described in terms of the new configuration space \(N\) and its tangent bundle TN as before.

\section*{Constraints}

We have to decide if the system we want to describe does, or does not, obey any constraints.
of constraints that we have to consider:
- First, there could be some imposed restrictions on positions, which means that there are some relations between the positions, \(F(q)=0\). We assume that locally such constraints define a submanifold of \(M\), which becomes a new, lower dimensional, configuration space of the constrained system. Restricting the movement to this submanifold, say \(N\), merely diminishes the number \(n\) of degrees of freedom, and the system can now be described degrees of freedom, and the system can now be describe bundle TN as before.

\section*{Constraints}

We have to decide if the system we want to describe does, or does not, obey any constraints. There are two different classes of constraints that we have to consider:
> - First, there could be some imposed restrictions on positions, which means that there are some relations between the positions, \(F(q)=0\). We assume that locally such constraints define a submanifold of \(M\), which becomes a new, lower dimensional, configuration space of the constrained system. Restricting the movement to this submanifold, say \(N\), merely diminishes the number \(n\) of degrees of freedom, and the system can now be described in terms of the new configuration space \(N\) and its tangent bundle TN as before.

\section*{Constraints}

We have to decide if the system we want to describe does, or does not, obey any constraints. There are two different classes of constraints that we have to consider:
- First, there could be some imposed restrictions on positions, which means that there are some relations between the positions, \(F(q)=0\).
becomes a new, lower dimensional, configuration space of
the constrained system. Restricting the movement to this submanifold, say \(N\), merely diminishes the number \(n\) of
degrees of freedom, and the system can now be described
in terms of the new configuration space \(N\) and its tangent
bundle TN as before.

\section*{Constraints}

We have to decide if the system we want to describe does, or does not, obey any constraints. There are two different classes of constraints that we have to consider:
- First, there could be some imposed restrictions on positions, which means that there are some relations between the positions, \(F(q)=0\). We assume that locally such constraints define a submanifold of \(M\), which becomes a new, lower dimensional, configuration space of the constrained system.
submanifold, say \(N\), merely diminishes the number \(n\) of
degrees of freedom, and the system can now be described in terms of the new configuration space \(N\) and its tangent bundle TN as before.

\section*{Constraints}

We have to decide if the system we want to describe does, or does not, obey any constraints. There are two different classes of constraints that we have to consider:
- First, there could be some imposed restrictions on positions, which means that there are some relations between the positions, \(F(q)=0\). We assume that locally such constraints define a submanifold of \(M\), which becomes a new, lower dimensional, configuration space of the constrained system. Restricting the movement to this submanifold, say \(N\), merely diminishes the number \(n\) of degrees of freedom, and the system can now be described in terms of the new configuration space \(N\) and its tangent bundle \(T N\) as before.

\section*{Constraints}

We have to decide if the system we want to describe does, or does not, obey any constraints. There are two different classes of constraints that we have to consider:
- First, there could be some imposed restrictions on positions, which means that there are some relations between the positions, \(F(q)=0\). We assume that locally such constraints define a submanifold of \(M\), which becomes a new, lower dimensional, configuration space of the constrained system. Restricting the movement to this submanifold, say \(N\), merely diminishes the number \(n\) of degrees of freedom, and the system can now be described in terms of the new configuration space \(N\) and its tangent bundle \(T N\) as before.

\section*{Constraints}
- The second class of constraints we want to discuss is much more interesting. These are the constraints that impose relations on points in the tangent bundle TM to \(M\). In physical terms these are the constraints that make restrictions on velocities. They can be schematically described by relations of the form \(H(q, v)=0\). Since the velocities \(v\) 's are related to the positions \(q\) 's by taking derivatives, it may happen that the relations \(H(q, v)=0\) can be integrated to \(F(q)=0\).

\section*{Constraints}
- The second class of constraints we want to discuss is much more interesting. These are the constraints that much more interesting. These are the constraints that In physical terms these are the constraints that make restrictions on velocities. They can be schematically described by relations of the form \(H(q, v)=0\). Since the velocities \(v\) 's are related to the positions \(q\) 's by taking derivatives, it may happen that the relations \(H(q, v)=0\) derivatives, it may happen that

\section*{Constraints}
- The second class of constraints we want to discuss is much more interesting. These are the constraints that impose relations on points in the tangent bundle \(T M\) to \(M\).
In physical terms these are the constraints that make
restrictions on velocities. They can be schematically
described by relations of the form \(H(q, v)=0\). Since the
velocities v's are related to the positions q's by taking
derivatives, it may happen that the relations \(H(q, v)=0\) can be integrated to

\section*{Constraints}
- The second class of constraints we want to discuss is much more interesting. These are the constraints that impose relations on points in the tangent bundle TM to \(M\). In physical terms these are the constraints that make restrictions on velocities. They can be schematically

\section*{Constraints}
- The second class of constraints we want to discuss is much more interesting. These are the constraints that impose relations on points in the tangent bundle TM to \(M\). In physical terms these are the constraints that make restrictions on velocities. They can be schematically described by relations of the form \(H(q, v)=0\).
velocities v's are related to the positions q's by taking
derivatives, it may happen that the relations
can be integrated to

\section*{Constraints}
- The second class of constraints we want to discuss is much more interesting. These are the constraints that impose relations on points in the tangent bundle TM to \(M\). In physical terms these are the constraints that make restrictions on velocities. They can be schematically described by relations of the form \(H(q, v)=0\). Since the velocities \(v\) 's are related to the positions \(q\) 's by taking derivatives, it may happen that the relations \(H(q, v)=0\) can be integrated to \(F(q)=0\).

\section*{Nonholonomic constraints}
- In other words it may happen that, roughly, the velocity/position constraints \(H(q, v)=0\) are related to the differential of \(F(q)\), in such a way that \(H(q, v)=0\) if and only if \(F(q)=0\). These kinds of velocity/position constraints, which we will call integrable ones, are therefore equivalent to the constraints on positions \(F(q)=0\), which were discussed before.
- We will exclude such velocity/position constraints from our consideration from now on, and we will focus on the velocity/position constraints \(H(q, v)=0\) which are not integrable. Such constraints are called nonholonomic.

\section*{Nonholonomic constraints}
- In other words it may happen that, roughly, the velocity/position constraints \(H(q, v)=0\) are related to the differential of \(F(q)\), in such a way that \(H(q, v)=0\) if and only if \(F(q)=0\). These kinds of velocity/position
constraints, which we will call integrable ones, are
therefore equivalent to the constraints on positions
\(F(q)=0\), which were discussed before.
- We will exclude such velocity/position constraints from our
consideration from now on, and we will focus on the velocity/position constraints \(H(q, v)=0\) which are not
integrable. Such constraints are called nonholonomic.

\section*{Nonholonomic constraints}
- In other words it may happen that, roughly, the velocity/position constraints \(H(q, v)=0\) are related to the differential of \(F(q)\), in such a way that \(H(q, v)=0\) if and only if \(F(q)=0\). These kinds of velocity/position constraints, which we will call integrable ones, are therefore equivalent to the constraints on positions \(F(q)=0\), which were discussed before.
- We will exclude such velocity/position constraints from our
consideration from now on, and we will focus on the
velocity/position constraints \(H(q, v)=0\) which are not
integrable. Such constraints are called nonholonomic.

\section*{Nonholonomic constraints}
- In other words it may happen that, roughly, the velocity/position constraints \(H(q, v)=0\) are related to the differential of \(F(q)\), in such a way that \(H(q, v)=0\) if and only if \(F(q)=0\). These kinds of velocity/position constraints, which we will call integrable ones, are therefore equivalent to the constraints on positions \(F(q)=0\), which were discussed before.
- We will exclude such velocity/position constraints from our consideration from now on, and we will focus on the velocity/position constraints \(H(q, v)=0\) which are not integrable. Such constraints are called nonholonomic.

\section*{Velocity distribution}
- We note that at each point \(q\) of the configuration space \(M\), the nonholonomic relations \(H(q, v)=0\), define subsets
\[
D_{q}=\left\{v \in T_{q} M \mid H(q, v)=0\right\} \subset T_{q} M
\]
in the tangent space \(T_{q} M\). In general these sets are nonlinear subsets in \(T_{q} M\).
- We will focus on the situations when these sets \(D_{q}\) are vector subspaces. This corresponds to the linear constraints on velocities.
- Furthermore, we will only deal with the regular systems, for which vector subspaces \(D_{q}\) will be such that their dimension \(k\) is constant along \(M\). the nonholonomic relations \(H(q, V)=0\), define sub

\section*{Velocity distribution}
- We note that at each point \(q\) of the configuration space \(M\), the nonholonomic relations \(H(q, v)=0\), define subsets
\[
D_{q}=\left\{v \in T_{q} M \mid H(q, v)=0\right\} \subset T_{q} M
\]
in the tangent space \(T_{q} M\). In general these sets are
nonlinear subsets in
- We will focus on the situations when these sets \(D_{q}\) are vector subspaces. This corresponds to the linear constraints on velocities.
- Furthermore, we will only deal with the regular systems, for which vector subspaces \(D_{q}\) will be such that their dimension \(k\) is constant along

\section*{Velocity distribution}
- We note that at each point \(q\) of the configuration space \(M\), the nonholonomic relations \(H(q, v)=0\), define subsets
\[
D_{q}=\left\{v \in T_{q} M \mid H(q, v)=0\right\} \subset T_{q} M
\]
in the tangent space \(T_{q} M\). In general these sets are nonlinear subsets in \(T_{q} M\).
- We will focus on the situations when these sets \(D_{q}\) are
vector subspaces. This corresponds to the linear
constraints on velocities.
- Furthermore, we will only deal with the regular systems, for which vector subspaces \(D_{q}\) will be such that their dimension \(k\) is constant along

\section*{Velocity distribution}
- We note that at each point \(q\) of the configuration space \(M\), the nonholonomic relations \(H(q, v)=0\), define subsets
\[
D_{q}=\left\{v \in T_{q} M \mid H(q, v)=0\right\} \subset T_{q} M
\]
in the tangent space \(T_{q} M\). In general these sets are nonlinear subsets in \(T_{q} M\).
- We will focus on the situations when these sets \(D_{q}\) are vector subspaces.
constraints on velocities.
- Furthermore, we will only deal with the regular systems, for which vector subspaces \(D_{q}\) will be such that their dimension \(k\) is constant along

\section*{Velocity distribution}
- We note that at each point \(q\) of the configuration space \(M\), the nonholonomic relations \(H(q, v)=0\), define subsets
\[
D_{q}=\left\{v \in T_{q} M \mid H(q, v)=0\right\} \subset T_{q} M
\]
in the tangent space \(T_{q} M\). In general these sets are nonlinear subsets in \(T_{q} M\).
- We will focus on the situations when these sets \(D_{q}\) are vector subspaces. This corresponds to the linear constraints on velocities.
- Furthermore, we will only deal with the regular systems, for which vector subspaces \(D_{q}\) will be such that their dimension \(k\) is constant along

\section*{Velocity distribution}
- We note that at each point \(q\) of the configuration space \(M\), the nonholonomic relations \(H(q, v)=0\), define subsets
\[
D_{q}=\left\{v \in T_{q} M \mid H(q, v)=0\right\} \subset T_{q} M
\]
in the tangent space \(T_{q} M\). In general these sets are nonlinear subsets in \(T_{q} M\).
- We will focus on the situations when these sets \(D_{q}\) are vector subspaces. This corresponds to the linear constraints on velocities.
- Furthermore, we will only deal with the regular systems, for which vector subspaces \(D_{q}\) will be such that their dimension \(k\) is constant along \(M\).

\section*{Velocity distribution}
- The configuration space \(M\) of such systems is equipped with a smooth assignment
\[
\begin{aligned}
& \qquad M \ni q \xrightarrow{D} D_{q} \subset T_{q} M \\
& \text { of } k \text {-planes } D_{q} \text { to each point } q \text { of } M \text {. }
\end{aligned}
\]
- Such an assignment is called rank k distribution on M.
- Since this distribution is the distribution of all possible velocities of the mechanical sytsem, it is called velocity distribution.
- It follows that the mechanical system with linear velocity constraints is nonholonomic if and only if its velocity distribution is not integrable.

\section*{Velocity distribution}
- The configuration space \(M\) of such systems is equipped with a smooth assignment
\[
M \ni q \xrightarrow{D} D_{q} \subset T_{q} M
\]
of \(k\)-planes \(D_{q}\) to each point \(q\) of \(M\).
- Such an assignment is called rank k distribution on M
- Since this distribution is the distribution of all possible velocities of the mechanical sytsem, it is called velocity distribution.
- It follows that the mechanical system with linear velocity constraints is nonholonomic if and only if its velocity distribution is not integrable.

\section*{Velocity distribution}
- The configuration space \(M\) of such systems is equipped with a smooth assignment
\[
M \ni q \xrightarrow{D} D_{q} \subset T_{q} M
\]
of \(k\)-planes \(D_{q}\) to each point \(q\) of \(M\).
- Such an assignment is called rank \(k\) distribution on \(M\).
- Since this distribution is the distribution of all possible velocities of the mechanical sytsem, it is called velocity distribution.
- It follows that the mechanical system with linear velocity constraints is nonholonomic if and only if its velocity distribution is not integrable.

\section*{Velocity distribution}
- The configuration space \(M\) of such systems is equipped with a smooth assignment
\[
M \ni q \xrightarrow{D} D_{q} \subset T_{q} M
\]
of \(k\)-planes \(D_{q}\) to each point \(q\) of \(M\).
- Such an assignment is called rank \(k\) distribution on \(M\).
- Since this distribution is the distribution of all possible velocities of the mechanical sytsem, it is called velocity distribution.
- It follows that the mechanical system with linear velocity constraints is nonholonomic if and only if its velocity distribution is not integrable.

\section*{Velocity distribution}
- The configuration space \(M\) of such systems is equipped with a smooth assignment
\[
M \ni q \xrightarrow{D} D_{q} \subset T_{q} M
\]
of \(k\)-planes \(D_{q}\) to each point \(q\) of \(M\).
- Such an assignment is called rank \(k\) distribution on \(M\).
- Since this distribution is the distribution of all possible velocities of the mechanical sytsem, it is called velocity distribution.
- It follows that the mechanical system with linear velocity constraints is nonholonomic if and only if its velocity distribution is not integrable.

\section*{Velocity distribution}
- The configuration space \(M\) of such systems is equipped with a smooth assignment
\[
M \ni q \xrightarrow{D} D_{q} \subset T_{q} M
\]
of \(k\)-planes \(D_{q}\) to each point \(q\) of \(M\).
- Such an assignment is called rank \(k\) distribution on \(M\).
- Since this distribution is the distribution of all possible velocities of the mechanical sytsem, it is called velocity distribution.
- It follows that the mechanical system with linear velocity constraints is nonholonomic if and only if its velocity distribution is not integrable.

\section*{Frobenius theorem}
- We recall that a rank \(k\) distribution \(D\) is integrable if and only if there is a foliation of \(M\) by submanifolds tangent to the \(k\)-planes \(D_{q}\) of the distribution \(D\).
- The Frobenius theorem states that \(M\) is foliated by such submanifolds if and only if the space consisting of all commutators of vector fields from \(D\), is equal to \(D\).
- Thus, the mechanical system with configuration space and velocity distribution \(D\) is nonholonomic if and only if \(D\) is nontrivially contained in \(D_{-2},[D, D] \supsetneqq D\).

\section*{Frobenius theorem}
- We recall that a rank \(k\) distribution \(D\) is integrable if and only if there is a foliation of \(M\) by submanifolds tangent to the \(k\)-planes \(D_{q}\) of the distribution \(D\).
- The Frobenius theorem states that \(M\) is foliated by such submanifolds if and only if the space \(D_{-2}=[D, D]\), consisting of all commutators of vector fields from \(D\), is equal to \(D\).
- Thus, the mechanical system with configuration space and velocity distribution \(D\) is nonholonomic if and only if \(D\) is nontrivially contained in \(D_{-2},[D, D] \supsetneqq D\).

\section*{Frobenius theorem}
- We recall that a rank \(k\) distribution \(D\) is integrable if and only if there is a foliation of \(M\) by submanifolds tangent to the \(k\)-planes \(D_{q}\) of the distribution \(D\).
- The Frobenius theorem states that \(M\) is foliated by such submanifolds if and only if the space \(D_{-2}=[D, D]\), consisting of all commutators of vector fields from \(D\), is equal to \(D\).
- Thus, the mechanical system with configuration space \(M\) and velocity distribution \(D\) is nonholonomic if and only if \(D\) is nontrivially contained in \(D_{-2},[D, D] \supsetneqq D\).

\section*{Skate blade on an ice rink}
- We now show how the velocity distribution \(D\) looks like in the case of a mechanical system, which for obvious reasons, we call a skate on an ice rink.
- We idealize the skate blade as an interval of a fixed length on the Cartesian plane. We assume that the blade moves without skidding, which means that the velocity of the mid point of the blade is always parallel to the line defined by the direction of the blade.

\section*{Skate blade on an ice rink}
- We now show how the velocity distribution \(D\) looks like in the case of a mechanical system, which for obvious reasons, we call a skate on an ice rink.
- We idealize the skate blade as an interval of a fixed length on the Cartesian plane. We assume that the blade moves without skidding, which means that the velocity of the mid point of the blade is always parallel to the line defined by the direction of the blade.

\section*{Skate blade on an ice rink}
- We now show how the velocity distribution \(D\) looks like in the case of a mechanical system, which for obvious reasons, we call a skate on an ice rink.
- We idealize the skate blade as an interval of a fixed length on the Cartesian plane. We assume that the blade moves without skidding, which means that the velocity of the mid point of the blade is always parallel to the line defined by the direction of the blade.

\section*{Skate blade on an ice rink}
- We now show how the velocity distribution \(D\) looks like in the case of a mechanical system, which for obvious reasons, we call a skate on an ice rink.
- We idealize the skate blade as an interval of a fixed length on the Cartesian plane. We assume that the blade moves without skidding, which means that the velocity of the mid point of the blade is always parallel to the line defined by the direction of the blade.

\section*{Skate blade}
- To parametrize the configuration space of the blade we attach coordinates \((x, y)\) to its middle point. Then the position of the blade on the plane is totally determined by numbers \(x, y\) and an angle \(\alpha\), which the blade direction forms with the Ox axis. Thus the configuration space of the skate blade is \(M=\mathbb{R}^{2} \times \mathbb{S}^{1}\), and the movement of the velocity unconstrained blade is described in terms of a curve
\[
q(t)=(x(t), y(t), \alpha(t)) \subset M .
\]

\section*{Skate blade}
－To parametrize the configuration space of the blade we attach coordinates \((x, y)\) to its middle point．
position of the blade on the plane is totally determined by numbers \(x, y\) and an angle \(\alpha\) ，which the blade direction forms with the Ox axis．Thus the configuration space of the skate blade is \(M=\mathbb{R}^{2} \times \mathbb{S}^{1}\) ，and the movement of the velocity unconstrained blade is described in terms of a curve

\section*{Skate blade}
- To parametrize the configuration space of the blade we attach coordinates \((x, y)\) to its middle point. Then the position of the blade on the plane is totally determined by numbers \(x, y\) and an angle \(\alpha\), which the blade direction forms with the Ox axis.
skate blade is \(M=\mathbb{R}^{2} \times \mathbb{S}^{1}\), and the movement of the
velocity unconstrained blade is described in terms of a
curve

\section*{Skate blade}
- To parametrize the configuration space of the blade we attach coordinates \((x, y)\) to its middle point. Then the position of the blade on the plane is totally determined by numbers \(x, y\) and an angle \(\alpha\), which the blade direction forms with the Ox axis. Thus the configuration space of the skate blade is \(M=\mathbb{R}^{2} \times \mathbb{S}^{1}\), and the movement of the velocity unconstrained blade is described in terms of a curve
\[
q(t)=(x(t), y(t), \alpha(t)) \subset M .
\]

\section*{Velocity distribution for the skate blade}
- The velocity constraint of nonskidding in this language says that \((\dot{x}, \dot{y})\) is parallel to \((\cos \alpha, \sin \alpha)\), or what is the same, that
\(\dot{x} \sin \alpha-\dot{y} \cos \alpha=0\)
- This last condition says that the velocity \(v=(\dot{x}, \dot{y}, \dot{\alpha})\) of the blade must satisfy the following linear relation \((\sin \alpha) \cdot v_{x}-(\cos \alpha) \cdot v_{y}+0 \cdot v_{\alpha}=0\). Since we have only one scalar constraint on the \(v^{\prime} s\), then two out of the three velocity components of the system are free. Thus, at every point \(q=(x, y, \alpha)\) the nonskiding condition distinguishes a 2-plane of possible velocities \(D_{q}\). This can be easily seen to be spanned by \(\partial_{\alpha}\) and \((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}\).

\section*{Velocity distribution for the skate blade}
- The velocity constraint of nonskidding in this language says that \((\dot{x}, \dot{y})\) is parallel to \((\cos \alpha, \sin \alpha)\), or what is the same, that
\[
\dot{x} \sin \alpha-\dot{y} \cos \alpha=0
\]
> - This last condition says that the velocity blade must satisfy the following linear relation Since we have only one scalar constraint on the \(v^{\prime} s\), then two out of the three velocity components of the system are free. Thus, at every point \(q=(x, y, \alpha)\) the nonskiding condition distinguishes a 2-plane of possible velocities \(D_{q}\). This can be easily seen
> to be spanned by
> and

\section*{Velocity distribution for the skate blade}
- The velocity constraint of nonskidding in this language says that \((\dot{x}, \dot{y})\) is parallel to \((\cos \alpha, \sin \alpha)\), or what is the same, that
\[
\dot{x} \sin \alpha-\dot{y} \cos \alpha=0
\]
- This last condition says that the velocity \(v=(\dot{x}, \dot{y}, \dot{\alpha})\) of the blade must satisfy the following linear relation \((\sin \alpha) \cdot v_{x}-(\cos \alpha) \cdot v_{y}+0 \cdot v_{\alpha}=0\). Since we have only one scalar constraint on the \(V^{\prime} s\), then two out of the three velocity components of the system are free. Thus, at every point \(q=(x, y, \alpha)\) the nonskiding condition distinguishes a 2 -plane of possible velocities \(D_{q}\). This can be easily seen
to be spanned by and

\section*{Velocity distribution for the skate blade}
- The velocity constraint of nonskidding in this language says that \((\dot{x}, \dot{y})\) is parallel to \((\cos \alpha, \sin \alpha)\), or what is the same, that
\[
\dot{x} \sin \alpha-\dot{y} \cos \alpha=0
\]
- This last condition says that the velocity \(v=(\dot{x}, \dot{y}, \dot{\alpha})\) of the blade must satisfy the following linear relation \((\sin \alpha) \cdot v_{x}-(\cos \alpha) \cdot v_{y}+0 \cdot v_{\alpha}=0\). Since we have only one scalar constraint on the \(v^{\prime} s\), then two out of the three velocity components of the system are free.

\section*{Velocity distribution for the skate blade}
- The velocity constraint of nonskidding in this language says that \((\dot{x}, \dot{y})\) is parallel to \((\cos \alpha, \sin \alpha)\), or what is the same, that
\[
\dot{x} \sin \alpha-\dot{y} \cos \alpha=0
\]
- This last condition says that the velocity \(v=(\dot{x}, \dot{y}, \dot{\alpha})\) of the blade must satisfy the following linear relation \((\sin \alpha) \cdot v_{x}-(\cos \alpha) \cdot v_{y}+0 \cdot v_{\alpha}=0\). Since we have only one scalar constraint on the \(v^{\prime} s\), then two out of the three velocity components of the system are free. Thus, at every point \(q=(x, y, \alpha)\) the nonskiding condition distinguishes a 2-plane of possible velocities \(D_{q}\). This can be easily seen to be spanned by \(\partial_{\alpha}\) and \((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}\).

\section*{Velocity distribution for the skate blade}
- This defines a rank 2 distribution
 obeying the nonskidding constraint must be tangent.
- We use the Frobenius theorem to show that our skate blade mechanical system is nonholonomic. Indeed, taking the two vector fields \(X_{1}=\partial_{\alpha}\) and belonging to the velocity distribution \(D\) of this system, we see that \(\left[X_{1}, X_{2}\right]=-(\sin \alpha) \partial_{x}+(\cos \alpha) \partial_{y}\). And this does not belongs to \(D\) for all values of \((x, y, \alpha)\). Thus \(D_{-2} \supsetneqq D\), which according to the Frobenius theorem implies that the skate blade mechanical system is nonholonomic.

\section*{Velocity distribution for the skate blade}
- This defines a rank 2 distribution
\[
D=\operatorname{Span}\left((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}, \partial_{\alpha}\right)
\]
on \(M\), to which every movement of the skate blade obeying the nonskidding constraint must be tangent.
- We use the Frobenius theorem to show that our skate blade mechanical system is nonholonomic. Indeed, taking the two vector fields belonging to the velocity distribution \(D\) of this system, we see that \(\left[X_{1}, X_{2}\right]=-(\sin \alpha) \partial_{x}+(\cos \alpha) \partial_{y}\). And this does not belongs to \(D\) for all values of \((x, y, \alpha)\). Thus \(D_{-2} \supsetneqq D\), which according to the Frobenius theorem implies that the skate blade mechanical system is nonholonomic.

\section*{Velocity distribution for the skate blade}
- This defines a rank 2 distribution
\[
D=\operatorname{Span}\left((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}, \partial_{\alpha}\right)
\]
on \(M\), to which every movement of the skate blade obeying the nonskidding constraint must be tangent.
- We use the Frobenius theorem to show that our skate blade mechanical system is nonholonomic. Indeed, taking the two vector fields
belonging to the velocity distribution \(D\) of this system, we see that \(\left[X_{1}, X_{2}\right]=-(\sin \alpha) \partial_{X}+(\cos \alpha) \partial_{y}\). And this does
not belongs to \(D\) for all values of \((x, y, \alpha)\). Thus \(D_{-2} \supsetneqq D\),
which according to the Frobenius theorem implies that the skate blade mechanical system is nonholonomic.

\section*{Velocity distribution for the skate blade}
- This defines a rank 2 distribution
\[
D=\operatorname{Span}\left((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}, \partial_{\alpha}\right)
\]
on \(M\), to which every movement of the skate blade obeying the nonskidding constraint must be tangent.
- We use the Frobenius theorem to show that our skate blade mechanical system is nonholonomic. Indeed, taking the two vector fields \(X_{1}=\partial_{\alpha}\) and \(X_{2}=(\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}\) belonging to the velocity distribution \(D\) of this system, we see that \(\left[X_{1}, X_{2}\right]=-(\sin \alpha) \partial_{x}+(\cos \alpha) \partial_{y}\).
not belongs to \(D\) for all values of
which according to the Frobenius theorem implies that the
skate blade mechanical system is nonholonomic.

\section*{Velocity distribution for the skate blade}
- This defines a rank 2 distribution
\[
D=\operatorname{Span}\left((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}, \partial_{\alpha}\right)
\]
on \(M\), to which every movement of the skate blade obeying the nonskidding constraint must be tangent.
- We use the Frobenius theorem to show that our skate blade mechanical system is nonholonomic. Indeed, taking the two vector fields \(X_{1}=\partial_{\alpha}\) and \(X_{2}=(\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}\) belonging to the velocity distribution \(D\) of this system, we see that \(\left[X_{1}, X_{2}\right]=-(\sin \alpha) \partial_{x}+(\cos \alpha) \partial_{y}\). And this does not belongs to \(D\) for all values of \((x, y, \alpha)\).
which according to the Frobenius theorem implies that the
skate blade mechanical system is nonholonomic.

\section*{Velocity distribution for the skate blade}
- This defines a rank 2 distribution
\[
D=\operatorname{Span}\left((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}, \partial_{\alpha}\right)
\]
on \(M\), to which every movement of the skate blade obeying the nonskidding constraint must be tangent.
- We use the Frobenius theorem to show that our skate blade mechanical system is nonholonomic. Indeed, taking the two vector fields \(X_{1}=\partial_{\alpha}\) and \(X_{2}=(\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}\) belonging to the velocity distribution \(D\) of this system, we see that \(\left[X_{1}, X_{2}\right]=-(\sin \alpha) \partial_{x}+(\cos \alpha) \partial_{y}\). And this does not belongs to \(D\) for all values of \((x, y, \alpha)\). Thus \(D_{-2} \supsetneqq D\), which according to the Frobenius theorem implies that the skate blade mechanical system is nonholonomic.

\section*{Achievability}
- Suppose now that we have a mechanical system with an \(n\)-dimensional configuration space \(M\) and linear velocity constraints. Then we have a rank \(k<n\) velocity distribution \(D\) on \(M\), and all movements of the system obeying these constraints are described by curves \(q=q(t) \subset M\), which are always tangent to \(D\). Such curves are called horizontal with respect to D, or horizontal for short.
- Now we encounter the problem of reaching a given configuration by the velocity constrained system. We formulate it as follows: determine if two points \(q_{1}\) (i.e. the starting configuration) and \(q_{2}\) (i.e. the final configuration) are horizontally path connected on M.

\section*{Achievability}
- Suppose now that we have a mechanical system with an \(n\)-dimensional configuration space \(M\) and linear velocity constraints.
D on \(M\), and all movements of the system obeying these constraints are described by curves \(q=q(t) \subset M\), which are always tangent to \(D\). Such curves are called horizontal with respect to D, or horizontal for short.
- Now we encounter the problem of reaching a given configuration by the velocity constrained system. We formulate it as follows: determine if two points \(q_{1}\) (i.e. the starting configuration) and \(q_{2}\) (i.e. the final configuration) are horizontally path connected on M.

\section*{Achievability}
- Suppose now that we have a mechanical system with an \(n\)-dimensional configuration space \(M\) and linear velocity constraints. Then we have a rank \(k<n\) velocity distribution \(D\) on \(M\), and all movements of the system obeying these constraints are described by curves \(q=q(t) \subset M\), which are always tangent to \(D\).
\[
\begin{aligned}
& \text { with respect to } D \text {, or horizontal for short. } \\
& \text { Now we encounter the problem of reaching a given } \\
& \text { configuration by the velocity constrained system. We } \\
& \text { formulate it as follows: determine if two points } q_{1} \text { (i.e. the } \\
& \text { starting configuration) and } q_{2} \text { (i.e. the final configuration) } \\
& \text { are horizontally path connected on } M \text {. }
\end{aligned}
\]

\section*{Achievability}
- Suppose now that we have a mechanical system with an \(n\)-dimensional configuration space \(M\) and linear velocity constraints. Then we have a rank \(k<n\) velocity distribution \(D\) on \(M\), and all movements of the system obeying these constraints are described by curves \(q=q(t) \subset M\), which are always tangent to \(D\). Such curves are called horizontal with respect to \(D\), or horizontal for short.

\section*{Achievability}
- Suppose now that we have a mechanical system with an \(n\)-dimensional configuration space \(M\) and linear velocity constraints. Then we have a rank \(k<n\) velocity distribution \(D\) on \(M\), and all movements of the system obeying these constraints are described by curves \(q=q(t) \subset M\), which are always tangent to \(D\). Such curves are called horizontal with respect to \(D\), or horizontal for short.
- Now we encounter the problem of reaching a given configuration by the velocity constrained system.
formulate it as follows: determine if two points \(q_{1}\) (i.e. the
starting configuration) and \(q_{2}\) (i.e. the final configuration)
are horizontally path connected on

\section*{Achievability}
- Suppose now that we have a mechanical system with an \(n\)-dimensional configuration space \(M\) and linear velocity constraints. Then we have a rank \(k<n\) velocity distribution \(D\) on \(M\), and all movements of the system obeying these constraints are described by curves \(q=q(t) \subset M\), which are always tangent to \(D\). Such curves are called horizontal with respect to \(D\), or horizontal for short.
- Now we encounter the problem of reaching a given configuration by the velocity constrained system. We formulate it as follows: determine if two points \(q_{1}\) (i.e. the
starting configuration) and \(q_{2}\) (i.e. the final configuration)
are horizontally path connected on

\section*{Achievability}
- Suppose now that we have a mechanical system with an \(n\)-dimensional configuration space \(M\) and linear velocity constraints. Then we have a rank \(k<n\) velocity distribution \(D\) on \(M\), and all movements of the system obeying these constraints are described by curves \(q=q(t) \subset M\), which are always tangent to \(D\). Such curves are called horizontal with respect to \(D\), or horizontal for short.
- Now we encounter the problem of reaching a given configuration by the velocity constrained system. We formulate it as follows: determine if two points \(q_{1}\) (i.e. the starting configuration) and \(q_{2}\) (i.e. the final configuration) are horizontally path connected on \(M\).

\section*{Achievability}
- For example, if the velocity distribution \(D\) is integrable on \(M\), i.e. if \(D_{-2}=D\), then two points \(q_{1}\) and \(q_{2}\), which lie on two different leaves of the foliation defined by \(D\) are not horizontally path connected. Simply, horizontal movements of points which lie on a given leaf, being tangent to the leaf, will stay at this leaf. In other words, the integrability of the velocity distribution \(D\) is an obstruction to horizontal path connectivity of \(M\) : two different leaves are never horizontally path connected.
- It follows from this example that, to consider linear velocity constrained systems that can reach any configuration point starting from any other configuration, the system must be nonholonomic, or what is the same, its velocity distribution \(D\) should be such that \(D_{-2} \neq D\). The question arises if the necessity of \(D_{-2} \supsetneqq D\) is sufficient for such reachability. The answer to this question is given by the Chow-Raszewski theorem.

\section*{Achievability}
- For example, if the velocity distribution \(D\) is integrable on \(M\), i.e. if \(D_{-2}=D\), then two points \(q_{1}\) and \(q_{2}\), which lie on two different leaves of the foliation defined by \(D\) are not horizontally path connected.
of points which lie on a given leaf, being tangent to the leaf,
will stay at this leaf. In other words, the integrability of the
velocity distribution \(D\) is an obstruction to horizontal path
connectivity of \(M\) : two different leaves are never
horizontally path connected.
It follows from this example that, to consider linear velocity
constrained systems that can reach any configuration point
starting from any other configuration, the system must be
nonholonomic, or what is the same, its velocity distribution
\(D\) should be such that \(D-2=D\). The question arises if the
necessity of \(D_{-2} \supsetneqq D\) is sufficient for such reachability. The
answer to this question is given by the Chow-Raszewski theorem.

\section*{Achievability}
- For example, if the velocity distribution \(D\) is integrable on \(M\), i.e. if \(D_{-2}=D\), then two points \(q_{1}\) and \(q_{2}\), which lie on two different leaves of the foliation defined by \(D\) are not horizontally path connected. Simply, horizontal movements of points which lie on a given leaf,
will stay at this leaf. In other words, the integrability of the velocity distribution \(D\) is an obstruction to horizontal path connectivity of \(M\) : two different leaves are never horizontally path connected.
It follows from this example that, to consider linear velocity constrained systems that can reach any configuration point starting from any other configuration, the system must be nonholonomic, or what is the same, its velocity distribution \(D\) should be such that \(D_{-2} \supsetneq D\). The question arises if the necessity of \(D-2 \geqslant D\) is sufficient for such reachability. The answer to this question is given by the Chow-Raszewski theorem.

\section*{Achievability}
- For example, if the velocity distribution \(D\) is integrable on \(M\), i.e. if \(D_{-2}=D\), then two points \(q_{1}\) and \(q_{2}\), which lie on two different leaves of the foliation defined by \(D\) are not horizontally path connected. Simply, horizontal movements of points which lie on a given leaf, being tangent to the leaf,

\section*{Achievability}
- For example, if the velocity distribution \(D\) is integrable on \(M\), i.e. if \(D_{-2}=D\), then two points \(q_{1}\) and \(q_{2}\), which lie on two different leaves of the foliation defined by \(D\) are not horizontally path connected. Simply, horizontal movements of points which lie on a given leaf, being tangent to the leaf, will stay at this leaf.
velocity distribution \(D\) is an obstruction to horizontal path
connectivity of \(M\) : two different leaves are never
horizontally path connected.
It follows from this example that, to consider linear velocity constrained systems that can reach any configuration point starting from any other configuration, the system must be nonholonomic, or what is the same, its velocity distribution \(D\) should be such that \(D_{-2} \supsetneq D\). The question arises if the necessity of \(D_{-2} \supsetneq D\) is sufficient for such reachability. The answer to this question is given by the Chow-Raszewski theorem.

\section*{Achievability}
- For example, if the velocity distribution \(D\) is integrable on \(M\), i.e. if \(D_{-2}=D\), then two points \(q_{1}\) and \(q_{2}\), which lie on two different leaves of the foliation defined by \(D\) are not horizontally path connected. Simply, horizontal movements of points which lie on a given leaf, being tangent to the leaf, will stay at this leaf. In other words, the integrability of the velocity distribution \(D\) is an obstruction to horizontal path connectivity of \(M\) : two different leaves are never horizontally path connected.

\section*{Achievability}
- For example, if the velocity distribution \(D\) is integrable on \(M\), i.e. if \(D_{-2}=D\), then two points \(q_{1}\) and \(q_{2}\), which lie on two different leaves of the foliation defined by \(D\) are not horizontally path connected. Simply, horizontal movements of points which lie on a given leaf, being tangent to the leaf, will stay at this leaf. In other words, the integrability of the velocity distribution \(D\) is an obstruction to horizontal path connectivity of \(M\) : two different leaves are never horizontally path connected.
- It follows from this example that, to consider linear velocity constrained systems that can reach any configuration point starting from any other configuration, the system must be nonholonomic,
necessity of \(D_{-2} \supsetneqq D\) is sufficient for such reachability. The
answer to this question is given by the Chow-Raszewski
theorem.

\section*{Achievability}
- For example, if the velocity distribution \(D\) is integrable on \(M\), i.e. if \(D_{-2}=D\), then two points \(q_{1}\) and \(q_{2}\), which lie on two different leaves of the foliation defined by \(D\) are not horizontally path connected. Simply, horizontal movements of points which lie on a given leaf, being tangent to the leaf, will stay at this leaf. In other words, the integrability of the velocity distribution \(D\) is an obstruction to horizontal path connectivity of \(M\) : two different leaves are never horizontally path connected.
- It follows from this example that, to consider linear velocity constrained systems that can reach any configuration point starting from any other configuration, the system must be nonholonomic, or what is the same, its velocity distribution \(D\) should be such that \(D_{-2} \supsetneqq D\).

\section*{Achievability}
- For example, if the velocity distribution \(D\) is integrable on \(M\), i.e. if \(D_{-2}=D\), then two points \(q_{1}\) and \(q_{2}\), which lie on two different leaves of the foliation defined by \(D\) are not horizontally path connected. Simply, horizontal movements of points which lie on a given leaf, being tangent to the leaf, will stay at this leaf. In other words, the integrability of the velocity distribution \(D\) is an obstruction to horizontal path connectivity of \(M\) : two different leaves are never horizontally path connected.
- It follows from this example that, to consider linear velocity constrained systems that can reach any configuration point starting from any other configuration, the system must be nonholonomic, or what is the same, its velocity distribution \(D\) should be such that \(D_{-2} \supsetneqq D\). The question arises if the necessity of \(D_{-2} \supsetneqq D\) is sufficient for such reachability. The answer to this question is given by the Chow-Raszewski theorem.

\section*{Bracket generating distributions}
- Its formulation requires an introduction of the following
with
\[
D_{-(s+1)}=\left[D, D_{-s}\right], \quad s=1,2,
\]

\section*{sequence of distributions on the configuration space \(M\). - We start with \(D_{-1}=D\), and define a sequence of nested distributions}

dis
 (
\(\subset T M\)

\section*{Bracket generating distributions}
- Its formulation requires an introduction of the following sequence of distributions on the configuration space \(M\).

\section*{We start with \(D_{-1}=D\), and define a sequence of nested distributions}
with

\section*{Bracket generating distributions}
- Its formulation requires an introduction of the following sequence of distributions on the configuration space \(M\).
- We start with \(D_{-1}=D\), and define a sequence of nested distributions
\[
D_{-1} \subset D_{-2} \subset \cdots \subset D_{-s} \subset \cdots \subset T M
\]
with
\[
D_{-(s+1)}=\left[D, D_{-s}\right], \quad s=1,2, \ldots
\]

\section*{Bracket generating distributions}
- Note that if \(D\) is integrable, we have \(D_{-s}=D_{-1}=D\) for all \(s\), and in such situation the above sequence has only one element \(D_{-1}\). Often however, there exists \(s_{0}>0\) such that

If this happens the distribution \(D\) is called bracket generating, or maximally nonintegrable, the integer
\(r=s_{0}+1\)
is called the step, and the sequence of integers

is called the growth vector of the distribution \(D\). In particular the growth vector, as carrying information about (a) the rank of \(D\) (the first entry in \(\bar{N}\)), (b) the dimension of \(M\) (the last entry in \(\vec{N}\)), and (c) the step (the number of components of \(N\)), gives the simplest numerical invariants of the distribution.

\section*{Bracket generating distributions}
- Note that if \(D\) is integrable, we have \(D_{-s}=D_{-1}=D\) for all \(s\), and in such situation the above sequence has only one element \(D_{-1}\).

> If this happens the distribution \(D\) is called bracket generating, or maximally nonintegrable, the integer
> is called the step, and the sequence of integers
> is called the growth vector of the distribution \(D\). In particular the growth vector, as carrying information about (a) the rank of \(D\) (the first entry in \(\vec{N}\)), (b) the dimension of \(M\) (the last entry in \(\vec{N}\)), and (c) the step (the number of components of \(\vec{N}\)), gives the simplest numerical invariants of the distribution.

\section*{Bracket generating distributions}
- Note that if \(D\) is integrable, we have \(D_{-s}=D_{-1}=D\) for all \(s\), and in such situation the above sequence has only one element \(D_{-1}\). Often however, there exists \(s_{0}>0\) such that
\[
D_{-1} \varsubsetneqq D_{-2} \varsubsetneqq \cdots \varsubsetneqq D_{-s_{0}} \varsubsetneqq D_{-\left(s_{0}+1\right)}=T M .
\]

If this happens the distribution \(D\) is called bracket
generating, or maximally nonintegrable, the integer
is called the step, and the sequence of integers
is called the growth vector of the distribution \(D\). In
particular the growth vector, as carrying information about (a) the rank of \(D\) (the first entry in \(\bar{N}\)), (b) the dimension of \(M\) (the last entry in \(\vec{N}\)), and (c) the step (the number of components of \(\vec{N}\)), gives the simplest numerical invariants of the distribution.

\section*{Bracket generating distributions}
- Note that if \(D\) is integrable, we have \(D_{-s}=D_{-1}=D\) for all \(s\), and in such situation the above sequence has only one element \(D_{-1}\). Often however, there exists \(s_{0}>0\) such that
\[
D_{-1} \varsubsetneqq D_{-2} \varsubsetneqq \cdots \varsubsetneqq D_{-s_{0}} \varsubsetneqq D_{-\left(s_{0}+1\right)}=T M .
\]

If this happens the distribution \(D\) is called bracket generating, or maximally nonintegrable,
is called the step, and the sequence of integers
is called the growth vector of the distribution \(D\). In
particular the growth vector, as carrying information about (a) the rank of \(D\) (the first entry in \(N\)), (b) the dimension of \(M\) (the last entry in \(\vec{N}\)), and (c) the step (the number of components of \(\vec{N}\)), gives the simplest numerical invariants of the distribution.

\section*{Bracket generating distributions}
- Note that if \(D\) is integrable, we have \(D_{-s}=D_{-1}=D\) for all \(s\), and in such situation the above sequence has only one element \(D_{-1}\). Often however, there exists \(s_{0}>0\) such that
\[
D_{-1} \varsubsetneqq D_{-2} \varsubsetneqq \cdots \varsubsetneqq D_{-s_{0}} \varsubsetneqq D_{-\left(s_{0}+1\right)}=T M .
\]

If this happens the distribution \(D\) is called bracket generating, or maximally nonintegrable, the integer
\[
r=s_{0}+1
\]
is called the step, and the sequence of integers
is called the growth vector of the distribution \(D\). In
particular the growth vector, as carrying information about (a) the rank of \(D\) (the first entry in \(N\)), (b) the dimension of \(M\) (the last entry in \(\vec{N}\)), and (c) the step (the number of components of \(\hat{N}\)), gives the simplest numerical invariants of the distribution.

\section*{Bracket generating distributions}
- Note that if \(D\) is integrable, we have \(D_{-s}=D_{-1}=D\) for all \(s\), and in such situation the above sequence has only one element \(D_{-1}\). Often however, there exists \(s_{0}>0\) such that
\[
D_{-1} \varsubsetneqq D_{-2} \varsubsetneqq \cdots \varsubsetneqq D_{-s_{0}} \varsubsetneqq D_{-\left(s_{0}+1\right)}=T M .
\]

If this happens the distribution \(D\) is called bracket generating, or maximally nonintegrable, the integer
\[
r=s_{0}+1
\]
is called the step, and the sequence of integers
\(\left(\operatorname{rank}\left(D_{-1}\right), \operatorname{rank}\left(D_{-2}\right), \ldots, \operatorname{rank}\left(D_{-(r-1)}\right), \operatorname{rank}\left(D_{-r}\right)\right)=: \vec{N}\) is called the growth vector of the distribution \(D\).
particular the growth vector, as carrying information about (a) the rank of \(D\) (the first entry in \(N\)), (b) the dimension of (the last entry in \(\vec{N}\)), and (c) the step (the number of components of \(N\)), gives the simplest numerical invariants of the distribution.

\section*{Bracket generating distributions}
- Note that if \(D\) is integrable, we have \(D_{-s}=D_{-1}=D\) for all \(s\), and in such situation the above sequence has only one element \(D_{-1}\). Often however, there exists \(s_{0}>0\) such that
\[
D_{-1} \varsubsetneqq D_{-2} \varsubsetneqq \cdots \varsubsetneqq D_{-s_{0}} \varsubsetneqq D_{-\left(s_{0}+1\right)}=T M .
\]

If this happens the distribution \(D\) is called bracket generating, or maximally nonintegrable, the integer
\[
r=s_{0}+1
\]
is called the step, and the sequence of integers
\(\left(\operatorname{rank}\left(D_{-1}\right), \operatorname{rank}\left(D_{-2}\right), \ldots, \operatorname{rank}\left(D_{-(r-1)}\right), \operatorname{rank}\left(D_{-r}\right)\right)=: \vec{N}\) is called the growth vector of the distribution \(D\). In particular the growth vector, as carrying information about

(the last entry in \(\vec{N}\)), and (c) the step (the number of
components of \(N\)), gives the simplest numerical invariants of the distribution.

\section*{Bracket generating distributions}
- Note that if \(D\) is integrable, we have \(D_{-s}=D_{-1}=D\) for all \(s\), and in such situation the above sequence has only one element \(D_{-1}\). Often however, there exists \(s_{0}>0\) such that
\[
D_{-1} \varsubsetneqq D_{-2} \varsubsetneqq \cdots \varsubsetneqq D_{-s_{0}} \varsubsetneqq D_{-\left(s_{0}+1\right)}=T M .
\]

If this happens the distribution \(D\) is called bracket generating, or maximally nonintegrable, the integer
\[
r=s_{0}+1
\]
is called the step, and the sequence of integers
\(\left(\operatorname{rank}\left(D_{-1}\right), \operatorname{rank}\left(D_{-2}\right), \ldots, \operatorname{rank}\left(D_{-(r-1)}\right), \operatorname{rank}\left(D_{-r}\right)\right)=: \vec{N}\) is called the growth vector of the distribution \(D\). In particular the growth vector, as carrying information about (a) the rank of \(D\) (the first entry in \(\vec{N}\)),

\section*{Bracket generating distributions}
- Note that if \(D\) is integrable, we have \(D_{-s}=D_{-1}=D\) for all \(s\), and in such situation the above sequence has only one element \(D_{-1}\). Often however, there exists \(s_{0}>0\) such that
\[
D_{-1} \varsubsetneqq D_{-2} \varsubsetneqq \cdots \varsubsetneqq D_{-s_{0}} \varsubsetneqq D_{-\left(s_{0}+1\right)}=T M .
\]

If this happens the distribution \(D\) is called bracket generating, or maximally nonintegrable, the integer
\[
r=s_{0}+1
\]
is called the step, and the sequence of integers
\(\left(\operatorname{rank}\left(D_{-1}\right), \operatorname{rank}\left(D_{-2}\right), \ldots, \operatorname{rank}\left(D_{-(r-1)}\right), \operatorname{rank}\left(D_{-r}\right)\right)=: \vec{N}\) is called the growth vector of the distribution \(D\). In particular the growth vector, as carrying information about (a) the rank of \(D\) (the first entry in \(\vec{N}\)), (b) the dimension of \(M\) (the last entry in \(\vec{N}\)),
components of \(N\)), gives the simplest numerical invariants of the distribution.

\section*{Bracket generating distributions}
- Note that if \(D\) is integrable, we have \(D_{-s}=D_{-1}=D\) for all \(s\), and in such situation the above sequence has only one element \(D_{-1}\). Often however, there exists \(s_{0}>0\) such that
\[
D_{-1} \varsubsetneqq D_{-2} \varsubsetneqq \cdots \varsubsetneqq D_{-s_{0}} \varsubsetneqq D_{-\left(s_{0}+1\right)}=T M .
\]

If this happens the distribution \(D\) is called bracket generating, or maximally nonintegrable, the integer
\[
r=s_{0}+1
\]
is called the step, and the sequence of integers
\(\left(\operatorname{rank}\left(D_{-1}\right), \operatorname{rank}\left(D_{-2}\right), \ldots, \operatorname{rank}\left(D_{-(r-1)}\right), \operatorname{rank}\left(D_{-r}\right)\right)=: \vec{N}\) is called the growth vector of the distribution \(D\). In particular the growth vector, as carrying information about (a) the rank of \(D\) (the first entry in \(\vec{N}\)), (b) the dimension of \(M\) (the last entry in \(\vec{N}\)), and (c) the step (the number of components of \(\vec{N}\)),

\section*{Bracket generating distributions}
- Note that if \(D\) is integrable, we have \(D_{-s}=D_{-1}=D\) for all \(s\), and in such situation the above sequence has only one element \(D_{-1}\). Often however, there exists \(s_{0}>0\) such that
\[
D_{-1} \varsubsetneqq D_{-2} \varsubsetneqq \cdots \varsubsetneqq D_{-s_{0}} \varsubsetneqq D_{-\left(s_{0}+1\right)}=T M .
\]

If this happens the distribution \(D\) is called bracket generating, or maximally nonintegrable, the integer
\[
r=s_{0}+1
\]
is called the step, and the sequence of integers
\(\left(\operatorname{rank}\left(D_{-1}\right), \operatorname{rank}\left(D_{-2}\right), \ldots, \operatorname{rank}\left(D_{-(r-1)}\right), \operatorname{rank}\left(D_{-r}\right)\right)=: \vec{N}\) is called the growth vector of the distribution \(D\). In particular the growth vector, as carrying information about (a) the rank of \(D\) (the first entry in \(\vec{N}\)), (b) the dimension of \(M\) (the last entry in \(\vec{N}\)), and (c) the step (the number of components of \(\vec{N}\)), gives the simplest numerical invariants of the distribution.

\section*{Bracket generating distributions}
- Note that the above definitions are pointwise, and therefore the growth vector is a vector valued function on \(M\). In what follows we will however consider only situations when the growth vector is locally constant over some open set \(U \in M\),

If this happens, the distribution \(D\) is called regular in \(U\).

\section*{Bracket generating distributions}
- Note that the above definitions are pointwise, and therefore the growth vector is a vector valued function on \(M\).
follows we will however consider only situations when the growth vector is locally constant over some open set

If this happens, the distribution \(D\) is called regular in \(U\).

\section*{Bracket generating distributions}
- Note that the above definitions are pointwise, and therefore the growth vector is a vector valued function on \(M\). In what follows we will however consider only situations when the growth vector is locally constant over some open set \(U \in M\),
\[
\vec{N}=\text { const } \quad \forall q \in U
\]

If this happens, the distribution \(D\) is called regular in \(U\).

\section*{Bracket generating distributions}
- Note that the above definitions are pointwise, and therefore the growth vector is a vector valued function on \(M\). In what follows we will however consider only situations when the growth vector is locally constant over some open set \(U \in M\),
\[
\vec{N}=\text { const } \quad \forall q \in U
\]

If this happens, the distribution \(D\) is called regular in \(U\).

\section*{Velocity distribution of the skate is bracket generating}
- In our example of the skate blade we have:
which shows that the velocity distribution \(D\) of the skate blade system is a regular step 2 bracket generating distribution.
\(0-\operatorname{Span}\left((\cos \alpha) a_{x}+(\sin \alpha) a_{2} \partial^{2}\right)\)

.

\section*{Velocity distribution of the skate is bracket generating}
- In our example of the skate blade we have:
which shows that the velocity distribution \(D\) of the skate blade system is a regular step 2 bracket generating distribution.

\section*{Velocity distribution of the skate is bracket generating}
- In our example of the skate blade we have:
- \(D_{-1}=\operatorname{Span}\left((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}, \partial_{\alpha}\right)\),
which shows that the velocity distribution \(D\) of the skate
blade system is a reqular step 2 bracket generating
distribution.

\section*{Velocity distribution of the skate is bracket generating}
- In our example of the skate blade we have:
- \(D_{-1}=\operatorname{Span}\left((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}, \partial_{\alpha}\right)\),
- \(D_{-2}=\)
\(\operatorname{Span}\left((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}, \partial_{\alpha},-(\sin \alpha) \partial_{x}+(\cos \alpha) \partial_{y}\right)=T M\),
which shows that the velocity distribution \(D\) of the skate blade system is a regular step 2 bracket generating distribution.

\section*{Velocity distribution of the skate is bracket generating}
- In our example of the skate blade we have:
- \(D_{-1}=\operatorname{Span}\left((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}, \partial_{\alpha}\right)\),
- \(D_{-2}=\) \(\operatorname{Span}\left((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}, \partial_{\alpha},-(\sin \alpha) \partial_{x}+(\cos \alpha) \partial_{y}\right)=T M\), - \(r=2\),
which shows that the velocity distribution \(D\) of the skate blade system is a regular step 2 bracket generating distribution.

\section*{Velocity distribution of the skate is bracket generating}
- In our example of the skate blade we have:
- \(D_{-1}=\operatorname{Span}\left((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}, \partial_{\alpha}\right)\),
- \(D_{-2}=\) \(\operatorname{Span}\left((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}, \partial_{\alpha},-(\sin \alpha) \partial_{x}+(\cos \alpha) \partial_{y}\right)=T M\),
- \(r=2\),
- \(\vec{N}=(2,3)\),
which shows that the velocity distribution \(D\) of the skate
blade system is a regular step 2 bracket generating
distribution.

\section*{Velocity distribution of the skate is bracket generating}
- In our example of the skate blade we have:
- \(D_{-1}=\operatorname{Span}\left((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}, \partial_{\alpha}\right)\),
- \(D_{-2}=\) \(\operatorname{Span}\left((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}, \partial_{\alpha},-(\sin \alpha) \partial_{x}+(\cos \alpha) \partial_{y}\right)=T M\), - \(r=2\), - \(\vec{N}=(2,3)\),
which shows that the velocity distribution \(D\) of the skate blade system is a regular step 2 bracket generating

\footnotetext{
distribution.
}

\section*{Velocity distribution of the skate is bracket generating}
- In our example of the skate blade we have:
- \(D_{-1}=\operatorname{Span}\left((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}, \partial_{\alpha}\right)\),
- \(D_{-2}=\) \(\operatorname{Span}\left((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}, \partial_{\alpha},-(\sin \alpha) \partial_{x}+(\cos \alpha) \partial_{y}\right)=T M\),
- \(r=2\),
- \(\vec{N}=(2,3)\),
which shows that the velocity distribution \(D\) of the skate blade system is a regular step 2

\section*{Velocity distribution of the skate is bracket generating}
- In our example of the skate blade we have:
- \(D_{-1}=\operatorname{Span}\left((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}, \partial_{\alpha}\right)\),
- \(D_{-2}=\) \(\operatorname{Span}\left((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}, \partial_{\alpha},-(\sin \alpha) \partial_{x}+(\cos \alpha) \partial_{y}\right)=T M\),
- \(r=2\),
- \(\vec{N}=(2,3)\),
which shows that the velocity distribution \(D\) of the skate blade system is a regular step 2 bracket generating
distribution.

\section*{Velocity distribution of the skate is bracket generating}
- In our example of the skate blade we have:
- \(D_{-1}=\operatorname{Span}\left((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}, \partial_{\alpha}\right)\),
- \(D_{-2}=\) \(\operatorname{Span}\left((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}, \partial_{\alpha},-(\sin \alpha) \partial_{x}+(\cos \alpha) \partial_{y}\right)=T M\),
- \(r=2\),
- \(\vec{N}=(2,3)\),
which shows that the velocity distribution \(D\) of the skate blade system is a regular step 2 bracket generating distribution.

\section*{Achievability}

\section*{A} -
\(\square\) ?
-
正
- We are now in a position to state the Chow-Raszewski theorem:
Chow-Raszewski theorem. If D is bracket generting

\section*{distribution on a manifold \(M\) then any two points in \(M\) can be connected by a horizontal curve. -}

\section*{Achievability \\ }

```

$\square$

```
\(+\)
都
\(\qquad\)

\section*{Achievability}
- We are now in a position to state the Chow-Raszewski theorem:
Chow-Raszewski theorem. If \(D\) is bracket generting distribution on a manifold \(M\) then any two points in \(M\) can be connected by a horizontal curve.

\section*{Achievability}
- The converse to this theorem is true in the case of analytic distributions but it fails in general, even if the distribution is smooth (see e.g. R. Montgomery's book, Section 2.1). Anyhow, in the piecewise smooth category, this theorem gives a sufficient condition for a mechanical system with linear velocity constraints to have the ability to move from any given configuration to any other one. For this it is enough that the velocity distribution of the system is bracket generating.
- It turns out that there is also another, much stronger, theorem giving sufficient conditions for a system to reach any configuration. It combines results of Nagano and Sussman and states the following:

\section*{Achievability}
- The converse to this theorem is true in the case of analytic distributions but it fails in general,
smooth (see e.g. R. Montgomery's book, Section 2.1). Anyhow, in the piecewise smooth category, this theorem gives a sufficient condition for a mechanical system with linear velocity constraints to have the ability to move from any given configuration to any other one. For this it is enough that the velocity distribution of the system is bracket generating.
- It turns out that there is also another, much stronger, theorem giving sufficient conditions for a system to reach any configuration. It combines results of Nagano and Sussman and states the following: distributions but it fails in general, even it the distribution is

\section*{Achievability}
- The converse to this theorem is true in the case of analytic distributions but it fails in general, even if the distribution is smooth (see e.g. R. Montgomery's book, Section 2.1).
Anyhow, in the piecewise smooth category, this theorem
gives a sufficient condition for a mechanical system with
linear velocity constraints to have the ability to move from
any given configuration to any other one. For this it is
enough that the velocity distribution of the system is bracket generating.
- It turns out that there is also another, much stronger, theorem giving sufficient conditions for a system to reach any configuration. It combines results of Nagano and Sussman and states the following:

\section*{Achievability}
- The converse to this theorem is true in the case of analytic distributions but it fails in general, even if the distribution is smooth (see e.g. R. Montgomery's book, Section 2.1). Anyhow, in the piecewise smooth category, this theorem gives a sufficient condition for a mechanical system with linear velocity constraints to have the ability to move from any given configuration to any other one.
```

enough that the velocity distribution of the system is
bracket generating.
It turns out that there is also another, much stronger,
theorem giving sufficient conditions for a system to reach
any configuration. It combines results of Nagano and
Sussman and states the following:

```

\section*{Achievability}
- The converse to this theorem is true in the case of analytic distributions but it fails in general, even if the distribution is smooth (see e.g. R. Montgomery's book, Section 2.1). Anyhow, in the piecewise smooth category, this theorem gives a sufficient condition for a mechanical system with linear velocity constraints to have the ability to move from any given configuration to any other one. For this it is enough that the velocity distribution of the system is bracket generating.

\section*{Achievability}
- The converse to this theorem is true in the case of analytic distributions but it fails in general, even if the distribution is smooth (see e.g. R. Montgomery's book, Section 2.1). Anyhow, in the piecewise smooth category, this theorem gives a sufficient condition for a mechanical system with linear velocity constraints to have the ability to move from any given configuration to any other one. For this it is enough that the velocity distribution of the system is bracket generating.
- It turns out that there is also another, much stronger, theorem giving sufficient conditions for a system to reach any configuration. It combines results of Nagano and

\section*{Achievability}
- The converse to this theorem is true in the case of analytic distributions but it fails in general, even if the distribution is smooth (see e.g. R. Montgomery's book, Section 2.1). Anyhow, in the piecewise smooth category, this theorem gives a sufficient condition for a mechanical system with linear velocity constraints to have the ability to move from any given configuration to any other one. For this it is enough that the velocity distribution of the system is bracket generating.
- It turns out that there is also another, much stronger, theorem giving sufficient conditions for a system to reach any configuration. It combines results of Nagano and Sussman and states the following:

\section*{Achievability}
- Nagano-Sussman theorem. Let \(\mathcal{F}=\left\{X_{i}\right\}\) be a family of vector fields \(X_{i}\) on a manifold \(M\). Suppose that a finite number of brackets of the \(X_{S}\) s and a finite number of iterations of these brackets generate \(T_{q} M\) at every \(q \in M\) (we say that the family \(\mathcal{F}\) is bracket generating). Then the orbit of this family of vector fields at each point is all of M.
- Here the term orbit of a family at a point \(q \in M\) means all points in \(M\) that can be connected with \(q\) by piecewise smooth segments of integral curves of vector fields Xf from the family \(\mathcal{F}\). The fact that the orbit of the family \(\mathcal{F}\) through every point is all of \(M\) means that every point \(q \in M\) can be reached by such broken integral curves of vector fields \(X_{i}\) regardless of the starting point \(q_{0} \in M\).

\section*{Achievability}
- Nagano-Sussman theorem. Let \(\mathcal{F}=\left\{X_{i}\right\}\) be a family of vector fields \(X_{i}\) on a manifold \(M\). Suppose that a finite number of brackets of the \(X_{i} s\) and a finite number of iterations of these brackets generate \(T_{q} M\) at every \(q \in M\) (we say that the family \(\mathcal{F}\) is bracket generating). Then the orbit of this family of vector fields at each point is all of \(M\).

\section*{Achievability}
- Nagano-Sussman theorem. Let \(\mathcal{F}=\left\{X_{i}\right\}\) be a family of vector fields \(X_{i}\) on a manifold \(M\). Suppose that a finite number of brackets of the \(X_{i} s\) and a finite number of iterations of these brackets generate \(T_{q} M\) at every \(q \in M\) (we say that the family \(\mathcal{F}\) is bracket generating). Then the orbit of this family of vector fields at each point is all of \(M\).
- Here the term orbit of a family at a point \(q \in M\) means all points in \(M\) that can be connected with \(q\) by piecewise smooth segments of integral curves of vector fields \(X_{i}\) from the family \(\mathcal{F}\).
every point is all of \(M\) means that every point
reached by such broken integral curves of vector fields
regardless of the starting point

\section*{Achievability}
- Nagano-Sussman theorem. Let \(\mathcal{F}=\left\{X_{i}\right\}\) be a family of vector fields \(X_{i}\) on a manifold \(M\). Suppose that a finite number of brackets of the \(X_{i} s\) and a finite number of iterations of these brackets generate \(T_{q} M\) at every \(q \in M\) (we say that the family \(\mathcal{F}\) is bracket generating). Then the orbit of this family of vector fields at each point is all of \(M\).
- Here the term orbit of a family at a point \(q \in M\) means all points in \(M\) that can be connected with \(q\) by piecewise smooth segments of integral curves of vector fields \(X_{i}\) from the family \(\mathcal{F}\). The fact that the orbit of the family \(\mathcal{F}\) through every point is all of \(M\) means that every point \(q \in M\) can be reached by such broken integral curves of vector fields \(X_{i}\) regardless of the starting point \(q_{0} \in M\).

\section*{Contact distributions}
- An important class of nonholonomic distributions is given by contact distributions. These are rank \(k=2 m\) distributions \(D\) on a (\(2 m+1\))-dimensional manifold, which annihilate a single 1 -form \(\lambda\) on \(M\) such that its corresponding 2 -form \(\omega=\mathrm{d} \lambda\) is not degenerate on D. More formally, given a 1-form \(\lambda\) such that
on \(M\), a contact distribution is

The condition of being contact makes \(D\) bracket generating with \(D_{-2}=T M\), and the growth vector \(N=(2 m, 2 m+1)\).

\[
D=\operatorname{SPan}\{X \in T M: \lambda(X)=0\}
\]
\[
\text { -2 }-1 \text {, anl }
\]

\section*{Contact distributions}
- An important class of nonholonomic distributions is given by contact distributions.

on \(M\), a contact distribution is

\section*{Contact distributions}
- An important class of nonholonomic distributions is given by contact distributions. These are rank \(k=2 m\) distributions \(D\) on a \((2 m+1)\)-dimensional manifold, which annihilate a single 1 -form \(\lambda\) on \(M\) such that its corresponding 2-form \(\omega=\mathrm{d} \lambda\) is not degenerate on \(D\). formally, given a 1-form \(\lambda\) such that
on \(M\), a contact distribution is

The condition of being contact makes \(D\) bracket generating with \(D_{-2}=T M\), and the growth vector

\section*{Contact distributions}
- An important class of nonholonomic distributions is given by contact distributions. These are rank \(k=2 m\) distributions \(D\) on a (\(2 m+1\))-dimensional manifold, which annihilate a single 1 -form \(\lambda\) on \(M\) such that its corresponding 2 -form \(\omega=\mathrm{d} \lambda\) is not degenerate on \(D\). More formally, given a 1 -form \(\lambda\) such that

\section*{Contact distributions}
- An important class of nonholonomic distributions is given by contact distributions. These are rank \(k=2 m\) distributions \(D\) on a \((2 m+1)\)-dimensional manifold, which annihilate a single 1 -form \(\lambda\) on \(M\) such that its corresponding 2-form \(\omega=\mathrm{d} \lambda\) is not degenerate on \(D\). More formally, given a 1-form \(\lambda\) such that
\[
\lambda \wedge \underbrace{\mathrm{d} \lambda \wedge \mathrm{~d} \lambda \wedge \cdots \wedge \mathrm{~d} \lambda}_{m \text { times }} \neq 0
\]
on \(M\), a contact distribution is

The condition of being contact makes \(D\) bracket generating with \(D_{-2}=T M\), and the growth vector

\section*{Contact distributions}
- An important class of nonholonomic distributions is given by contact distributions. These are rank \(k=2 m\) distributions \(D\) on a \((2 m+1)\)-dimensional manifold, which annihilate a single 1 -form \(\lambda\) on \(M\) such that its corresponding 2 -form \(\omega=\mathrm{d} \lambda\) is not degenerate on \(D\). More formally, given a 1-form \(\lambda\) such that
\[
\lambda \wedge \underbrace{\mathrm{d} \lambda \wedge \mathrm{~d} \lambda \wedge \cdots \wedge \mathrm{~d} \lambda}_{m \text { times }} \neq 0
\]
on \(M\), a contact distribution is
\[
D=\operatorname{Span}\{X \in T M: \lambda(X)=0\}
\]

The condition of being contact makes \(D\) bracket generating with \(D_{-2}=T M\), and the growth vector \(N\)

\section*{Contact distributions}
- An important class of nonholonomic distributions is given by contact distributions. These are rank \(k=2 m\) distributions \(D\) on a \((2 m+1)\)-dimensional manifold, which annihilate a single 1 -form \(\lambda\) on \(M\) such that its corresponding 2 -form \(\omega=\mathrm{d} \lambda\) is not degenerate on \(D\). More formally, given a 1-form \(\lambda\) such that
\[
\lambda \wedge \underbrace{\mathrm{d} \lambda \wedge \mathrm{~d} \lambda \wedge \cdots \wedge \mathrm{~d} \lambda}_{m \text { times }} \neq 0
\]
on \(M\), a contact distribution is
\[
D=\operatorname{Span}\{X \in T M: \lambda(X)=0\}
\]

The condition of being contact makes \(D\) bracket generating with \(D_{-2}=T M\), and the growth vector \(\vec{N}=(2 m, 2 m+1)\).

\section*{Skate blade is a contact distribution}
- An example of a contact distribution is given by the velocity distribution \(D\) of the skate blade considered earlier. Indeed, take the 1 -form \(\lambda=-(\sin \alpha) \mathrm{d} x+(\cos \alpha) \mathrm{d} y\) on our skate blade configuration space \(M\). Clearly we have \(\lambda\left(\partial_{\alpha}\right)=\lambda\left((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}\right)=0\), i.e. the velocity
distribution \(D\) of the skate blade is an annihilator of \(\lambda\). Al
\(\lambda\) 0, meaning that \(D\) is contact. \(\lambda\left(\partial_{\alpha}\right)=\lambda\left((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}\right)=0\), i.e. the velocity
distribution \(D\) of the skate blade is an annihilator of \(\lambda\). Also
\(\lambda A d \lambda=\), meaning that \(D\) is contact. \(\lambda\left(\partial_{\alpha}\right)=\lambda\left((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}\right)=0\), i.e. the velocity
distribution \(D\) of the skate blade is an annihilator of \(\lambda\). Al
\(\lambda\) 0, meaning that \(D\) is contact.
- We mentioned above that the growth vector provides the simplest invariants of a distribution. They are used to distinguish if two distributions are (locally) equivalent. The precise definition of a (local) equivalence is as follows.

\section*{Skate blade is a contact distribution}
- An example of a contact distribution is given by the velocity distribution \(D\) of the skate blade considered earlier.
take the \(1-\) form \(\lambda=-(\sin \alpha) \mathrm{d} x+(\cos \alpha) \mathrm{d} y\) on our skate
blade configuration space \(M\). Clearly we have
distribution \(D\) of the skate blade is an annihilator of \(\lambda\). Also
- We mentioned above that the growth vector provides the simplest invariants of a distribution. They are used to distinguish if two distributions are (locally) equivalent. The precise definition of a (local) equivalence is as follows.

\section*{Skate blade is a contact distribution}
- An example of a contact distribution is given by the velocity distribution \(D\) of the skate blade considered earlier. Indeed, take the 1 -form \(\lambda=-(\sin \alpha) \mathrm{d} x+(\cos \alpha) \mathrm{d} y\) on our skate blade configuration space \(M\). Clearly we have
distribution \(D\) of the skate blade is an annihilator of \(\lambda\). Also
- We mentioned above that the growth vector provides the
simplest invariants of a distribution. They are used to
distinguish if two distributions are (locally) equivalent. The precise definition of a (local) equivalence is as follows.

\section*{Skate blade is a contact distribution}
- An example of a contact distribution is given by the velocity distribution \(D\) of the skate blade considered earlier. Indeed, take the 1 -form \(\lambda=-(\sin \alpha) \mathrm{d} x+(\cos \alpha) \mathrm{d} y\) on our skate blade configuration space \(M\). Clearly we have \(\lambda\left(\partial_{\alpha}\right)=\lambda\left((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}\right)=0\), i.e. the velocity distribution \(D\) of the skate blade is an annihilator of \(\lambda\).
- We mentioned above that the growth vector provides the
simplest invariants of a distribution. They are used to
distinguish if two distributions are (locally) equivalent. The precise definition of a (local) equivalence is as follows.

\section*{Skate blade is a contact distribution}
- An example of a contact distribution is given by the velocity distribution \(D\) of the skate blade considered earlier. Indeed, take the 1 -form \(\lambda=-(\sin \alpha) \mathrm{d} x+(\cos \alpha) \mathrm{d} y\) on our skate blade configuration space \(M\). Clearly we have \(\lambda\left(\partial_{\alpha}\right)=\lambda\left((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}\right)=0\), i.e. the velocity distribution \(D\) of the skate blade is an annihilator of \(\lambda\). Also \(\lambda \wedge \mathrm{d} \lambda=-\mathrm{d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} \alpha \neq 0\), meaning that \(D\) is contact.
- We mentioned above that the growth vector provides the
simplest invariants of a distribution. They are used to
distinguish if two distributions are (locally) equivalent. The precise definition of a (local) equivalence is as follows.

\section*{Skate blade is a contact distribution}
- An example of a contact distribution is given by the velocity distribution \(D\) of the skate blade considered earlier. Indeed, take the 1 -form \(\lambda=-(\sin \alpha) \mathrm{d} x+(\cos \alpha) \mathrm{d} y\) on our skate blade configuration space \(M\). Clearly we have \(\lambda\left(\partial_{\alpha}\right)=\lambda\left((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}\right)=0\), i.e. the velocity distribution \(D\) of the skate blade is an annihilator of \(\lambda\). Also \(\lambda \wedge \mathrm{d} \lambda=-\mathrm{d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} \alpha \neq 0\), meaning that \(D\) is contact.
- We mentioned above that the growth vector provides the simplest invariants of a distribution.
distinguish if two distributions are (locally) equivalent. The
precise definition of a (local) equivalence is as follows.

\section*{Skate blade is a contact distribution}
- An example of a contact distribution is given by the velocity distribution \(D\) of the skate blade considered earlier. Indeed, take the 1 -form \(\lambda=-(\sin \alpha) \mathrm{d} x+(\cos \alpha) \mathrm{d} y\) on our skate blade configuration space \(M\). Clearly we have \(\lambda\left(\partial_{\alpha}\right)=\lambda\left((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}\right)=0\), i.e. the velocity distribution \(D\) of the skate blade is an annihilator of \(\lambda\). Also \(\lambda \wedge \mathrm{d} \lambda=-\mathrm{d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} \alpha \neq 0\), meaning that \(D\) is contact.
- We mentioned above that the growth vector provides the simplest invariants of a distribution. They are used to distinguish if two distributions are (locally) equivalent.

\section*{Skate blade is a contact distribution}
- An example of a contact distribution is given by the velocity distribution \(D\) of the skate blade considered earlier. Indeed, take the 1 -form \(\lambda=-(\sin \alpha) \mathrm{d} x+(\cos \alpha) \mathrm{d} y\) on our skate blade configuration space \(M\). Clearly we have \(\lambda\left(\partial_{\alpha}\right)=\lambda\left((\cos \alpha) \partial_{x}+(\sin \alpha) \partial_{y}\right)=0\), i.e. the velocity distribution \(D\) of the skate blade is an annihilator of \(\lambda\). Also \(\lambda \wedge \mathrm{d} \lambda=-\mathrm{d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} \alpha \neq 0\), meaning that \(D\) is contact.
- We mentioned above that the growth vector provides the simplest invariants of a distribution. They are used to distinguish if two distributions are (locally) equivalent. The precise definition of a (local) equivalence is as follows.

\section*{Geometry of maximally nonintegrable distributions}
- Let \(D_{1}\) and \(D_{2}\) be two rank \(k\) distributions living on two, not neccessarily different, \(n\)-dimensional manifolds \(M_{1}\) and \(M_{2}\). We say that the two distributions \(D_{1}\) and \(D_{2}\) are (locally) equivalent if and only if there exists a (local) diffeomorphism
such that

\section*{Geometry of maximally nonintegrable distributions}
- Let \(D_{1}\) and \(D_{2}\) be two rank \(k\) distributions living on two, not neccessarily different, \(n\)-dimensional manifolds \(M_{1}\) and \(M_{2}\).
We say that the two distributions \(D_{1}\) and \(D_{2}\) are (locally)
equivalent if and only if there exists a (local) diffeomorphism
such that

\section*{Geometry of maximally nonintegrable distributions}
- Let \(D_{1}\) and \(D_{2}\) be two rank \(k\) distributions living on two, not neccessarily different, \(n\)-dimensional manifolds \(M_{1}\) and \(M_{2}\). We say that the two distributions \(D_{1}\) and \(D_{2}\) are (locally) equivalent if and only if there exists a (local) diffeomorphism
\[
\phi: M_{1} \rightarrow M_{2}
\]
such that
\[
\phi_{*} D_{1}=D_{2}
\]

\section*{Geometry of maximally nonintegrable distributions}
- In case of a single manifold \(M\) and a distribution \(D\) on it, one considers (local) diffeomorphisms that preserve D, i.e. smooth maps
such that

These (local) selfequivalences are called (local) symmetries of the distribution \(D\). Since they can be composed and inverted as maps, they form a group. The set of all (local) symmetries is the (local) symmetry group Aut \((D)\) of the distribution \(D\).

\section*{Geometry of maximally nonintegrable distributions}
- In case of a single manifold \(M\) and a distribution \(D\) on it, one considers (local) diffeomorphisms that preserve D, i.e. smooth maps
\[
\phi: M \rightarrow M
\]
such that
\[
\phi_{*} D=D .
\]

These (local) selfequivalences are called (local)
symmetries of the distribution \(D\). Since they can be
composed and inverted as maps, they form a group. The set of all (local) symmetries is the (local) symmetry group Aut(D) of the distribution \(D\).

\section*{Geometry of maximally nonintegrable distributions}
- In case of a single manifold \(M\) and a distribution \(D\) on it, one considers (local) diffeomorphisms that preserve D, i.e. smooth maps
\[
\phi: M \rightarrow M
\]
such that
\[
\phi_{*} D=D .
\]

These (local) selfequivalences are called (local) symmetries of the distribution \(D\).

\section*{Geometry of maximally nonintegrable distributions}
- In case of a single manifold \(M\) and a distribution \(D\) on it, one considers (local) diffeomorphisms that preserve D, i.e. smooth maps
\[
\phi: M \rightarrow M
\]
such that
\[
\phi_{*} D=D .
\]

These (local) selfequivalences are called (local) symmetries of the distribution \(D\). Since they can be composed and inverted as maps, they form a group.

\section*{Geometry of maximally nonintegrable distributions}
- In case of a single manifold \(M\) and a distribution \(D\) on it, one considers (local) diffeomorphisms that preserve D, i.e. smooth maps
\(\phi: M \rightarrow M\)
such that
\[
\phi_{*} D=D .
\]

These (local) selfequivalences are called (local) symmetries of the distribution \(D\). Since they can be composed and inverted as maps, they form a group. The set of all (local) symmetries is the (local) symmetry group Aut (\(D\)) of the distribution \(D\).

\section*{Geometry of maximally nonintegrable distributions}
- If we have two rank \(k\) distributions \(D_{1}\) and \(D_{2}\) on \(M\) that are intearable, then thev are alwavs locallv equivalent. Moreover, their local symmetry group is infinite dimensional. The same is also true, for example, if one considers two contact distributions on \(M\) : they are always locally equivalent and have the local symmetry group of infinite dimension. But such a situation is rare. In general smooth distributions have no symmetries at all, and two randomly chosen distributions, even regular and with the same growth vector, are locally nonequivalent.

\section*{Geometry of maximally nonintegrable distributions}
- If we have two rank \(k\) distributions \(D_{1}\) and \(D_{2}\) on \(M\) that are integrable, then they are always locally equivalent.

> Moreover, their local symmetry group is infinite
> dimensional. The same is also true, for example, if one considers two contact distributions on \(M\) : they are always locally equivalent and have the local symmetry group of infinite dimension. But such a situation is rare. In general smooth distributions have no symmetries at all, and two randomly chosen distributions, even regular and with the same growth vector, are locally nonequivalent.

\section*{Geometry of maximally nonintegrable distributions}
- If we have two rank \(k\) distributions \(D_{1}\) and \(D_{2}\) on \(M\) that are integrable, then they are always locally equivalent. Moreover, their local symmetry group is infinite dimensional.
considers two contact distributions on \(M\) : they are always
locally equivalent and have the local symmetry group of
infinite dimension. But such a situation is rare. In general smooth distributions have no symmetries at all, and two randomly chosen distributions, even regular and with the same growth vector, are locally nonequivalent.

\section*{Geometry of maximally nonintegrable distributions}
- If we have two rank \(k\) distributions \(D_{1}\) and \(D_{2}\) on \(M\) that are integrable, then they are always locally equivalent. Moreover, their local symmetry group is infinite dimensional. The same is also true, for example, if one considers two contact distributions on \(M\) :
locally equivalent and have the local symmetry group of
infinite dimension. But such a situation is rare. In general smooth distributions have no symmetries at all, and two randomly chosen distributions, even regular and with the same growth vector, are locally nonequivalent.

\section*{Geometry of maximally nonintegrable distributions}
- If we have two rank \(k\) distributions \(D_{1}\) and \(D_{2}\) on \(M\) that are integrable, then they are always locally equivalent. Moreover, their local symmetry group is infinite dimensional. The same is also true, for example, if one considers two contact distributions on \(M\) : they are always locally equivalent and have the local symmetry group of infinite dimension.
smooth distributions have no symmetries at all, and two
randomly chosen distributions, even regular and with the
same growth vector, are locally nonequivalent.

\section*{Geometry of maximally nonintegrable distributions}
- If we have two rank \(k\) distributions \(D_{1}\) and \(D_{2}\) on \(M\) that are integrable, then they are always locally equivalent. Moreover, their local symmetry group is infinite dimensional. The same is also true, for example, if one considers two contact distributions on \(M\) : they are always locally equivalent and have the local symmetry group of infinite dimension. But such a situation is rare.
smooth distributions have no symmetries at all, and two
randomly chosen distributions, even regular and with the
same growth vector, are locally nonequivalent.

\section*{Geometry of maximally nonintegrable distributions}
- If we have two rank \(k\) distributions \(D_{1}\) and \(D_{2}\) on \(M\) that are integrable, then they are always locally equivalent. Moreover, their local symmetry group is infinite dimensional. The same is also true, for example, if one considers two contact distributions on \(M\) : they are always locally equivalent and have the local symmetry group of infinite dimension. But such a situation is rare. In general smooth distributions have no symmetries at all,
randomly chosen distributions, even regular and with the same growth vector, are locally nonequivalent.

\section*{Geometry of maximally nonintegrable distributions}
- If we have two rank \(k\) distributions \(D_{1}\) and \(D_{2}\) on \(M\) that are integrable, then they are always locally equivalent. Moreover, their local symmetry group is infinite dimensional. The same is also true, for example, if one considers two contact distributions on \(M\) : they are always locally equivalent and have the local symmetry group of infinite dimension. But such a situation is rare. In general smooth distributions have no symmetries at all, and two randomly chosen distributions, even regular and with the

\section*{Geometry of maximally nonintegrable distributions}
- If we have two rank \(k\) distributions \(D_{1}\) and \(D_{2}\) on \(M\) that are integrable, then they are always locally equivalent. Moreover, their local symmetry group is infinite dimensional. The same is also true, for example, if one considers two contact distributions on \(M\) : they are always locally equivalent and have the local symmetry group of infinite dimension. But such a situation is rare. In general smooth distributions have no symmetries at all, and two randomly chosen distributions, even regular and with the same growth vector,

\section*{Geometry of maximally nonintegrable distributions}
- If we have two rank \(k\) distributions \(D_{1}\) and \(D_{2}\) on \(M\) that are integrable, then they are always locally equivalent. Moreover, their local symmetry group is infinite dimensional. The same is also true, for example, if one considers two contact distributions on \(M\) : they are always locally equivalent and have the local symmetry group of infinite dimension. But such a situation is rare. In general smooth distributions have no symmetries at all, and two randomly chosen distributions, even regular and with the same growth vector, are locally nonequivalent.

\section*{Geometry of maximally nonintegrable distributions}
- The notion of local symmetries of a dsitribution has its infinitesimal version: a vector field \(Y\) on a manifold \(M\) is an infinitesimal symmetry of a distribution \(D\) if and only if
- Given two infinitesimal symmetries \(Y_{1}\) and \(Y_{2}\) of \(D\), their commutator \(\left[Y_{1}, Y_{2}\right]\) is also an infinitesimal symmetry of \(D\), and the set of all infinitesimal symmetries of \(D\) naturally has the structure of a Lie algebra. This Lie algebra is called the symmetry algebra aut \((D)\) of \(D\).
- The local Lie group Aut(D) and the Lie algebra aut \((D)\) are closely related. In particular, for every value of the real parameter \(t\), the flow \(\phi_{t}(Y)\) of an infinitesimal symmetry \(Y \in \operatorname{aut}(D)\) is a local diffeomorphism of \(M\). It forms a 1-parameter subgroup in the local symmetry group Aut(D).

\section*{Geometry of maximally nonintegrable distributions}
- The notion of local symmetries of a dsitribution has its infinitesimal version:
infinitesimal symmetry of a distribution D if and only if
- Given two infinitesimal symmetries \(Y_{1}\) and \(Y_{2}\) of \(D\), their commutator \(\left[Y_{1}, Y_{2}\right]\) is also an infinitesimal symmetry of \(D\), and the set of all infinitesimal symmetries of \(D\) naturally has the structure of a Lie algebra. This Lie algebra is called the symmetry algebra aut \((D)\) of \(D\).
- The local Lie group Aut(D) and the Lie algebra aut(D) are closely related. In particular, for every value of the real parameter \(t\), the flow \(\phi_{t}(Y)\) of an infinitesimal symmetry \(Y \in \operatorname{aut}(D)\) is a local diffeomorphism of \(M\). It forms a 1-parameter subgroup in the local symmetry group Aut(D).

\section*{Geometry of maximally nonintegrable distributions}
- The notion of local symmetries of a dsitribution has its infinitesimal version: a vector field \(Y\) on a manifold \(M\) is an infinitesimal symmetry of a distribution \(D\) if and only if
\[
[Y, X] \in D \quad \text { for all } \quad X \in D
\]

\section*{Geometry of maximally nonintegrable distributions}
- The notion of local symmetries of a dsitribution has its infinitesimal version: a vector field \(Y\) on a manifold \(M\) is an infinitesimal symmetry of a distribution \(D\) if and only if
\[
[Y, X] \in D \quad \text { for all } \quad X \in D
\]
- Given two infinitesimal symmetries \(Y_{1}\) and \(Y_{2}\) of \(D\), their commutator \(\left[Y_{1}, Y_{2}\right]\) is also an infinitesimal symmetry of \(D\),
has the structure of a Lie algebra. This Lie algebra is called the symmetry algebra
The local Lie group and the Lie algebra \(\operatorname{aut}(D)\) are closely related. In particular, for every value of the real parameter \(t\), the flow \(\phi_{t}(Y)\) of an infinitesimal symmetry is a local diffeomorphism of \(M\). It forms a 1-parameter subgroup in the local symmetry group

\section*{Geometry of maximally nonintegrable distributions}
- The notion of local symmetries of a dsitribution has its infinitesimal version: a vector field \(Y\) on a manifold \(M\) is an infinitesimal symmetry of a distribution \(D\) if and only if
\[
[Y, X] \in D \quad \text { for all } \quad X \in D .
\]
- Given two infinitesimal symmetries \(Y_{1}\) and \(Y_{2}\) of \(D\), their commutator \(\left[Y_{1}, Y_{2}\right]\) is also an infinitesimal symmetry of \(D\), and the set of all infinitesimal symmetries of \(D\) naturally has the structure of a Lie algebra.

\section*{Geometry of maximally nonintegrable distributions}
- The notion of local symmetries of a dsitribution has its infinitesimal version: a vector field \(Y\) on a manifold \(M\) is an infinitesimal symmetry of a distribution \(D\) if and only if
\[
[Y, X] \in D \quad \text { for all } \quad X \in D .
\]
- Given two infinitesimal symmetries \(Y_{1}\) and \(Y_{2}\) of \(D\), their commutator \(\left[Y_{1}, Y_{2}\right]\) is also an infinitesimal symmetry of \(D\), and the set of all infinitesimal symmetries of \(D\) naturally has the structure of a Lie algebra. This Lie algebra is called the symmetry algebra aut \((D)\) of \(D\).

\section*{Geometry of maximally nonintegrable distributions}
- The notion of local symmetries of a dsitribution has its infinitesimal version: a vector field \(Y\) on a manifold \(M\) is an infinitesimal symmetry of a distribution \(D\) if and only if
\[
[Y, X] \in D \quad \text { for all } \quad X \in D .
\]
- Given two infinitesimal symmetries \(Y_{1}\) and \(Y_{2}\) of \(D\), their commutator \(\left[Y_{1}, Y_{2}\right]\) is also an infinitesimal symmetry of \(D\), and the set of all infinitesimal symmetries of \(D\) naturally has the structure of a Lie algebra. This Lie algebra is called the symmetry algebra aut \((D)\) of \(D\).
- The local Lie group Aut \((D)\) and the Lie algebra \(\operatorname{aut}(D)\) are closely related.
parameter \(t\), the flow
of an infinitesimal symmetry

\section*{is a local diffeomorphism of \(M\). It forms a}

\section*{Geometry of maximally nonintegrable distributions}
- The notion of local symmetries of a dsitribution has its infinitesimal version: a vector field \(Y\) on a manifold \(M\) is an infinitesimal symmetry of a distribution \(D\) if and only if
\[
[Y, X] \in D \quad \text { for all } \quad X \in D .
\]
- Given two infinitesimal symmetries \(Y_{1}\) and \(Y_{2}\) of \(D\), their commutator \(\left[Y_{1}, Y_{2}\right]\) is also an infinitesimal symmetry of \(D\), and the set of all infinitesimal symmetries of \(D\) naturally has the structure of a Lie algebra. This Lie algebra is called the symmetry algebra aut \((D)\) of \(D\).
- The local Lie group \(\operatorname{Aut}(D)\) and the Lie algebra aut \((D)\) are closely related. In particular, for every value of the real parameter \(t\), the flow \(\phi_{t}(Y)\) of an infinitesimal symmetry \(Y \in \operatorname{aut}(D)\) is a local diffeomorphism of \(M\). It forms a 1-parameter subgroup in the local symmetry group Aut(D).

\section*{Example of a \(N=(2,3,5)\) distribution}
- We illustrate the notion of an infinitesimal symmetry of a distribution by the following example in 5 dimensions.
- Consider \(\mathbb{R}^{5}\) with local coordinates (x,y, p, q. z). Let \(D_{C E}=\operatorname{Span}\left(X_{1}, X_{2}\right)\) be a rank 2-distribution spanned over the smooth functions on \(\mathbb{R}^{5}\) by the following two vector fields:
- Since we have:

and
this is clearly a regular bracket generating distribution, with a growth vector \(\vec{N}=(2,3,5)\).
- We have the following theorem of Elie Cartan and Friedrich Engel:

\(x_{3}=\left[x_{1} \quad x_{2}\right]-\lambda \quad q 0_{2}\)

\section*{Example of a}
- We illustrate the notion of an infinitesimal symmetry of a distribution by the following example in 5 dimensions.

be a rank 2-distribution spanned over the smooth functions on \(\mathbb{R}^{5}\) by the following two vector fields:
- Since we have: and
this is clearly a regular bracket generating distribution, with a growth vector \(N=(2,3,5)\).
- We have the following theorem of Elie Cartan and Friedrich Engel:

\section*{Example of a}
- We illustrate the notion of an infinitesimal symmetry of a distribution by the following example in 5 dimensions.
- Consider \(\mathbb{R}^{5}\) with local coordinates \((x, y, p, q, z)\).

- Since we have:
and
this is clearly a regular bracket generating distribution, with a
growth vector \(\vec{N}=(2,3,5)\).
- We have the following theorem of Elie Cartan and Friedrich Engel:

\section*{Example of a}
- We illustrate the notion of an infinitesimal symmetry of a distribution by the following example in 5 dimensions.
- Consider \(\mathbb{R}^{5}\) with local coordinates (\(x, y, p, q, z\)). Let \(D_{C E}=\operatorname{Span}\left(X_{1}, X_{2}\right)\) be a rank 2-distribution spanned over the smooth functions on \(\mathbb{R}^{5}\) by the following two vector fields:
\[
x_{1}=\partial_{q}, \quad X_{2}=\partial_{x}+p \partial_{y}+q \partial_{p}+\frac{1}{2} q^{2} \partial_{z} .
\]
- Since we have:
and
this is clearly a regular bracket generating distribution, with a
growth vector \(\stackrel{N}{N}=(2,3,5)\).
- We have the following theorem of Elie Cartan and Friedrich Engel:

\section*{Example of a}
- We illustrate the notion of an infinitesimal symmetry of a distribution by the following example in 5 dimensions.
- Consider \(\mathbb{R}^{5}\) with local coordinates (\(x, y, p, q, z\)). Let \(D_{C E}=\operatorname{Span}\left(X_{1}, X_{2}\right)\) be a rank 2-distribution spanned over the smooth functions on \(\mathbb{R}^{5}\) by the following two vector fields:
\[
x_{1}=\partial_{q}, \quad X_{2}=\partial_{x}+p \partial_{y}+q \partial_{p}+\frac{1}{2} q^{2} \partial_{z} .
\]
- Since we have:
and
this is clearly a regular bracket generating distribution, with a
growth vector \(N=(2,3,5)\).
- We have the following theorem of Elie Cartan and Friedrich Engel:

\section*{Example of a}
- We illustrate the notion of an infinitesimal symmetry of a distribution by the following example in 5 dimensions.
- Consider \(\mathbb{R}^{5}\) with local coordinates (\(x, y, p, q, z\)). Let \(D_{C E}=\operatorname{Span}\left(X_{1}, X_{2}\right)\) be a rank 2-distribution spanned over the smooth functions on \(\mathbb{R}^{5}\) by the following two vector fields:
\[
x_{1}=\partial_{q}, \quad X_{2}=\partial_{x}+p \partial_{y}+q \partial_{p}+\frac{1}{2} q^{2} \partial_{z} .
\]
- Since we have:
\[
X_{3}=\left[X_{1}, X_{2}\right]=\partial_{p}+q \partial_{z}, \quad X_{4}=\left[X_{1}, X_{3}\right]=\partial_{z}, \quad X_{5}=\left[X_{2}, X_{3}\right]=-\partial_{y}
\]
and
this is clearly a regular bracket generating distribution, with a
growth vector \(\vec{N}=(2,3,5)\).
- We have the following theorem of Elie Cartan and Friedrich Engel:

\section*{Example of a}
- We illustrate the notion of an infinitesimal symmetry of a distribution by the following example in 5 dimensions.
- Consider \(\mathbb{R}^{5}\) with local coordinates (\(x, y, p, q, z\)). Let \(D_{C E}=\operatorname{Span}\left(X_{1}, X_{2}\right)\) be a rank 2-distribution spanned over the smooth functions on \(\mathbb{R}^{5}\) by the following two vector fields:
\[
x_{1}=\partial_{q}, \quad X_{2}=\partial_{x}+p \partial_{y}+q \partial_{p}+\frac{1}{2} q^{2} \partial_{z} .
\]
- Since we have:
\(X_{3}=\left[X_{1}, X_{2}\right]=\partial_{p}+q \partial_{z}, \quad X_{4}=\left[X_{1}, X_{3}\right]=\partial_{z}, \quad X_{5}=\left[X_{2}, X_{3}\right]=-\partial_{y}\),
and
\[
X_{1} \wedge X_{2} \wedge X_{3} \wedge X_{4} \wedge X_{5}=\partial_{x} \wedge \partial_{y} \wedge \partial_{p} \wedge \partial_{q} \wedge \partial_{z} \neq 0
\]
this is clearly a regular bracket generating distribution, with a growth vector \(\bar{N}\)
- We have the following theorem of Elie Cartan and Friedrich Engel:

\section*{Example of a}
- We illustrate the notion of an infinitesimal symmetry of a distribution by the following example in 5 dimensions.
- Consider \(\mathbb{R}^{5}\) with local coordinates (\(x, y, p, q, z\)). Let \(D_{C E}=\operatorname{Span}\left(X_{1}, X_{2}\right)\) be a rank 2-distribution spanned over the smooth functions on \(\mathbb{R}^{5}\) by the following two vector fields:
\[
x_{1}=\partial_{q}, \quad X_{2}=\partial_{x}+p \partial_{y}+q \partial_{p}+\frac{1}{2} q^{2} \partial_{z}
\]
- Since we have:
\(X_{3}=\left[X_{1}, X_{2}\right]=\partial_{p}+q \partial_{z}, \quad X_{4}=\left[X_{1}, X_{3}\right]=\partial_{z}, \quad X_{5}=\left[X_{2}, X_{3}\right]=-\partial_{y}\),
and
\[
X_{1} \wedge X_{2} \wedge X_{3} \wedge X_{4} \wedge X_{5}=\partial_{x} \wedge \partial_{y} \wedge \partial_{p} \wedge \partial_{q} \wedge \partial_{z} \neq 0
\]
this is clearly a regular bracket generating distribution, with a growth vector \(\vec{N}=(2,3,5)\).
- We have the following theorem of Elie Cartan and Friedrich Engel

\section*{Example of a}
- We illustrate the notion of an infinitesimal symmetry of a distribution by the following example in 5 dimensions.
- Consider \(\mathbb{R}^{5}\) with local coordinates (\(x, y, p, q, z\)). Let \(D_{C E}=\operatorname{Span}\left(X_{1}, X_{2}\right)\) be a rank 2-distribution spanned over the smooth functions on \(\mathbb{R}^{5}\) by the following two vector fields:
\[
x_{1}=\partial_{q}, \quad x_{2}=\partial_{x}+p \partial_{y}+q \partial_{p}+\frac{1}{2} q^{2} \partial_{z}
\]
- Since we have:
\(X_{3}=\left[X_{1}, X_{2}\right]=\partial_{p}+q \partial_{z}, \quad X_{4}=\left[X_{1}, X_{3}\right]=\partial_{z}, \quad X_{5}=\left[X_{2}, X_{3}\right]=-\partial_{y}\),
and
\[
X_{1} \wedge X_{2} \wedge X_{3} \wedge X_{4} \wedge X_{5}=\partial_{x} \wedge \partial_{y} \wedge \partial_{p} \wedge \partial_{q} \wedge \partial_{z} \neq 0
\]
this is clearly a regular bracket generating distribution, with a growth vector \(\vec{N}=(2,3,5)\).
- We have the following theorem of Elie Cartan and Friedrich Engel: \\ \section*{\section*{Distribution with a remarkable symmetry \\ \section*{\section*{Distribution with a remarkable symmetry \\ \\ \[
1
\] \\ \\ \(\mid\)}}

\(\qquad\)

\(\qquad\)

\(\qquad\)
\(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)

\(+\)

\footnotetext{
\footnotetext{
\footnotetext{
Cartan-Engel theorem. The symmetry algebra of the distribution \(D_{\text {oE }}\) is a 14 -dimensional split real form of the
exceptional simple Lie algebra \(a \Perp t\left(D_{C E}\right)=82\). It can be spanned over the reals by the following vector fields \()\)
Cartan-Engel theorem. The symmetry algebra of the distribution \(D_{O E}\) is a 14 -dimensional split real form of the
exceptional simple Lie algebra mut \(\left(D_{C E}\right)=92\). It can be spanned over the reals by the following vector fields

-
sionalsp
}
e following vector fields \(Y_{1,}\),
e following vector fields \(Y_{1}\),
}

\begin{abstract}
. ,
\end{abstract}
or field
e following vector fields \(Y_{\text {r }}\),
}

\section*{.}

\begin{abstract}

\end{abstract}

\section*{Distribution with a remarkable symmetry}

Cartan-Engel theorem. The symmetry algebra of the distribution \(D_{C E}\) is a 14-dimensional split real form of the exceptional simple Lie algebra aut \(\left(D_{C E}\right)=\mathfrak{g}_{2}\).

\section*{Distribution with a remarkable symmetry}

Cartan-Engel theorem. The symmetry algebra of the distribution \(D_{C E}\) is a 14-dimensional split real form of the exceptional simple Lie algebra \(\mathfrak{a u t}\left(D_{C E}\right)=\mathfrak{g}_{2}\). It can be spanned over the reals by the following vector fields \(Y_{\mu}\), \(\mu=1,2, \ldots, 14\) on \(\mathbb{R}^{5}\) :

\section*{Distribution with a remarkable symmetry}

Cartan-Engel theorem. The symmetry algebra of the distribution \(D_{C E}\) is a 14-dimensional split real form of the exceptional simple Lie algebra aut \(\left(D_{C E}\right)=g_{2}\). It can be spanned over the reals by the following vector fields \(Y_{\mu}\), \(\mu=1,2, \ldots, 14\) on \(\mathbb{R}^{5}\) :
\[
\begin{aligned}
Y_{1}= & \left(12 p^{2}-18 q y\right) \partial_{x}+\left(8 p^{3}-18 p q y+18 y z\right) \partial_{y}+\left(18 p z-9 q^{2} y\right) \partial_{p}+\left(18 q z-6 p q^{2}\right) \partial_{q}+ \\
& \left(18 z^{2}-3 q^{3} y\right) \partial_{z}, \\
Y_{2}= & q \partial_{x}+(p q-z) \partial_{y}+\frac{1}{2} q^{2} \partial_{p}+\frac{q^{3}}{6} \partial_{z}, \\
Y_{3}= & (8 p-6 q x) \partial_{x}+\left(4 p^{2}+6 x z-6 p q x\right) \partial_{y}+\left(6 z-3 q^{2} x\right) \partial_{p}-2 q^{2} \partial_{q}-q^{3} x \partial_{z}, \\
Y_{4}= & \left(16 x p-12 y-6 q x^{2}\right) \partial_{x}+\left(6 x^{2} z+8 p^{2} x-6 p q x^{2}\right) \partial_{y}+\left(12 x z+4 p^{2}-3 q^{2} x^{2}\right) \partial_{p}+ \\
& \left(12 z+4 p q-4 q^{2} x\right) \partial_{q}+\left(12 p z-q^{3} x^{2}\right) \partial_{z}, \\
Y_{5}= & \partial_{x}, \\
Y_{6}= & \left(24 p x^{2}-6 q x^{3}-36 x y\right) \partial_{x}+\left(12 p^{2} x^{2}+6 x^{3} z-36 y^{2}-6 p q x^{3}\right) \partial_{y}+ \\
& \left(12 p^{2} x+18 x^{2} z-3 q^{2} x^{3}-36 p y\right) \partial_{p}+\left(12 p q x-6 q^{2} x^{2}-24 p^{2}+36 x z\right) \partial_{q}+ \\
& \left(36 p x z-8 p^{3}-q^{3} x^{3}-36 y z\right) \partial_{z}, \\
Y_{7}= & x \partial_{x}-p \partial_{p}-2 q \partial_{q}-3 z \partial_{z}, \\
Y_{8}= & x \partial_{x}+2 y \partial_{y}+p \partial_{p}+z \partial_{z}, \\
Y_{9}= & \partial_{y}, \\
Y_{10}= & x^{2} \partial_{x}+3 x y \partial_{y}+(3 y+x p) \partial_{p}+(4 p-q x) \partial_{q}+2 p^{2} \partial_{z}, \\
Y_{11}= & \partial_{p}+x \partial_{y}, \\
Y_{12}= & \frac{1}{2} x^{2} \partial_{y}+x \partial_{p}+\partial_{q}+p \partial_{z}, \\
Y_{13}= & \frac{1}{6} x^{3} \partial_{y}+\frac{1}{2} x^{2} \partial_{p}+x \partial_{q}+(x p-y) \partial_{z} \\
Y_{14}= & \partial_{z}
\end{aligned}
\]

\section*{A question}

Does there exists
whose configurat
distribution locally
distribution \(D_{C E}\) ?

Does there exists a nonholonomic mechanical system, whose configuration space is equipped with the velocity distribution locally/globally equivalent to the Cartan-Engel ?
列
\(\square\)

\(\qquad\)

\section*{}
 \(\square\) \(\square\)

\section*{A question}

Does there exists a nonholonomic mechanical system, whose configuration space is equipped with the velocity distribution locally/globally equivalent to the Cartan-Engel distribution \(D_{C E}\) ?

\section*{A question}

Does there exists a nonholonomic mechanical system, whose configuration space is equipped with the velocity distribution locally/globally equivalent to the Cartan-Engel distribution \(D_{C E}\) ?

\section*{Additional geometric ingredients}
```

- Continuing the example of the skate blade kinematics, we recall that:
- the skate blade configuration space $M$ is locally with coordinated $(x, y, \alpha)$; the velocity distribution $D$ is contact, and is defined as the annihilator of the contact form
- explicitly:
- Note that the skate blade velocity distribution D, as a contact distribution, does not have finite dimensional symmetry algebra.
recall that.
    - the skate blade configuration space }M\mathrm{ is locally
contact, and is defined as the annihilator of the contact fo mon
\lambda=-\operatorname{sin}\alphad
    - explicitly: D = Span (X1 = cosadx - }\operatorname{sin}\alpha\mp@subsup{\alpha}{0}{
Note that the skate blade velocity distribution D, as a
contact distribution, coes not have finite dimensional
symmetry algebra.

```

\section*{Additional geometric ingredients}
- Continuing the example of the skate blade kinematics, we recall that:
- the skate blade configuration space \(M\) is locally
with coordinated \((x, y, \alpha)\); the velocity distribution \(D\) is
contact, and is defined as the annihilator of the contact form
- Note that the skate blade velocity distribution \(D\), as a contact distribution, does not have finite dimensional symmetry algebra.

\section*{Additional geometric ingredients}
- Continuing the example of the skate blade kinematics, we recall that:
- the skate blade configuration space \(M\) is locally \(\mathbb{R}^{2} \times \mathbb{S}^{1}\) with coordinated (\(x, y, \alpha\)); the velocity distribution \(D\) is
contact, and is defined as the annihilator of the contact form
- Note that the skate blade velocity distribution \(D\), as a contact distribution, does not have finite dimensional symmetry algebra.

\section*{Additional geometric ingredients}
- Continuing the example of the skate blade kinematics, we recall that:
- the skate blade configuration space \(M\) is locally \(\mathbb{R}^{2} \times \mathbb{S}^{1}\) with coordinated (\(x, y, \alpha\)); the velocity distribution \(D\) is contact, and is defined as the annihilator of the contact form \(\lambda=-\sin \alpha \mathrm{d} x+\cos \alpha \mathrm{d} y ;\)
- Note that the skate blade velocity distribution \(D\), as a contact distribution, does not have finite dimensional symmetry algebra.

\section*{Additional geometric ingredients}
- Continuing the example of the skate blade kinematics, we recall that:
- the skate blade configuration space \(M\) is locally \(\mathbb{R}^{2} \times \mathbb{S}^{1}\) with coordinated \((x, y, \alpha)\); the velocity distribution \(D\) is contact, and is defined as the annihilator of the contact form \(\lambda=-\sin \alpha \mathrm{d} x+\cos \alpha \mathrm{d} y ;\)
- explicitly: \(D=\operatorname{Span}(\)
- Note that the skate blade velocity distribution \(D\), as a contact distribution, does not have finite dimensional symmetry algebra.

\section*{Additional geometric ingredients}
- Continuing the example of the skate blade kinematics, we recall that:
- the skate blade configuration space \(M\) is locally \(\mathbb{R}^{2} \times \mathbb{S}^{1}\) with coordinated \((x, y, \alpha)\); the velocity distribution \(D\) is contact, and is defined as the annihilator of the contact form \(\lambda=-\sin \alpha \mathrm{d} x+\cos \alpha \mathrm{d} y ;\)
- explicitly: \(D=\operatorname{Span}\left(X_{1}=\cos \alpha \partial_{x}+\sin \alpha \partial_{y}\right.\),
- Note that the skate blade velocity distribution D, as a contact distribution, does not have finite dimensional symmetry algebra.

\section*{Additional geometric ingredients}
- Continuing the example of the skate blade kinematics, we recall that:
- the skate blade configuration space \(M\) is locally \(\mathbb{R}^{2} \times \mathbb{S}^{1}\) with coordinated \((x, y, \alpha)\); the velocity distribution \(D\) is contact, and is defined as the annihilator of the contact form \(\lambda=-\sin \alpha \mathrm{d} x+\cos \alpha \mathrm{d} y ;\)
- explicitly: \(D=\operatorname{Span}\left(X_{1}=\cos \alpha \partial_{x}+\sin \alpha \partial_{y}, X_{2}=\partial_{\alpha}\right)\).
- Note that the skate blade velocity distribution D, as a contact distribution, does not have finite dimensional symmetry algebra.

\section*{Additional geometric ingredients}
- Continuing the example of the skate blade kinematics, we recall that:
- the skate blade configuration space \(M\) is locally \(\mathbb{R}^{2} \times \mathbb{S}^{1}\) with coordinated \((x, y, \alpha)\); the velocity distribution \(D\) is contact, and is defined as the annihilator of the contact form \(\lambda=-\sin \alpha \mathrm{d} x+\cos \alpha \mathrm{d} y\);
- explicitly: \(D=\operatorname{Span}\left(X_{1}=\cos \alpha \partial_{x}+\sin \alpha \partial_{y}, X_{2}=\partial_{\alpha}\right)\).
- Note that the skate blade velocity distribution \(D\), as a contact distribution, does not have finite dimensional symmetry algebra.

\section*{Additional geometric ingredients}
- But...thinking about the skate blade physics one can understand, that we did not captured all geometry of the skate blade configuration space, yet!
- The skater uses two particular moves when skating: he/she uses straight line sliding - this is done by moving along the direction of the vector field \(X_{1}=\cos \alpha \partial_{x}+\sin \alpha \partial_{y}\), and spinning/making pirouettes - this is done by moving along the direction of the vector field \(X_{2}=\partial_{\alpha}\).
- Thus, the geometric structure proper for the skate blade configuration space is a 3-dimensional manifold \(M\), equipped with a contact distribution \(D\), which has a sp lit \(D=D_{1} \oplus D_{2}\) onto two rank \(k=1\) distributions \(D_{1}\) and \(D_{2}\), which are spanned by \(X_{1}\) and \(X_{2}\), respectively.

\section*{Additional geometric ingredients}
- But...thinking about the skate blade physics one can understand, that we did not captured all geometry of the skate blade configuration space, yet!
- The skater uses two particular moves ween skating: he/she uses straight line sliding - this is done by moving along the direction of the vector field \(X_{1}=\cos \alpha \partial_{x}+\sin \alpha \partial_{y}\), and spinning/making pirouettes - this is done by moving along the direction of the vector field \(X_{2}=\partial_{a}\).
- Thus, the geometric structure proper for the skate blade configuration space is a 3-dimensional manifold \(M\), equipped with a contact distribution \(D\), which has a split \(D=D_{1} \oplus D_{2}\) onto two rank \(k=1\) distributions \(D_{1}\) and \(D_{2}\), which are spanned by \(X_{1}\) and \(X_{2}\), respectively.

\section*{Additional geometric ingredients}
- But...thinking about the skate blade physics one can understand, that we did not captured all geometry of the skate blade configuration space, yet!
```

The skater uses two particular moves when skating: he/she
uses straight line sliding - this is done by moving along the
direction of the vector field }\mp@subsup{X}{1}{}=\operatorname{cos}\alpha\mp@subsup{\partial}{x}{}+\operatorname{sin}\alpha\mp@subsup{\partial}{y}{}\mathrm{ , and
spinning/making pirouettes - this is done by moving along
the direction of the vector field

- Thus, the geometric structure proper for the skate blade
configuration space is a 3-dimensional manifold M
equipped with a contact distribution D, which has a split
D= D
which are spanned by }\mp@subsup{X}{1}{}\mathrm{ and }\mp@subsup{X}{2}{}\mathrm{ , respectively.

```

\section*{Additional geometric ingredients}
- But...thinking about the skate blade physics one can understand, that we did not captured all geometry of the skate blade configuration space, yet!
- The skater uses two particular moves when skating:
uses straight line sliding - this is done by moving along the direction of the vector field \(X_{1}=\cos \alpha \partial_{x}+\sin \alpha \partial_{y}\), and spinning/makina pirouettes - this is done by moving alonc the direction of the vector field
- Thus, the geometric structure proper for the skate blade configuration space is a 3-dimensional manifold equipped with a contact distribution \(D\), which has a split \(D=D_{1} \oplus D_{2}\) onto two rank \(k=1\) distributions \(D_{1}\) and \(D_{2}\)
which are spanned by \(X_{1}\) and \(X_{2}\), respectively.

\section*{Additional geometric ingredients}
- But...thinking about the skate blade physics one can understand, that we did not captured all geometry of the skate blade configuration space, yet!
- The skater uses two particular moves when skating: he/she uses straight line sliding - this is done by moving along the direction of the vector field \(X_{1}=\cos \alpha \partial_{x}+\sin \alpha \partial_{y}\), and
spinning/making pirouettes - this is done by moving along
the direction of the vector field \(X_{2}=\partial_{a}\).
Thus, the geometric structure proper for the skate blade
configuration space is a 3-dimensional manifold \(M\),
equipped with a contact distribution \(D\), which has a split
\(D=D_{1} \oplus D_{2}\) onto two rank \(k=1\) distributions \(D_{1}\) and \(D_{2}\),
which are spanned by \(X_{1}\) and \(X_{2}\), respectively.

\section*{Additional geometric ingredients}
- But...thinking about the skate blade physics one can understand, that we did not captured all geometry of the skate blade configuration space, yet!
- The skater uses two particular moves when skating: he/she uses straight line sliding - this is done by moving along the direction of the vector field \(X_{1}=\cos \alpha \partial_{x}+\sin \alpha \partial_{y}\),

\section*{Additional geometric ingredients}
- But...thinking about the skate blade physics one can understand, that we did not captured all geometry of the skate blade configuration space, yet!
- The skater uses two particular moves when skating: he/she uses straight line sliding - this is done by moving along the direction of the vector field \(X_{1}=\cos \alpha \partial_{x}+\sin \alpha \partial_{y}\), and spinning/making pirouettes

\section*{Additional geometric ingredients}
- But...thinking about the skate blade physics one can understand, that we did not captured all geometry of the skate blade configuration space, yet!
- The skater uses two particular moves when skating: he/she uses straight line sliding - this is done by moving along the direction of the vector field \(X_{1}=\cos \alpha \partial_{x}+\sin \alpha \partial_{y}\), and spinning/making pirouettes - this is done by moving along the direction of the vector field \(X_{2}=\partial_{\alpha}\).

\section*{Additional geometric ingredients}
- But...thinking about the skate blade physics one can understand, that we did not captured all geometry of the skate blade configuration space, yet!
- The skater uses two particular moves when skating: he/she uses straight line sliding - this is done by moving along the direction of the vector field \(X_{1}=\cos \alpha \partial_{x}+\sin \alpha \partial_{y}\), and spinning/making pirouettes - this is done by moving along the direction of the vector field \(X_{2}=\partial_{\alpha}\).
- Thus, the geometric structure proper for the skate blade configuration space is a 3-dimensional manifold \(M\),
equipped with a conta
\(D=D_{1} \oplus D_{2}\) onto two
which are spanned by
distributions
and
and
resnectively.

\section*{Additional geometric ingredients}
- But...thinking about the skate blade physics one can understand, that we did not captured all geometry of the skate blade configuration space, yet!
- The skater uses two particular moves when skating: he/she uses straight line sliding - this is done by moving along the direction of the vector field \(X_{1}=\cos \alpha \partial_{x}+\sin \alpha \partial_{y}\), and spinning/making pirouettes - this is done by moving along the direction of the vector field \(X_{2}=\partial_{\alpha}\).
- Thus, the geometric structure proper for the skate blade configuration space is a 3-dimensional manifold \(M\), equipped with a contact distribution \(D\),

\section*{Additional geometric ingredients}
- But...thinking about the skate blade physics one can understand, that we did not captured all geometry of the skate blade configuration space, yet!
- The skater uses two particular moves when skating: he/she uses straight line sliding - this is done by moving along the direction of the vector field \(X_{1}=\cos \alpha \partial_{x}+\sin \alpha \partial_{y}\), and spinning/making pirouettes - this is done by moving along the direction of the vector field \(X_{2}=\partial_{\alpha}\).
- Thus, the geometric structure proper for the skate blade configuration space is a 3-dimensional manifold \(M\), equipped with a contact distribution \(D\), which has a split \(D=D_{1} \oplus D_{2}\) onto two rank \(k=1\) distributions \(D_{1}\) and \(D_{2}\), which are spanned by \(X_{1}\) and \(X_{2}\), respectively.

\section*{Para-CR structures}
- This leads to the following Definition: \(\mathrm{A}(2 m+1)\)-dimensional manifold \(M\) with a contact distribution \(D\) is called a para-CR structure if \(D\) splits onto \(D=D_{1} \oplus D_{2}\), where the distributions \(D_{1}\) and \(D_{2}\), each of the same rank \(m\), are integrable.
- Note that although \(\cap\), and \(n_{2}\) are integrable the distribution \(D\) is not. As we remember it is an annihilitar of a nondegenerate (contact) 1 -form \(\lambda\) such that \(\lambda\)

\(m\) times
- Equivalence relation between two para-CR structures, and their symmetries, are defined similarly, to the equivalences of distributions. E.g. For the equivalence one needs a diffeomorphism \(\phi: M \rightarrow M\) such that \(\phi_{*} D_{1}=\hat{D}_{1}\) and \(\phi_{*} D_{2}=D_{2}\). This, of course, implies \(\phi_{*}(D)=\hat{D}\). Similarly, an infinitesimal symmetry of a para-CR structure is a vector field \(X\) on \(M\) such that \(\left[X, D_{1}\right] \in D_{1}\) and \(\left[X, D_{2}\right] \in D_{2}\). Also, one has the notion of a (local) group/Lie algebra of symmetries.

\section*{Para-CR structures}
- This leads to the following Definition:

A \((2 m+1)\)-dimensional
manifold \(M\) with a contact distribution \(D\) is called a para-CR structure if \(D\) splits onto \(D=D_{1} \oplus D_{2}\), where the distributions \(D_{1}\) and \(D_{2}\), each of the same rank \(m\), are integrable.
- Note that although \(\nabla_{4}\) and \(D_{2}\) are intearable the dist ribution \(D\) is not. As we remember it is an annihilitar of a nondegenerate (contact) 1 -form \(\lambda\) such that

- Equivalence relation between two para-CR structures, and their symmetries, are defined similarly, to the equivalences of distributions. E.g. For the equivalence one needs a diffeomorphism \(\varnothing: M \rightarrow \hat{M}_{1}\) such that \(\sigma_{*} D_{1}=\hat{D}_{1}\) and \(\sigma_{*} D_{2}=\hat{D}_{2}\) This, of course, implies \(\phi_{*}(D)=\hat{D}\). Similarly, an infinitesimal symmetry of a para-CR structure is a vector field \(X\) on \(M\) such that \(\left[X, D_{1}\right] \in D_{1}\) and \(\left[X, D_{2}\right] \in D_{2}\). Also, one has the notion of a (local) group/Lie algebra of symmetries.

\section*{Para-CR structures}
- This leads to the following Definition: A \((2 m+1)\)-dimensional manifold \(M\) with a contact distribution \(D\) is called a para- \(C R\) structure if \(D\) splits onto \(D=D_{1} \oplus D_{2}\), where the distributions \(D_{1}\) and \(D_{2}\), each of the same rank \(m\), are integrable.
- Note that although \(D_{1}\) and \(D_{2}\) are integrable, the distribution \(D\) is not. As we remember it is an annihilitar of a nondegenerate (contact) 1-form \(\lambda\) such that
- Equivalence relation between two para-CR structures, and their symmetries, are defined similarly, to the equivalences of distributions. E.g. For the equivalence one needs a diffeomorphism \(\phi: M \rightarrow \hat{M}\) such that \(\phi_{*} D_{1}=\hat{D}_{1}\) and This, of course, implies \(\phi_{*}(D)=\hat{D}\). Similarly, an infinitesimal symmetry of a para-CR structure is a vector field \(X\) on \(M\) such that \(\left[X, D_{1}\right] \in D_{1}\) and \(\left[X, D_{2}\right] \in D_{2}\). Also, one has the notion of a (local) group/Lie algebra of symmetries.

\section*{Para-CR structures}
- This leads to the following Definition: A \((2 m+1)\)-dimensional manifold \(M\) with a contact distribution \(D\) is called a para- \(C R\) structure if \(D\) splits onto \(D=D_{1} \oplus D_{2}\), where the distributions \(D_{1}\) and \(D_{2}\), each of the same rank \(m\), are integrable.
- Note that although \(D_{1}\) and \(D_{2}\) are integrable, the distribution \(D\) is not.
(contact) 1-form
such that
- Equivalence relation between two para-CR structures, and their symmetries, are defined similarly, to the equivalences of distributions. E.g. For the equivalence one needs a diffeomorphism \(\phi: M \rightarrow M\) such that \(\phi_{*} D_{1}=\hat{D}_{1}\) and This, of course, implies \(D)=\hat{D}\). Similarly, an infinitesimal symmetry of a para-CR structure is a vector field \(X\) on \(M\) such that \(\left[X, D_{1}\right] \in D_{1}\) and \(\left[X, D_{2}\right] \in D_{2}\). Also, one has the notion of a (local) group/Lie algebra of symmetries.

\section*{Para-CR structures}
- This leads to the following Definition: A \((2 m+1)\)-dimensional manifold \(M\) with a contact distribution \(D\) is called a para-CR structure if \(D\) splits onto \(D=D_{1} \oplus D_{2}\), where the distributions \(D_{1}\) and \(D_{2}\), each of the same rank \(m\), are integrable.
- Note that although \(D_{1}\) and \(D_{2}\) are integrable, the distribution \(D\) is not. As we remember it is an annihilitar of a nondegenerate (contact) 1 -form \(\lambda\) such that \(\lambda \wedge \underbrace{d \lambda \wedge d \lambda \wedge \cdots \wedge d \lambda}_{m \text { times }} \neq 0\).

Equivalence relation between two para-CR structures, and their symmetries, are defined similarly, to the equivalences of distributions. E.g. For the equivalence one needs a diffeomorphism This, of course, implies such that symmetry of a para-CR structure is a vector field X on M/ such that \(\left[X, D_{1}\right] \in D_{1}\) and \(\left[X, D_{2}\right] \in D_{2}\). Also, one has the notion of a (local) group/Lie algebra of symmetries.

\section*{Para-CR structures}
- This leads to the following Definition: A \((2 m+1)\)-dimensional manifold \(M\) with a contact distribution \(D\) is called a para-CR structure if \(D\) splits onto \(D=D_{1} \oplus D_{2}\), where the distributions \(D_{1}\) and \(D_{2}\), each of the same rank \(m\), are integrable.
- Note that although \(D_{1}\) and \(D_{2}\) are integrable, the distribution \(D\) is not. As we remember it is an annihilitar of a nondegenerate (contact) 1 -form \(\lambda\) such that \(\lambda \wedge \underbrace{d \lambda \wedge d \lambda \wedge \cdots \wedge d \lambda}_{m \text { times }} \neq 0\).
- Equivalence relation between two para-CR structures, and their

\section*{Para-CR structures}
- This leads to the following Definition: A \((2 m+1)\)-dimensional manifold \(M\) with a contact distribution \(D\) is called a para-CR structure if \(D\) splits onto \(D=D_{1} \oplus D_{2}\), where the distributions \(D_{1}\) and \(D_{2}\), each of the same rank \(m\), are integrable.
- Note that although \(D_{1}\) and \(D_{2}\) are integrable, the distribution \(D\) is not. As we remember it is an annihilitar of a nondegenerate (contact) 1 -form \(\lambda\) such that \(\lambda \wedge \underbrace{d \lambda \wedge d \lambda \wedge \cdots \wedge d \lambda}_{m \text { times }} \neq 0\).
- Equivalence relation between two para-CR structures, and their symmetries, are defined similarly, to the equivalences of distributions.
diffeomorphism
This, of course, implies \(\phi_{*}(D)=\hat{D}\). Similarly, an infinitesimal symmetry of a para-CR structure is a vector field \(X\) on \(M\) such that \(\left[X, D_{1}\right] \in D_{1}\) and \(\left[X, D_{2}\right] \in D_{2}\). Also, one has the notion of a (local) group/Lie algebra of symmetries.

\section*{Para-CR structures}
- This leads to the following Definition: A \((2 m+1)\)-dimensional manifold \(M\) with a contact distribution \(D\) is called a para-CR structure if \(D\) splits onto \(D=D_{1} \oplus D_{2}\), where the distributions \(D_{1}\) and \(D_{2}\), each of the same rank \(m\), are integrable.
- Note that although \(D_{1}\) and \(D_{2}\) are integrable, the distribution \(D\) is not. As we remember it is an annihilitar of a nondegenerate (contact) 1 -form \(\lambda\) such that \(\lambda \wedge \underbrace{d \lambda \wedge d \lambda \wedge \cdots \wedge d \lambda}_{m \text { times }} \neq 0\).
- Equivalence relation between two para-CR structures, and their symmetries, are defined similarly, to the equivalences of distributions. E.g. For the equivalence one needs a diffeomorphism \(\phi: M \rightarrow \hat{M}\) such that \(\phi_{*} D_{1}=\hat{D}_{1}\) and \(\phi_{*} D_{2}=\hat{D}_{2}\). This, of course, implies symmetry of a para-CR structure is a vector field \(X\) on \(M\) such that \(\left[X, D_{1}\right] \in D_{1}\) and \(\left[X, D_{2}\right] \in D_{2}\). Also, one has the notion of a (local) group/Lie algebra of symmetries.

\section*{Para-CR structures}
- This leads to the following Definition: A \((2 m+1)\)-dimensional manifold \(M\) with a contact distribution \(D\) is called a para-CR structure if \(D\) splits onto \(D=D_{1} \oplus D_{2}\), where the distributions \(D_{1}\) and \(D_{2}\), each of the same rank \(m\), are integrable.
- Note that although \(D_{1}\) and \(D_{2}\) are integrable, the distribution \(D\) is not. As we remember it is an annihilitar of a nondegenerate (contact) 1 -form \(\lambda\) such that \(\lambda \wedge \underbrace{d \lambda \wedge d \lambda \wedge \cdots \wedge d \lambda}_{m \text { times }} \neq 0\).
- Equivalence relation between two para-CR structures, and their symmetries, are defined similarly, to the equivalences of distributions. E.g. For the equivalence one needs a diffeomorphism \(\phi: M \rightarrow \hat{M}\) such that \(\phi_{*} D_{1}=\hat{D}_{1}\) and \(\phi_{*} D_{2}=\hat{D}_{2}\). This, of course, implies \(\phi_{*}(D)=\hat{D}\).

\section*{Para-CR structures}
- This leads to the following Definition: A \((2 m+1)\)-dimensional manifold \(M\) with a contact distribution \(D\) is called a para- \(C R\) structure if \(D\) splits onto \(D=D_{1} \oplus D_{2}\), where the distributions \(D_{1}\) and \(D_{2}\), each of the same rank \(m\), are integrable.
- Note that although \(D_{1}\) and \(D_{2}\) are integrable, the distribution \(D\) is not. As we remember it is an annihilitar of a nondegenerate (contact) 1 -form \(\lambda\) such that \(\lambda \wedge \underbrace{d \lambda \wedge d \lambda \wedge \cdots \wedge d \lambda}_{m \text { times }} \neq 0\).
- Equivalence relation between two para-CR structures, and their symmetries, are defined similarly, to the equivalences of distributions. E.g. For the equivalence one needs a diffeomorphism \(\phi: M \rightarrow \hat{M}\) such that \(\phi_{*} D_{1}=\hat{D}_{1}\) and \(\phi_{*} D_{2}=\hat{D}_{2}\). This, of course, implies \(\phi_{*}(D)=\hat{D}\). Similarly, an infinitesimal symmetry of a para-CR structure is a vector field \(X\) on \(M\) such that \(\left[X, D_{1}\right] \in D_{1}\) and \(\left[X, D_{2}\right] \in D_{2}\).
(local) group/Lie algebra of symmetries.

\section*{Para-CR structures}
- This leads to the following Definition: A \((2 m+1)\)-dimensional manifold \(M\) with a contact distribution \(D\) is called a para- \(C R\) structure if \(D\) splits onto \(D=D_{1} \oplus D_{2}\), where the distributions \(D_{1}\) and \(D_{2}\), each of the same rank \(m\), are integrable.
- Note that although \(D_{1}\) and \(D_{2}\) are integrable, the distribution \(D\) is not. As we remember it is an annihilitar of a nondegenerate (contact) 1 -form \(\lambda\) such that \(\lambda \wedge \underbrace{d \lambda \wedge d \lambda \wedge \cdots \wedge d \lambda} \neq 0\).
\(m\) times
- Equivalence relation between two para-CR structures, and their symmetries, are defined similarly, to the equivalences of distributions. E.g. For the equivalence one needs a diffeomorphism \(\phi: M \rightarrow \hat{M}\) such that \(\phi_{*} D_{1}=\hat{D}_{1}\) and \(\phi_{*} D_{2}=\hat{D}_{2}\). This, of course, implies \(\phi_{*}(D)=\hat{D}\). Similarly, an infinitesimal symmetry of a para-CR structure is a vector field \(X\) on \(M\) such that \(\left[X, D_{1}\right] \in D_{1}\) and \(\left[X, D_{2}\right] \in D_{2}\). Also, one has the notion of a (local) group/Lie algebra of symmetries.

\section*{Geometry of maximally nonintegrable distributions}
- Given two bracket generting distribution of the same rank on an \(n\)-dimensional manifold, when one asks about their equivalence, the interesting story begins when \(n=5\) and The simplest class of \(\vec{N}=(2,3,5)\) distributions do has local invariants. There are locally nonequivalent \((2,3,5)\) distributions, the most symmetric of them being locally equivalent to the Cartan-Engel distribution \(D_{C E}\) with split \(g_{2}\) symmetry algebra.
- If the distribution \(D\) has an additional structure, such as e g. the para-CR split \(D=D_{1} \oplus D_{2}\), or other algebraic property, such as e.g. being a symmetric tensorial power \(D=\odot S\) of some vector bundle \(S\), then the local noneqivalence can occur in lower \(n s\) than 5.
- In particular, although 3-dimensional contact distributions are all locally equivalent, there are locally nonequivalent 3-dimensional para-CR structures. It further follows, that the most symmetric of the 3-dimensional para-CR structures is \(\left(M, D=D_{1} \oplus D_{2}\right)\) whose Lie algebra of local symmetries \(\operatorname{aut}\left(D_{1} \oplus D_{2}\right)\) is aut (\(D_{1}\)

\section*{Geometry of maximally nonintegrable distributions}
- Given two bracket generting distribution of the same rank \(k<n\) on an \(n\)-dimensional manifold, when one asks about their equivalence, the interesting story begins when \(n=5\) and \(k=2\).

\section*{Geometry of maximally nonintegrable distributions}
- Given two bracket generting distribution of the same rank \(k<n\) on an \(n\)-dimensional manifold, when one asks about their equivalence, the interesting story begins when \(n=5\) and \(k=2\). The simplest class of \(\vec{N}=(2,3,5)\) distributions do has local invariants.

\section*{Geometry of maximally nonintegrable distributions}
- Given two bracket generting distribution of the same rank \(k<n\) on an \(n\)-dimensional manifold, when one asks about their equivalence, the interesting story begins when \(n=5\) and \(k=2\). The simplest class of \(\vec{N}=(2,3,5)\) distributions do has local invariants. There are locally nonequivalent \((2,3,5)\) distributions,

\section*{Geometry of maximally nonintegrable distributions}
- Given two bracket generting distribution of the same rank \(k<n\) on an \(n\)-dimensional manifold, when one asks about their equivalence, the interesting story begins when \(n=5\) and \(k=2\). The simplest class of \(\vec{N}=(2,3,5)\) distributions do has local invariants. There are locally nonequivalent \((2,3,5)\) distributions, the most symmetric of them being locally equivalent to the Cartan-Engel distribution \(D_{C E}\) with split \(\mathfrak{g}_{2}\) symmetry algebra.

\section*{Geometry of maximally nonintegrable distributions}
- Given two bracket generting distribution of the same rank \(k<n\) on an \(n\)-dimensional manifold, when one asks about their equivalence, the interesting story begins when \(n=5\) and \(k=2\). The simplest class of \(\vec{N}=(2,3,5)\) distributions do has local invariants. There are locally nonequivalent \((2,3,5)\) distributions, the most symmetric of them being locally equivalent to the Cartan-Engel distribution \(D_{C E}\) with split \(\mathfrak{g}_{2}\) symmetry algebra.
- If the distribution \(D\) has an additional structure, \(\qquad\) para-CR split \(D=D_{1} \oplus D_{2}\), or other algebraic property, such as
e.g. being a symmetric tensorial power \(D=\sigma\) of some vector
bundle \(S\), then the local noneqivalence can occur in lower ns
than 5 .
In particular, although 3-dimensional contact distributions are all
locally equivalent, there are locally nonequivalent 3-dimensional
para-CR structures. It further follows, that the most symmetric of
the 3-dimensional para-CR structures is \(\left(M, D=D_{1} \oplus D_{2}\right)\)
whose Lie algebra of local symmetries aut \(\left(D_{1} \oplus D_{2}\right)\) is

\section*{Geometry of maximally nonintegrable distributions}
- Given two bracket generting distribution of the same rank \(k<n\) on an \(n\)-dimensional manifold, when one asks about their equivalence, the interesting story begins when \(n=5\) and \(k=2\). The simplest class of \(\vec{N}=(2,3,5)\) distributions do has local invariants. There are locally nonequivalent \((2,3,5)\) distributions, the most symmetric of them being locally equivalent to the Cartan-Engel distribution \(D_{C E}\) with split \(\mathfrak{g}_{2}\) symmetry algebra.
- If the distribution \(D\) has an additional structure, such as e.g. the para-CR split \(D=D_{1} \oplus D_{2}\),

\section*{Geometry of maximally nonintegrable distributions}
- Given two bracket generting distribution of the same rank \(k<n\) on an \(n\)-dimensional manifold, when one asks about their equivalence, the interesting story begins when \(n=5\) and \(k=2\). The simplest class of \(\vec{N}=(2,3,5)\) distributions do has local invariants. There are locally nonequivalent \((2,3,5)\) distributions, the most symmetric of them being locally equivalent to the Cartan-Engel distribution \(D_{C E}\) with split \(\mathfrak{g}_{2}\) symmetry algebra.
- If the distribution \(D\) has an additional structure, such as e.g. the para-CR split \(D=D_{1} \oplus D_{2}\), or other algebraic property,
bundle \(S\), then the local noneqivalence can occur in lower ns
than 5 .
In particular, although 3-dimensional contact distributions are all locally equivalent, there are locally nonequivalent 3-dimensional para-CR structures. It further follows, that the most symmetric of the 3-dimensional para-CR structures is whose Lie algebra of local symmetries

\section*{Geometry of maximally nonintegrable distributions}
- Given two bracket generting distribution of the same rank \(k<n\) on an \(n\)-dimensional manifold, when one asks about their equivalence, the interesting story begins when \(n=5\) and \(k=2\). The simplest class of \(\vec{N}=(2,3,5)\) distributions do has local invariants. There are locally nonequivalent \((2,3,5)\) distributions, the most symmetric of them being locally equivalent to the Cartan-Engel distribution \(D_{C E}\) with split \(\mathfrak{g}_{2}\) symmetry algebra.
- If the distribution \(D\) has an additional structure, such as e.g. the para-CR split \(D=D_{1} \oplus D_{2}\), or other algebraic property, such as e.g. being a symmetric tensorial power \(D=\odot^{\ell} S\) of some vector bundle \(S\),
than 5.
In particular, although 3-dimensional contact distributions are all locally equivalent, there are locally nonequivalent 3-dimensional para-CR structures. It further follows, that the most symmetric of the 3-dimensional para-CR structures is whose Lie algebra of local symmetries aut \(\left(D_{1} \square_{2}\right)\) is

\section*{Geometry of maximally nonintegrable distributions}
- Given two bracket generting distribution of the same rank \(k<n\) on an \(n\)-dimensional manifold, when one asks about their equivalence, the interesting story begins when \(n=5\) and \(k=2\). The simplest class of \(\vec{N}=(2,3,5)\) distributions do has local invariants. There are locally nonequivalent \((2,3,5)\) distributions, the most symmetric of them being locally equivalent to the Cartan-Engel distribution \(D_{C E}\) with split \(\mathfrak{g}_{2}\) symmetry algebra.
- If the distribution \(D\) has an additional structure, such as e.g. the para-CR split \(D=D_{1} \oplus D_{2}\), or other algebraic property, such as e.g. being a symmetric tensorial power \(D=\odot^{\ell} S\) of some vector bundle \(S\), then the local noneqivalence can occur in lower ns than 5.

> In particular, although 3-dimensional contact distributions are all locally equivalent, there are locally nonequivalent 3-dimensional para-CR structures. It further follows, that the most symmetric of the 3-dimensional para-CR structures is whose Lie algebra of local symmetries aut \(\left(D_{1} \oplus D_{2}\right)\) is

\section*{Geometry of maximally nonintegrable distributions}
- Given two bracket generting distribution of the same rank \(k<n\) on an \(n\)-dimensional manifold, when one asks about their equivalence, the interesting story begins when \(n=5\) and \(k=2\). The simplest class of \(\vec{N}=(2,3,5)\) distributions do has local invariants. There are locally nonequivalent \((2,3,5)\) distributions, the most symmetric of them being locally equivalent to the Cartan-Engel distribution \(D_{C E}\) with split \(\mathfrak{g}_{2}\) symmetry algebra.
- If the distribution \(D\) has an additional structure, such as e.g. the para-CR split \(D=D_{1} \oplus D_{2}\), or other algebraic property, such as e.g. being a symmetric tensorial power \(D=\odot^{\ell} S\) of some vector bundle \(S\), then the local noneqivalence can occur in lower ns than 5.
- In particular, although 3-dimensional contact distributions are all locally equivalent, there are locally nonequivalent 3-dimensional para-CR structures.
the 3-dimensional para-CR structures is
whose Lie algebra of local symmetries

\section*{Geometry of maximally nonintegrable distributions}
- Given two bracket generting distribution of the same rank \(k<n\) on an \(n\)-dimensional manifold, when one asks about their equivalence, the interesting story begins when \(n=5\) and \(k=2\). The simplest class of \(\vec{N}=(2,3,5)\) distributions do has local invariants. There are locally nonequivalent \((2,3,5)\) distributions, the most symmetric of them being locally equivalent to the Cartan-Engel distribution \(D_{C E}\) with split \(\mathfrak{g}_{2}\) symmetry algebra.
- If the distribution \(D\) has an additional structure, such as e.g. the para-CR split \(D=D_{1} \oplus D_{2}\), or other algebraic property, such as e.g. being a symmetric tensorial power \(D=\odot^{\ell} S\) of some vector bundle \(S\), then the local noneqivalence can occur in lower \(n s\) than 5.
- In particular, although 3-dimensional contact distributions are all locally equivalent, there are locally nonequivalent 3-dimensional para-CR structures. It further follows, that the most symmetric of the 3-dimensional para-CR structures is \(\left(M, D=D_{1} \oplus D_{2}\right)\) whose Lie algebra of local symmetries \(\operatorname{aut}\left(D_{1} \oplus D_{2}\right)\) is \(\mathfrak{a u t}\left(D_{1} \oplus D_{2}\right)=\mathfrak{s l}(3, \mathbb{R})\).

\section*{Para-CR structure of the skate blade}
- We already observed that the configuration space \(M\) of the skate blade is naturally equipped with the contact distribution \(D\), which is the blade's velocity distribution. And we also observed that this \(D\) has natural split onto \(D=D_{1} \oplus D_{2}\), where \(D_{1}\) is the 'straight sliding space' and \(D_{2}\) is the 'spinning' space. In our new language the geometry of the skate blade kinematics is the geometry of a 3-dimensional para-CR manifold \(\left(M, D=D_{1} \oplus D_{2}\right)\).
- Also, as we already said, the 3-dimensional para-CR structures have local invariants, there are locally nonequivalent structures of this sort, and there is the most symmetric one among all of them, with the algebra of symmetries being as large as sl(3, R).
- So how to characterize the 3-dim para-CR structure of the configuration space of the skate blade?

\section*{Para-CR structure of the skate blade}
- We already observed that the configuration space \(M\) of the skate blade is naturally equipped with the contact distribution \(D\), which is the blade's velocity distribution.
we also observed that this \(D\) has natural split onto
\(D=D_{1} \oplus D_{2}\), where \(D_{1}\) is the 'straight sliding space' and
\(D_{2}\) is the 'spinning' space. In our new language the
geometry of the skate blade kinematics is the geomet y of a 3-dimensional para-CR manifold
- Also, as we already said, the 3-dimensional para-CR
structures have local invariants, there are locally
nonequivalent structures of this sort, and there is the most
symmetric one among all of them, with the algebra of
symmetries being as large as
- So how to characterize the 3-dim para-CR structure of the configuration space of the skate blade?

\section*{Para-CR structure of the skate blade}
- We already observed that the configuration space \(M\) of the skate blade is naturally equipped with the contact distribution \(D\), which is the blade's velocity distribution. And we also observed that this \(D\) has natural split onto \(D=D_{1} \oplus D_{2}\), where \(D_{1}\) is the 'straight sliding space' and \(D_{2}\) is the 'spinning' space.
geometry of the skate blade kinematics is the geometry of
a 3-dimensional para-CR manifold
- Also, as we already said, the 3-dimensional para-CR
structures have local invariants, there are locally
nonequivalent structures of this sort, and there is the most
symmetric one among all of them, with the algebra of
symmetries being as large as
- So how to characterize the 3-dim para-CR structure of the configuration space of the skate blade?

\section*{Para-CR structure of the skate blade}
- We already observed that the configuration space \(M\) of the skate blade is naturally equipped with the contact distribution \(D\), which is the blade's velocity distribution. And we also observed that this \(D\) has natural split onto \(D=D_{1} \oplus D_{2}\), where \(D_{1}\) is the 'straight sliding space' and \(D_{2}\) is the 'spinning' space. In our new language the geometry of the skate blade kinematics is the geometry of a 3-dimensional para-CR manifold \(\left(M, D=D_{1} \oplus D_{2}\right)\).
Also, as we already said, the 3-dimensional para-CR
structures have local invariants, there are locally
nonequivalent structures of this sort, and there is the most
symmetric one among all of them, with the algebra of
symmetries being as large as
- So how to characterize the 3-dim para-CR structure of the configuration space of the skate blade?

\section*{Para-CR structure of the skate blade}
- We already observed that the configuration space \(M\) of the skate blade is naturally equipped with the contact distribution \(D\), which is the blade's velocity distribution. And we also observed that this \(D\) has natural split onto \(D=D_{1} \oplus D_{2}\), where \(D_{1}\) is the 'straight sliding space' and \(D_{2}\) is the 'spinning' space. In our new language the geometry of the skate blade kinematics is the geometry of a 3-dimensional para-CR manifold (\(M, D=D_{1} \oplus D_{2}\)).
- Also, as we already said, the 3-dimensional para-CR structures have local invariants,
nonequivalent structures of this sort, and there is the most
symmetric one among all of them, with the algebra of
symmetries being as large as
So how to characterize the 3-dim para-CR structure of the configuration space of the skate blade?

\section*{Para-CR structure of the skate blade}
- We already observed that the configuration space \(M\) of the skate blade is naturally equipped with the contact distribution \(D\), which is the blade's velocity distribution. And we also observed that this \(D\) has natural split onto \(D=D_{1} \oplus D_{2}\), where \(D_{1}\) is the 'straight sliding space' and \(D_{2}\) is the 'spinning' space. In our new language the geometry of the skate blade kinematics is the geometry of a 3-dimensional para-CR manifold (\(M, D=D_{1} \oplus D_{2}\)).
- Also, as we already said, the 3-dimensional para-CR structures have local invariants, there are locally nonequivalent structures of this sort, and there is the most
symmetric one among all of them, with the algebra of
symmetries being as large as
So how to characterize the 3-dim para-CR structure of the configuration space of the skate blade?

\section*{Para-CR structure of the skate blade}
- We already observed that the configuration space \(M\) of the skate blade is naturally equipped with the contact distribution \(D\), which is the blade's velocity distribution. And we also observed that this \(D\) has natural split onto \(D=D_{1} \oplus D_{2}\), where \(D_{1}\) is the 'straight sliding space' and \(D_{2}\) is the 'spinning' space. In our new language the geometry of the skate blade kinematics is the geometry of a 3-dimensional para-CR manifold (\(M, D=D_{1} \oplus D_{2}\)).
- Also, as we already said, the 3-dimensional para-CR structures have local invariants, there are locally nonequivalent structures of this sort, and there is the most symmetric one among all of them, with the algebra of symmetries being as large as \(\mathfrak{s l}(3, \mathbb{R})\).

\footnotetext{
So how to characterize the 3-dim para-CR structure of the configuration space of the skate blade?
}

\section*{Para-CR structure of the skate blade}
- We already observed that the configuration space \(M\) of the skate blade is naturally equipped with the contact distribution \(D\), which is the blade's velocity distribution. And we also observed that this \(D\) has natural split onto \(D=D_{1} \oplus D_{2}\), where \(D_{1}\) is the 'straight sliding space' and \(D_{2}\) is the 'spinning' space. In our new language the geometry of the skate blade kinematics is the geometry of a 3-dimensional para-CR manifold (\(M, D=D_{1} \oplus D_{2}\)).
- Also, as we already said, the 3-dimensional para-CR structures have local invariants, there are locally nonequivalent structures of this sort, and there is the most symmetric one among all of them, with the algebra of symmetries being as large as \(\mathfrak{s l}(3, \mathbb{R})\).
- So how to characterize the 3-dim para-CR structure of the configuration space of the skate blade?

\section*{Para-CR structure of the skate blade}
- We already observed that the configuration space \(M\) of the skate blade is naturally equipped with the contact distribution \(D\), which is the blade's velocity distribution. And we also observed that this \(D\) has natural split onto \(D=D_{1} \oplus D_{2}\), where \(D_{1}\) is the 'straight sliding space' and \(D_{2}\) is the 'spinning' space. In our new language the geometry of the skate blade kinematics is the geometry of a 3-dimensional para-CR manifold (\(M, D=D_{1} \oplus D_{2}\)).
- Also, as we already said, the 3-dimensional para-CR structures have local invariants, there are locally nonequivalent structures of this sort, and there is the most symmetric one among all of them, with the algebra of symmetries being as large as \(\mathfrak{s l}(3, \mathbb{R})\).
- So how to characterize the 3-dim para-CR structure of the configuration space of the skate blade?

\section*{Para-CR structure of the skate blade \\ |}

\author{
 \\ \\ is spanned over the reals by the following vector fields \(Y\) \\ NM:
}

Since to define our skate blade we only used the
incidence relation of a point being on a line, then
dissapointing is that the symmetry is NOT larger.
\(\qquad\)

\footnotetext{
Since to define our skate blade we only used the notions of a line, of a point, the tangency, and the incidence relation of a point being on a line, then the structure is obviously \(\mathfrak{s l}(3, \mathbb{R})\) symmetric. What is
symmetric. What is
-
ngency, and the
symmetric. What is --
at is

}
\(\qquad\)
\(\qquad\)
.

\(\qquad\)

\(\qquad\)
\(\square\) (
\(\qquad\)

\section*{Para-CR structure of the skate blade}
- Theorem. The symmetry algebra aut \(\left(D_{1} \oplus D_{2}\right)\) of the para-CR structure \(D=D_{1} \oplus D_{2}\) on the configuration space \(M=\left\{(x, y, \alpha) \mid(x, y) \in \mathbb{R}^{2}, \alpha \in \mathbb{S}^{1}\right\}\) of the skate blade is isomorphic to \(\mathfrak{s l}(3, \mathbb{R})\). It is spanned over the reals by the following vector fields \(Y_{\mu}, \mu=1,2, \ldots, 8\) on M :
\[
\begin{aligned}
& Y_{1}=x^{2} \partial_{x}+y x \partial_{y}-\cos \alpha(x \sin \alpha-y \cos \alpha) \partial_{\alpha}, \\
& Y_{2}=x y \partial_{x}+y^{2} \partial_{y}-\sin \alpha(x \sin \alpha-y \cos \alpha) \partial_{\alpha}, \\
& Y_{3}=-y \partial_{x}+x \partial_{y}+\partial_{\alpha}, \\
& Y_{4}=2 y \partial_{y}+\sin 2 \alpha \partial_{\alpha}, \\
& Y_{5}=y \partial_{x}+x \partial_{y}+\cos 2 \alpha \partial_{\alpha}, \\
& Y_{6}=x \partial_{x}+y \partial_{y}, \\
& Y_{7}=\partial_{x}, \\
& Y_{8}=\partial_{y} .
\end{aligned}
\]
- Since to define our skate blade we only used the notions of a line, of a point, the tangency, and the incidence relation of a point being on a line, then the structure is obviously \(\mathfrak{s l}(3, \mathbb{R})\) symmetric. What is dissapointing is that the symmetry is NOT larger.

\section*{Para-CR structure of the skate blade}

Theorem. The symmetry algebra aut \(\left(D_{1} \oplus D_{2}\right)\) of the para-CR structure \(D=D_{1} \oplus D_{2}\) on the configuration space \(M=\left\{(x, y, \alpha) \mid(x, y) \in \mathbb{R}^{2}, \alpha \in \mathbb{S}^{1}\right\}\) of the skate blade is isomorphic to \(\mathfrak{s l}(3, \mathbb{R})\). It is spanned over the reals by the following vector fields \(Y_{\mu}, \mu=1,2, \ldots, 8\) on \(M\) :
\[
\begin{aligned}
& Y_{1}=x^{2} \partial_{x}+y x \partial_{y}-\cos \alpha(x \sin \alpha-y \cos \alpha) \partial_{\alpha}, \\
& Y_{2}=x y \partial_{x}+y^{2} \partial_{y}-\sin \alpha(x \sin \alpha-y \cos \alpha) \partial_{\alpha}, \\
& Y_{3}=-y \partial_{x}+x \partial_{y}+\partial_{\alpha}, \\
& Y_{4}=2 y \partial_{y}+\sin 2 \alpha \partial_{\alpha}, \\
& Y_{5}=y \partial_{x}+x \partial_{y}+\cos 2 \alpha \partial_{\alpha}, \\
& Y_{6}=x \partial_{x}+y \partial_{y}, \\
& Y_{7}=\partial_{x}, \\
& Y_{8}=\partial_{y} .
\end{aligned}
\]
- Since to define our skate blade we only used the notions of a line, of a point, the tangency, and the incidence relation of a point being on a line, then the structure is obviously \(\mathfrak{s l}(3, \mathbb{R})\) symmetric. dissapointing is that the symmetry is NOT larger.

\section*{Para-CR structure of the skate blade}

Theorem. The symmetry algebra aut \(\left(D_{1} \oplus D_{2}\right)\) of the para-CR structure \(D=D_{1} \oplus D_{2}\) on the configuration space \(M=\left\{(x, y, \alpha) \mid(x, y) \in \mathbb{R}^{2}, \alpha \in \mathbb{S}^{1}\right\}\) of the skate blade is isomorphic to \(\mathfrak{s l}(3, \mathbb{R})\). It is spanned over the reals by the following vector fields \(Y_{\mu}, \mu=1,2, \ldots, 8\) on \(M\) :
\[
\begin{aligned}
& Y_{1}=x^{2} \partial_{x}+y x \partial_{y}-\cos \alpha(x \sin \alpha-y \cos \alpha) \partial_{\alpha}, \\
& Y_{2}=x y \partial_{x}+y^{2} \partial_{y}-\sin \alpha(x \sin \alpha-y \cos \alpha) \partial_{\alpha}, \\
& Y_{3}=-y \partial_{x}+x \partial_{y}+\partial_{\alpha}, \\
& Y_{4}=2 y \partial_{y}+\sin 2 \alpha \partial_{\alpha}, \\
& Y_{5}=y \partial_{x}+x \partial_{y}+\cos 2 \alpha \partial_{\alpha}, \\
& Y_{6}=x \partial_{x}+y \partial_{y}, \\
& Y_{7}=\partial_{x}, \\
& Y_{8}=\partial_{y} .
\end{aligned}
\]
- Since to define our skate blade we only used the notions of a line, of a point, the tangency, and the incidence relation of a point being on a line, then the structure is obviously \(\mathfrak{s l}(3, \mathbb{R})\) symmetric. What is dissapointing is that the symmetry is NOT larger.

\section*{The most symmetric 3-dimensional para-CR structure is the skate blade one}

Figure 1. The root diagram for \(\mathfrak{s l}(3, \mathbb{R})\). The orange roots and the red root, together with the two elements in the Cartan subalgebra, form a 5 -dimensional (parabolic) subalgebra \(\mathfrak{p}\) in \(\mathfrak{s l}(3, \mathbb{R})\). The 3 -dimensional \(\mathbf{S L}(3, \mathbb{R})\) homogeneus space \(M=\mathbf{S L}(3, \mathbb{R}) / \mathrm{P}\), with P being a subgroup of \(\mathbf{S L}(3, \mathbb{R})\) having Lie algebra \(p\), is naturally equipped with the \(\mathbf{S L}(3, \mathbb{R})\) homogeneous para-CR structure, which at every point of \(M\) is in the tangent space identified with \(\operatorname{sl}(3, \mathbb{R}) / \mathbf{p}\). In this space the blue roots represent the contact distribution D. Thhe split in D is represented by the directions spanned by \(\alpha_{10}\) and \(\alpha_{11}\) respectively. The \(\mathrm{D}_{-1}=\) \(\operatorname{Span}\left(\alpha_{10}, \alpha_{11}\right)\), and \(D_{-2}=\operatorname{Span}\left(\alpha_{10}, \alpha_{11}, \alpha_{12}\right)\). This 3-dimensional para-CR structure is the global version of the para-CR structure of the skate blade.

\section*{The most symmetric 3-dimensional para-CR structure is the skate blade one}

Figure 1. The root diagram for \(\mathfrak{s l}(3, \mathbb{R})\). The orange roots and the red root, together with the two elements in the Cartan subalgebra, form a 5 -dimensional (parabolic) subalgebra \(\mathfrak{p}\) in \(\mathfrak{s l}(3, \mathbb{R})\). The 3 -dimensional \(\mathbf{S L}(3, \mathbb{R})\) homogeneus space \(M=\mathbf{S L}(3, \mathbb{R}) / \mathrm{P}\), with P being a subgroup of \(\mathbf{S L}(3, \mathbb{R})\) having Lie algebra \(p\), is naturally equipped with the \(\mathbf{S L}(3, \mathbb{R})\) homogeneous para-CR structure, which at every point of \(M\) is in the tangent space identified with \(\operatorname{sl}(3, \mathbb{R}) / \mathbf{p}\). In this space the blue roots represent the contact distribution D. Thhe split in D is represented by the directions spanned by \(\alpha_{10}\) and \(\alpha_{11}\) respectively. The \(\mathrm{D}_{-1}=\) \(\operatorname{Span}\left(\alpha_{10}, \alpha_{11}\right)\), and \(D_{-2}=\operatorname{Span}\left(\alpha_{10}, \alpha_{11}, \alpha_{12}\right)\). This 3-dimensional para-CR structure is the global version of the para-CR structure of the skate blade.

\section*{Comparizon with \(G_{2}\)}

Figure . Comparizon of the root diagrams for \(\mathfrak{s l}(3, \mathbb{R})\) and \(\mathfrak{g}_{2}\). The addition of, gray, and magenta roots, extends \(\mathfrak{s l}(3, \mathbb{R})\) to be a subalgebra in \(\mathfrak{g}_{2}\). The \(\overrightarrow{\mathrm{N}}=\) \((2,3)\) distribution defining the para-CR structure in \(M=\mathbf{S L}(3, \mathbb{R}) / \mathrm{P}\) of the skate blade, is somehow related to the \(\overrightarrow{\mathrm{N}}=(2,3,5)\) distribution on the \(\mathrm{G}_{2}\)-homogeneous \(\overrightarrow{\mathrm{N}}=(2,3,5)\) distribution D defined on \(\mathrm{M}^{5}=\mathrm{G}_{2} / \mathrm{P}_{1}\). This rank 2 distribution in five dimension is visible in the tangent spaces \(\mathfrak{g}_{2} / p_{1}\) as \(\mathrm{D}=\mathrm{D}_{-1}=\operatorname{Span}\left(\alpha_{10}, \alpha_{11}\right), \mathrm{D}_{-2}=\operatorname{Span}\left(\alpha_{10}, \alpha_{11}, \alpha_{12}\right)\) and \(D_{-3}=\operatorname{Span}\left(\alpha_{10}, \alpha_{11}, \alpha_{12}, \alpha_{1}\right)\).

\section*{Comparizon with \(G_{2}\)}

Figure . Comparizon of the root diagrams for \(\mathfrak{s l}(3, \mathbb{R})\) and \(\mathfrak{g}_{2}\). The addition of, gray, and magenta roots, extends \(\mathfrak{s l}(3, \mathbb{R})\) to be a subalgebra in \(\mathfrak{g}_{2}\). The \(\overrightarrow{\mathrm{N}}=\) \((2,3)\) distribution defining the para-CR structure in \(M=\mathbf{S L}(3, \mathbb{R}) / \mathrm{P}\) of the skate blade, is somehow related to the \(\overrightarrow{\mathrm{N}}=(2,3,5)\) distribution on the \(\mathrm{G}_{2}\)-homogeneous \(\overrightarrow{\mathrm{N}}=(2,3,5)\) distribution D defined on \(\mathrm{M}^{5}=\mathrm{G}_{2} / \mathrm{P}_{1}\). This rank 2 distribution in five dimension is visible in the tangent spaces \(\mathfrak{g}_{2} / p_{1}\) as \(\mathrm{D}=\mathrm{D}_{-1}=\operatorname{Span}\left(\alpha_{10}, \alpha_{11}\right), \mathrm{D}_{-2}=\operatorname{Span}\left(\alpha_{10}, \alpha_{11}, \alpha_{12}\right)\) and \(D_{-3}=\operatorname{Span}\left(\alpha_{10}, \alpha_{11}, \alpha_{12}, \alpha_{1}\right)\).

\section*{Is there something more exciting?}
- Repeted question: Can we realize \(G_{2}\) as a symetry of a mechanical nonholonomic system on the plane? By this I mean that the velocity constraints should be imposed on points/lines contained in the plane.
- To realize such a system, its configuration space should be minimum 5-dimensional: the maximal dimension of the proper subgroups \(H\) in \(G_{2}\) is nine. So the minimal dimension of a homogeneous space \(M^{n}=G_{2} / H\) is \(n=14-9=5\).
- Since a point on the plane \(\vec{r}\) has 2 coordinates, \(\vec{r}=(x, y)\), we need a minimum number of three moving points \(\vec{r}_{i}=\left(x_{i}, y_{i}\right), i=1,2,3\).

\section*{Is there something more exciting?}
- Repeted question: Can we realize \(G_{2}\) as a symetry of a mechanical nonholonomic system on the plane? By this I mean that the velocity constraints should be imposed on points/lines contained in the plane.
- To realize such a system, its configuration space should be minimum 5-dimensional: the maximal dimension of the proper subgroups \(H\) in \(G_{2}\) is nine. So the minimal dimension of a homogeneous space \(M^{n}=G_{2} / H\) is \(n=14-9=5\).
- Since a point on the plane \(\vec{r}\) has 2 coordinates, we need a minimum number of three moving points \(r_{i}=\left(x_{i}, y_{i}\right), i=1,2,3\).

\section*{Is there something more exciting?}
- Repeted question: Can we realize \(G_{2}\) as a symetry of a mechanical nonholonomic system on the plane?
mean that the velocity constraints should be imposed on
points/lines contained in the plane.
- To realize such a system, its configuration space should be minimum 5-dimensional: the maximal dimension of the proper subgroups \(H\) in \(G_{2}\) is nine. So the minimal dimension of a homogeneous space \(M^{n}=G_{2} / H\) is
- Since a point on the plane \(\vec{r}\) has 2 coordinates, we need a minimum number of three moving points

\section*{Is there something more exciting?}
- Repeted question: Can we realize \(G_{2}\) as a symetry of a mechanical nonholonomic system on the plane? By this I mean that the velocity constraints should be imposed on points/lines contained in the plane.
- To realize such a system, its configuration space should be
minimum 5-dimensional: the maximal dimension of the
proper subgroups \(H\) in \(G_{2}\) is nine. So the minimal
dimension of a homogeneous space
- Since a point on the plane \(\vec{r}\) has 2 coordinates, we need a minimum number of three moving points

\section*{Is there something more exciting?}
- Repeted question: Can we realize \(G_{2}\) as a symetry of a mechanical nonholonomic system on the plane? By this I mean that the velocity constraints should be imposed on points/lines contained in the plane.
- To realize such a system, its configuration space should be minimum 5-dimensional:
proper subgroups \(H\) in \(G_{2}\) is nine. So the minimal
dimension of a homogeneous space
- Since a point on the plane \(\vec{r}\) has 2 coordinates, we need a minimum number of three moving points

\section*{Is there something more exciting?}
- Repeted question: Can we realize \(G_{2}\) as a symetry of a mechanical nonholonomic system on the plane? By this I mean that the velocity constraints should be imposed on points/lines contained in the plane.
- To realize such a system, its configuration space should be minimum 5-dimensional: the maximal dimension of the proper subgroups \(H\) in \(G_{2}\) is nine.
- Since a point on the plane \(\vec{r}\) has 2 coordinates, we need a minimum number of three moving points

\section*{Is there something more exciting?}
- Repeted question: Can we realize \(G_{2}\) as a symetry of a mechanical nonholonomic system on the plane? By this I mean that the velocity constraints should be imposed on points/lines contained in the plane.
- To realize such a system, its configuration space should be minimum 5-dimensional: the maximal dimension of the proper subgroups \(H\) in \(G_{2}\) is nine. So the minimal dimension of a homogeneous space \(M^{n}=G_{2} / H\) is \(n=14-9=5\).
- Since a point on the plane \(\vec{r}\) has 2 coordinates, we need a minimum number of three moving points

\section*{Is there something more exciting?}
- Repeted question: Can we realize \(G_{2}\) as a symetry of a mechanical nonholonomic system on the plane? By this I mean that the velocity constraints should be imposed on points/lines contained in the plane.
- To realize such a system, its configuration space should be minimum 5-dimensional: the maximal dimension of the proper subgroups \(H\) in \(G_{2}\) is nine. So the minimal dimension of a homogeneous space \(M^{n}=G_{2} / H\) is \(n=14-9=5\).
- Since a point on the plane \(\vec{r}\) has 2 coordinates, \(\vec{r}=(x, y)\), we need a minimum number of three moving points \(\vec{r}_{i}=\left(x_{i}, y_{i}\right), i=1,2,3\).

\section*{Movement of three ants on the plane}
- Consider a mechanical system of three ants on the floor, which move according to two independent rules:
Rule A - which forces the velocity of any given ant to always point at a neighboring ant, and
Rule B - which forces the velocity of every ant to be parallel to the line defined by the two other ants.

\section*{Movement of three ants on the plane}
- Consider a mechanical system of three ants on the floor, which move according to two independent rules:

\section*{Movement of three ants on the plane}
- Consider a mechanical system of three ants on the floor, which move according to two independent rules:
Rule A - which forces the velocity of any given ant to always point at a neighboring ant,
- which forces the velocity of every ant to be parallel to the line defined by the two other ants.

\section*{Movement of three ants on the plane}
- Consider a mechanical system of three ants on the floor, which move according to two independent rules:
Rule A - which forces the velocity of any given ant to always point at a neighboring ant, and
Rule B - which forces the velocity of every ant to be parallel to the line defined by the two other ants.

\section*{Movement of three ants on the plane}
- Consider a mechanical system of three ants on the floor, which move according to two independent rules:
Rule A - which forces the velocity of any given ant to always point at a neighboring ant, and
Rule B - which forces the velocity of every ant to be parallel to the line defined by the two other ants.

\section*{Movement of three ants on the plane}

In the next lecture, we will observe that Rule A equips the 6-dimensional configuration space of the ants with a structure of a homogeneous \(\bar{N}=(3,6)\) distribution, and that Rule \(B\) foliates this 6-dimensional configuration space onto 5-dimensional leaves, each of which is equiped with a homogeneous \(N=(2,3,5)\) distribution. The symmetry properties and Bryant-Cartan local invariants of these distributions will be determined.

\section*{Movement of three ants on the plane}

In the next lecture, we will observe that Rule A equips the 6-dimensional configuration space of the ants with a structure of a homogeneous \(\vec{N}=(3,6)\) distribution, foliates this 6-dimensional configuration space onto 5-dimensional leaves, each of which is equiped with a homogeneous \(N=(2,3,5)\) distribution. The symmetry properties and Bryant-Cartan local invariants of these distributions will be determined.

\section*{Movement of three ants on the plane}

In the next lecture, we will observe that Rule A equips the 6-dimensional configuration space of the ants with a structure of a homogeneous \(\vec{N}=(3,6)\) distribution, and that Rule \(\mathbf{B}\) foliates this 6-dimensional configuration space onto
5-dimensional leaves, each of which is equiped with a homogeneous \(\vec{N}=(2,3,5)\) distribution.
properties and Bryant-Cartan local invariants of these distributions will be determined.

\section*{Movement of three ants on the plane}

In the next lecture, we will observe that Rule A equips the 6-dimensional configuration space of the ants with a structure of a homogeneous \(\vec{N}=(3,6)\) distribution, and that Rule B foliates this 6-dimensional configuration space onto 5-dimensional leaves, each of which is equiped with a homogeneous \(\vec{N}=(2,3,5)\) distribution. The symmetry properties and Bryant-Cartan local invariants of these distributions will be determined.

\section*{Movement of three ants on the plane: Rule A}
- We have three points in the plane \(\vec{r}_{i}, i=1,2,3\), and we want that

Here and in the following \(i, j=1,2,3\) and \(i+j\) is counted modulo 3.
- This rule in coordinates \(\vec{r}_{i}=\left(x_{i}, y_{i}\right)\) can be written as:

\section*{Movement of three ants on the plane: Rule A}
- We have three points in the plane \(\vec{r}_{i}, i=1,2,3\), and we want that
\[
\frac{\mathrm{d} \vec{r}_{i}}{\mathrm{~d} t} \| \quad\left(\vec{r}_{i+1}-\vec{r}_{i}\right)
\]

Here and in the following \(i, j=1,2,3\) and \(i+j\) is counted modulo 3.
This rule in coordinates \(\vec{r}_{\boldsymbol{r}}=\left(x_{i}, y_{i}\right)\) can be written as:

\section*{Movement of three ants on the plane: Rule A}
- We have three points in the plane \(\vec{r}_{i}, i=1,2,3\), and we want that
\[
\frac{\mathrm{d} \vec{r}_{i}}{\mathrm{~d} t} \| \quad\left(\vec{r}_{i+1}-\vec{r}_{i}\right)
\]

Here and in the following \(i, j=1,2,3\) and \(i+j\) is counted modulo 3.

\section*{Movement of three ants on the plane: Rule A}
- We have three points in the plane \(\vec{r}_{i}, i=1,2,3\), and we want that
\[
\frac{\mathrm{d} \vec{r}_{i}}{\mathrm{~d} t} \| \quad\left(\vec{r}_{i+1}-\vec{r}_{i}\right) .
\]

Here and in the following \(i, j=1,2,3\) and \(i+j\) is counted modulo 3.
- This rule in coordinates \(\vec{r}_{i}=\left(x_{i}, y_{i}\right)\) can be written as:
\[
\left(y_{i+1}-y_{i}\right) \dot{x}_{i}-\left(x_{i+1}-x_{i}\right) \dot{y}_{i}=0, \quad i=1,2,3 .
\]

\section*{Movement of three ants on the plane: Rule A}

In case of rule \(\mathbf{A}\) the distribution \(\mathcal{D}\) of admissible velocities on M is given by the annihilator of the following three 1 -forms:
\[
\omega_{i}=\left(y_{i+1}-y_{i}\right) \mathrm{d} x_{i}-\left(x_{i+1}-x_{i}\right) d y_{i}, \quad i=1,2,3,
\]
or which is the same, is spanned by the three vector fileds
\[
\begin{equation*}
Z_{i}=\left(x_{i+1}-x_{i}\right) \partial_{x_{i}}+\left(y_{i+1}-y_{i}\right) \partial_{y_{i}}, \quad i=1,2,3 \tag{2.1}
\end{equation*}
\]
on M,
\[
\mathcal{D}=\operatorname{Span}\left(Z_{1}, Z_{2}, Z_{3}\right)
\]

Taking the commutators of the vector fields \(Z_{1}, Z_{2}, Z_{3}\) spanning the distribution \(\mathcal{D}\) we get three new vector fields
\[
Z_{i, i+1}=\left[Z_{i}, Z_{i+1}\right]=\left(x_{i+1}-x_{i+2}\right) \partial_{x_{1}}+\left(y_{i+1}-y_{i+2}\right) \partial_{y_{i}}, \quad i=1,2,3
\]

Now, calculating \(Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}\), one gets
\[
Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}=\left(\sum_{i=1}^{3}\left(y_{i} x_{i+1}-x_{i} y_{i+1}\right)\right)^{3} \partial_{x_{1}} \wedge \partial_{y_{1}} \wedge \partial_{x_{2}} \wedge \partial_{y_{2}} \wedge \partial_{x_{3}} \wedge \partial_{y_{s}}
\]
so it follows that the six vector fields \(Z_{1}, Z_{2}, Z_{3}, Z_{12}, Z_{31}, Z_{23}\) are linearly independent at each point \(m\) of the configuration space \(M\) everywhere, except the points on the singular locus, where coordinates of \(m\) satisfy
\[
\begin{equation*}
32 A=\sum_{i=1}^{3}\left(y_{i} x_{i+1}-x_{i} y_{i+1}\right)=0 \tag{2.2}
\end{equation*}
\]

Since the number A defined above is the area of the triangle having the three ants as its vertices, we see that the velocity distribution \(\mathcal{D}\) of the three ants moving under rule \(\mathbf{A}\) has a growth vector \((3,6)\) everywhere, except the configuration points corresponding to the three ants staying on a line.

\section*{Movement of three ants on the plane: Rule A}

In case of rule \(\mathbf{A}\) the distribution \(\mathcal{D}\) of admissible velocities on M is given by the annihilator of the following three 1 -forms:
\[
\omega_{i}=\left(y_{i+1}-y_{i}\right) \mathrm{d} x_{i}-\left(x_{i+1}-x_{i}\right) d y_{i}, \quad i=1,2,3,
\]
or which is the same, is spanned by the three vector fileds
\[
\begin{equation*}
Z_{i}=\left(x_{i+1}-x_{i}\right) \partial_{x_{i}}+\left(y_{i+1}-y_{i}\right) \partial_{y_{i}}, \quad i=1,2,3 \tag{2.1}
\end{equation*}
\]
on M,
\[
\mathcal{D}=\operatorname{Span}\left(Z_{1}, Z_{2}, Z_{3}\right)
\]

Taking the commutators of the vector fields \(Z_{1}, Z_{2}, Z_{3}\) spanning the distribution \(\mathcal{D}\) we get three new vector fields
\[
Z_{i, i+1}=\left[Z_{i}, Z_{i+1}\right]=\left(x_{i+1}-x_{i+2}\right) \partial_{x_{1}}+\left(y_{i+1}-y_{i+2}\right) \partial_{y_{i}}, \quad i=1,2,3
\]

Now, calculating \(Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}\), one gets
\[
Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}=\left(\sum_{i=1}^{3}\left(y_{i} x_{i+1}-x_{i} y_{i+1}\right)\right)^{3} \partial_{x_{1}} \wedge \partial_{y_{1}} \wedge \partial_{x_{2}} \wedge \partial_{y_{2}} \wedge \partial_{x_{3}} \wedge \partial_{y_{s}}
\]
so it follows that the six vector fields \(Z_{1}, Z_{2}, Z_{3}, Z_{12}, Z_{31}, Z_{23}\) are linearly independent at each point \(m\) of the configuration space \(M\) everywhere, except the points on the singular locus, where coordinates of \(m\) satisfy
\[
\begin{equation*}
32 A=\sum_{i=1}^{3}\left(y_{i} x_{i+1}-x_{i} y_{i+1}\right)=0 \tag{2.2}
\end{equation*}
\]

Since the number A defined above is the area of the triangle having the three ants as its vertices, we see that the velocity distribution \(\mathcal{D}\) of the three ants moving under rule \(\mathbf{A}\) has a growth vector \((3,6)\) everywhere, except the configuration points corresponding to the three ants staying on a line.

\title{
Movement of three ants on the plane: Rule B
}
- We have three points in the plane \(\vec{r}_{i}, i=1,2,3\), and now we want that

Here again \(i, j=1,2,3\) and \(i+j\) is counted modulo 3.
- This rule in coordinates \(\vec{r}_{i}=\left(x_{i} v_{i}\right)\) can be written as:

\section*{Movement of three ants on the plane: Rule B}
- We have three points in the plane \(\vec{r}_{i}, i=1,2,3\), and now we want that
\[
\frac{\mathrm{d} \vec{r}_{i}}{\mathrm{~d} t} \| \quad\left(\vec{r}_{i+1}-\vec{r}_{i+2}\right) .
\]

Here again \(i, j=1,2,3\) and \(i+j\) is counted modulo 3.
- This rule in coordinates \(\vec{r}_{i}=\left(x_{i}, y_{i}\right)\) can be written as:

\section*{Movement of three ants on the plane: Rule B}
- We have three points in the plane \(\vec{r}_{i}, i=1,2,3\), and now we want that
\[
\frac{\mathrm{d} \vec{r}_{i}}{\mathrm{~d} t} \| \quad\left(\vec{r}_{i+1}-\vec{r}_{i+2}\right)
\]

Here again \(i, j=1,2,3\) and \(i+j\) is counted modulo 3.

\section*{Movement of three ants on the plane: Rule B}
- We have three points in the plane \(\vec{r}_{i}, i=1,2,3\), and now we want that
\[
\frac{\mathrm{d} \vec{r}_{i}}{\mathrm{~d} t} \|\left(\vec{r}_{i+1}-\vec{r}_{i+2}\right) .
\]

Here again \(i, j=1,2,3\) and \(i+j\) is counted modulo 3.
- This rule in coordinates \(\vec{r}_{i}=\left(x_{i}, y_{i}\right)\) can be written as:
\[
\left(y_{i+1}-y_{i+2}\right) \dot{x}_{i}-\left(x_{i+1}-x_{i+2}\right) \dot{y}_{i}=0, \quad i=1,2,3 .
\]

\section*{Movement of three ants on the plane: Rule B}

Now, applying rule \(\mathbf{B}\) to the movement of the three ants, we find that their velocity distribution \(\mathcal{D}\) is given by the annihilator of the three Pfaffian forms
\[
\omega_{i}=\left(y_{i+1}-y_{i+2}\right) d x_{i}-\left(x_{i+1}-x_{i+2}\right) d y_{i}, \quad i=1,2,3 .
\]

It can be spanned by the three vector fileds
\[
\begin{equation*}
z_{i}=\left(x_{i+1}-x_{i+2}\right) \partial_{x_{i}}+\left(y_{i+1}-y_{i+2}\right) \partial_{y_{i}}, \quad i=1,2,3 \tag{3.1}
\end{equation*}
\]
on M,
\[
\mathcal{D}=\operatorname{Span}\left(Z_{1}, Z_{2}, Z_{3}\right) .
\]

The commutators of the vector fields \(Z_{1}, Z_{2}, Z_{3}\) spanning \(\mathcal{D}\) are
(3.2)
\(Z_{i, i+1}=\left[Z_{i}, Z_{i+1}\right]=\left(x_{i}-x_{i+2}\right) \partial_{x_{i}}+\left(x_{i+2}-x_{i+1}\right) \partial_{x_{i+1}}+\left(y_{i}-y_{i+2}\right) \partial_{y_{i}}+\left(y_{i+2}-y_{i+1}\right) \partial_{y_{i+1}}, \quad i=1,2,3\).

\section*{Movement of three ants on the plane: Rule B}

Now, applying rule \(\mathbf{B}\) to the movement of the three ants, we find that their velocity distribution \(\mathcal{D}\) is given by the annihilator of the three Pfaffian forms
\[
\omega_{i}=\left(y_{i+1}-y_{i+2}\right) d x_{i}-\left(x_{i+1}-x_{i+2}\right) d y_{i}, \quad i=1,2,3 .
\]

It can be spanned by the three vector fileds
\[
\begin{equation*}
z_{i}=\left(x_{i+1}-x_{i+2}\right) \partial_{x_{i}}+\left(y_{i+1}-y_{i+2}\right) \partial_{y_{i}}, \quad i=1,2,3 \tag{3.1}
\end{equation*}
\]
on M,
\[
\mathcal{D}=\operatorname{Span}\left(Z_{1}, Z_{2}, Z_{3}\right) .
\]

The commutators of the vector fields \(Z_{1}, Z_{2}, Z_{3}\) spanning \(\mathcal{D}\) are
(3.2)
\(Z_{i, i+1}=\left[Z_{i}, Z_{i+1}\right]=\left(x_{i}-x_{i+2}\right) \partial_{x_{i}}+\left(x_{i+2}-x_{i+1}\right) \partial_{x_{i+1}}+\left(y_{i}-y_{i+2}\right) \partial_{y_{i}}+\left(y_{i+2}-y_{i+1}\right) \partial_{y_{i+1}}, \quad i=1,2,3\).

\section*{Movement of three ants on the plane: Rule B}

And now the story is different than in the case of rule \(\mathbf{A}\). Calculating \(Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}\), one gets
\[
Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}=0
\]

So the rank of the derived distribution \(\mathcal{D}^{\prime}=[\mathcal{D}, \mathcal{D}]+\mathcal{D}\) is smaller than 6 . The velocity distribution \(\mathcal{D}\) for the rule B is not bracket generating! Actually one easilly finds that there is precisely one linear relation between the vector fields \(\left(Z_{1}, Z_{2}, Z_{2}, Z_{12}, Z_{31}, Z_{23}\right)\), namely
\[
\begin{equation*}
Z_{1}+Z_{2}+Z_{3}+Z_{12}+Z_{31}+Z_{23}=0 . \tag{3.3}
\end{equation*}
\]

This shows that the velocity distribution \(\mathcal{D}\) for the ants moving under rule \(\mathbf{B}\) has the growth vector \((3,5)\). The first derived distribution \(\mathcal{D}^{1}\) has rank 5 and is integrable! The 6 -dimensional configuration space \(M\) of ants being in a motion obeying rule \(\mathbf{B}\) is foliated by 5 -dimensional leaves. Once ants are in the configuration belonging to a given 5 -dimensional leaf in \(M\) they can not leave this leaf by moving according rule B !

Now the question arises about the function that enumerates the leaves of the foliation of the distribution \(\mathcal{D}^{1}\). What is the feature of motion of the ants whose preservation forces the ants to stay on a given leaf?

\section*{Movement of three ants on the plane: Rule B}

And now the story is different than in the case of rule \(\mathbf{A}\). Calculating \(Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}\), one gets
\[
Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}=0
\]

So the rank of the derived distribution \(\mathcal{D}^{\prime}=[\mathcal{D}, \mathcal{D}]+\mathcal{D}\) is smaller than 6 . The velocity distribution \(\mathcal{D}\) for the rule B is not bracket generating! Actually one easilly finds that there is precisely one linear relation between the vector fields \(\left(Z_{1}, Z_{2}, Z_{2}, Z_{12}, Z_{31}, Z_{23}\right)\), namely
\[
\begin{equation*}
Z_{1}+Z_{2}+Z_{3}+Z_{12}+Z_{31}+Z_{23}=0 . \tag{3.3}
\end{equation*}
\]

This shows that the velocity distribution \(\mathcal{D}\) for the ants moving under rule \(\mathbf{B}\) has the growth vector \((3,5)\). The first derived distribution \(\mathcal{D}^{1}\) has rank 5 and is integrable! The 6 -dimensional configuration space \(M\) of ants being in a motion obeying rule \(\mathbf{B}\) is foliated by 5 -dimensional leaves. Once ants are in the configuration belonging to a given 5 -dimensional leaf in \(M\) they can not leave this leaf by moving according rule B !

Now the question arises about the function that enumerates the leaves of the foliation of the distribution \(\mathcal{D}^{1}\). What is the feature of motion of the ants whose preservation forces the ants to stay on a given leaf?

\title{
Simple nonholonomic systems on the plane. Part 2
}

\author{
Pawel Nurowski
}

Center for Theoretical Physics
Polish Academy of Sciences
and
Mathematics Program
Guangdong Technion - Israel Insititute of Technology

Hawa 21.08.2021
This is a joint work with

\section*{Andrei Agrachov}

\section*{Movement of three ants on the plane}
- Consider a mechanical system of three ants on the floor, which move according to two independent rules:
Rule A - which forces the velocity of any given ant to always point at a neighboring ant, and
Rule B - which forces the velocity of every ant to be parallel to the line defined by the two other ants.

\section*{Movement of three ants on the plane}
- Consider a mechanical system of three ants on the floor, which move according to two independent rules:

\section*{Movement of three ants on the plane}
- Consider a mechanical system of three ants on the floor, which move according to two independent rules:
Rule A - which forces the velocity of any given ant to always point at a neighboring ant,
Rule B - which forces the velocity of every ant to be parallel to the line defined by the two other ants.

\section*{Movement of three ants on the plane}
- Consider a mechanical system of three ants on the floor, which move according to two independent rules:
Rule A - which forces the velocity of any given ant to always point at a neighboring ant, and
Rule B - which forces the velocity of every ant to be parallel to the line defined by the two other ants.

\section*{Movement of three ants on the plane}
- Consider a mechanical system of three ants on the floor, which move according to two independent rules:
Rule A - which forces the velocity of any given ant to always point at a neighboring ant, and
Rule B - which forces the velocity of every ant to be parallel to the line defined by the two other ants.

\section*{Movement of three ants on the plane: Rule A}
- We have three points in the plane \(\vec{r}_{i}, i=1,2,3\), and we want that

Here and in the following \(i, j=1,2,3\), and \(i+j\) is counted modulo 3.
- We can parametrize the configuration space \(M\) by coordinates \(\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)\) of the three points \(\vec{r}_{i}=\left(x_{i}, y_{i}\right)\) in a chosen Cartesian coordinate system on the plane. In this parametrization the movement of the system of ants is described in terms of a curve
\(q(t)=\left(x_{1}(t), y_{1}(t), x_{2}(t), y_{2}(t), x_{3}(t), y_{3}(t)\right)\), and its velocity
at time \(t\) is given by
- In these coordinates the above rule A becomes:

\section*{Movement of three ants on the plane: Rule A}
- We have three points in the plane \(\vec{r}_{i}, i=1,2,3\), and we want that
\[
\frac{\mathrm{d} \vec{r}_{i}}{\mathrm{~d} t} \| \quad\left(\vec{r}_{i+1}-\vec{r}_{i}\right) .
\]

Here and in the following \(i, j=1,2,3\), and \(i+j\) is counted modulo 3.
- We can parametrize the configuration space M by coordinates \(\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)\) of the three points in a chosen Cartesian coordinate system on the plane. In this parametrization the movement of the system of ants is described in terms of a curve \(q(t)=\left(x_{1}(t), y_{1}(t), x_{2}(t), y_{2}(t), x_{3}(t), y_{3}(t)\right)\), and its velocity at time \(t\) is given by
- In these coordinates the above rule A becomes:

\section*{Movement of three ants on the plane: Rule A}
- We have three points in the plane \(\vec{r}_{i}, i=1,2,3\), and we want that
\[
\frac{\mathrm{d} \vec{r}_{i}}{\mathrm{~d} t} \| \quad\left(\vec{r}_{i+1}-\vec{r}_{i}\right)
\]

Here and in the following \(i, j=1,2,3\), and \(i+j\) is counted modulo 3.
```

- We can parametrize the configuration space M by
coordinates ( }\mp@subsup{x}{1}{},\mp@subsup{y}{1}{},\mp@subsup{x}{2}{},\mp@subsup{y}{2}{},\mp@subsup{x}{3}{},\mp@subsup{y}{3}{})\mathrm{ of the three points
in a chosen Cartesian coordinate system
on the plane. In this parametrization the movement of the
system of ants is described in terms of a curve
at time t is given by
- In these coordinates the above rule A becomes:

```

\section*{Movement of three ants on the plane: Rule A}
- We have three points in the plane \(\vec{r}_{i}, i=1,2,3\), and we want that
\[
\frac{\mathrm{d} \vec{r}_{i}}{\mathrm{~d} t} \| \quad\left(\vec{r}_{i+1}-\vec{r}_{i}\right)
\]

Here and in the following \(i, j=1,2,3\), and \(i+j\) is counted modulo 3.
- We can parametrize the configuration space \(M\) by coordinates \(\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)\) of the three points \(\vec{r}_{i}=\left(x_{i}, y_{i}\right)\) in a chosen Cartesian coordinate system \((x, y)\) on the plane.
system of ants is described in terms of a curve
and its velocity
at time \(t\) is given by
- In these coordinates the above rule A becomes:

\section*{Movement of three ants on the plane: Rule A}
- We have three points in the plane \(\vec{r}_{i}, i=1,2,3\), and we want that
\[
\frac{\mathrm{d} \vec{r}_{i}}{\mathrm{~d} t} \| \quad\left(\vec{r}_{i+1}-\vec{r}_{i}\right)
\]

Here and in the following \(i, j=1,2,3\), and \(i+j\) is counted modulo 3.
- We can parametrize the configuration space \(M\) by coordinates \(\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)\) of the three points \(\vec{r}_{i}=\left(x_{i}, y_{i}\right)\) in a chosen Cartesian coordinate system \((x, y)\) on the plane. In this parametrization the movement of the system of ants is described in terms of a curve \(q(t)=\left(x_{1}(t), y_{1}(t), x_{2}(t), y_{2}(t), x_{3}(t), y_{3}(t)\right)\), at time \(t\) is given by
- In these coordinates the above rule A becomes:

\section*{Movement of three ants on the plane: Rule A}
- We have three points in the plane \(\vec{r}_{i}, i=1,2,3\), and we want that
\[
\frac{\mathrm{d} \vec{r}_{i}}{\mathrm{~d} t} \| \quad\left(\vec{r}_{i+1}-\vec{r}_{i}\right)
\]

Here and in the following \(i, j=1,2,3\), and \(i+j\) is counted modulo 3.
- We can parametrize the configuration space \(M\) by coordinates \(\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)\) of the three points \(\vec{r}_{i}=\left(x_{i}, y_{i}\right)\) in a chosen Cartesian coordinate system \((x, y)\) on the plane. In this parametrization the movement of the system of ants is described in terms of a curve \(q(t)=\left(x_{1}(t), y_{1}(t), x_{2}(t), y_{2}(t), x_{3}(t), y_{3}(t)\right)\), and its velocity at time \(t\) is given by
\(\dot{q}(t)=\left(\dot{x}_{1}(t), \dot{y}_{1}(t), \dot{x}_{2}(t), \dot{y}_{2}(t), \dot{x}_{3}(t), \dot{y}_{3}(t)\right)\).

\section*{Movement of three ants on the plane: Rule A}
- We have three points in the plane \(\vec{r}_{i}, i=1,2,3\), and we want that
\[
\frac{\mathrm{d} \vec{r}_{i}}{\mathrm{~d} t} \| \quad\left(\vec{r}_{i+1}-\vec{r}_{i}\right)
\]

Here and in the following \(i, j=1,2,3\), and \(i+j\) is counted modulo 3.
- We can parametrize the configuration space \(M\) by coordinates \(\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)\) of the three points \(\vec{r}_{i}=\left(x_{i}, y_{i}\right)\) in a chosen Cartesian coordinate system \((x, y)\) on the plane. In this parametrization the movement of the system of ants is described in terms of a curve \(q(t)=\left(x_{1}(t), y_{1}(t), x_{2}(t), y_{2}(t), x_{3}(t), y_{3}(t)\right)\), and its velocity at time \(t\) is given by
\(\dot{q}(t)=\left(\dot{x}_{1}(t), \dot{y}_{1}(t), \dot{x}_{2}(t), \dot{y}_{2}(t), \dot{x}_{3}(t), \dot{y}_{3}(t)\right)\).
- In these coordinates the above rule \(\mathbf{A}\) becomes:
\[
\left(y_{i+1}-y_{i}\right) \dot{x}_{i}-\left(x_{i+1}-x_{i}\right) \dot{y}_{i}=0, \quad i=1,2,3 .
\]

\section*{Movement of three ants on the plane: Rule A}
- Equivalently, we can say that the curves \(q(t)\) drawn in \(M\) by the ants obeying rule A must be horizontal with respect to the velocity distribution \(D\), which annihilates the following three 1 -forms on \(M\) :

Saying it differently, the velocities of these curves should be spanned by the three vector fileds
on \(M\). So the velocity distribution of the ants is given by \(D=\operatorname{Span}\left(Z_{1}, Z_{2}, Z_{3}\right)\).
- Taking the commutators of the vector fields \(Z_{1}, Z_{2}, Z_{3}\) spanning the distribution \(D\) we get three new vector fields

\section*{Movement of three ants on the plane: Rule A}
- Equivalently, we can say that the curves \(q(t)\) drawn in \(M\) by the ants obeying rule A must be horizontal with respect to the velocity distribution \(D\), which annihilates the following three 1 -forms on \(M\) :
\[
\omega_{i}=\left(y_{i+1}-y_{i}\right) \mathrm{d} x_{i}-\left(x_{i+1}-x_{i}\right) \mathrm{d} y_{i}, \quad i=1,2,3 .
\]

Saying it differently, the velocities of these curves should be spanned by the three vector fileds
on \(M\). So the velocity distribution of the ants is given by
- Taking the commutators of the vector fields \(Z_{1}, Z_{2}, Z_{3}\) spanning the distribution \(D\) we get three new vector fields

\section*{Movement of three ants on the plane: Rule A}
- Equivalently, we can say that the curves \(q(t)\) drawn in \(M\) by the ants obeying rule A must be horizontal with respect to the velocity distribution \(D\), which annihilates the following three 1-forms on \(M\) :
\[
\omega_{i}=\left(y_{i+1}-y_{i}\right) \mathrm{d} x_{i}-\left(x_{i+1}-x_{i}\right) \mathrm{d} y_{i}, \quad i=1,2,3 .
\]

Saying it differently, the velocities of these curves should be spanned by the three vector fileds
\[
z_{i}=\left(x_{i+1}-x_{i}\right) \partial_{x_{i}}+\left(y_{i+1}-y_{i}\right) \partial_{y_{i}}, \quad i=1,2,3
\]
on \(M\). So the velocity distribution of the ants is given by
- Taking the commutators of the vector fields \(Z_{1}, Z_{2}, Z_{3}\) spanning the distribution \(D\) we get three new vector fields

\section*{Movement of three ants on the plane: Rule A}
- Equivalently, we can say that the curves \(q(t)\) drawn in \(M\) by the ants obeying rule A must be horizontal with respect to the velocity distribution \(D\), which annihilates the following three 1-forms on \(M\) :
\[
\omega_{i}=\left(y_{i+1}-y_{i}\right) \mathrm{d} x_{i}-\left(x_{i+1}-x_{i}\right) \mathrm{d} y_{i}, \quad i=1,2,3 .
\]

Saying it differently, the velocities of these curves should be spanned by the three vector fileds
\[
z_{i}=\left(x_{i+1}-x_{i}\right) \partial_{x_{i}}+\left(y_{i+1}-y_{i}\right) \partial_{y_{i}}, \quad i=1,2,3
\]
on \(M\). So the velocity distribution of the ants is given by \(D=\operatorname{Span}\left(Z_{1}, Z_{2}, Z_{3}\right)\).
- Taking the commutators of the vector fields \(Z_{1}, Z_{2}, Z_{3}\) spanning the distribution \(D\) we get three new vector fields

\section*{Movement of three ants on the plane: Rule A}
- Equivalently, we can say that the curves \(q(t)\) drawn in \(M\) by the ants obeying rule A must be horizontal with respect to the velocity distribution \(D\), which annihilates the following three 1-forms on \(M\) :
\[
\omega_{i}=\left(y_{i+1}-y_{i}\right) \mathrm{d} x_{i}-\left(x_{i+1}-x_{i}\right) \mathrm{d} y_{i}, \quad i=1,2,3 .
\]

Saying it differently, the velocities of these curves should be spanned by the three vector fileds
\[
z_{i}=\left(x_{i+1}-x_{i}\right) \partial_{x_{i}}+\left(y_{i+1}-y_{i}\right) \partial_{y_{i}}, \quad i=1,2,3
\]
on \(M\). So the velocity distribution of the ants is given by \(D=\operatorname{Span}\left(Z_{1}, Z_{2}, Z_{3}\right)\).
- Taking the commutators of the vector fields \(Z_{1}, Z_{2}, Z_{3}\) spanning the distribution \(D\) we get three new vector fields
\[
z_{i, i+1}=\left[z_{i}, z_{i+1}\right]=\left(x_{i+1}-x_{i+2}\right) \partial_{x_{i}}+\left(y_{i+1}-y_{i+2}\right) \partial_{y_{i}}, \quad i=1,2,3 .
\]

\section*{Movement of three ants on the plane: Rule A}
- Now, calculating \(Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}\), we get
so it follows that the six vector fields \(Z_{1}, Z_{2}, Z_{3}, Z_{12}, Z_{31}, Z_{23}\) are linearly independent at each point \(q\) of the configuration space \(M\) everywhere, except the points on the singular locus, where coordinates of \(q\) satisfy
- Since the number A defined above is the area of the triangle having the three ants as its vertices, we see that the velocity distribution \(D\) of the three ants moving under rule A has a growth vector \((3,6)\) everywhere, except the configuration points corresponding to the three ants staying on a line.

\section*{Movement of three ants on the plane: Rule A}
- Now, calculating \(Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}\), we get
\[
\begin{aligned}
& Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}= \\
& \left(\sum_{i=1}^{3}\left(y_{i} x_{i+1}-x_{i} y_{i+1}\right)\right)^{3} \partial_{x_{1}} \wedge \partial_{y_{1}} \wedge \partial_{x_{2}} \wedge \partial_{y_{2}} \wedge \partial_{x_{3}} \wedge \partial_{y_{3}}^{\prime}
\end{aligned}
\]
so it follows that the six vector fields \(Z_{1}, Z_{2}, Z_{3}, Z_{12}, Z_{31}, Z_{23}\) are linearly independent at each point \(q\) of the configuration space \(M\) everywhere, except the points on the singular locus, where coordinates of q satisfy
- Since the number A defined above is the area of the triangle having the three ants as its vertices, we see that the velocity distribution \(D\) of the three ants moving under rule A has a growth vector \((3,6)\) everywhere, except the configuration points corresponding to the three ants staying on a line.

\section*{Movement of three ants on the plane: Rule A}
- Now, calculating \(Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}\), we get
\[
\begin{aligned}
& Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}= \\
& \left(\sum_{i=1}^{3}\left(y_{i} x_{i+1}-x_{i} y_{i+1}\right)\right)^{3} \partial_{x_{1}} \wedge \partial_{y_{1}} \wedge \partial_{x_{2}} \wedge \partial_{y_{2}} \wedge \partial_{x_{3}} \wedge \partial_{y_{3}}^{\prime}
\end{aligned}
\]
so it follows that the six vector fields \(Z_{1}, Z_{2}, Z_{3}, Z_{12}, Z_{31}, Z_{23}\) are linearly independent at each point \(q\) of the configuration space \(M\) everywhere, except the points on the singular locus, where coordinates of \(q\) satisfy
- Since the number A defined above is the area of the triangle having the three ants as its vertices, we see that the velocity distribution \(D\) of the three ants moving under rule \(A\) has a growth vector \((3,6)\) everywhere, except the configuration points corresponding to the three ants staying on a line.

\section*{Movement of three ants on the plane: Rule A}
- Now, calculating \(Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}\), we get
\[
\begin{aligned}
& Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}= \\
& \left(\sum_{i=1}^{3}\left(y_{i} x_{i+1}-x_{i} y_{i+1}\right)\right)^{3} \partial_{x_{1}} \wedge \partial_{y_{1}} \wedge \partial_{x_{2}} \wedge \partial_{y_{2}} \wedge \partial_{x_{3}} \wedge \partial_{y_{3}}
\end{aligned}
\]
so it follows that the six vector fields \(Z_{1}, Z_{2}, Z_{3}, Z_{12}, Z_{31}, Z_{23}\) are linearly independent at each point \(q\) of the configuration space \(M\) everywhere, except the points on the singular locus, where coordinates of \(q\) satisfy
\[
32 A=\sum_{i=1}^{3}\left(y_{i} x_{i+1}-x_{i} y_{i+1}\right)=0
\]
- Since the number A defined above is the area of the triangle having the three ants as its vertices, we see that the velocity distribution \(D\) of the three ants moving under rule \(A\) has a growth vector \((3,6)\) everywhere, except the configuration points corresponding to the three ants staying on a line.

\section*{Movement of three ants on the plane: Rule A}
- Now, calculating \(Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}\), we get
\[
\begin{aligned}
& Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}= \\
& \left(\sum_{i=1}^{3}\left(y_{i} x_{i+1}-x_{i} y_{i+1}\right)\right)^{3} \partial_{x_{1}} \wedge \partial_{y_{1}} \wedge \partial_{x_{2}} \wedge \partial_{y_{2}} \wedge \partial_{x_{3}} \wedge \partial_{y_{3}}^{\prime}
\end{aligned}
\]
so it follows that the six vector fields \(Z_{1}, Z_{2}, Z_{3}, Z_{12}, Z_{31}, Z_{23}\) are linearly independent at each point \(q\) of the configuration space \(M\) everywhere, except the points on the singular locus, where coordinates of \(q\) satisfy
\[
32 A=\sum_{i=1}^{3}\left(y_{i} x_{i+1}-x_{i} y_{i+1}\right)=0
\]
- Since the number \(A\) defined above is the area of the triangle having the three ants as its vertices, we see that the velocity distribution \(D\) of the three ants moving under rule \(\mathbf{A}\) has a growth vector \((3,6)\) everywhere, except the configuration points corresponding to the three ants staying on a line.

\section*{Generalities on rank 3 distributions in dimension 6}
- Rank 3 distributions have differential invariants. We recall, that two distributions \(D_{1}\) and \(D_{2}\) on respective manifolds \(M_{1}\) and \(M_{2}\) are (locally) equivalent, if and only if there exists a (local) diffeomorphism \(\phi: M_{1} \rightarrow M_{2}\) realizing \(\phi_{*} D_{1}=D_{2}\). In particular the statement about rank 3 distributions having invariants, means that there are locally nonequivalent rank 3 distributions on 6-dimensional manifolds. Among them the \((3,6)\) distributions are generic, and the growth vector \((3,6)\) distinguishes them locally from, for example, distributions with growth vector (3.5); these later distributions are rank 3 distributions \(D\) in dimension 6 such that in the sequence \(D_{-1}=D, D_{-(i+1)}=\left[D, D_{-i}\right]\), with \(i=1, \ldots .\). , the distribution \(D_{-2}\) is integrable and has rank 5. More importantly, there are locally nonequivalent \((3,6)\) distributions.

\section*{Generalities on rank 3 distributions in dimension 6}
- Rank 3 distributions have differential invariants. We recall, that
```

two distrioutions }\mp@subsup{\square}{1}{}\mathrm{ and }\mp@subsup{D}{2}{}\mathrm{ on respecive manimoids IV1 and
are (locally) equivalent, if and only if there exists a (local)
diffeomorphism \phi: M
the statement about rank 3 distributions having invariants,
means that there are locally nonequivalent rank 3 distributions
on 6-dimensional manifolds. Among them the (3,6) distributions
are generic, and the growth vector (3,6) distinguishes them
locally from, for example, distributions with growth vector
these later distributions are rank 3 distributions D in dimension }
such that in the sequence D-1 = D, D-(i-1)=[D,D-i], with
i=1,···., the distribution D-2 is integrable and has rank 5. More
importantly, there are locally nonequivalent (3,6) distributions.

```

\section*{Generalities on rank 3 distributions in dimension 6}
- Rank 3 distributions have differential invariants. We recall, that two distributions \(D_{1}\) and \(D_{2}\) on respective manifolds \(M_{1}\) and \(M_{2}\) are (locally) equivalent, if and only if there exists a (local) diffeomorphism \(\phi: M_{1} \rightarrow M_{2}\) realizing \(\phi_{*} D_{1}=D_{2}\).
```

the statement about rank 3 distributions having invariants,
means that there are locally nonequivalent rank 3 distributions
on 6-dimensional manifolds. Among them the
are generic, and the growth vector (3,6) distinguishes them
locally from, for example, distributions with growth vector
these later distributions are rank 3 distributions D in dimens on }
such that in the sequence
the distribution D-2 is integrable and has rank 5. More
importantly, there are locally nonequivalent (3,6) distributions.

```

\section*{Generalities on rank 3 distributions in dimension 6}
- Rank 3 distributions have differential invariants. We recall, that two distributions \(D_{1}\) and \(D_{2}\) on respective manifolds \(M_{1}\) and \(M_{2}\) are (locally) equivalent, if and only if there exists a (local) diffeomorphism \(\phi: M_{1} \rightarrow M_{2}\) realizing \(\phi_{*} D_{1}=D_{2}\). In particular the statement about rank 3 distributions having invariants, means that there are locally nonequivalent rank 3 distributions on 6-dimensional manifolds.
are generic, and the growth vector \((3,6)\) distinguishes them
locally from, for example, distributions with growth vector \((3,5)\);
these later distributions are rank 3 distributions \(D\) in dimension 6
such that in the sequence \(D_{-1}=D_{-1}, D_{-(i-1)}=\left[D, D_{-i}\right]\), with
\(i=1, \ldots\). , the distribution \(D_{-2}\) is integrable and has rank 5 . More
importantly, there are locally nonequivalent \((3,6)\) distributions.

\section*{Generalities on rank 3 distributions in dimension 6}
- Rank 3 distributions have differential invariants. We recall, that two distributions \(D_{1}\) and \(D_{2}\) on respective manifolds \(M_{1}\) and \(M_{2}\) are (locally) equivalent, if and only if there exists a (local) diffeomorphism \(\phi: M_{1} \rightarrow M_{2}\) realizing \(\phi_{*} D_{1}=D_{2}\). In particular the statement about rank 3 distributions having invariants, means that there are locally nonequivalent rank 3 distributions on 6 -dimensional manifolds. Among them the \((3,6)\) distributions are generic,
locally from, for example, distributions with growth vector
these later distributions are rank 3 distributions \(D\) in dimension 6 such that in the sequence
the distribution \(D_{2}\) is integrable and has rank 5. More importantly, there are locally nonequivalent \((3,6)\) distributions.

\section*{Generalities on rank 3 distributions in dimension 6}
- Rank 3 distributions have differential invariants. We recall, that two distributions \(D_{1}\) and \(D_{2}\) on respective manifolds \(M_{1}\) and \(M_{2}\) are (locally) equivalent, if and only if there exists a (local) diffeomorphism \(\phi: M_{1} \rightarrow M_{2}\) realizing \(\phi_{*} D_{1}=D_{2}\). In particular the statement about rank 3 distributions having invariants, means that there are locally nonequivalent rank 3 distributions on 6 -dimensional manifolds. Among them the \((3,6)\) distributions are generic, and the growth vector \((3,6)\) distinguishes them locally from, for example, distributions with growth vector \((3,5)\);

\section*{Generalities on rank 3 distributions in dimension 6}
- Rank 3 distributions have differential invariants. We recall, that two distributions \(D_{1}\) and \(D_{2}\) on respective manifolds \(M_{1}\) and \(M_{2}\) are (locally) equivalent, if and only if there exists a (local) diffeomorphism \(\phi: M_{1} \rightarrow M_{2}\) realizing \(\phi_{*} D_{1}=D_{2}\). In particular the statement about rank 3 distributions having invariants, means that there are locally nonequivalent rank 3 distributions on 6-dimensional manifolds. Among them the \((3,6)\) distributions are generic, and the growth vector \((3,6)\) distinguishes them locally from, for example, distributions with growth vector \((3,5)\); these later distributions are rank 3 distributions \(D\) in dimension 6 such that in the sequence \(D_{-1}=D, D_{-(i+1)}=\left[D, D_{-i}\right]\), with \(i=1, \ldots\), the distribution \(D_{-2}\) is integrable and has rank 5. More importantly, there are locally nonequivalent

\section*{Generalities on rank 3 distributions in dimension 6}
- Rank 3 distributions have differential invariants. We recall, that two distributions \(D_{1}\) and \(D_{2}\) on respective manifolds \(M_{1}\) and \(M_{2}\) are (locally) equivalent, if and only if there exists a (local) diffeomorphism \(\phi: M_{1} \rightarrow M_{2}\) realizing \(\phi_{*} D_{1}=D_{2}\). In particular the statement about rank 3 distributions having invariants, means that there are locally nonequivalent rank 3 distributions on 6-dimensional manifolds. Among them the \((3,6)\) distributions are generic, and the growth vector \((3,6)\) distinguishes them locally from, for example, distributions with growth vector \((3,5)\); these later distributions are rank 3 distributions \(D\) in dimension 6 such that in the sequence \(D_{-1}=D, D_{-(i+1)}=\left[D, D_{-i}\right]\), with \(i=1, \ldots\), the distribution \(D_{-2}\) is integrable and has rank 5 . More importantly, there are locally nonequivalent \((3,6)\) distributions.

\section*{Generalities on rank 3 distributions in dimension 6}
- One way of characterizing distributions locally is to determine their Lie algebra of symmetries. Given a manifold \(M\) and distribution \(D\), the Lie algebra of symmetries of \(D\) consists of vector fields \(Y\) on \(M\) such that \([Y, D] \subset D\). It is known that for rank 3 distributions with the growth vector \((3,6)\) the maximal algebra of symmetries is attained for the distribution locally given in Cartesian coordinates \(\left(q^{i}, p_{j}\right)\) in \(\mathbb{R}^{6}\) as the annihilator of three 1 -forms \(\lambda_{i}=\mathrm{d} p_{i}+\epsilon_{i j k} q^{j} \mathrm{~d} q^{k}, i=1,2,3\), where \(\epsilon_{i j k}\) is the totally skew-symmetric levi-Civita symbol in \(\mathbb{R}^{3}\). This distribution has its Lie algebra of symmetries isomorphic to the 21-dimensional Lie algebra \(\operatorname{spin}(4,3)\).

\section*{Generalities on rank 3 distributions in dimension 6}
- One way of characterizing distributions locally is to determine their Lie algebra of symmetries.
```

distribution D, the Lie algebra of symmetries of D consists of
vector fields }Y\mathrm{ on }M\mathrm{ such that [Y,D]`D. It is known that for
rank 3 distributions with the growth vector (3,6) the maximal
algebra of symmetries is attained for the distribution locally given
in Cartesian coordinates (q},\mp@subsup{q}{j}{\prime})\mathrm{ in }\mp@subsup{\mathbb{R}}{}{6}\mathrm{ as the annihilator of three
1-forms }\mp@subsup{\lambda}{i}{}=\textrm{d}\mp@subsup{p}{i}{}+\mp@subsup{\epsilon}{ijk}{}\mp@subsup{q}{}{j}\textrm{d}\mp@subsup{q}{}{k},i=1,2,3\mathrm{ , where }\mp@subsup{\epsilon}{ijk}{}\mathrm{ is the totally
skew-symmetric levi-Civita symbol in \mathbb{R}}
Lie algebra of symmetries isomorphic to the 21-dimensional Lie
algebra spin(4,3).

```

\section*{Generalities on rank 3 distributions in dimension 6}
- One way of characterizing distributions locally is to determine their Lie algebra of symmetries. Given a manifold \(M\) and distribution \(D\), the Lie algebra of symmetries of \(D\) consists of vector fields \(Y\) on \(M\) such that \([Y, D] \subset D\).
```

rank 3 distributions with the growth vector (3,6) the maximal
algebra of symmetries is attained for the distribution locally given
in Cartesian coordinates (q},\mp@subsup{q}{j}{\prime})\mathrm{ in }\mp@subsup{\mathbb{R}}{}{6}\mathrm{ as the annihilator of three
1-forms }\mp@subsup{\lambda}{i}{}=\textrm{d}\mp@subsup{p}{i}{}+\mp@subsup{\epsilon}{ijk}{\mp@subsup{q}{}{i}\textrm{d}\mp@subsup{q}{}{k},i=1.2.3, where \epsilonijk is the totally
skew-symmetric levi-Civita symbol in \mp@subsup{\mathbb{R}}{}{3}\mathrm{ . This distribution has its}
Lie algebra of symmetries isomorphic to the 21-dimensional Lie
algebra

```

\section*{Generalities on rank 3 distributions in dimension 6}
- One way of characterizing distributions locally is to determine their Lie algebra of symmetries. Given a manifold \(M\) and distribution \(D\), the Lie algebra of symmetries of \(D\) consists of vector fields \(Y\) on \(M\) such that \([Y, D] \subset D\). It is known that for rank 3 distributions with the growth vector \((3,6)\) the maximal algebra of symmetries is attained for the distribution locally given in Cartesian coordinates \(\left(q^{i}, p_{j}\right)\) in \(\mathbb{R}^{6}\) as the annihilator of three 1 -forms \(\lambda_{i}=\mathrm{d} p_{i}+\epsilon_{i j k} q^{j} \mathrm{~d} q^{k}, i=1,2,3\), where \(\epsilon_{i j k}\) is the totally skew-symmetric levi-Civita symbol in \(\mathbb{R}^{3}\).
Lie algebra of symmetries isomorphic to the 21-dimensional Lie algebra

\section*{Generalities on rank 3 distributions in dimension 6}
- One way of characterizing distributions locally is to determine their Lie algebra of symmetries. Given a manifold \(M\) and distribution \(D\), the Lie algebra of symmetries of \(D\) consists of vector fields \(Y\) on \(M\) such that \([Y, D] \subset D\). It is known that for rank 3 distributions with the growth vector \((3,6)\) the maximal algebra of symmetries is attained for the distribution locally given in Cartesian coordinates \(\left(q^{i}, p_{j}\right)\) in \(\mathbb{R}^{6}\) as the annihilator of three 1 -forms \(\lambda_{i}=\mathrm{d} p_{i}+\epsilon_{i j k} q^{j} \mathrm{~d} q^{k}, i=1,2,3\), where \(\epsilon_{i j k}\) is the totally skew-symmetric levi-Civita symbol in \(\mathbb{R}^{3}\). This distribution has its Lie algebra of symmetries isomorphic to the 21-dimensional Lie algebra \(\mathfrak{s p i n}(4,3)\).

\section*{Symmetry algebra of the ants' system moving under rule A}
- Since the velocity distribution \(D\) of the system of three ants moving according rule A has growth vector \((3,6)\) almost everywhere, it is interesting to ask how its Lie agebra of symmetries is related to \(\operatorname{spin}(4,3)\). By the physical setting of the system and the rule \(\mathbf{A}\), which requires only notions of points and lines on the plane, it is obvious that this Lie algebra of symmetries is at least as big as the Lie algebra \(s l(3, \mathbb{R})\) of the projective Lie group \(P G L(3, \mathbb{R})\). Actually, by explicitly solving the symmetry equations \([X, D] \subset D\) for the velocity distribution \(D\) of the ants, one gets the following theorem.
- Since the velocity distribution \(D\) of the system of three ants moving according rule A has growth vector \((3,6)\) almost everywhere, it is interesting to ask how its Lie agebra of symmetries is related to \(\mathfrak{s p i n}(4,3)\). By the physical setting of the
system and the rule A, which requires only notions of points and
lines on the plane, it is obvious that this Lie algebra of
symmetries is at least as big as the Lie algebra
of the
projective Lie group \(P G L(3, \mathbb{R})\). Actually, by explicit y solving the symmetry equations \(X, D] \subset D\) for the velocity distribution \(D\) of the ants, one gets the following theorem.
- Since the velocity distribution \(D\) of the system of three ants moving according rule A has growth vector \((3,6)\) almost everywhere, it is interesting to ask how its Lie agebra of symmetries is related to \(\mathfrak{s p i n}(4,3)\). By the physical setting of the system and the rule A, which requires only notions of points and lines on the plane, it is obvious that this Lie algebra of symmetries is at least as big as the Lie algebra \(\mathfrak{s l}(3, \mathbb{R})\) of the projective Lie group \(P G L(3, \mathbb{R})\).
the ants, one gets the following theorem.
- Since the velocity distribution \(D\) of the system of three ants moving according rule A has growth vector \((3,6)\) almost everywhere, it is interesting to ask how its Lie agebra of symmetries is related to \(\mathfrak{s p i n}(4,3)\). By the physical setting of the system and the rule A, which requires only notions of points and lines on the plane, it is obvious that this Lie algebra of symmetries is at least as big as the Lie algebra \(\mathfrak{s l}(3, \mathbb{R})\) of the projective Lie group \(P G L(3, \mathbb{R})\). Actually, by explicitly solving the symmetry equations \([X, D] \subset D\) for the velocity distribution \(D\) of the ants, one gets the following theorem.

\section*{Symmetry algebra of the ants' system moving under rule A}
```

Theorem The Lie algebra of all symmetries of the velocity distribution $D$ of the system of three ants moving according rule $\mathbf{A}$ is isomorphic to the Lie algebra $51(3, R)$. In coordinates $\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)$ in ${ }^{6}$, the
8 independent local symmetries of $D=S_{\text {Span }}\left(Z_{1}-Z_{2}, Z_{3}\right)$ are:

```
- Thus although the symmetry of this \((3,6)\) distribution is far from being maximal among all distributions, the ants distribution \(D\), considered here, can be locally identified with one of the homogeneous models of \((3,6)\) distributions; a model that lives on the homogeneous manifold \(P G L\left(3, \mathbb{R}^{2}\right) / \mathbb{T}^{2}\), where \(\mathbb{T}^{2}\) is the maximal torus in PGL(3,

We close this theorem with a remark that the vector space over the real numbers spanned by the symmetry vector fields \(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}-X_{6}\) form a Lie algebra isomorphic to the semidirect sum of \(51(2, \mathbb{R})\) and
\(\mathbb{R}^{2}\), i.e. the Lie algebra of the area preserving group of motions on the plane \(\mathbb{R}^{2}\). Here the vector fields \(X\) and \(X_{2}\) on \(\mathbb{R}^{6}\) correspond to translations in the plane in respective directions \(\partial_{x}\) and \(\partial_{y}\). The vector fields \(X_{3}, X_{4}\) and \(X_{5}-X_{6}\) correspond to the linear transformations of the plane with unit determinant. In particular we have the following identifications of the respective \(s l(2,1 \mathbb{R})\) Lie algebra elements:

\section*{Symmetry algebra of the ants' system moving under rule A}
- Theorem The Lie algebra of all symmetries of the velocity distribution \(D\) of the system of three ants moving according rule \(\mathbf{A}\) is isomorphic to the Lie algebra \(\mathfrak{s l}(3, \mathbb{R})\).

\footnotetext{
Thus although the symmetry of this \((3,6)\) distribution is far from being maximal among all distributions, the ants distribution \(D\), considered here, can be locally identified with one of the homogeneous models of \((3, \overline{6})\) distributions; a model that lives on the homogeneous manifold \(P G L\left(3, \mathbb{R}^{2}\right) / \mathbb{R}^{2}\), where \(T^{2}\) is the maximal torus in PGL(3

We close this theorem with a remark that the vector space over the real numbers spanned by the symmetry vector fields \(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}-X_{6}\) form a Lie algebra isomorphic to the semidirect sum of \(51(2, \mathbb{R})\) and
\(\mathbb{R}^{2}\), i.e. the Lie algebra of the area preserving group of motions on the plane \(\mathbb{R}^{2}\). Here the vector fields \(X_{1}\)
and \(X_{2}\) on \(\mathbb{R}^{6}\) correspond to translations in the plane in respective directions \(\partial_{x}\) and \(\partial_{y}\). The vector fields
\(X_{3}, X_{4}\) and \(X_{5}-X_{6}\) correspond to the linear transformations of the plane with unit determinant. In
particular we have the following identifications of the respective \(s l(2, \mathbb{R})\) Lie algebra elements:
}

\section*{Symmetry algebra of the ants' system moving under rule A}
- Theorem The Lie algebra of all symmetries of the velocity distribution \(D\) of the system of three ants moving according rule \(\mathbf{A}\) is isomorphic to the Lie algebra \(\mathfrak{s l}(3, \mathbb{R})\). In coordinates \(\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)\) in \(\mathbb{R}^{6}\), the 8 independent local symmetries of \(D=\operatorname{Span}\left(Z_{1}, Z_{2}, Z_{3}\right)\) are:
\[
\begin{aligned}
& x_{1}=\partial_{x_{1}}+\partial_{x_{2}}+\partial_{x_{3}}, \\
& x_{2}=\partial_{y_{1}}+\partial_{y_{2}}+\partial_{y_{3}}, \\
& x_{3}=y_{1} \partial_{x_{1}}+y_{2} \partial_{x_{2}}+y_{3} \partial_{x_{3}}, \\
& x_{4}=x_{1} \partial_{y_{1}}+x_{2} \partial y_{y_{2}}+x_{3} \partial_{y_{3}}, \\
& x_{5}=x_{1} \partial x_{1}+x_{2} \partial \partial_{x_{2}}+x_{3} \partial x_{x_{3}}, \\
& x_{6}=y_{1} \partial_{y_{1}}+y_{2} \partial_{y_{2}}+y_{3} \partial y_{y_{3}}, \\
& x_{7}=x_{1} y_{1} \partial_{x_{1}}+x_{2} y_{2} \partial_{x_{2}}+x_{3} y_{3} \partial_{x_{3}}+y_{1}^{2} \partial_{y_{1}}+y_{2}^{2} \partial y_{2}+y_{3}^{2} \partial_{y_{3}}, \\
& x_{8}=x_{1}^{2} \partial x_{x_{1}}+x_{2}^{2} \partial x_{x_{2}}+x_{3}^{2} \partial x_{x_{3}}+x_{1} y_{1} \partial_{y_{1}}+x_{2} y_{2} \partial y_{y_{2}}+x_{3} y_{3} \partial y_{y_{3}} .
\end{aligned}
\]
- Thus although the symmetry of this (3,6) distribution is far from being maximal among all
distributions, the ants distribution \(D\), considered here, can be locally identified with one of the homogeneous models of \((3,6)\) distributions; a model that lives on the homogeneous manifold PGL(\(3,-\frac{1}{-}\), where \(T^{2}\) is the maximal torus in PGL(3

We close this theorem with a remark that the vector space over the real numbers spanned by the symmetry vector fields \(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}-X_{6}\) form a Lie algebra isomorphic to the semidirect sum of \(61(2, \mathbb{R})\) and
\(\mathbb{R}^{2}\), i.e. the Lie algebra of the area preserving group of motions on the plane \(\mathbb{R}^{2}\). Here the vector fields \(X_{1}\)
and \(X_{2}\) on \(\mathbb{R}^{6}\) correspond to translations in the plane in respective directions \(\partial_{x}\) and \(\partial_{y}\). The vector fields
\(X_{3}, X_{4}\) and \(X_{5}-X_{6}\) correspond to the linear transformations of the plane with unit determinant. In
particular we have the following identifications of the respective \(s l(2, \mathbb{R})\) Lie algebra elements: \(x_{0} \sim\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), x_{A} \sim\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\) and \(x\)

\section*{Symmetry algebra of the ants' system moving under rule A}
- Theorem The Lie algebra of all symmetries of the velocity distribution \(D\) of the system of three ants moving according rule \(\mathbf{A}\) is isomorphic to the Lie algebra \(\mathfrak{s l}(3, \mathbb{R})\). In coordinates \(\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)\) in \(\mathbb{R}^{6}\), the 8 independent local symmetries of \(D=\operatorname{Span}\left(Z_{1}, Z_{2}, Z_{3}\right)\) are:
\[
\begin{aligned}
& x_{1}=\partial_{x_{1}}+\partial_{x_{2}}+\partial_{x_{3}}, \\
& x_{2}=\partial_{y_{1}}+\partial_{y_{2}}+\partial_{y_{3}} \text {, } \\
& x_{3}=y_{1} \partial_{x_{1}}+y_{2} \partial_{x_{2}}+y_{3} \partial_{x_{3}}, \\
& x_{4}=x_{1} \partial y_{1}+x_{2} \partial_{y_{2}}+x_{3} \partial_{y_{3}}, \\
& x_{5}=x_{1} \partial x_{1}+x_{2} \partial_{x_{2}}+x_{3} \partial x_{3} \text {, } \\
& x_{6}=y_{1} \partial_{y_{1}}+y_{2} \partial_{y_{2}}+y_{3} \partial y_{3} \text {, } \\
& x_{7}=x_{1} y_{1} \partial x_{1}+x_{2} y_{2} \partial x_{2}+x_{3} y_{3} \partial x_{3}+y_{1}^{2} \partial y_{1}+y_{2}^{2} \partial y_{2}+y_{3}^{2} \partial y_{3}, \\
& x_{8}=x_{1}^{2} \partial x_{1}+x_{2}^{2} \partial x_{2}+x_{3}^{2} \partial x_{3}+x_{1} y_{1} \partial y_{1}+x_{2} y_{2} \partial y_{2}+x_{3} y_{3} \partial y_{3} .
\end{aligned}
\]
- Thus although the symmetry of this \((3,6)\) distribution is far from being maximal among all \((3,6)\) distributions, the ants distribution \(D\), considered here, can be locally identified with one of the homogeneous models of \((3,6)\) distributions;
the maximal torus in
We close this theorem with a remark that the vector space over the real numbers spanned by the symmetry vector fields
form a Lie algebra isomorphic to the semidirect sum of

\section*{Symmetry algebra of the ants' system moving under rule A}
- Theorem The Lie algebra of all symmetries of the velocity distribution \(D\) of the system of three ants moving according rule \(\mathbf{A}\) is isomorphic to the Lie algebra \(\mathfrak{s l}(3, \mathbb{R})\). In coordinates \(\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)\) in \(\mathbb{R}^{6}\), the 8 independent local symmetries of \(D=\operatorname{Span}\left(Z_{1}, Z_{2}, Z_{3}\right)\) are:
\[
\begin{aligned}
& x_{1}=\partial_{x_{1}}+\partial_{x_{2}}+\partial_{x_{3}}, \\
& x_{2}=\partial_{y_{1}}+\partial_{y_{2}}+\partial_{y_{3}} \text {, } \\
& x_{3}=y_{1} \partial_{x_{1}}+y_{2} \partial_{x_{2}}+y_{3} \partial_{x_{3}}, \\
& x_{4}=x_{1} \partial y_{1}+x_{2} \partial y_{2}+x_{3} \partial y_{3}, \\
& x_{5}=x_{1} \partial x_{1}+x_{2} \partial_{x_{2}}+x_{3} \partial x_{3} \text {, } \\
& x_{6}=y_{1} \partial_{y_{1}}+y_{2} \partial_{y_{2}}+y_{3} \partial y_{3} \text {, } \\
& x_{7}=x_{1} y_{1} \partial x_{1}+x_{2} y_{2} \partial x_{2}+x_{3} y_{3} \partial x_{3}+y_{1}^{2} \partial y_{1}+y_{2}^{2} \partial y_{2}+y_{3}^{2} \partial y_{3}, \\
& x_{8}=x_{1}^{2} \partial_{x_{1}}+x_{2}^{2} \partial x_{2}+x_{3}^{2} \partial x_{3}+x_{1} y_{1} \partial y_{1}+x_{2} y_{2} \partial y_{2}+x_{3} y_{3} \partial y_{3} \text {. }
\end{aligned}
\]
- Thus although the symmetry of this \((3,6)\) distribution is far from being maximal among all \((3,6)\) distributions, the ants distribution \(D\), considered here, can be locally identified with one of the homogeneous models of \((3,6)\) distributions; a model that lives on the homogeneous manifold \(P G L(3, \mathbb{R}) / \mathbb{T}^{2}\), where \(\mathbb{T}^{2}\) is the maximal torus in \(P G L(3, \mathbb{R})\).

We close this theorem with a remark that the vector space over the real numbers spanned by the symmetry vector fields
form a Lie algebra isomorphic to the semidirect sum of
i.e. the Lie : ilgebra of the area preserving group of motions on the plane \(\mathbb{R}^{2}\). Here the vector fields and \(X_{2}\) on \(\mathbb{R}^{6}\) correspond to translations in the plane in respective directions \(\partial_{x}\) and \(\partial_{y}\). The vector fields and \(X_{5}-X_{6}\) correspond to the linear transformations of the plane with unit determinant. In par icular we have the following identifications of the respective \(s l(2, \mathbb{R})\) Lie algebra elements:

\section*{Symmetry algebra of the ants' system moving under rule A}
- Theorem The Lie algebra of all symmetries of the velocity distribution \(D\) of the system of three ants moving according rule \(\mathbf{A}\) is isomorphic to the Lie algebra \(\mathfrak{s l}(3, \mathbb{R})\). In coordinates \(\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)\) in \(\mathbb{R}^{6}\), the 8 independent local symmetries of \(D=\operatorname{Span}\left(Z_{1}, Z_{2}, Z_{3}\right)\) are:
\[
\begin{aligned}
& x_{1}=\partial_{x_{1}}+\partial_{x_{2}}+\partial_{x_{3}}, \\
& x_{2}=\partial_{y_{1}}+\partial_{y_{2}}+\partial_{y_{3}} \text {, } \\
& x_{3}=y_{1} \partial_{x_{1}}+y_{2} \partial_{x_{2}}+y_{3} \partial_{x_{3}}, \\
& x_{4}=x_{1} \partial y_{1}+x_{2} \partial y_{2}+x_{3} \partial y_{3}, \\
& x_{5}=x_{1} \partial_{x_{1}}+x_{2} \partial_{x_{2}}+x_{3} \partial_{x_{3}}, \\
& x_{6}=y_{1} \partial_{y_{1}}+y_{2} \partial_{y_{2}}+y_{3} \partial y_{3} \text {, } \\
& x_{7}=x_{1} y_{1} \partial x_{1}+x_{2} y_{2} \partial x_{2}+x_{3} y_{3} \partial x_{3}+y_{1}^{2} \partial y_{1}+y_{2}^{2} \partial y_{2}+y_{3}^{2} \partial y_{3}, \\
& x_{8}=x_{1}^{2} \partial_{x_{1}}+x_{2}^{2} \partial x_{2}+x_{3}^{2} \partial x_{3}+x_{1} y_{1} \partial y_{1}+x_{2} y_{2} \partial y_{2}+x_{3} y_{3} \partial y_{3} \text {. }
\end{aligned}
\]
- Thus although the symmetry of this \((3,6)\) distribution is far from being maximal among all \((3,6)\) distributions, the ants distribution \(D\), considered here, can be locally identified with one of the homogeneous models of \((3,6)\) distributions; a model that lives on the homogeneous manifold \(P G L(3, \mathbb{R}) / \mathbb{T}^{2}\), where \(\mathbb{T}^{2}\) is the maximal torus in \(P G L(3, \mathbb{R})\).
- We close this theorem with a remark that the vector space over the real numbers spanned by the symmetry vector fields \(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}-X_{6}\) form a Lie algebra isomorphic to the semidirect sum of \(\mathfrak{s l}(2, \mathbb{R})\) and \(\mathbb{R}^{2}\), i.e. the Lie algebra of the area preserving group of motions on the plane

\section*{Symmetry algebra of the ants' system moving under rule A}
- Theorem The Lie algebra of all symmetries of the velocity distribution \(D\) of the system of three ants moving according rule \(\mathbf{A}\) is isomorphic to the Lie algebra \(\mathfrak{s l}(3, \mathbb{R})\). In coordinates \(\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)\) in \(\mathbb{R}^{6}\), the 8 independent local symmetries of \(D=\operatorname{Span}\left(Z_{1}, Z_{2}, Z_{3}\right)\) are:
\[
\begin{aligned}
& x_{1}=\partial_{x_{1}}+\partial_{x_{2}}+\partial_{x_{3}}, \\
& x_{2}=\partial_{y_{1}}+\partial_{y_{2}}+\partial_{y_{3}} \text {, } \\
& x_{3}=y_{1} \partial_{x_{1}}+y_{2} \partial_{x_{2}}+y_{3} \partial_{x_{3}}, \\
& x_{4}=x_{1} \partial y_{1}+x_{2} \partial y_{2}+x_{3} \partial y_{3}, \\
& x_{5}=x_{1} \partial x_{1}+x_{2} \partial_{x_{2}}+x_{3} \partial x_{3} \text {, } \\
& x_{6}=y_{1} \partial y_{1}+y_{2} \partial y_{2}+y_{3} \partial y_{3} \text {, } \\
& x_{7}=x_{1} y_{1} \partial x_{1}+x_{2} y_{2} \partial x_{2}+x_{3} y_{3} \partial x_{3}+y_{1}^{2} \partial y_{1}+y_{2}^{2} \partial y_{2}+y_{3}^{2} \partial y_{3} \text {, } \\
& x_{8}=x_{1}^{2} \partial x_{1}+x_{2}^{2} \partial x_{2}+x_{3}^{2} \partial x_{3}+x_{1} y_{1} \partial y_{1}+x_{2} y_{2} \partial y_{2}+x_{3} y_{3} \partial y_{y_{3}} \text {. }
\end{aligned}
\]
- Thus although the symmetry of this \((3,6)\) distribution is far from being maximal among all \((3,6)\) distributions, the ants distribution \(D\), considered here, can be locally identified with one of the homogeneous models of \((3,6)\) distributions; a model that lives on the homogeneous manifold \(P G L(3, \mathbb{R}) / \mathbb{T}^{2}\), where \(\mathbb{T}^{2}\) is the maximal torus in \(P G L(3, \mathbb{R})\).
- We close this theorem with a remark that the vector space over the real numbers spanned by the symmetry vector fields \(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}-X_{6}\) form a Lie algebra isomorphic to the semidirect sum of \(\mathfrak{s l}(2, \mathbb{R})\) and \(\mathbb{R}^{2}\), i.e. the Lie algebra of the area preserving group of motions on the plane \(\mathbb{R}^{2}\).

\section*{Symmetry algebra of the ants' system moving under rule A}
- Theorem The Lie algebra of all symmetries of the velocity distribution \(D\) of the system of three ants moving according rule \(\mathbf{A}\) is isomorphic to the Lie algebra \(\mathfrak{s l}(3, \mathbb{R})\). In coordinates \(\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)\) in \(\mathbb{R}^{6}\), the 8 independent local symmetries of \(D=\operatorname{Span}\left(Z_{1}, Z_{2}, Z_{3}\right)\) are:
\[
\begin{aligned}
& x_{1}=\partial_{x_{1}}+\partial_{x_{2}}+\partial_{x_{3}}, \\
& x_{2}=\partial_{y_{1}}+\partial_{y_{2}}+\partial_{y_{3}} \text {, } \\
& x_{3}=y_{1} \partial_{x_{1}}+y_{2} \partial_{x_{2}}+y_{3} \partial_{x_{3}}, \\
& x_{4}=x_{1} \partial_{y_{1}}+x_{2} \partial_{y_{2}}+x_{3} \partial_{y_{3}}, \\
& x_{5}=x_{1} \partial x_{1}+x_{2} \partial_{x_{2}}+x_{3} \partial x_{3} \text {, } \\
& x_{6}=y_{1} \partial y_{1}+y_{2} \partial y_{2}+y_{3} \partial y_{3} \text {, } \\
& x_{7}=x_{1} y_{1} \partial x_{1}+x_{2} y_{2} \partial x_{2}+x_{3} y_{3} \partial x_{3}+y_{1}^{2} \partial y_{1}+y_{2}^{2} \partial y_{2}+y_{3}^{2} \partial y_{3} \text {, } \\
& x_{8}=x_{1}^{2} \partial x_{1}+x_{2}^{2} \partial x_{2}+x_{3}^{2} \partial x_{3}+x_{1} y_{1} \partial y_{1}+x_{2} y_{2} \partial y_{2}+x_{3} y_{3} \partial y_{y_{3}} \text {. }
\end{aligned}
\]
- Thus although the symmetry of this \((3,6)\) distribution is far from being maximal among all \((3,6)\) distributions, the ants distribution \(D\), considered here, can be locally identified with one of the homogeneous models of \((3,6)\) distributions; a model that lives on the homogeneous manifold \(P G L(3, \mathbb{R}) / \mathbb{T}^{2}\), where \(\mathbb{T}^{2}\) is the maximal torus in \(P G L(3, \mathbb{R})\).
- We close this theorem with a remark that the vector space over the real numbers spanned by the symmetry vector fields \(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}-X_{6}\) form a Lie algebra isomorphic to the semidirect sum of \(\mathfrak{s l}(2, \mathbb{R})\) and \(\mathbb{R}^{2}\), i.e. the Lie algebra of the area preserving group of motions on the plane \(\mathbb{R}^{2}\). Here the vector fields \(X_{1}\) and \(X_{2}\) on \(\mathbb{R}^{6}\) correspond to translations in the plane in respective directions \(\partial_{x}\) and \(\partial_{y}\). The vector fields and \(X_{5}-X_{6}\) correspond to the linear transformations of the plane with unit determinant. In particular we have the following identifications of the respective sl(\(2, \mathbb{R})\) Lie algebra elements:

\section*{Symmetry algebra of the ants' system moving under rule A}
- Theorem The Lie algebra of all symmetries of the velocity distribution \(D\) of the system of three ants moving according rule \(\mathbf{A}\) is isomorphic to the Lie algebra \(\mathfrak{s l}(3, \mathbb{R})\). In coordinates \(\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)\) in \(\mathbb{R}^{6}\), the 8 independent local symmetries of \(D=\operatorname{Span}\left(Z_{1}, Z_{2}, Z_{3}\right)\) are:
\[
\begin{aligned}
& x_{1}=\partial_{x_{1}}+\partial_{x_{2}}+\partial_{x_{3}}, \\
& x_{2}=\partial_{y_{1}}+\partial_{y_{2}}+\partial_{y_{3}} \text {, } \\
& x_{3}=y_{1} \partial_{x_{1}}+y_{2} \partial_{x_{2}}+y_{3} \partial_{x_{3}}, \\
& x_{4}=x_{1} \partial_{y_{1}}+x_{2} \partial_{y_{2}}+x_{3} \partial_{y_{3}}, \\
& x_{5}=x_{1} \partial_{x_{1}}+x_{2} \partial_{x_{2}}+x_{3} \partial_{x_{3}}, \\
& x_{6}=y_{1} \partial_{y_{1}}+y_{2} \partial_{y_{2}}+y_{3} \partial y_{3} \text {, } \\
& x_{7}=x_{1} y_{1} \partial x_{1}+x_{2} y_{2} \partial x_{2}+x_{3} y_{3} \partial x_{3}+y_{1}^{2} \partial y_{1}+y_{2}^{2} \partial y_{2}+y_{3}^{2} \partial y_{3} \text {, } \\
& x_{8}=x_{1}^{2} \partial x_{1}+x_{2}^{2} \partial x_{2}+x_{3}^{2} \partial x_{3}+x_{1} y_{1} \partial y_{1}+x_{2} y_{2} \partial y_{2}+x_{3} y_{3} \partial y_{y_{3}} \text {. }
\end{aligned}
\]
- Thus although the symmetry of this \((3,6)\) distribution is far from being maximal among all \((3,6)\) distributions, the ants distribution \(D\), considered here, can be locally identified with one of the homogeneous models of \((3,6)\) distributions; a model that lives on the homogeneous manifold \(P G L(3, \mathbb{R}) / \mathbb{T}^{2}\), where \(\mathbb{T}^{2}\) is the maximal torus in \(P G L(3, \mathbb{R})\).
- We close this theorem with a remark that the vector space over the real numbers spanned by the symmetry vector fields \(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}-X_{6}\) form a Lie algebra isomorphic to the semidirect sum of \(\mathfrak{s l}(2, \mathbb{R})\) and \(\mathbb{R}^{2}\), i.e. the Lie algebra of the area preserving group of motions on the plane \(\mathbb{R}^{2}\). Here the vector fields \(X_{1}\) and \(X_{2}\) on \(\mathbb{R}^{6}\) correspond to translations in the plane in respective directions \(\partial_{x}\) and \(\partial_{y}\). The vector fields \(X_{3}, X_{4}\) and \(X_{5}-X_{6}\) correspond to the linear transformations of the plane with unit determinant.
particular we have the following identifications of the respective \(5(2,2)\) Lie algebra elements:

\section*{Symmetry algebra of the ants' system moving under rule A}
- Theorem The Lie algebra of all symmetries of the velocity distribution \(D\) of the system of three ants moving according rule \(\mathbf{A}\) is isomorphic to the Lie algebra \(\mathfrak{s l}(3, \mathbb{R})\). In coordinates \(\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)\) in \(\mathbb{R}^{6}\), the 8 independent local symmetries of \(D=\operatorname{Span}\left(Z_{1}, Z_{2}, Z_{3}\right)\) are:
\[
\begin{aligned}
& x_{1}=\partial_{x_{1}}+\partial_{x_{2}}+\partial_{x_{3}}, \\
& x_{2}=\partial_{y_{1}}+\partial_{y_{2}}+\partial_{y_{3}} \text {, } \\
& x_{3}=y_{1} \partial_{x_{1}}+y_{2} \partial_{x_{2}}+y_{3} \partial_{x_{3}}, \\
& x_{4}=x_{1} \partial y_{1}+x_{2} \partial_{y_{2}}+x_{3} \partial_{y_{3}}, \\
& x_{5}=x_{1} \partial_{x_{1}}+x_{2} \partial_{x_{2}}+x_{3} \partial_{x_{3}}, \\
& x_{6}=y_{1} \partial_{y_{1}}+y_{2} \partial_{y_{2}}+y_{3} \partial y_{3} \text {, } \\
& x_{7}=x_{1} y_{1} \partial x_{1}+x_{2} y_{2} \partial_{x_{2}}+x_{3} y_{3} \partial x_{3}+y_{1}^{2} \partial y_{1}+y_{2}^{2} \partial y_{2}+y_{3}^{2} \partial y_{3} \text {, } \\
& x_{8}=x_{1}^{2} \partial x_{1}+x_{2}^{2} \partial x_{2}+x_{3}^{2} \partial x_{3}+x_{1} y_{1} \partial y_{1}+x_{2} y_{2} \partial y_{2}+x_{3} y_{3} \partial y_{3} \text {. }
\end{aligned}
\]
- Thus although the symmetry of this \((3,6)\) distribution is far from being maximal among all \((3,6)\) distributions, the ants distribution \(D\), considered here, can be locally identified with one of the homogeneous models of \((3,6)\) distributions; a model that lives on the homogeneous manifold \(P G L(3, \mathbb{R}) / \mathbb{T}^{2}\), where \(\mathbb{T}^{2}\) is the maximal torus in \(P G L(3, \mathbb{R})\).
- We close this theorem with a remark that the vector space over the real numbers spanned by the symmetry vector fields \(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}-X_{6}\) form a Lie algebra isomorphic to the semidirect sum of \(\mathfrak{s l}(2, \mathbb{R})\) and \(\mathbb{R}^{2}\), i.e. the Lie algebra of the area preserving group of motions on the plane \(\mathbb{R}^{2}\). Here the vector fields \(X_{1}\) and \(X_{2}\) on \(\mathbb{R}^{6}\) correspond to translations in the plane in respective directions \(\partial_{x}\) and \(\partial_{y}\). The vector fields \(X_{3}, X_{4}\) and \(X_{5}-X_{6}\) correspond to the linear transformations of the plane with unit determinant. In particular we have the following identifications of the respective \(\mathfrak{s l}(2, \mathbb{R})\) Lie algebra elements: \(X_{3} \sim\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), X_{4} \sim\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\) and \(X_{5}-X_{6} \sim\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\).

\section*{Movement of three ants on the plane: Rule B}
- We have three points in the plane \(\vec{r}_{i}, i=1,2,3\), and we want that

\section*{Here again \(i, j=1,2,3\), and \(i+j\) is counted modulo 3 .}
- We again parametrize the configuration space MA by coordinates \(\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)\) of the three points \(\vec{r}_{i}=\left(x_{i}, y_{i}\right)\) in a chosen Cartesian coordinate system \((x, y)\) on the plane. In this parametrization the movement of the system of ants is described in terms of a curve \(q(t)=\left(x_{1}(t), y_{1}(t), x_{2}(t), y_{2}(t), x_{3}(t), y_{3}(t)\right)\), and its velocity at time \(t\) is given by
- In these coordinates the above rule \(\mathbf{B}\) becomes:

\section*{Movement of three ants on the plane: Rule B}
- We have three points in the plane \(\vec{r}_{i}, i=1,2,3\), and we want that
\[
\frac{\mathrm{d} \vec{i}_{i}}{\mathrm{~d} t} \|\left(\vec{r}_{i+1}-\vec{r}_{i+2}\right) .
\]

Here again \(i, j=1,2,3\), and \(i+j\) is counted modulo 3 .
- We again parametrize the configuration space \(M\) by coordinates \(\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)\) of the three points \(\vec{r}_{i}=\left(x_{i}, y_{i}\right)\) in a chosen
Cartesian coordinate sysiem (\(x, y\)) on the plane. In this
parametrization the movement of the system of ants is described
in terms of a curve
and its velocity at time is given by
- In these coordinates the above rule B becomes:

\section*{Movement of three ants on the plane: Rule B}
- We have three points in the plane \(\vec{r}_{i}, i=1,2,3\), and we want that
\[
\frac{\mathrm{d} \vec{r}_{i}}{\mathrm{~d} t} \|\left(\vec{r}_{i+1}-\vec{r}_{i+2}\right) .
\]

Here again \(i, j=1,2,3\), and \(i+j\) is counted modulo 3 .
- We again parametrize the configuration space \(M\) by coordinates of the three points \(\vec{r}_{i}=\left(x_{i}, y_{i}\right)\) in a chosen
Cartesian coordinate system \((x, y)\) on the plane. In this
parametrization the movement of the system of ants is described
in terms of a curve
and its velocity at time is given by
- In these coordinates the above rule \(\mathbf{B}\) becomes:

\section*{Movement of three ants on the plane: Rule B}
- We have three points in the plane \(\vec{r}_{i}, i=1,2,3\), and we want that
\[
\frac{\mathrm{d} \vec{r}_{i}}{\mathrm{~d} t} \|\left(\vec{r}_{i+1}-\vec{r}_{i+2}\right) .
\]

Here again \(i, j=1,2,3\), and \(i+j\) is counted modulo 3.
- We again parametrize the configuration space \(M\) by coordinates \(\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)\) of the three points \(\vec{r}_{i}=\left(x_{i}, y_{i}\right)\) in a chosen Cartesian coordinate system (\(x, y\)) on the plane.
parametrization the movement of the system of ants is described
in terms of a curve
and its velocity at time is given by
- In these coordinates the above rule \(\mathbf{B}\) becomes:

\section*{Movement of three ants on the plane: Rule B}
- We have three points in the plane \(\vec{r}_{i}, i=1,2,3\), and we want that
\[
\frac{\mathrm{d} \vec{r}_{i}}{\mathrm{~d} t} \|\left(\vec{r}_{i+1}-\vec{r}_{i+2}\right) .
\]

Here again \(i, j=1,2,3\), and \(i+j\) is counted modulo 3.
- We again parametrize the configuration space \(M\) by coordinates \(\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)\) of the three points \(\vec{r}_{i}=\left(x_{i}, y_{i}\right)\) in a chosen Cartesian coordinate system \((x, y)\) on the plane. In this parametrization the movement of the system of ants is described in terms of a curve \(q(t)=\left(x_{1}(t), y_{1}(t), x_{2}(t), y_{2}(t), x_{3}(t), y_{3}(t)\right)\),
- In these coordinates the above rule \(\mathbf{B}\) becomes:

\section*{Movement of three ants on the plane: Rule B}
- We have three points in the plane \(\vec{r}_{i}, i=1,2,3\), and we want that
\[
\frac{\mathrm{d} \vec{r}_{i}}{\mathrm{~d} t} \|\left(\vec{r}_{i+1}-\vec{r}_{i+2}\right) .
\]

Here again \(i, j=1,2,3\), and \(i+j\) is counted modulo 3.
- We again parametrize the configuration space \(M\) by coordinates \(\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)\) of the three points \(\vec{r}_{i}=\left(x_{i}, y_{i}\right)\) in a chosen Cartesian coordinate system \((x, y)\) on the plane. In this parametrization the movement of the system of ants is described in terms of a curve \(q(t)=\left(x_{1}(t), y_{1}(t), x_{2}(t), y_{2}(t), x_{3}(t), y_{3}(t)\right)\), and its velocity at time \(t\) is given by
\(\dot{q}(t)=\left(\dot{x}_{1}(t), \dot{y}_{1}(t), \dot{x}_{2}(t), \dot{y}_{2}(t), \dot{x}_{3}(t), \dot{y}_{3}(t)\right)\).
- In these coordinates the above rule B becomes:

\section*{Movement of three ants on the plane: Rule B}
- We have three points in the plane \(\vec{r}_{i}, i=1,2,3\), and we want that
\[
\frac{\mathrm{d} \vec{r}_{i}}{\mathrm{~d} t} \|\left(\vec{r}_{i+1}-\vec{r}_{i+2}\right) .
\]

Here again \(i, j=1,2,3\), and \(i+j\) is counted modulo 3.
- We again parametrize the configuration space \(M\) by coordinates \(\left(x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}\right)\) of the three points \(\vec{r}_{i}=\left(x_{i}, y_{i}\right)\) in a chosen Cartesian coordinate system (\(x, y\)) on the plane. In this parametrization the movement of the system of ants is described in terms of a curve \(q(t)=\left(x_{1}(t), y_{1}(t), x_{2}(t), y_{2}(t), x_{3}(t), y_{3}(t)\right)\), and its velocity at time \(t\) is given by \(\dot{q}(t)=\left(\dot{x}_{1}(t), \dot{y}_{1}(t), \dot{x}_{2}(t), \dot{y}_{2}(t), \dot{x}_{3}(t), \dot{y}_{3}(t)\right)\).
- In these coordinates the above rule \(\mathbf{B}\) becomes:
\[
\left(y_{i+1}-y_{i+2}\right) \dot{x}_{i}-\left(x_{i+1}-x_{i+2}\right) \dot{y}_{i}=0, \quad i=1,2,3 .
\]

\section*{Movement of three ants on the plane: Rule B}
- Equivalently, we can say that the curves \(q(t)\) drawn in \(M\) by the ants obeying rule \(\mathbf{B}\) must be horizontal with respect to the velocity distribution \(D\), which annihilates the following three 1 -forms on \(M\) :

In other ords, the velocities of these curves should be spanned by the three vector fileds
on \(M\). So the velocity distribution of the ants is now given by \(D=\operatorname{Span}\left(Z_{1}, Z_{2}, Z_{3}\right)\).
- Taking the commutators of the vector fields \(Z_{1}, Z_{2}, Z_{3}\) spanning the distribution \(D\) we get three new vector fields

\section*{Movement of three ants on the plane: Rule B}
- Equivalently, we can say that the curves \(q(t)\) drawn in \(M\) by the ants obeying rule B must be horizontal with respect to the velocity distribution \(D\), which annihilates the following three 1-forms on \(M\) :
\[
\omega_{i}=\left(y_{i+1}-y_{i+2}\right) \mathrm{d} x_{i}-\left(x_{i+1}-x_{i+2}\right) \mathrm{d} y_{i}, \quad i=1,2,3 .
\]

In other ords, the velocities of these curves should be spanned by the three vector fileds
on \(M\). So the velocity distribution of the ants is now given by
- Taking the commutators of the vector fields \(Z_{1}, Z_{2}, Z_{3}\) spanning the distribution \(D\) we get three new vector fields

\section*{Movement of three ants on the plane: Rule B}
- Equivalently, we can say that the curves \(q(t)\) drawn in \(M\) by the ants obeying rule B must be horizontal with respect to the velocity distribution \(D\), which annihilates the following three 1-forms on \(M\) :
\[
\omega_{i}=\left(y_{i+1}-y_{i+2}\right) \mathrm{d} x_{i}-\left(x_{i+1}-x_{i+2}\right) \mathrm{d} y_{i}, \quad i=1,2,3 .
\]

In other ords, the velocities of these curves should be spanned by the three vector fileds
\[
z_{i}=\left(x_{i+1}-x_{i+2}\right) \partial_{x_{i}}+\left(y_{i+1}-y_{i+2}\right) \partial_{y_{i}}, \quad i=1,2,3
\]
on \(M\). So the velocity distribution of the ants is now given by
- Taking the commutators of the vector fields \(Z_{1}, Z_{2}, Z_{3}\) spanning the distribution \(D\) we get three new vector fields

\section*{Movement of three ants on the plane: Rule B}
- Equivalently, we can say that the curves \(q(t)\) drawn in \(M\) by the ants obeying rule B must be horizontal with respect to the velocity distribution \(D\), which annihilates the following three 1-forms on \(M\) :
\[
\omega_{i}=\left(y_{i+1}-y_{i+2}\right) \mathrm{d} x_{i}-\left(x_{i+1}-x_{i+2}\right) \mathrm{d} y_{i}, \quad i=1,2,3 .
\]

In other ords, the velocities of these curves should be spanned by the three vector fileds
\[
Z_{i}=\left(x_{i+1}-x_{i+2}\right) \partial_{x_{i}}+\left(y_{i+1}-y_{i+2}\right) \partial_{y_{i}}, \quad i=1,2,3
\]
on \(M\). So the velocity distribution of the ants is now given by \(D=\operatorname{Span}\left(Z_{1}, Z_{2}, Z_{3}\right)\).
- Taking the commutators of the vector fields \(Z_{1}, Z_{2}, Z_{3}\) spanning the distribution \(D\) we get three new vector fields

\section*{Movement of three ants on the plane: Rule B}
- Equivalently, we can say that the curves \(q(t)\) drawn in \(M\) by the ants obeying rule B must be horizontal with respect to the velocity distribution \(D\), which annihilates the following three 1-forms on \(M\) :
\[
\omega_{i}=\left(y_{i+1}-y_{i+2}\right) \mathrm{d} x_{i}-\left(x_{i+1}-x_{i+2}\right) \mathrm{d} y_{i}, \quad i=1,2,3 .
\]

In other ords, the velocities of these curves should be spanned by the three vector fileds
\[
z_{i}=\left(x_{i+1}-x_{i+2}\right) \partial_{x_{i}}+\left(y_{i+1}-y_{i+2}\right) \partial_{y_{i}}, \quad i=1,2,3
\]
on \(M\). So the velocity distribution of the ants is now given by \(D=\operatorname{Span}\left(Z_{1}, Z_{2}, Z_{3}\right)\).
- Taking the commutators of the vector fields \(Z_{1}, Z_{2}, Z_{3}\) spanning the distribution \(D\) we get three new vector fields
\[
\begin{aligned}
z_{i, i+1}=\left[z_{i}, z_{i+1}\right]= & \left(x_{i}-x_{i+2}\right) \partial_{x_{i}}+\left(x_{i+2}-x_{i+1}\right) \partial_{x_{i=1}}+ \\
& \left(y_{i}-y_{i+2}\right) \partial_{y_{i}}+\left(y_{i+2}-y_{i+1}\right) \partial_{y_{i=1}}, \quad i=1,2,3 .
\end{aligned}
\]

\section*{Movement of three ants on the plane: Rule B}
- And now the story is different than in the case of rule \(\mathbf{A}\). Calculating, \(Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}\), we get
- So the rank of the derived distribution \(D_{-2}=[D, D]\) is smaller than 6. The velocity distribution \(D\) for the rule \(B\) is not bracket generating!
- Actually one easilly finds that there is precisely one linear relation between the vector fields \(\left(Z_{1}, Z_{2}, Z_{2}, Z_{12}, Z_{31}, Z_{23}\right)\), namely

- This shows that the velocity distribution \(D\) for the ants moving under rule \(\mathbf{B}\) has the growth vector \((3,5)\). The first derived distribution \(D_{-2}\) has rank 5 and is integrable! The 6-dimensional configuration space \(M\) of ants being in a motion obeying rule \(\mathbf{B}\) is foliated by 5-dimensional leaves. Once ants are in the configuration belonging to a given 5-dimensional leaf in \(M\) they can not leave this leaf by moving according sule B!

\section*{Movement of three ants on the plane: Rule B}
- And now the story is different than in the case of rule \(\mathbf{A}\).
- So the rank of the derived distribution \(D_{-2}=[D, D]\) is smaller than 6. The velocity distribution \(D\) for the rule \(B\) is not bracket generating!
- Actually one easilly finds that there is precisely one linear relation between the vector fields \(\left(Z_{1}, Z_{2}, Z_{2}, Z_{12}, Z_{31}, Z_{23}\right)\), namely
- This shows that the velocity distribution \(D\) for the ants moving under rule \(\mathbf{B}\) has the growth vector \((3,5)\). The first derived distribution \(D_{-2}\) has rank 5 and is integrable! The 6-dimensional configuration space \(M\) of ants being in a motion obeying rule \(\mathbf{B}\) is foliated by 5 -dimensional leaves. Once ants are in the configuration belonging to a given 5-dimensional leaf in \(M\) they can not leave this leaf by moving according sule B!

\section*{Movement of three ants on the plane: Rule B}
- And now the story is different than in the case of rule \(\mathbf{A}\). Calculating, \(Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}\), we get
\[
Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}=0
\]
- So the rank of the derived distribution \(D_{-2}=[D, D]\) is smaller than 6. The velocity distribution \(D\) for the rule \(B\) is not bracket generating!
- Actually one easilly finds that there is precisely one linear relation between the vector fields namely
- This shows that the velocity distribution \(D\) for the ants moving under rule \(\mathbf{B}\) has the growth vector \((3,5)\). The first derived distribution \(D_{-2}\) has rank 5 and is integrable! The 6-dimensional configuration space \(M\) of ants being in a motion obeying rule \(\mathbf{B}\) is foliated by 5 -dimensional leaves. Once ants are in the configuration belonging to a given 5-dimensional leaf in \(M\) they can not leave this leaf by moving according sule \(\mathbf{B}\) !

\section*{Movement of three ants on the plane: Rule B}
- And now the story is different than in the case of rule \(\mathbf{A}\). Calculating, \(Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}\), we get
\[
Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}=0
\]
- So the rank of the derived distribution \(D_{-2}=[D, D]\) is smaller than 6 .
generating!
- Actually one easilly finds that there is precisely one linear relation between the vector fields
namely
- This shows that the velocity distribution \(D\) for the ants moving under rule \(\mathbf{B}\) has the growth vector \((3,5)\). The first derived distribution \(D_{-2}\) has rank 5 and is integrable! The 6-dimensional configuration space \(M\) of ants being in a motion obeying rule \(\mathbf{B}\) is foliated by 5 -dimensional leaves. Once ants are in the configuration belonging to a given 5-dimensional leaf in \(M\) they can not leave this leaf by moving according sule B!

\section*{Movement of three ants on the plane: Rule B}
- And now the story is different than in the case of rule \(\mathbf{A}\). Calculating, \(Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}\), we get
\[
Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}=0
\]
- So the rank of the derived distribution \(D_{-2}=[D, D]\) is smaller than 6. The velocity distribution \(D\) for the rule \(B\) is not bracket generating!
- Actually one easilly finds that there is precisely one linear relation between the vector fields namely
- This shows that the velocity distribution \(D\) for the ants moving under rule \(\mathbf{B}\) has the growth vector \((3,5)\). The first derived distribution \(D_{-2}\) has rank 5 and is integrable! The 6-dimensional configuration space \(M\) of ants being in a motion obeying rule \(\mathbf{B}\) is foliated by 5-dimensional leaves. Once ants are in the configuration belonging to a given 5-dimensional leaf in \(M\) they can not leave this leaf by moving according sule B!

\section*{Movement of three ants on the plane: Rule B}
- And now the story is different than in the case of rule \(\mathbf{A}\). Calculating, \(Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}\), we get
\[
Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}=0
\]
- So the rank of the derived distribution \(D_{-2}=[D, D]\) is smaller than 6. The velocity distribution \(D\) for the rule \(B\) is not bracket generating!
- Actually one easilly finds that there is precisely one linear relation between the vector fields \(\left(Z_{1}, Z_{2}, Z_{2}, Z_{12}, Z_{31}, Z_{23}\right)\), namely
\[
Z_{1}+Z_{2}+Z_{3}+Z_{12}+Z_{31}+Z_{23}=0 .
\]
- This shows that the velocity distribution \(D\) for the ants moving under rule \(\mathbf{B}\) has the growth vector \((3,5)\). The first derived distribution \(D_{-2}\) has rank 5 and is integrable! The 6-dimensional configuration space \(M\) of ants being in a motion obeying rule \(\mathbf{B}\) is foliated by 5-dimensional leaves. Once ants are in the configuration belonging to a given 5-dimensional leaf in \(M\) they can not leave this leaf by moving according sule B!

\section*{Movement of three ants on the plane: Rule B}
- And now the story is different than in the case of rule \(\mathbf{A}\). Calculating, \(Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}\), we get
\[
Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}=0
\]
- So the rank of the derived distribution \(D_{-2}=[D, D]\) is smaller than 6 . The velocity distribution \(D\) for the rule \(B\) is not bracket generating!
- Actually one easilly finds that there is precisely one linear relation between the vector fields \(\left(Z_{1}, Z_{2}, Z_{2}, Z_{12}, Z_{31}, Z_{23}\right)\), namely
\[
Z_{1}+Z_{2}+Z_{3}+Z_{12}+Z_{31}+Z_{23}=0 .
\]
- This shows that the velocity distribution \(D\) for the ants moving under rule B has the growth vector \((3,5)\).
configuration space
of ants being in a motion obeying rule B
is foliated by 5 -dimensional leaves. Once ants are in the
configuration belonging to a given 5-dimensional leaf in \(M\) they
can not leave this leaf by moving according sule B!

\section*{Movement of three ants on the plane: Rule B}
- And now the story is different than in the case of rule \(\mathbf{A}\). Calculating, \(Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}\), we get
\[
Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}=0
\]
- So the rank of the derived distribution \(D_{-2}=[D, D]\) is smaller than 6. The velocity distribution \(D\) for the rule \(B\) is not bracket generating!
- Actually one easilly finds that there is precisely one linear relation between the vector fields \(\left(Z_{1}, Z_{2}, Z_{2}, Z_{12}, Z_{31}, Z_{23}\right)\), namely
\[
Z_{1}+Z_{2}+Z_{3}+Z_{12}+Z_{31}+Z_{23}=0 .
\]
- This shows that the velocity distribution \(D\) for the ants moving under rule \(\mathbf{B}\) has the growth vector \((3,5)\). The first derived distribution \(D_{-2}\) has rank 5 and is integrable!

\section*{Movement of three ants on the plane: Rule B}
- And now the story is different than in the case of rule \(\mathbf{A}\). Calculating, \(Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}\), we get
\[
Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}=0
\]
- So the rank of the derived distribution \(D_{-2}=[D, D]\) is smaller than 6. The velocity distribution \(D\) for the rule \(B\) is not bracket generating!
- Actually one easilly finds that there is precisely one linear relation between the vector fields \(\left(Z_{1}, Z_{2}, Z_{2}, Z_{12}, Z_{31}, Z_{23}\right)\), namely
\[
Z_{1}+Z_{2}+Z_{3}+Z_{12}+Z_{31}+Z_{23}=0 .
\]
- This shows that the velocity distribution \(D\) for the ants moving under rule B has the growth vector \((3,5)\). The first derived distribution \(D_{-2}\) has rank 5 and is integrable! The 6-dimensional configuration space \(M\) of ants being in a motion obeying rule \(\mathbf{B}\) is foliated by 5 -dimensional leaves.

\section*{Movement of three ants on the plane: Rule B}
- And now the story is different than in the case of rule \(\mathbf{A}\). Calculating, \(Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}\), we get
\[
Z_{1} \wedge Z_{2} \wedge Z_{3} \wedge Z_{12} \wedge Z_{31} \wedge Z_{23}=0
\]
- So the rank of the derived distribution \(D_{-2}=[D, D]\) is smaller than 6. The velocity distribution \(D\) for the rule \(B\) is not bracket generating!
- Actually one easilly finds that there is precisely one linear relation between the vector fields \(\left(Z_{1}, Z_{2}, Z_{2}, Z_{12}, Z_{31}, Z_{23}\right)\), namely
\[
Z_{1}+Z_{2}+Z_{3}+Z_{12}+Z_{31}+Z_{23}=0 .
\]
- This shows that the velocity distribution \(D\) for the ants moving under rule \(\mathbf{B}\) has the growth vector \((3,5)\). The first derived distribution \(D_{-2}\) has rank 5 and is integrable! The 6-dimensional configuration space \(M\) of ants being in a motion obeying rule \(\mathbf{B}\) is foliated by 5 -dimensional leaves. Once ants are in the configuration belonging to a given 5-dimensional leaf in \(M\) they can not leave this leaf by moving according rule B!

\section*{The invariant characterizing a leaf}
- Now the question arises about the function that enumerates the leaves of the foliation of the distribution \([D, D]\). What is the feature of motion of the ants whose preservation forces the ants to stay on a given leaf?
a There is a quick algohraic answer to this question:
- Note that \(\mathrm{d}\left(\omega_{1}+\omega_{2}+\omega_{3}\right)=0\).
- This means that that there axists a function F such that \(\mathrm{d} F=\omega_{1}+\omega_{2}+\omega_{3}\).
- One can directly check that

\section*{\(F=32 \mathrm{~A}\).}
where \(A\) is the area of the triangle defined by the ants at every moment. Since all three vector fields \(Z_{i}\) annihilate \(\omega_{i}\), and thus they ennihilate the 1 -form \(\omega_{1}+\omega_{2}+\omega_{3}=32 \mathrm{~d} A\), and in turn they annihilate the one form \(\mathrm{d} A\), then they are tangent to the 5-dimensional submanifolds \(A=\) const in \(M\).

\section*{The invariant characterizing a leaf}
- Now the question arises about the function that enumerates the leaves of the foliation of the distribution \([D, D]\).
feature of motion of the ants whose preservation forces the ants to stay on a given leaf?
- There is a quick algehraic answer to this question:
- Note that
- This means that that there exists a function \(F\) such that
- One can directly check that
where \(A\) is the area of the triangle defined by the ants at every
moment. Since all three vector fields \(Z_{i}\) annihilate \(\omega_{i}\), and thus
they ennihilate the 1 -form \(\omega_{1}+\omega_{2}+\omega_{3}=32 \mathrm{~d} A\), and in turn they
annihilate the one form \(\mathrm{d} A\), then they are tangent to the
5-dimensional submanifolds \(A=\) const in \(M\).

\section*{The invariant characterizing a leaf}
- Now the question arises about the function that enumerates the leaves of the foliation of the distribution \([D, D]\). What is the feature of motion of the ants whose preservation forces the ants to stay on a given leaf?
- There is a quick algebraic answer to this question:
- Note that
- This means that that there exists a function F such that
- One can directly check that
where \(A\) is the area of the triangle defined by the ants at every moment. Since all three vector fields \(Z_{i}\) annihilate \(\omega_{i}\), and thus they ennihilate the 1 -form
annihilate the one form \(\mathrm{d} A\), then they are tangent to the
5-dimensional submanifolds

\section*{The invariant characterizing a leaf}
- Now the question arises about the function that enumerates the leaves of the foliation of the distribution \([D, D]\). What is the feature of motion of the ants whose preservation forces the ants to stay on a given leaf?
- There is a quick algebraic answer to this question:
- Note that
- This means that that there exists a function \(F\) such that
- One can directly check that
where \(A\) is the area of the triangle defined by the ants at every moment. Since all three vector fields \(Z_{i}\) annihilate \(\omega_{i}\), and thus they ennihilate the 1 -form
annihilate the one form \(\mathrm{d} A\), then they are tangent to the
5-dimensional submanifolds

\section*{The invariant characterizing a leaf}
- Now the question arises about the function that enumerates the leaves of the foliation of the distribution \([D, D]\). What is the feature of motion of the ants whose preservation forces the ants to stay on a given leaf?
- There is a quick algebraic answer to this question:
- Note that \(\mathrm{d}\left(\omega_{1}+\omega_{2}+\omega_{3}\right)=0\).
- This means that that there exists a function \(F\) such that
- One can directly check that
where \(A\) is the area of the triangle defined by the ants at every moment. Since all three vector fields \(Z_{i}\) annihilate \(\omega_{i}\), and thus they ennihilate the 1 -form
annihilate the one form \(\mathrm{d} A\), then they are tangent to the
5-dimensional submanifolds

\section*{The invariant characterizing a leaf}
- Now the question arises about the function that enumerates the leaves of the foliation of the distribution \([D, D]\). What is the feature of motion of the ants whose preservation forces the ants to stay on a given leaf?
- There is a quick algebraic answer to this question:
- Note that \(\mathrm{d}\left(\omega_{1}+\omega_{2}+\omega_{3}\right)=0\).
- This means that that there exists a function \(F\) such that \(\mathrm{d} F=\omega_{1}+\omega_{2}+\omega_{3}\).
- One can directly check that
where \(A\) is the area of the triangle defined by the ants at every moment. Since all three vector fields \(Z_{i}\) annihilate \(\omega_{i}\), and thus they ennihilate the 1 -form annihilate the one form \(\mathrm{d} A\), then they are tangent to the 5-dimensional submanifolds

\section*{The invariant characterizing a leaf}
- Now the question arises about the function that enumerates the leaves of the foliation of the distribution \([D, D]\). What is the feature of motion of the ants whose preservation forces the ants to stay on a given leaf?
- There is a quick algebraic answer to this question:
- Note that \(\mathrm{d}\left(\omega_{1}+\omega_{2}+\omega_{3}\right)=0\).
- This means that that there exists a function \(F\) such that \(\mathrm{d} F=\omega_{1}+\omega_{2}+\omega_{3}\).
- One can directly check that
\[
F=32 A
\]
where \(A\) is the area of the triangle defined by the ants at every moment.
they ennihilate the 1 -form
annihilate the one form
then they are tangent to the
5-dimensional submanifolc s
\(A=\) const in

\section*{The invariant characterizing a leaf}
- Now the question arises about the function that enumerates the leaves of the foliation of the distribution \([D, D]\). What is the feature of motion of the ants whose preservation forces the ants to stay on a given leaf?
- There is a quick algebraic answer to this question:
- Note that \(\mathrm{d}\left(\omega_{1}+\omega_{2}+\omega_{3}\right)=0\).
- This means that that there exists a function \(F\) such that \(\mathrm{d} F=\omega_{1}+\omega_{2}+\omega_{3}\).
- One can directly check that
\[
F=32 A
\]
where \(A\) is the area of the triangle defined by the ants at every moment. Since all three vector fields \(Z_{i}\) annihilate \(\omega_{i}\), they ennihilate the 1 -form annihilate the one form then they are tangent to the 5-dimensional submanifolds

\section*{The invariant characterizing a leaf}
- Now the question arises about the function that enumerates the leaves of the foliation of the distribution \([D, D]\). What is the feature of motion of the ants whose preservation forces the ants to stay on a given leaf?
- There is a quick algebraic answer to this question:
- Note that \(\mathrm{d}\left(\omega_{1}+\omega_{2}+\omega_{3}\right)=0\).
- This means that that there exists a function \(F\) such that \(\mathrm{d} F=\omega_{1}+\omega_{2}+\omega_{3}\).
- One can directly check that
\[
F=32 A
\]
where \(A\) is the area of the triangle defined by the ants at every moment. Since all three vector fields \(Z_{i}\) annihilate \(\omega_{i}\), and thus they ennihilate the 1 -form \(\omega_{1}+\omega_{2}+\omega_{3}=32 \mathrm{~d} A\), annihilate the one form \(\mathrm{d} A\), then they are tangent to the 5-dimensional submanifolds

\section*{The invariant characterizing a leaf}
- Now the question arises about the function that enumerates the leaves of the foliation of the distribution \([D, D]\). What is the feature of motion of the ants whose preservation forces the ants to stay on a given leaf?
- There is a quick algebraic answer to this question:
- Note that \(\mathrm{d}\left(\omega_{1}+\omega_{2}+\omega_{3}\right)=0\).
- This means that that there exists a function \(F\) such that \(\mathrm{d} F=\omega_{1}+\omega_{2}+\omega_{3}\).
- One can directly check that
\[
F=32 A
\]
where \(A\) is the area of the triangle defined by the ants at every moment. Since all three vector fields \(Z_{i}\) annihilate \(\omega_{i}\), and thus they ennihilate the 1 -form \(\omega_{1}+\omega_{2}+\omega_{3}=32 \mathrm{~d} A\), and in turn they annihilate the one form \(\mathrm{d} A\), then they are tangent to the

\section*{The invariant characterizing a leaf}
- Now the question arises about the function that enumerates the leaves of the foliation of the distribution \([D, D]\). What is the feature of motion of the ants whose preservation forces the ants to stay on a given leaf?
- There is a quick algebraic answer to this question:
- Note that \(\mathrm{d}\left(\omega_{1}+\omega_{2}+\omega_{3}\right)=0\).
- This means that that there exists a function \(F\) such that \(\mathrm{d} F=\omega_{1}+\omega_{2}+\omega_{3}\).
- One can directly check that
\[
F=32 A
\]
where \(A\) is the area of the triangle defined by the ants at every moment. Since all three vector fields \(Z_{i}\) annihilate \(\omega_{i}\), and thus they ennihilate the 1 -form \(\omega_{1}+\omega_{2}+\omega_{3}=32 \mathrm{~d} A\), and in turn they annihilate the one form \(\mathrm{d} A\), then they are tangent to the 5-dimensional submanifolds \(A=\) const in \(M\).

\section*{The invariant characterizing a leaf}
- This shows that the ants under rule \(\mathbf{B}\) move in a way such that the triangle having them as its vertices has always the same area! This proves the folowing proposition.
- Proposition: The triangle with vertices formed by three ants moving according rule \(\mathbf{B}\) has in every moment of time the same area.
- Apart from the algebraic proof of this proposition given above, it can be also seen by a 'pure thought' observing that any movement of the three ants obeying rule B is a superposition of three primitive moves: an ant \#i moves, and ants \#(i+1) and \(\#(i+2)\) rest, for each \(i=1,2,3\). In each of the three primitive situations, since the vertex \(\# i\) of the triangle moves in a line parallel to the corresponding base \(\#(i+1)-\#(i+2)\) of the triangle, the area of the triangle formed by the ants \#1, \#2 and \#3 is obviously unchanged. Since the general movement according to rule \(\mathbf{B}\) is a linear combination of the three primitive movements preserving the area, it also preserves the area.

\section*{The invariant characterizing a leaf}
- This shows that the ants under rule B move in a way such that the triangle having them as its vertices has always the same area! This proves the folowing proposition.
- Proposition: The triangle with vertices formed by three ants moving according rule B has in every moment of time the same area.
- Apart from the algebraic proof of this proposition given above, it can be also seen by a 'pure thought' observing that any movement of the three ants obeying rule \(\mathbf{B}\) is a superposition of three primitive moves: an ant \#i moves, and ants \(\#(i+1)\) and rest, for each \(i=1,2,3\). In each of the three primitive situations, since the vertex \#i of the triangle moves in a line parallel to the corresponding base \(\#(i+1)-\#(i+2)\) of the triangle, the area of the triangle formed by the ants \#1, \#2 and \#3 is obviously unchanged. Since the general movement according to rule \(\mathbf{B}\) is a linear combination of the three primitive movements preserving the area, it also preserves the area.

\section*{The invariant characterizing a leaf}
- This shows that the ants under rule B move in a way such that the triangle having them as its vertices has always the same area! This proves the folowing proposition.

Proposition: The triangle with vertices formed by three ants moving according rule \(\mathbf{B}\) has in every moment of time the same area.
- Apart from the algebraic proof of this proposition given above, it can be also seen by a 'pure thought' observing that any movement of the three ants obeying rule \(\mathbf{B}\) is a superposition of three primitive moves: an ant \(\# i\) moves, and ants \(\#(i+1)\) and rest, for each \(i=1,2,3\). In each of the three primitive
situations, since the vertex \(\# i\) of the triangle moves in a line parallel to the corresponding base \(\#(i+1)-\#(i+2)\) of the triangle, the area of the triangle formed by the ants \#1, \#2 and \#3 is obviously unchanged. Since the general movement according to rule \(\mathbf{B}\) is a linear combination of the three primitive movements preserving the area, it also preserves the area.

\section*{The invariant characterizing a leaf}
- This shows that the ants under rule B move in a way such that the triangle having them as its vertices has always the same area! This proves the folowing proposition.
- Proposition: The triangle with vertices formed by three ants moving according rule \(\mathbf{B}\) has in every moment of time the same area.
- Apart from the algebraic proof of this proposition given above, it can be also seen by a 'pure thought' observing that any movement of the three ants obeying rule \(\mathbf{B}\) is a superposition of three primitive moves: an ant \(\# i\) moves, and ants \(\#(i+1)\) and rest, for each \(i=1,2,3\). In each of the three primitive
situations, since the vertex \(\# i\) of the triangle moves in a line parallel to the corresponding base of the triangle, the area of the triangle formed by the ants
is obviously unchanged. Since the general movement
according to rule \(\mathbf{B}\) is a linear combination of the three primitive movements preserving the area, it also preserves the area.

\section*{The invariant characterizing a leaf}
- This shows that the ants under rule B move in a way such that the triangle having them as its vertices has always the same area! This proves the folowing proposition.
- Proposition: The triangle with vertices formed by three ants moving according rule \(\mathbf{B}\) has in every moment of time the same area.
- Apart from the algebraic proof of this proposition given above, it can be also seen by a 'pure thought' observing that any movement of the three ants obeying rule \(\mathbf{B}\) is a superposition of three primitive moves:

In each of the three primitive
situations, since the vertex of the triangle moves in a line
parallel to the corresponding base
of the
triangle, the area of the triangle formed by the ants
is obviously unchanged. Since the general moven ent
according to rule \(B\) is a linear combination of the three primitive movements preserving the area, it also preserves the area.

\section*{The invariant characterizing a leaf}
- This shows that the ants under rule B move in a way such that the triangle having them as its vertices has always the same area! This proves the folowing proposition.
- Proposition: The triangle with vertices formed by three ants moving according rule \(\mathbf{B}\) has in every moment of time the same area.
- Apart from the algebraic proof of this proposition given above, it can be also seen by a 'pure thought' observing that any movement of the three ants obeying rule \(\mathbf{B}\) is a superposition of three primitive moves: an ant \#i moves, and ants \#(i+1) and \(\#(i+2)\) rest, for each \(i=1,2,3\).
situations, since the vertex \(\# i\) of the triangle moves in a line
parallel to the corresponding base
of the
triangle, the area of the triangle formed by the ants
is obviously unchanged. Since the general movement
according to rule \(\mathbf{B}\) is a linear combination of the three primitive movements preserving the area, it also preserves the area.

\section*{The invariant characterizing a leaf}
- This shows that the ants under rule B move in a way such that the triangle having them as its vertices has always the same area! This proves the folowing proposition.
- Proposition: The triangle with vertices formed by three ants moving according rule \(\mathbf{B}\) has in every moment of time the same area.
- Apart from the algebraic proof of this proposition given above, it can be also seen by a 'pure thought' observing that any movement of the three ants obeying rule \(\mathbf{B}\) is a superposition of three primitive moves: an ant \#i moves, and ants \#(i+1) and \(\#(i+2)\) rest, for each \(i=1,2,3\). In each of the three primitive situations, since the vertex \(\# i\) of the triangle moves in a line parallel to the corresponding base \(\#(i+1)-\#(i+2)\) of the triangle, the area of the triangle formed by the ants \#1, \#2 and \(\# 3\) is obviously unchanged. Since the general movement
according to rule \(B\) is a linear combination of the three primitive
movements preserving the area, it also preserves the area.

\section*{The invariant characterizing a leaf}
- This shows that the ants under rule B move in a way such that the triangle having them as its vertices has always the same area! This proves the folowing proposition.
- Proposition: The triangle with vertices formed by three ants moving according rule \(\mathbf{B}\) has in every moment of time the same area.
- Apart from the algebraic proof of this proposition given above, it can be also seen by a 'pure thought' observing that any movement of the three ants obeying rule \(\mathbf{B}\) is a superposition of three primitive moves: an ant \#i moves, and ants \#(i+1) and \(\#(i+2)\) rest, for each \(i=1,2,3\). In each of the three primitive situations, since the vertex \(\# i\) of the triangle moves in a line parallel to the corresponding base \(\#(i+1)-\#(i+2)\) of the triangle, the area of the triangle formed by the ants \#1, \#2 and \(\# 3\) is obviously unchanged. Since the general movement according to rule \(\mathbf{B}\) is a linear combination of the three primitive movements preserving the area, it also preserves the area.

\section*{The invariant characterizing a leaf}
- So we see that the movement of the ants according to rule \(\mathbf{B}\) stratifies the configuration space: once in an initial position the ants defined a triangle \(\triangle\) of area \(A\), they move on a
5-dimensional submanifold \(M_{A}\) of \(M\) whose configuration points correspond to triangles \(\triangle^{\prime}\) having the same area \(A\) as \(\triangle\).
- For each fixed \(A\), the three vector fields \(\left(Z_{1}, Z_{2}, Z_{3}\right)\) are tangent to the five manifold \(M_{A}\). They define a distribution \(D=\operatorname{Span}\left(Z_{1}, Z_{2}, Z_{3}\right)\) there, whose growth vector is \((3,5)\).

\section*{The invariant characterizing a leaf}
- So we see that the movement of the ants according to rule B stratifies the configuration space:
ants defined a triangle \(\triangle\) of area \(A\), they move on a
5-dimensional submanifold \(M_{A}\) of \(M\) whose configuration points
correspond to triangles \(\triangle^{\prime}\) having the same area \(A\) as \(\triangle\).
- For each fixed \(A\), the three vector fields \(\left(Z_{1}, Z_{2}, Z_{3}\right)\) are tangent
to the five manifold \(M_{A}\). They define a distribution \(D=\operatorname{Span}\left(Z_{1}, Z_{2}, Z_{3}\right)\) there, whose growth vector is 3,5\()\).

\section*{The invariant characterizing a leaf}
- So we see that the movement of the ants according to rule B stratifies the configuration space: once in an initial position the ants defined a triangle \(\Delta\) of area \(A\), they move on a 5-dimensional submanifold \(M_{A}\) of \(M\) whose configuration points correspond to triangles \(\Delta^{\prime}\) having the same area \(A\) as \(\Delta\).

\section*{The invariant characterizing a leaf}
- So we see that the movement of the ants according to rule B stratifies the configuration space: once in an initial position the ants defined a triangle \(\triangle\) of area \(A\), they move on a 5-dimensional submanifold \(M_{A}\) of \(M\) whose configuration points correspond to triangles \(\Delta^{\prime}\) having the same area \(A\) as \(\triangle\).
- For each fixed \(A\), the three vector fields \(\left(Z_{1}, Z_{2}, Z_{3}\right)\) are tangent to the five manifold \(M_{A}\).
there, whose growth vector is

\section*{The invariant characterizing a leaf}
- So we see that the movement of the ants according to rule B stratifies the configuration space: once in an initial position the ants defined a triangle \(\triangle\) of area \(A\), they move on a 5-dimensional submanifold \(M_{A}\) of \(M\) whose configuration points correspond to triangles \(\Delta^{\prime}\) having the same area \(A\) as \(\triangle\).
- For each fixed \(A\), the three vector fields \(\left(Z_{1}, Z_{2}, Z_{3}\right)\) are tangent to the five manifold \(M_{A}\). They define a distribution
\(D=\operatorname{Span}\left(Z_{1}, Z_{2}, Z_{3}\right)\) there, whose growth vector is \((3,5)\).

\section*{distribution defines \((2,3,5)\) one}
- The 3-distribution \(D\) on each leaf \(M_{A}\) is actually a square of a rank 2 -distribution \(\mathscr{D}\). By this I mean that there is a rank 2-distribution such that its first derived distribution \(\mathscr{D}_{-2}=[\mathscr{D}, \mathscr{D}]\) equals \(D\).
- Its is easy to check that on \(=\operatorname{Span}\left(Z_{1}-Z_{2}, Z_{3}-Z_{1}\right)\) indeed makes the job. Since \(\left[Z_{1}-Z_{2}, Z_{3}-Z_{1}\right]=-Z_{12}-Z_{31}-Z_{23}\), then using the dependence relation \(Z_{1}+Z_{2}+Z_{3}+Z_{12},+Z_{31}+Z_{23}=0\) we get \(\left[Z_{1}-Z_{2}, Z_{3}-Z_{1}\right]=Z_{1}+Z_{2}+Z_{3}\), and consequently \(\left[Z_{1}-Z_{2} \cdot Z_{1}-Z_{3}\right] \wedge\left(Z_{1}-Z_{2}\right) \wedge\left(Z_{3}-Z_{1}\right)=3 Z_{3} \wedge Z_{2} \wedge Z_{1}\).
- This shows (i) that for each \(A=\) const the commutator \([\mathscr{D}, \mathscr{D}]\) is tangent to \(M_{A}\) and (ii) that the first derived distribution of \(\mathscr{D}\) on \(M_{A}\) is the entire 3-distribution, \([O, O]=D\).

\section*{distribution defines}
- The 3-distribution \(D\) on each leaf \(M_{A}\) is actually a square of a rank 2-distribution \(\mathscr{D}\).
2-distribution such that its first derived distribution equals \(D\).
- Its is easy to check that \(\mathscr{D}=\operatorname{Span}\left(Z_{1}-Z_{2}, Z_{3}-Z_{1}\right)\) indeed makes the job. Since \(\left[Z_{1}\right.\) using the dependence relation \(Z\)
 tangent to \(M_{A}\) and (ii) that the first derived distribution of on \(M_{A}\) is the entire 3-distribution,

\section*{distribution defines \((2,3,5)\) one}
- The 3-distribution \(D\) on each leaf \(M_{A}\) is actually a square of a rank 2-distribution \(\mathscr{D}\). By this I mean that there is a rank 2-distribution \(\mathscr{D}\) such that its first derived distribution \(\mathscr{D}_{-2}=[\mathscr{D}, \mathscr{D}]\) equals \(D\).
- Its is easy to check that \(\mathscr{O}=\operatorname{Span}\left(Z_{1}-Z_{2}, Z_{3}-Z_{1}\right)\) indeed makes the job. Since using the dependence re ation \(Z\) we get \(\left[Z_{1}-Z_{2}, Z_{3}-Z_{1}=Z_{1}+Z_{2}, Z_{3}\right.\), and consequently
- This shows (i) that for each \(A=\) const the commutator \([\mathscr{D}, \mathscr{D}]\) is tangent to \(M_{A}\) and (ii) that the first derived distribution of \(\mathscr{D}\) on \(M_{A}\) is the entire 3 -distribution,

\section*{distribution defines \((2,3,5)\) one}
- The 3-distribution \(D\) on each leaf \(M_{A}\) is actually a square of a rank 2-distribution \(\mathscr{D}\). By this I mean that there is a rank 2-distribution \(\mathscr{D}\) such that its first derived distribution \(\mathscr{D}_{-2}=[\mathscr{D}, \mathscr{D}]\) equals \(D\).
- Its is easy to check that \(\mathscr{D}=\operatorname{Span}\left(Z_{1}-Z_{2}, Z_{3}-Z_{1}\right)\) indeed makes the job.

\section*{distribution defines \((2,3,5)\) one}
- The 3-distribution \(D\) on each leaf \(M_{A}\) is actually a square of a rank 2-distribution \(\mathscr{D}\). By this I mean that there is a rank 2-distribution \(\mathscr{D}\) such that its first derived distribution \(\mathscr{D}_{-2}=[\mathscr{D}, \mathscr{D}]\) equals \(D\).
- Its is easy to check that \(\mathscr{D}=\operatorname{Span}\left(Z_{1}-Z_{2}, Z_{3}-Z_{1}\right)\) indeed makes the job. Since \(\left[Z_{1}-Z_{2}, Z_{3}-Z_{1}\right]=-Z_{12}-Z_{31}-Z_{23}\),
- This shows (i) that for each \(A=\) const the commutator \([\mathscr{D}, \mathscr{D}]\) is tangent to \(M_{A}\) and (ii) that the first derived distribution of \(\mathscr{D}\) on \(M_{A}\) is the entire 3 -distribution,

\section*{distribution defines \((2,3,5)\) one}
- The 3-distribution \(D\) on each leaf \(M_{A}\) is actually a square of a rank 2-distribution \(\mathscr{D}\). By this I mean that there is a rank 2-distribution \(\mathscr{D}\) such that its first derived distribution \(\mathscr{D}_{-2}=[\mathscr{D}, \mathscr{D}]\) equals \(D\).
- Its is easy to check that \(\mathscr{D}=\operatorname{Span}\left(Z_{1}-Z_{2}, Z_{3}-Z_{1}\right)\) indeed makes the job. Since \(\left[Z_{1}-Z_{2}, Z_{3}-Z_{1}\right]=-Z_{12}-Z_{31}-Z_{23}\), then using the dependence relation \(Z_{1}+Z_{2}+Z_{3}+Z_{12},+Z_{31}+Z_{23}=0\)

\section*{distribution defines \((2,3,5)\) one}
- The 3-distribution \(D\) on each leaf \(M_{A}\) is actually a square of a rank 2-distribution \(\mathscr{D}\). By this I mean that there is a rank 2-distribution \(\mathscr{D}\) such that its first derived distribution \(\mathscr{D}_{-2}=[\mathscr{D}, \mathscr{D}]\) equals \(D\).
- Its is easy to check that \(\mathscr{D}=\operatorname{Span}\left(Z_{1}-Z_{2}, Z_{3}-Z_{1}\right)\) indeed makes the job. Since \(\left[Z_{1}-Z_{2}, Z_{3}-Z_{1}\right]=-Z_{12}-Z_{31}-Z_{23}\), then using the dependence relation \(Z_{1}+Z_{2}+Z_{3}+Z_{12},+Z_{31}+Z_{23}=0\) we get \(\left[Z_{1}-Z_{2}, Z_{3}-Z_{1}\right]=Z_{1}+Z_{2}+Z_{3}\), and consequently

\section*{distribution defines \((2,3,5)\) one}
- The 3-distribution \(D\) on each leaf \(M_{A}\) is actually a square of a rank 2-distribution \(\mathscr{D}\). By this I mean that there is a rank 2-distribution \(\mathscr{D}\) such that its first derived distribution \(\mathscr{D}_{-2}=[\mathscr{D}, \mathscr{D}]\) equals \(D\).
- Its is easy to check that \(\mathscr{D}=\operatorname{Span}\left(Z_{1}-Z_{2}, Z_{3}-Z_{1}\right)\) indeed makes the job. Since \(\left[Z_{1}-Z_{2}, Z_{3}-Z_{1}\right]=-Z_{12}-Z_{31}-Z_{23}\), then using the dependence relation \(Z_{1}+Z_{2}+Z_{3}+Z_{12},+Z_{31}+Z_{23}=0\) we get \(\left[Z_{1}-Z_{2}, Z_{3}-Z_{1}\right]=Z_{1}+Z_{2}+Z_{3}\), and consequently \(\left[Z_{1}-Z_{2}, Z_{1}-Z_{3}\right] \wedge\left(Z_{1}-Z_{2}\right) \wedge\left(Z_{3}-Z_{1}\right)=3 Z_{3} \wedge Z_{2} \wedge Z_{1}\).

\section*{distribution defines \((2,3,5)\) one}
- The 3-distribution \(D\) on each leaf \(M_{A}\) is actually a square of a rank 2-distribution \(\mathscr{D}\). By this I mean that there is a rank 2-distribution \(\mathscr{D}\) such that its first derived distribution \(\mathscr{D}_{-2}=[\mathscr{D}, \mathscr{D}]\) equals \(D\).
- Its is easy to check that \(\mathscr{D}=\operatorname{Span}\left(Z_{1}-Z_{2}, Z_{3}-Z_{1}\right)\) indeed makes the job. Since \(\left[Z_{1}-Z_{2}, Z_{3}-Z_{1}\right]=-Z_{12}-Z_{31}-Z_{23}\), then using the dependence relation \(Z_{1}+Z_{2}+Z_{3}+Z_{12},+Z_{31}+Z_{23}=0\) we get \(\left[Z_{1}-Z_{2}, Z_{3}-Z_{1}\right]=Z_{1}+Z_{2}+Z_{3}\), and consequently \(\left[Z_{1}-Z_{2}, Z_{1}-Z_{3}\right] \wedge\left(Z_{1}-Z_{2}\right) \wedge\left(Z_{3}-Z_{1}\right)=3 Z_{3} \wedge Z_{2} \wedge Z_{1}\).
- This shows (i) that for each \(A=\) const the commutator
tangent to \(M_{A}\) and (ii) that the first derived distribution of

\section*{distribution defines \((2,3,5)\) one}
- The 3-distribution \(D\) on each leaf \(M_{A}\) is actually a square of a rank 2-distribution \(\mathscr{D}\). By this I mean that there is a rank 2-distribution \(\mathscr{D}\) such that its first derived distribution \(\mathscr{D}_{-2}=[\mathscr{D}, \mathscr{D}]\) equals \(D\).
- Its is easy to check that \(\mathscr{D}=\operatorname{Span}\left(Z_{1}-Z_{2}, Z_{3}-Z_{1}\right)\) indeed makes the job. Since \(\left[Z_{1}-Z_{2}, Z_{3}-Z_{1}\right]=-Z_{12}-Z_{31}-Z_{23}\), then using the dependence relation \(Z_{1}+Z_{2}+Z_{3}+Z_{12},+Z_{31}+Z_{23}=0\) we get \(\left[Z_{1}-Z_{2}, Z_{3}-Z_{1}\right]=Z_{1}+Z_{2}+Z_{3}\), and consequently \(\left[Z_{1}-Z_{2}, Z_{1}-Z_{3}\right] \wedge\left(Z_{1}-Z_{2}\right) \wedge\left(Z_{3}-Z_{1}\right)=3 Z_{3} \wedge Z_{2} \wedge Z_{1}\).
- This shows (i) that for each \(A=\) const the commutator \([\mathscr{D}, \mathscr{D}]\) is tangent to \(M_{A}\) and (ii) that the first derived distribution of \(D\) on

\section*{distribution defines \((2,3,5)\) one}
- The 3-distribution \(D\) on each leaf \(M_{A}\) is actually a square of a rank 2-distribution \(\mathscr{D}\). By this I mean that there is a rank 2-distribution \(\mathscr{D}\) such that its first derived distribution \(\mathscr{D}_{-2}=[\mathscr{D}, \mathscr{D}]\) equals \(D\).
- Its is easy to check that \(\mathscr{D}=\operatorname{Span}\left(Z_{1}-Z_{2}, Z_{3}-Z_{1}\right)\) indeed makes the job. Since \(\left[Z_{1}-Z_{2}, Z_{3}-Z_{1}\right]=-Z_{12}-Z_{31}-Z_{23}\), then using the dependence relation \(Z_{1}+Z_{2}+Z_{3}+Z_{12},+Z_{31}+Z_{23}=0\) we get \(\left[Z_{1}-Z_{2}, Z_{3}-Z_{1}\right]=Z_{1}+Z_{2}+Z_{3}\), and consequently \(\left[Z_{1}-Z_{2}, Z_{1}-Z_{3}\right] \wedge\left(Z_{1}-Z_{2}\right) \wedge\left(Z_{3}-Z_{1}\right)=3 Z_{3} \wedge Z_{2} \wedge Z_{1}\).
- This shows (i) that for each \(A=\) const the commutator [\(\mathscr{D}, \mathscr{D}]\) is tangent to \(M_{A}\) and (ii) that the first derived distribution of \(\mathscr{D}\) on \(M_{A}\) is the entire 3-distribution, \([\mathscr{D}, \mathscr{D}]=D\).

\section*{The}

\section*{of the ants under rule \(\mathbf{B}\)}
- Thus we have just established the following proposition.
- Droposition: The 6-dimensional configuration space 11 of three ants moving on the plane according to rule \(\mathbf{B}\) is foliated by 5-dimensional submanifolds \(M_{A}\) consisting of configuration points defining triangles of equal area \(A\) on the plane. The ants obeying rule \(B\) must stay on a given leaf \(M_{A}\) of the foliation during their motion. Their velocity distribution \(D\) of rank 3 , defines a rank 2 distribution \(\mathscr{D}\), which is the 'square root' of \(D\), \(D=[\mathscr{O}\), . The rank 2 distribution has the growth vector \((2,3,5)\) on each leaf \(M_{A}\).

\section*{The}

\section*{of the ants under rule \(\mathbf{B}\)}
- Thus we have just established the following proposition.
- Proposition: The 6-dimensional configuration space \(M\) of three ants moving on the plane according to rule \(\mathbf{B}\) is foliated by 5-dimensional submanifolds \(M_{A}\) consisting of configuration points defining triangles of equal area \(A\) on the plane. The ants obeying rule \(B\) must stay on a given leaf \(M_{A}\) of the foliation during their motion. Their velocity distribution \(D\) of rank 3, defines a rank 2 distribution \(\mathscr{O}\), which is the 'square root' of \(D\), \(D=[\mathscr{D}, \mathscr{O}]\). The rank 2 distribution \(\mathscr{D}\) has the growth vector \((2,3,5)\) on each leaf \(M_{A}\).

\section*{The}

\section*{of the ants under rule B}
- Thus we have just established the following proposition.
- Proposition:

The 6-dimensional configuration space \(M\) of three
ants moving on the plane according to rule \(\mathbf{B}\) is foliated by
5-dimensional submanifolds \(M_{A}\) consisting of configuration
points defining triangles of equal area \(A\) on the plane. The ants obeying rule \(B\) must stay on a given leaf \(M_{A}\) of the foliation during their motion. Their velocity distribution \(D\) of rank 3 , defines a rank 2 distribution \(\mathscr{D}\), which is the 'square root' of \(D\), \(D=[\mathscr{D}, \mathscr{D}]\). The rank 2 distribution \(\mathscr{O}\) has the growth vector \((2,3,5)\) on each leaf \(M_{A}\)
- Thus we have just established the following proposition.
- Proposition: The 6-dimensional configuration space \(M\) of three ants moving on the plane according to rule \(\mathbf{B}\) is foliated by 5 -dimensional submanifolds \(M_{A}\) consisting of configuration points defining triangles of equal area \(A\) on the plane.

- Thus we have just established the following proposition.
- Proposition: The 6-dimensional configuration space \(M\) of three ants moving on the plane according to rule \(\mathbf{B}\) is foliated by 5-dimensional submanifolds \(M_{A}\) consisting of configuration points defining triangles of equal area \(A\) on the plane. The ants obeying rule \(\mathbf{B}\) must stay on a given leaf \(M_{A}\) of the foliation during their motion.

- Thus we have just established the following proposition.
- Proposition: The 6-dimensional configuration space \(M\) of three ants moving on the plane according to rule \(\mathbf{B}\) is foliated by 5-dimensional submanifolds \(M_{A}\) consisting of configuration points defining triangles of equal area \(A\) on the plane. The ants obeying rule B must stay on a given leaf \(M_{A}\) of the foliation during their motion. Their velocity distribution \(D\) of rank 3 , defines a rank 2 distribution \(\mathscr{D}\), which is the 'square root' of \(D\), \(D=[\mathscr{D}, \mathscr{D}]\). The rank 2 distribution has the growth vector
- Thus we have just established the following proposition.
- Proposition: The 6-dimensional configuration space \(M\) of three ants moving on the plane according to rule \(\mathbf{B}\) is foliated by 5-dimensional submanifolds \(M_{A}\) consisting of configuration points defining triangles of equal area \(A\) on the plane. The ants obeying rule B must stay on a given leaf \(M_{A}\) of the foliation during their motion. Their velocity distribution \(D\) of rank 3 , defines a rank 2 distribution \(\mathscr{D}\), which is the 'square root' of \(D\), \(D=[\mathscr{D}, \mathscr{D}]\). The rank 2 distribution \(\mathscr{D}\) has the growth vector \((2,3,5)\) on each leaf \(M_{A}\).

\section*{Few words about (2,3,5) distributions}
> - We recall that rank 2 distributions with growth vector \((2,3,5)\) on 5-dimensional manifolds have local differential invariants. In particular their symmetry algebra can be as large as 14-dimensional Lie algebra \(g_{2}\) of the split real form of the simple exceptional complex Lie group \(G_{2}\). This happens for the rank 2 distribution given on a 5-dimensional quadric \(p_{i} q^{i}=1\) in \(\mathbb{R}^{6}\), with coordinates \(\left(q^{i}, p_{i}\right)\), as the annihilator of three 1 -forms \(\lambda_{i}=\mathrm{d} p_{i}+\epsilon_{i j k} q^{j} \mathrm{~d} q^{k}, i=1,2,3\).

\section*{Few words about distributions}
- We recall that rank 2 distributions with growth vector \((2,3,5)\) on 5-dimensional manifolds have local differential invariants.
particular their symmetry algebra can be as large as 14-dimensional Lie algebra \(g_{2}\) of the split real form of the simple exceptional complex Lie group \(G_{2}\). This happens for the rank 2 distribution given on a 5-dimensional quadric \(p_{1} q^{j}=1\) in \(\mathbb{R}^{6}\), with coordinates \(\left(q^{i}, p_{i}\right)\), as the annihilator of three 1 -forms

\section*{Few words about}
- We recall that rank 2 distributions with growth vector \((2,3,5)\) on 5-dimensional manifolds have local differential invariants. In particular their symmetry algebra can be as large as 14-dimensional Lie algebra \(\mathfrak{g}_{2}\) of the split real form of the simple exceptional complex Lie group \(G_{2}\).
distribution given on a 5-dimensional quadric \(p_{i} q^{\prime}=1\) in \(\mathbb{R}^{6}\), with coordinates \(\left(q^{i}, p_{i}\right)\), as the annihilator of three 1-forms
- We recall that rank 2 distributions with growth vector \((2,3,5)\) on 5-dimensional manifolds have local differential invariants. In particular their symmetry algebra can be as large as 14-dimensional Lie algebra \(\mathfrak{g}_{2}\) of the split real form of the simple exceptional complex Lie group \(G_{2}\). This happens for the rank 2 distribution given on a 5-dimensional quadric \(p_{i} q^{i}=1\) in \(\mathbb{R}^{6}\), with coordinates \(\left(q^{i}, p_{i}\right)\), as the annihilator of three 1 -forms \(\lambda_{i}=\mathrm{d} p_{i}+\epsilon_{i j k} q^{j} q^{k}, i=1,2,3\).
- We recall that rank 2 distributions with growth vector \((2,3,5)\) on 5-dimensional manifolds have local differential invariants. In particular their symmetry algebra can be as large as 14-dimensional Lie algebra \(\mathfrak{g}_{2}\) of the split real form of the simple exceptional complex Lie group \(G_{2}\). This happens for the rank 2 distribution given on a 5-dimensional quadric \(p_{i} q^{i}=1\) in \(\mathbb{R}^{6}\), with coordinates \(\left(q^{i}, p_{i}\right)\), as the annihilator of three 1 -forms \(\lambda_{i}=\mathrm{d} p_{i}+\epsilon_{i j k} q^{j} q^{k}, i=1,2,3\).

\section*{Ants'}

\section*{distribution}
- It is a nontrivial task to guess the symmetries of \(\mathscr{D}\). They should have something in common with symmetries of the plane. The first few symmetries of the plane that come to mind are the symmetries generating area preserving affine transformations of the plane. Recall that we had vector fields infinitesimally realizing these transformations in \(\mathbb{R}^{6}\) configuration space of the three ants, when we considered the symmetries of the ants under rule \(\mathbf{A}\). These were the five symmetry vector fields \(\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}-X_{6}\right)\) of the rule \(B\) regime.
- Denoting by \(S\) a vector field
\(S=a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}+a_{4} X_{1}+a_{5}\left(X_{5}-X_{6}\right)\). with \(a_{\mu}=\) const,
\(\mu=1,2, \ldots 5\), one can directly check that for the function \(A\) defining the area of the ants' triangle, and for \(Z_{i}\) defining \(D\) for the rule \(B\) we have:
\(S(A)=0\).
\[
\begin{aligned}
& {\left[S, Z_{1}-Z_{2}\right] \wedge\left(Z_{1}-Z_{2}\right) \wedge\left(Z_{3}-Z_{1}\right)=0 \quad \text { and }} \\
& {\left[S, Z_{3}-Z_{1}\right] \wedge\left(Z_{1}-Z_{2}\right) \wedge\left(Z_{3}-Z_{1}\right)=0 .}
\end{aligned}
\]
- This algebraic argument shows that the Lie algebra of area preserving affine transformations of the plane, which is the semidirect product of \(\operatorname{sl}(2, \mathbb{R})\) and \(\mathbb{R}^{2}\), is included in the symmetry algebra cut(2) of the rank 2 distribution

\section*{Ants' \\ distribution}
- It is a nontrivial task to guess the symmetries of \(\mathscr{D}\). They should have
something in common with symmetries of the plane. The first few symmetries of the plane that come to mind are the symmetries generating area preserving affine transformations of the plane. Recall that we had vector fields infinitesimally realizing these transformations in \(\mathbb{R}^{6}\) configuration space of the three ants, when we considered the symmetries of the ants under rule \(\mathbf{A}\). These were the five symmetry vector fields
of the rule B regime.
- Denoting by \(S\) a vector field
\(S=a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}+a_{4} \lambda+a_{5}\left(X_{5}-X_{6}\right)\), with \(a_{1}=c o n s t\), , one can directly check that for the function \(A\) defining the area of the ants' triangle, and for \(Z_{i}\) defining \(D\) for the rule \(B\) we have:
\(S(A)=0\)
\[
\begin{aligned}
& {\left[S, Z_{1}-Z_{2}\right] \wedge\left(Z_{1}-Z_{2}\right) \wedge\left(Z_{3}-Z_{1}\right)=0 \quad \text { and }} \\
& {\left[S, Z_{3}-Z_{1}\right] \wedge\left(Z_{1}-Z_{2}\right) \wedge\left(Z_{3}-Z_{1}\right)=0 .}
\end{aligned}
\]

This algebraic argument shows that the Lie algebra of area preserving affine transformations of the plane, which is the semidirect product of \(\operatorname{sl}(2, \mathbb{R})\) and \(\mathbb{R}^{2}\), is included in the symmetry algebra aut(2) of the rank 2 distribution

\section*{Ants'}

\section*{distribution}
- It is a nontrivial task to guess the symmetries of \(\mathscr{D}\). They should have something in common with symmetries of the plane.
> symmetries of the plane that come to mind are the symmetries
> generating area preserving affine transformations of the plane. Recall that we had vector fields infinitesimally realizing these transformations in \({ }^{6}\) configuration space of the three ants, when we considered the symmetries of the ants under rule \(\mathbf{A}\). These were the five symmetry vector fields \(\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}-X_{6}\right)\) of the rule \(B\) regime.
- Denoting by \(S\) a vector field
\(S=a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}+a_{4} X_{4}+a_{5}\left(X_{5}-X_{6}\right)\), with \(a_{\mu}=\) const,
\(\mu=1,2, \ldots 5\), one can directly check that for the function \(A\) defining the area of the ants' triangle, and for \(Z_{i}\) defining \(D\) for the rule \(\mathbf{B}\) we have:

- This algebraic argument shows that the Lie algebra of area preserving affine transformations of the plane, which is the semidirect product of \(s l(2, \mathbb{R})\) and \(\mathbb{R}^{2}\), is included in the symmetry algebra aut(S) of the rank
2 distribution
- It is a nontrivial task to guess the symmetries of \(\mathscr{D}\). They should have something in common with symmetries of the plane. The first few symmetries of the plane that come to mind are the symmetries generating area preserving affine transformations of the plane.
that we had vector fields infinitesimally realizing these transformations
in \(\mathbb{R}^{6}\) configuration space of the three ants, when we considered the symmetries of the ants under rule \(\mathbf{A}\). These were the five symmetry vector fields (\(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}-X_{6}\)) of the rule \(\mathbf{B}\) regime.
- Denoting by \(S\) a vector field
\(S=a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}+a_{4} X_{4}+a_{5}\left(X_{5}-X_{6}\right)\), with \(a_{\mu}=\) const,
\(\mu=1,2, \ldots 5\), one can directly check that for the function \(A\) defining the
area of the ants' triangle, and for \(Z_{i}\) defining \(D\) for the rule \(B\) we have:
- This algebraic argument shows that the Lie algebra of area preserving affine transformations of the plane, which is the semidirect product of and \(\mathbb{R}^{2}\), is included in the symmetry algebra aut(2) of the rank
2 distribution
- It is a nontrivial task to guess the symmetries of \(\mathscr{D}\). They should have something in common with symmetries of the plane. The first few symmetries of the plane that come to mind are the symmetries generating area preserving affine transformations of the plane. Recall that we had vector fields infinitesimally realizing these transformations in \(\mathbb{R}^{6}\) configuration space of the three ants, when we considered the symmetries of the ants under rule \(\mathbf{A}\).
vector fields
of the rule B regime
- Denoting by \(S\) a vector field
\(S=a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}+a_{4} X+a_{5}\left(X_{5}-X_{6}\right)\). with \(a_{\mu}=\) const,
area of the ants' triangle, and for \(Z\) defining dor the function \(A\) defining the the rule \(B\) we have:
- This algebraic argument shows that the Lie algebra of area preserving affine transformations of the plane, which is the semidirect product of and \(\pi^{2}\), is included in the symmetry algebra aut (Y) of the rank
2 distribution
- It is a nontrivial task to guess the symmetries of \(\mathscr{D}\). They should have something in common with symmetries of the plane. The first few symmetries of the plane that come to mind are the symmetries generating area preserving affine transformations of the plane. Recall that we had vector fields infinitesimally realizing these transformations in \(\mathbb{R}^{6}\) configuration space of the three ants, when we considered the symmetries of the ants under rule \(\mathbf{A}\). These were the five symmetry vector fields \(\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}-X_{6}\right)\) of the rule \(\mathbf{B}\) regime.
Denoting by \(S\) a vector field
with
one can directly check that for the function A defining the
area of the ants' triangle, and for \(Z_{i}\) defining \(D\) for the rule \(B\) we have:
- This algebraic argument shows that the Lie algebra of area preserving affine transformations of the plane, which is the semidirect product of and \(\mathbb{R}^{2}\), is included in the symmetry algebra aut \((\mathscr{O})\) of the rank
2 distribution
- It is a nontrivial task to guess the symmetries of \(\mathscr{D}\). They should have something in common with symmetries of the plane. The first few symmetries of the plane that come to mind are the symmetries generating area preserving affine transformations of the plane. Recall that we had vector fields infinitesimally realizing these transformations in \(\mathbb{R}^{6}\) configuration space of the three ants, when we considered the symmetries of the ants under rule \(\mathbf{A}\). These were the five symmetry vector fields \(\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}-X_{6}\right)\) of the rule \(\mathbf{B}\) regime.
- Denoting by \(S\) a vector field \(S=a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}+a_{4} X_{4}+a_{5}\left(X_{5}-X_{6}\right)\), with \(a_{\mu}=\) const, \(\mu=1,2, \ldots 5\), one can directly check that for the function A defining the area of the ants' triangle, and for \(Z_{i}\) defining \(D\) for the rule B we have:
- This algebraic argument shows that the Lie algebra of area preserving affine transformations of the plane, which is the semidirect product of and \(\mathbb{R}^{2}\), is included in the symmetry algebra aut \((\mathscr{O})\) of the rank 2 distribution
- It is a nontrivial task to guess the symmetries of \(\mathscr{D}\). They should have something in common with symmetries of the plane. The first few symmetries of the plane that come to mind are the symmetries generating area preserving affine transformations of the plane. Recall that we had vector fields infinitesimally realizing these transformations in \(\mathbb{R}^{6}\) configuration space of the three ants, when we considered the symmetries of the ants under rule \(\mathbf{A}\). These were the five symmetry vector fields \(\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}-X_{6}\right)\) of the rule \(\mathbf{B}\) regime.
- Denoting by \(S\) a vector field \(S=a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}+a_{4} X_{4}+a_{5}\left(X_{5}-X_{6}\right)\), with \(a_{\mu}=\) const, \(\mu=1,2, \ldots 5\), one can directly check that for the function \(A\) defining the area of the ants' triangle,
- This algebraic argument shows that the Lie algebra of area preserving affine transformations of the plane, which is the semidirect product of and \(\mathbb{R}^{2}\), is included in the symmetry algebra aut \((\mathscr{D})\) of the rank 2 distribution
- It is a nontrivial task to guess the symmetries of \(\mathscr{D}\). They should have something in common with symmetries of the plane. The first few symmetries of the plane that come to mind are the symmetries generating area preserving affine transformations of the plane. Recall that we had vector fields infinitesimally realizing these transformations in \(\mathbb{R}^{6}\) configuration space of the three ants, when we considered the symmetries of the ants under rule \(\mathbf{A}\). These were the five symmetry vector fields \(\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}-X_{6}\right)\) of the rule \(\mathbf{B}\) regime.
- Denoting by \(S\) a vector field \(S=a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}+a_{4} X_{4}+a_{5}\left(X_{5}-X_{6}\right)\), with \(a_{\mu}=\) const, \(\mu=1,2, \ldots 5\), one can directly check that for the function \(A\) defining the area of the ants' triangle, and for \(Z_{i}\) defining \(D\) for the rule \(\mathbf{B}\) we have:
- This algebraic argument shows that the Lie algebra of area preserving affine transformations of the plane, which is the semidirect product of and \(\mathbb{R}^{2}\), is included in the symmetry algebra \(\operatorname{aut}(\mathscr{O})\) of the rank 2 distribution
- It is a nontrivial task to guess the symmetries of \(\mathscr{D}\). They should have something in common with symmetries of the plane. The first few symmetries of the plane that come to mind are the symmetries generating area preserving affine transformations of the plane. Recall that we had vector fields infinitesimally realizing these transformations in \(\mathbb{R}^{6}\) configuration space of the three ants, when we considered the symmetries of the ants under rule \(\mathbf{A}\). These were the five symmetry vector fields \(\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}-X_{6}\right)\) of the rule \(\mathbf{B}\) regime.
- Denoting by \(S\) a vector field \(S=a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}+a_{4} X_{4}+a_{5}\left(X_{5}-X_{6}\right)\), with \(a_{\mu}=\) const, \(\mu=1,2, \ldots 5\), one can directly check that for the function \(A\) defining the area of the ants' triangle, and for \(Z_{i}\) defining \(D\) for the rule \(\mathbf{B}\) we have:
\[
\begin{aligned}
& S(A)=0 \\
& \quad\left[S, Z_{1}-Z_{2}\right] \wedge\left(Z_{1}-Z_{2}\right) \wedge\left(Z_{3}-Z_{1}\right)=0 \quad \text { and } \\
& \quad\left[S, Z_{3}-Z_{1}\right] \wedge\left(Z_{1}-Z_{2}\right) \wedge\left(Z_{3}-Z_{1}\right)=0
\end{aligned}
\]
- This algebraic argument shows that the Lie algebra of area preserving affine transformations of the plane, which is the semidirect product of and \(\mathbb{R}^{2}\), is included in the symmetry algebra \(\operatorname{aut}(\mathscr{O})\) of the rank 2 distribution
- It is a nontrivial task to guess the symmetries of \(\mathscr{D}\). They should have something in common with symmetries of the plane. The first few symmetries of the plane that come to mind are the symmetries generating area preserving affine transformations of the plane. Recall that we had vector fields infinitesimally realizing these transformations in \(\mathbb{R}^{6}\) configuration space of the three ants, when we considered the symmetries of the ants under rule \(\mathbf{A}\). These were the five symmetry vector fields \(\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}-X_{6}\right)\) of the rule \(\mathbf{B}\) regime.
- Denoting by \(S\) a vector field \(S=a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}+a_{4} X_{4}+a_{5}\left(X_{5}-X_{6}\right)\), with \(a_{\mu}=\) const, \(\mu=1,2, \ldots 5\), one can directly check that for the function \(A\) defining the area of the ants' triangle, and for \(Z_{i}\) defining \(D\) for the rule \(\mathbf{B}\) we have:
\[
\begin{aligned}
& S(A)=0 \\
& \quad\left[S, Z_{1}-Z_{2}\right] \wedge\left(Z_{1}-Z_{2}\right) \wedge\left(Z_{3}-Z_{1}\right)=0 \quad \text { and } \\
& \quad\left[S, Z_{3}-Z_{1}\right] \wedge\left(Z_{1}-Z_{2}\right) \wedge\left(Z_{3}-Z_{1}\right)=0
\end{aligned}
\]
- This algebraic argument shows that the Lie algebra of area preserving affine transformations of the plane,
- It is a nontrivial task to guess the symmetries of \(\mathscr{D}\). They should have something in common with symmetries of the plane. The first few symmetries of the plane that come to mind are the symmetries generating area preserving affine transformations of the plane. Recall that we had vector fields infinitesimally realizing these transformations in \(\mathbb{R}^{6}\) configuration space of the three ants, when we considered the symmetries of the ants under rule \(\mathbf{A}\). These were the five symmetry vector fields \(\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}-X_{6}\right)\) of the rule \(\mathbf{B}\) regime.
- Denoting by \(S\) a vector field \(S=a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}+a_{4} X_{4}+a_{5}\left(X_{5}-X_{6}\right)\), with \(a_{\mu}=\) const, \(\mu=1,2, \ldots 5\), one can directly check that for the function \(A\) defining the area of the ants' triangle, and for \(Z_{i}\) defining \(D\) for the rule \(\mathbf{B}\) we have:
\[
\begin{aligned}
& S(A)=0 \\
& \quad\left[S, Z_{1}-Z_{2}\right] \wedge\left(Z_{1}-Z_{2}\right) \wedge\left(Z_{3}-Z_{1}\right)=0 \quad \text { and } \\
& \quad\left[S, Z_{3}-Z_{1}\right] \wedge\left(Z_{1}-Z_{2}\right) \wedge\left(Z_{3}-Z_{1}\right)=0
\end{aligned}
\]
- This algebraic argument shows that the Lie algebra of area preserving affine transformations of the plane, which is the semidirect product of \(\mathfrak{s l}(2, \mathbb{R})\) and \(\mathbb{R}^{2}\), is included in the symmetry algebra 2 distribution
- It is a nontrivial task to guess the symmetries of \(\mathscr{D}\). They should have something in common with symmetries of the plane. The first few symmetries of the plane that come to mind are the symmetries generating area preserving affine transformations of the plane. Recall that we had vector fields infinitesimally realizing these transformations in \(\mathbb{R}^{6}\) configuration space of the three ants, when we considered the symmetries of the ants under rule \(\mathbf{A}\). These were the five symmetry vector fields \(\left(X_{1}, X_{2}, X_{3}, X_{4}, X_{5}-X_{6}\right)\) of the rule \(\mathbf{B}\) regime.
- Denoting by \(S\) a vector field \(S=a_{1} X_{1}+a_{2} X_{2}+a_{3} X_{3}+a_{4} X_{4}+a_{5}\left(X_{5}-X_{6}\right)\), with \(a_{\mu}=\) const, \(\mu=1,2, \ldots 5\), one can directly check that for the function \(A\) defining the area of the ants' triangle, and for \(Z_{i}\) defining \(D\) for the rule \(\mathbf{B}\) we have:
\[
\begin{aligned}
& S(A)=0 \\
& \quad\left[S, Z_{1}-Z_{2}\right] \wedge\left(Z_{1}-Z_{2}\right) \wedge\left(Z_{3}-Z_{1}\right)=0 \quad \text { and } \\
& \quad\left[S, Z_{3}-Z_{1}\right] \wedge\left(Z_{1}-Z_{2}\right) \wedge\left(Z_{3}-Z_{1}\right)=0
\end{aligned}
\]
- This algebraic argument shows that the Lie algebra of area preserving affine transformations of the plane, which is the semidirect product of \(\mathfrak{s l}(2, \mathbb{R})\) and \(\mathbb{R}^{2}\), is included in the symmetry algebra aut \((\mathscr{D})\) of the rank 2 distribution \(\mathscr{D}\).

\section*{The theorem about ants' rule B}
- Theorem:
- The Lie algebra of all symmetries of the velocity distribution of the system of three ants moving on the plane according to rule \(\mathbf{B}\) is isomorphic to the Lie algebra of area preserving affine transformations of the plane.
- The distribution is one of the homogeneous models of \((2,3,5)\) distributions. It can be locally realized on the 5-manifold being the group of area preserving affine transformations of the plane.
- The Cartan quartic invariant of \(\mathscr{D}\) is of algebraic type \(D\), or what is the same, has no real roots.

\section*{The theorem about ants' rule \(\mathbf{B}\)}
- Theorem:
- The Lie algebra of all symmetries of the velocity distribution of the system of three ants moving on the plane according to rule \(\mathbf{B}\) is isomorphic to the Lie algebra of area preserving affine transformations of the plane.
- The distribution is one of the homogeneous models of \((2,3,5)\) distributions. It can be locally realized on the 5-manifold being the group of area preserving affine transformations of the plane.
- The Cartan quartic invariant of is of algebraic type \(D\), or what is the same, has no real roots.

\section*{The theorem about ants' rule \(\mathbf{B}\)}
- Theorem:
- The Lie algebra of all symmetries of the velocity distribution \(\mathscr{D}\) of the system of three ants moving on the plane according to rule \(\mathbf{B}\) is isomorphic to the Lie algebra of area preserving affine transformations of the plane.
distributions. It can be locally realized on the 5-manifold being the group of area preserving affine transformations of the plane.
- The Cartan quartic invariant of \(\mathscr{D}\) is of algebraic type \(D\), or what is the same, has no real roots.

\section*{The theorem about ants' rule \(\mathbf{B}\)}
- Theorem:
- The Lie algebra of all symmetries of the velocity distribution \(\mathscr{D}\) of the system of three ants moving on the plane according to rule \(\mathbf{B}\) is isomorphic to the Lie algebra of area preserving affine transformations of the plane.
- The distribution is one of the homogeneous models of \((2,3,5)\) distributions.
5-manifold being the group of area preserving affine transformations of the plane.
- The Cartan quartic invariant of \(D\) is of algebraic type \(D\), or what is the same, has no real roots.

\section*{The theorem about ants' rule B}
- Theorem:
- The Lie algebra of all symmetries of the velocity distribution \(\mathscr{D}\) of the system of three ants moving on the plane according to rule \(\mathbf{B}\) is isomorphic to the Lie algebra of area preserving affine transformations of the plane.
- The distribution is one of the homogeneous models of \((2,3,5)\) distributions. It can be locally realized on the 5 -manifold being the group of area preserving affine transformations of the plane.
what is the same, has no real roots.

\section*{The theorem about ants' rule B}
- Theorem:
- The Lie algebra of all symmetries of the velocity distribution \(\mathscr{D}\) of the system of three ants moving on the plane according to rule \(\mathbf{B}\) is isomorphic to the Lie algebra of area preserving affine transformations of the plane.
- The distribution is one of the homogeneous models of \((2,3,5)\) distributions. It can be locally realized on the 5 -manifold being the group of area preserving affine transformations of the plane.
- The Cartan quartic invariant of \(\mathscr{D}\) is of algebraic type \(D\), or what is the same, has no real roots.

\section*{Remarks regarding the Theorem on rule B}
- In our paper:
"Ants and bracket generating distributions in dimension 5 and 6",
A. Agrachov, P. N., https://arxiv.org/pdf/2103.01058.pdf,
- we have proven that the symmetry algebra of ants under the rule \(\mathbf{B}\) is precisely equal to the area preserving affine group Aff, as in the Theorem, in two ways: (i) by a 'pure thought', and (ii) by the explicit construction of the Cartan quartic for \(\mathscr{D}\), employing the fact that the distribution \(\mathscr{D}\) is Aff homogeneous.
- we have also calculated the abnormal extremals - the specially distinguished curves - for \(\mathscr{D}\). They are defined in terms of an interesting system of two ODEs of Fuchsian type, with 3 poles at \(-1,0,1\), which read

where \(\psi=\left(\zeta_{1}, \zeta_{2}\right)^{T}\). Details in the quoted paper.

\section*{Remarks regarding the Theorem on rule B}
- In our paper:
"Ants and bracket generating distributions in dimension 5 and 6', A. Agrachov, P. N., https://arxiv.org/pdf/2103.01058.pdf,

\section*{Remarks regarding the Theorem on rule B}
- In our paper:
"Ants and bracket generating distributions in dimension 5 and 6',
A. Agrachov, P. N., https://arxiv.org/pdf/2103.01058.pdf,
- we have proven that the symmetry algebra of ants under the rule \(\mathbf{B}\) is precisely equal to the area preserving affine group Aff, as in the Theorem, in two ways:
quartic for \(\mathscr{D}\), employing the fact that the distribution \(\mathscr{D}\) is
Aff homogeneous.
- we have also calculated the abnormal extremals - the specially distinguished curves - for \(\mathscr{D}\). They are defined in terms of an interesting system of two ODEs of Fuchsian type, with 3 poles at \(-1,0,1\), which read

\section*{Remarks regarding the Theorem on rule B}
- In our paper:
"Ants and bracket generating distributions in dimension 5 and 6',
A. Agrachov, P. N., https://arxiv.org/pdf/2103.01058.pdf,
- we have proven that the symmetry algebra of ants under the rule \(\mathbf{B}\) is precisely equal to the area preserving affine group Aff, as in the Theorem, in two ways: (i) by a 'pure thought', quartic for
Aff homogeneous.
- we have also calculated the abnormal extremals - the specially distinguished curves - for \(\mathscr{O}\). They are defined in terms of an interesting system of two ODEs of Fuchsian type, with 3 poles at \(-1,0,1\), which read

\section*{Remarks regarding the Theorem on rule B}
- In our paper:
"Ants and bracket generating distributions in dimension 5 and 6',
A. Agrachov, P. N., https://arxiv.org/pdf/2103.01058.pdf,
- we have proven that the symmetry algebra of ants under the rule \(\mathbf{B}\) is precisely equal to the area preserving affine group Aff, as in the Theorem, in two ways: (i) by a 'pure thought', and (ii) by the explicit construction of the Cartan quartic for \(\mathscr{D}\), employing the fact that the distribution \(\mathscr{D}\) is Aff homogeneous.
we have also calculated the abnormal extremals - the
specially distinguished curves - for \(\mathscr{D}\). They are defined in
terms of an interesting system of two ODEs of Fuchsian type, with 3 poles at \(-1,0,1\), which read

\section*{Remarks regarding the Theorem on rule B}
- In our paper:
"Ants and bracket generating distributions in dimension 5 and 6',
A. Agrachov, P. N., https://arxiv.org/pdf/2103.01058.pdf,
- we have proven that the symmetry algebra of ants under the rule \(\mathbf{B}\) is precisely equal to the area preserving affine group Aff, as in the Theorem, in two ways: (i) by a 'pure thought', and (ii) by the explicit construction of the Cartan quartic for \(\mathscr{D}\), employing the fact that the distribution \(\mathscr{D}\) is Aff homogeneous.
- we have also calculated the abnormal extremals
specially distinguished curves - for \(\mathscr{O}\). They are defined in
terms of an interesting system of two ODEs of Fuchsian
type, with 3 poles at \(-1,0,1\), which read

\section*{Remarks regarding the Theorem on rule B}
- In our paper:
"Ants and bracket generating distributions in dimension 5 and 6',
A. Agrachov, P. N., https://arxiv.org/pdf/2103.01058.pdf,
- we have proven that the symmetry algebra of ants under the rule \(\mathbf{B}\) is precisely equal to the area preserving affine group Aff, as in the Theorem, in two ways: (i) by a 'pure thought', and (ii) by the explicit construction of the Cartan quartic for \(\mathscr{D}\), employing the fact that the distribution \(\mathscr{D}\) is Aff homogeneous.
- we have also calculated the abnormal extremals - the specially distinguished curves - for \(\mathscr{D}\). They are defined in
type, with 3 poles at \(-1,0,1\), which read

\section*{Remarks regarding the Theorem on rule B}
- In our paper:
"Ants and bracket generating distributions in dimension 5 and 6',
A. Agrachov, P. N., https://arxiv.org/pdf/2103.01058.pdf,
- we have proven that the symmetry algebra of ants under the rule \(\mathbf{B}\) is precisely equal to the area preserving affine group Aff, as in the Theorem, in two ways: (i) by a 'pure thought', and (ii) by the explicit construction of the Cartan quartic for \(\mathscr{D}\), employing the fact that the distribution \(\mathscr{D}\) is Aff homogeneous.
- we have also calculated the abnormal extremals - the specially distinguished curves - for \(\mathscr{D}\). They are defined in terms of an interesting system of two ODEs of Fuchsian type, with 3 poles at \(-1,0,1\),

\section*{Remarks regarding the Theorem on rule B}
- In our paper:
"Ants and bracket generating distributions in dimension 5 and 6',
A. Agrachov, P. N., https://arxiv.org/pdf/2103.01058.pdf,
- we have proven that the symmetry algebra of ants under the rule \(\mathbf{B}\) is precisely equal to the area preserving affine group Aff, as in the Theorem, in two ways: (i) by a 'pure thought', and (ii) by the explicit construction of the Cartan quartic for \(\mathscr{D}\), employing the fact that the distribution \(\mathscr{D}\) is Aff homogeneous.
- we have also calculated the abnormal extremals - the specially distinguished curves - for \(\mathscr{D}\). They are defined in terms of an interesting system of two ODEs of Fuchsian type, with 3 poles at \(-1,0,1\), which read
\[
3 \frac{d \Psi}{d \tau}=\left[\frac{1}{\tau-1}\left(\begin{array}{cc}
-1 & -1 \\
0 & 1
\end{array}\right)+\frac{1}{\tau}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+\frac{1}{1+\tau}\left(\begin{array}{cc}
1 & 0 \\
-1 & -1
\end{array}\right)\right] \Psi
\]
where \(\psi=\left(\zeta_{1}, \zeta_{2}\right)^{T}\). Details in the quoted paper.

\section*{Remarks regarding the Theorem on rule B}
- In our paper:
"Ants and bracket generating distributions in dimension 5 and 6',
A. Agrachov, P. N., https://arxiv.org/pdf/2103.01058.pdf,
- we have proven that the symmetry algebra of ants under the rule \(\mathbf{B}\) is precisely equal to the area preserving affine group Aff, as in the Theorem, in two ways: (i) by a 'pure thought', and (ii) by the explicit construction of the Cartan quartic for \(\mathscr{D}\), employing the fact that the distribution \(\mathscr{D}\) is Aff homogeneous.
- we have also calculated the abnormal extremals - the specially distinguished curves - for \(\mathscr{D}\). They are defined in terms of an interesting system of two ODEs of Fuchsian type, with 3 poles at \(-1,0,1\), which read
\[
3 \frac{d \Psi}{d \tau}=\left[\frac{1}{\tau-1}\left(\begin{array}{cc}
-1 & -1 \\
0 & 1
\end{array}\right)+\frac{1}{\tau}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+\frac{1}{1+\tau}\left(\begin{array}{cc}
1 & 0 \\
-1 & -1
\end{array}\right)\right] \Psi
\]
where \(\psi=\left(\zeta_{1}, \zeta_{2}\right)^{T}\). Details in the quoted paper.```

