Simple nonholonomic systems on the plane

Pawel Nurowski

Center for Theoretical Physics
Polish Academy of Sciences
and
Mathematics Program
Guangdong Technion - Israel Insititute of Technology

ltawa 20.08.2021

1/48



Introduction

2/48



Introduction

The purpose of this lecture is to give an introduction for studies
of geometries of mechanical systems obeying nonholonomic
constraints.

2/48



Introduction

The purpose of this lecture is to give an introduction for studies
of geometries of mechanical systems obeying nonholonomic
constraints. | will not talk about the dynamics of such systems.

2/48



Introduction

The purpose of this lecture is to give an introduction for studies
of geometries of mechanical systems obeying nonholonomic
constraints. | will not talk about the dynamics of such systems.
It turns out that in the nonholonomic regime, already the
kinematics is quite interesting.

2/48



Introduction

2/48

The purpose of this lecture is to give an introduction for studies
of geometries of mechanical systems obeying nonholonomic
constraints. | will not talk about the dynamics of such systems.
It turns out that in the nonholonomic regime, already the
kinematics is quite interesting. Even in the case of systems
consisting of a few points moving on the plane, the ZOO of
geometric structures apearing on their configuration spaces
very quickly becomes fascinating.



Introduction

2/48

The purpose of this lecture is to give an introduction for studies
of geometries of mechanical systems obeying nonholonomic
constraints. | will not talk about the dynamics of such systems.
It turns out that in the nonholonomic regime, already the
kinematics is quite interesting. Even in the case of systems
consisting of a few points moving on the plane, the ZOO of
geometric structures apearing on their configuration spaces
very quickly becomes fascinating. In particular, several simple
Lie groups find their realizations as symmetries of such
systems.
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Configuration space and the movement

@ In classical mechanics one usually models the movement

of a mechanical system using an n-dimensional manifold
M, which is interpreted as the configuration space of the
system. lts points g € M correspond to all positions that
the system may assume during its evolution. The number n
corresponds to the number of degrees of freedom of the
system.

A movement of the system from a given position g; at time
fj to a position g; at time {; is modelled in terms of a
(piecewise) smooth curve |1, i[> t — q(f) € M. The
derivative v = %‘? represents the velocity of the system at
time f in the point g = g() on the curve.

All possible velocities at g € M, as tangent to all possible
curves at g, form the tangent space T,M to M at q. It is an
n-dimensional vector space.
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Unconstrained velocity space

@ Another manifold frequently used in classical mechanics to
describe mechanical systems is the tangent bundle 7/ to
M, whose points are pairs (g, v), where g « M and
v € TyM. The tangent bundle 7\ represents all possible
positions (g) and velocities (v) of the system. It can be
visualised as an n dimensional manifold M/ of positions of
the system, with an n-dimensional vector spaces of
possible velocities 7,/ attached to every point g € M.
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@ The second class of constraints we want to discuss is
much more interesting. These are the constraints that
impose relations on points in the tangent bundle 7T\ to M.
In physical terms these are the constraints that make
restrictions on velocities. They can be schematically
described by relations of the form H(q. v) = 0. Since the
velocities v’s are related to the positions g’s by taking
derivatives, it may happen that the relations H(q, v) =0
can be integratedto F(q) = 0.
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Nonholonomic constraints

@ In other words it may happen that, roughly, the
velocity/position constraints H(q, v) = 0 are related to the
differential of F(q), in such a way that H(q, v) = 0 if and
only if F£(g) = 0. These kinds of velocity/position
constraints, which we will call integrable ones, are
therefore equivalent to the constraints on positions
F(qg) = 0, which were discussed before.

@ We will exclude such velocity/position constraints from our
consideration from now on, and we will focus on the
velocity/position constraints H(q, v) = 0 which are not
integrable. Such constraints are called nonholonomic.
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Velocity distribution

@ We note that at each point g of the configuration space I/,
the nonholonomic relations H(q. v) = 0, define subsets

in the tangent space T7,/M. In general these sets are
nonlinear subsets in T, /M.

@ We will focus on the situations when these sets D, are
vector subspaces. This corresponds to the linear
constraints on velocities.

@ Furthermore, we will only deal with the regular systems, for
which vector subspaces [, will be such that their
dimension k is constant along M.
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Frobenius theorem

@ We recall that a rank k distribution D is integrable if and
only if there is a foliation of M by submanifolds tangent to
the k-planes D, of the distribution D.

@ The Frobenius theorem states that M is foliated by such
submanifolds if and only if the space D, = [D, D],
consisting of all commutators of vector fields from D, is
equal to D.

@ Thus, the mechanical system with configuration space V
and velocity distribution D is nonholonomic if and only if D
is nontrivially contained in D_», [D, D] 2 D.
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Skate blade on an ice rink

@ We now show how the velocity distribution D looks like in
the case of a mechanical system, which for obvious
reasons, we call a skate on an ice rink.

@ We idealize the skate blade as an interval of a fixed length
on the Cartesian plane. We assume that the blade moves
without skidding, which means that the velocity of the mid
point of the blade is always parallel to the line defined by
the direction of the blade.

(53},4

e
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Skate blade

@ To parametrize the configuration space of the blade we
attach coordinates (x, y) to its middle point. Then the
position of the blade on the plane is totally determined by
numbers x, y and an angle «, which the blade direction
forms with the Ox axis. Thus the configuration space of the
skate blade is M = R? < S, and the movement of the
velocity unconstrained blade is described in terms of a
curve

q(t) = (x(t),y(t),a(t)) Cc M.

G2
~

12/48



Velocity distribution for the skate blade

13/48



Velocity distribution for the skate blade

@ The velocity constraint of nonskidding in this language
says that (x, y) is parallel to (cos o, sin o), or what is the
same, that

Xsina — ycosa = 0.

13/48



Velocity distribution for the skate blade

@ The velocity constraint of nonskidding in this language
says that (x, y) is parallel to (cos o, sin o), or what is the
same, that

Xsina — ycosa = 0.

@ This last condition says that the velocity v = (x. y. ¢) of the
blade must satisfy the following linear relation
(sina) - vy — (cosar) - vy +0- v, = 0.

13/48



Velocity distribution for the skate blade

@ The velocity constraint of nonskidding in this language
says that (x, y) is parallel to (cos o, sin o), or what is the
same, that

Xsina — ycosa = 0.

@ This last condition says that the velocity v = (x, y, &) of the
blade must satisfy the following linear relation
(sina) - vy — (cosa) - vy + 0 - v, = 0. Since we have only
one scalar constraint on the v's, then two out of the three
velocity components of the system are free.

13/48



Velocity distribution for the skate blade

@ The velocity constraint of nonskidding in this language
says that (x, y) is parallel to (cos o, sin o), or what is the
same, that

Xsina — ycosa = 0.

@ This last condition says that the velocity v = (x. y. ¢) of the
blade must satisfy the following linear relation
(sina) - vy — (cosa) - vy + 0 - v, = 0. Since we have only
one scalar constraint on the v’s, then two out of the three
velocity components of the system are free. Thus, at every
point g = (x, y, «) the nonskiding condition distinguishes a
2-plane of possible velocities ;. This can be easily seen
to be spanned by 0, and (cos «)dx + (sin a)0y.
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D = Span((cos a)dx + (sin )9y, da)

on M, to which every movement of the skate blade
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@ This defines a rank 2 distribution
D = Span((cos a)dx + (sin )9y, da)

on M, to which every movement of the skate blade
obeying the nonskidding constraint must be tangent.

@ We use the Frobenius theorem to show that our skate
blade mechanical system is nonholonomic. Indeed, taking
the two vector fields X; = 0, and Xs = (cos a)Ox + (sin )0y
belonging to the velocity distribution D of this system, we
see that [ X7, X5] = —(sin a)0x + (cos a)0y. And this does
not belongs to D for all values of (x, y,«). Thus D_, 2 D,
which according to the Frobenius theorem implies that the
Skate blade mechanical system is nonholonomic.
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@ Suppose now that we have a mechanical system with an
n-dimensional configuration space M and linear velocity
constraints. Then we have a rank k < n velocity distribution
D on M, and all movements of the system obeying these
constraints are described by curves g = g(t) ¢ M, which
are always tangent to D. Such curves are called horizontal
with respect to D, or horizontal for short.

@ Now we encounter the problem of reaching a given
configuration by the velocity constrained system. We
formulate it as follows: determine if two points g (i.e. the
starting configuration) and g- (i.e. the final configuration)
are horizontally path connected on M.
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@ For example, if the velocity distribution D is integrable on

M, i.e.if D_o = D, then two points g; and g», which lie on
two different leaves of the foliation defined by D are not
horizontally path connected. Simply, horizontal movements
of points which lie on a given leaf, being tangent to the leaf,
will stay at this leaf. In other words, the integrability of the
velocity distribution D is an obstruction to horizontal path
connectivity of M: two different leaves are never
horizontally path connected.

It follows from this example that, to consider linear velocity
constrained systems that can reach any configuration point
starting from any other configuration, the system must be
nonholonomic, or what is the same, its velocity distribution
D should be such that D_, - D. The question arises if the
necessity of D_» ; D is sufficient for such reachability. The
answer to this question is given by the Chow-Raszewski
theorem.
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Bracket generating distributions

@ Its formulation requires an introduction of the following
sequence of distributions on the configuration space /M.

@ We start with D_4 = D, and define a sequence of nested
distributions

D cD,c---cDgsgcC---CTM,

with
Di(s+‘|):[D.D75], 8:1,2,...
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Bracket generating distributions

@ Note that if D is integrable, we have D s = D_4 = D for all
s, and in such situation the above sequence has only one
element D_.
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@ Note that if D is integrable, we have D s = D_4 = D for all
s, and in such situation the above sequence has only one
element D_. Often however, there exists sy > 0 such that

D_; ; D_> 7Ct 7Ct D_s, % D_(s+1) = TM.

If this happens the distribution D is called bracket
generating, or maximally nonintegrable, the integer

r=sp+1
is called the step, and the sequence of integers
(rank(D_4), rank(D_), ..., rank(D_,_)), rank(D_,)) =: N

is called the growth vector of the distribution D. In
particular the growth vector, as carrying information about
(a) the rank of D (the first entry in ), (b) the dimension of
M (the last entry in KI), and (c) the step (the number of
components of N), gives the simplest numerical invariants

of the distribution.
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@ Note that the above definitions are pointwise, and therefore
the growth vector is a vector valued function on M. In what
follows we will however consider only situations when the
growth vector is locally constant over some open set

UeM, -
N = const Vvq e U.

If this happens , the distribution D is called regularin U.
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@ In our example of the skate blade we have:
e D_4= Span((cos a)0x + (sin )9y, 0”),
(*] D,g =
Span((cos a)dx + (sin a)dy, Do, —(sin @)dx + (cos a)dy ) = TM,

o r=2,

o N=(2,3),
which shows that the velocity distribution D of the skate
blade system is a regular step 2 bracket generating
distribution.
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@ We are now in a position to state the Chow-Raszewski
theorem:
Chow-Raszewski theorem. If D is bracket generting
distribution on a manifold M then any two points in M can
be connected by a horizontal curve.
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@ The converse to this theorem is true in the case of analytic
distributions but it fails in general, even if the distribution is
smooth (see e.g. R. Montgomery’s book, Section 2.1).
Anyhow, in the piecewise smooth category, this theorem
gives a sufficient condition for a mechanical system with
linear velocity constraints to have the ability to move from
any given configuration to any other one. For this it is
enough that the velocity distribution of the system is
bracket generating.

@ It turns out that there is also another, much stronger,
theorem giving sufficient conditions for a system to reach
any configuration. It combines results of Nagano and
Sussman and states the following:
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orbit of this family of vector fields at each point is all of M.
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@ Nagano-Sussman theorem. Let 7 = { X} be a family of
vector fields X; on a manifold M. Suppose that a finite
number of brackets of the X;s and a finite number of
iterations of these brackets generate T,M at every q < M
(we say that the family 7 is bracket generating). Then the
orbit of this family of vector fields at each point is all of M.

@ Here the term orbit of a family at a point g < M means all
points in M that can be connected with g by piecewise
smooth segments of integral curves of vector fields X; from
the family 7. The fact that the orbit of the family 7 through
every point is all of M means that every point g € M can be
reached by such broken integral curves of vector fields X;
regardless of the starting point gy € M.
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@ An important class of nonholonomic distributions is given

by contact distributions. These are rank kK = 2m
distributions D on a (2m + 1)-dimensional manifold, which
annihilate a single 1-form A on M such that its
corresponding 2-form w = d ) is not degenerate on D. More
formally, given a 1-form A such that

ANAAAAAA - AdA#£0

m times

on M, a contact distribution is
D = Span{X € TM : \(X) = 0}.

The condition of being contact makes D bracket generating
with D_, = TM, and the growth vector N = (2m,2m + 1).



Skate blade is a contact distribution

25/48



Skate blade is a contact distribution

@ An example of a contact distribution is given by the velocity
distribution D of the skate blade considered earlier.

25/48



Skate blade is a contact distribution

@ An example of a contact distribution is given by the velocity
distribution D of the skate blade considered earlier. Indeed,
take the 1-form A\ = —(sin o)dx + (cos «v)dy on our skate
blade configuration space M.

25/48



Skate blade is a contact distribution

@ An example of a contact distribution is given by the velocity
distribution D of the skate blade considered earlier. Indeed,
take the 1-form A\ = —(sin o)dx + (cos «v)dy on our skate
blade configuration space M. Clearly we have
A (0a) = A((cos @)dx + (sina)dy) = 0, i.e. the velocity
distribution D of the skate blade is an annihilator of ).

25/48



Skate blade is a contact distribution

@ An example of a contact distribution is given by the velocity
distribution D of the skate blade considered earlier. Indeed,
take the 1-form A\ = —(sin o)dx + (cos «v)dy on our skate
blade configuration space M. Clearly we have
A (0a) = A((cos @)dx + (sina)dy) = 0, i.e. the velocity
distribution D of the skate blade is an annihilator of \. Also
AN AN = —dx Ady A da # 0, meaning that D is contact.

25/48



Skate blade is a contact distribution

@ An example of a contact distribution is given by the velocity
distribution D of the skate blade considered earlier. Indeed,
take the 1-form A\ = —(sin o)dx + (cos «v)dy on our skate
blade configuration space M. Clearly we have
A (0a) = A((cos @)dx + (sina)dy) = 0, i.e. the velocity
distribution D of the skate blade is an annihilator of \. Also
AN AN = —dx Ady A da # 0, meaning that D is contact.

@ We mentioned above that the growth vector provides the
simplest invariants of a distribution.

25/48



Skate blade is a contact distribution

@ An example of a contact distribution is given by the velocity
distribution D of the skate blade considered earlier. Indeed,
take the 1-form A\ = —(sin o)dx + (cos «v)dy on our skate
blade configuration space M. Clearly we have
A (0a) = A((cos @)dx + (sina)dy) = 0, i.e. the velocity
distribution D of the skate blade is an annihilator of \. Also
AN dA = —dx Ady Ada # 0, meaning that D is contact.

@ We mentioned above that the growth vector provides the
simplest invariants of a distribution. They are used to
distinguish if two distributions are (locally) equivalent.

25/48
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@ An example of a contact distribution is given by the velocity
distribution D of the skate blade considered earlier. Indeed,
take the 1-form A\ = —(sin o)dx + (cos «v)dy on our skate
blade configuration space M. Clearly we have
A (0a) = A((cos @)dx + (sina)dy) = 0, i.e. the velocity
distribution D of the skate blade is an annihilator of \. Also
AN dA = —dx Ady Ada # 0, meaning that D is contact.

@ We mentioned above that the growth vector provides the
simplest invariants of a distribution. They are used to
distinguish if two distributions are (locally) equivalent. The
precise definition of a (local) equivalence is as follows.
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Geometry of maximally nonintegrable distributions

@ Let Dy and D, be two rank k distributions living on two, not
neccessarily different, n-dimensional manifolds M; and M.
We say that the two distributions D¢ and D, are (locally)
equivalent if and only if there exists a (local)

diffeomorphism
O : M1 — M2

such that
(@*D1 — Dg.
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@ In case of a single manifold M and a distribution D on it,
one considers (local) diffeomorphisms that preserve D, i.e.
smooth maps

o M—=M

such that
¢«D = D.

These (local) selfequivalences are called (local)
symmetries of the distribution D. Since they can be
composed and inverted as maps, they form a group. The
set of all (local) symmetries is the (local) symmetry group
Aut(D) of the distribution D.
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@ If we have two rank k distributions Dy and D> on M that are
integrable, then they are always locally equivalent.
Moreover, their local symmetry group is infinite
dimensional. The same is also true, for example, if one
considers two contact distributions on M: they are always
locally equivalent and have the local symmetry group of
infinite dimension. But such a situation is rare. In general
smooth distributions have no symmetries at all, and two
randomly chosen distributions, even regular and with the
same growth vector, are locally nonequivalent.
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@ The notion of local symmetries of a dsitribution has its

infinitesimal version: a vector field Y on a manifold M is an
infinitesimal symmetry of a distribution D if and only if

[Y.X]e D forall XeD.

Given two infinitesimal symmetries Y; and Y> of D, their
commutator [ Y7, Y] is also an infinitesimal symmetry of D,
and the set of all infinitesimal symmetries of D naturally
has the structure of a Lie algebra. This Lie algebra is called
the symmetry algebra aut(D) of D.

The local Lie group Aut(D) and the Lie algebra aut(D) are
closely related. In particular, for every value of the real
parameter {, the flow ¢;(Y') of an infinitesimal symmetry

Y € aut(D) is a local diffeomorphism of M. It forms a
1-parameter subgroup in the local symmetry group Aut(D).
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Example of a distribution

@ We illustrate the notion of an infinitesimal symmetry of a
distribution by the following example in 5 dimensions.
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smooth functions on R° by the following two vector fields:
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@ Since we have:
Xz = [X1,X0] = 0p+Q0;, Xa=[X1,X3]=0,, Xs=[Xo,X3]=—-0,
and
Xi NXo ANXsg AN Xa AXs=0x NOy NOp ANDg NO7 # 0,

this is clearly a regular bracket generating distribution, with a
growth vector N = (2,3,5).

@ We have the following theorem of Elie Cartan and Friedrich
Engel:
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Cartan-Engel theorem. The symmetry algebra of the distribution D is a 14-dimensional split real form of the
exceptional simple Lie algebra aut(Dgr) = ap. It can be spanned over the reals by the following vector fields Y,

w=1,2,..., 14 onR®:
Yy =(12p% — 18qy)dx + (8p° — 18pay + 18y2)dy + (18pz — 96°y)p + (1892 — 6pq®) g+
(1822 — 3¢°y)ay,

1 q3
Yo =q0x + (pg — 2)0y + quap aF gdz,
Y3 =(8p — 6gx)dx + (4p° + 6x2 — 6pax)dy + (62 — 39°X)3p — 29°q — "Xz,
Y, =(16xp — 12y — SQXQ)i)X 4F (6)(22 aF 8p2x — qu)(z)(')y + (12xz + 4p2 - 3q2x2)(’)p+
(122 + 4pq — 46°x)9q + (1202 — ¢°x%)d;,
Y5 =0x,
Ys 7(24px2 — qu3 — 36xy)0x + (12p2x2 +6x°z — 36y2 — 6pqx3)i)y+
(12p%x + 18x%2 — 3°x® — 36py)dp + (12pgx — 6°x° — 24p> + 36x2)Ig+
(36pxz — 8p3 — q3x3 — 36yz)0z,
Y7 =x0x — pOp — 2Q0q — 320z,
Yg =XxOx + 2y8y + pdp + 205,
Yo =09y,
Y10 =x20x + 8xydy + (3y + xp)p + (4p — qx)dq + 2p°07,
Y11 =8p + X9y,
Yio =3x28y + Xx8p + 8q + pdz,
Vi3 =1x%8, + 1x28p + x0q + (xp — )0z,

n1/48 Yi4 =0z.
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Additional geometric ingredients

@ Continuing the example of the skate blade kinematics, we
recall that:

o the skate blade configuration space M is locally R? x S
with coordinated (x. v, «); the velocity distribution D is
contact, and is defined as the annihilator of the contact form
A = —sin adX + cos ady;

o explicitly: D = Span(X; = cos ady + sinady, Xo = d,).

@ Note that the skate blade velocity distribution D, as a
contact distribution, does not have finite dimensional
symmetry algebra.
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@ But...thinking about the skate blade physics one can

understand, that we did not captured all geometry of the
skate blade configuration space, yet!

The skater uses two particular moves when skating: he/she
uses straight line sliding - this is done by moving along the
direction of the vector field X — cos «dy + sinad,, and
spinning/making pirouettes - this is done by moving along
the direction of the vector field Xo = 0,,.

Thus, the geometric structure proper for the skate blade
configuration space is a 3-dimensional manifold M/,
equipped with a contact distribution D, which has a split

D = Dy & D> onto two rank k = 1 distributions D; and D-,
which are spanned by X; and X5, respectively.
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@ This leads to the following Definition: A (2m + 1)-dimensional

manifold M/ with a contact distribution D is called a para-CR
structure if D splits onto D = D; & D», where the distributions D,
and D», each of the same rank m, are integrable.

Note that although D¢ and D- are integrable, the distribution D is
not. As we remember it is an annihilitar of a nondegenerate
(contact) 1-form A such that A A dA AdA A - AdA # 0.

m times

Equivalence relation between two para-CR structures, and their
symmetries, are defined similarly, to the equivalences of
distributions. E.g. For the equivalence one needs a
diffeomorphism ¢ : M — M such that ¢.D; = D; and ¢. D> = Ds.
This, of course, implies ¢.(D) = D. Similarly, an infinitesimal
symmetry of a para-CR structure is a vector field X on M such
that [X, D¢] € Dy and [X, Ds| € D». Also, one has the notion of a
(local) group/Lie algebra of symmetries.
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@ Given two bracket generting distribution of the same rank k < n

on an n-dimensional manifold, when one asks about their
equivalence, the interesting story begins when n = 5 and k = 2.
The simplest class of N — (2,3, 5) distributions do has local
invariants. There are locally nonequivalent (2, 3, 5) distributions,
the most symmetric of them being locally equivalent to the
Cartan-Engel distribution D¢e with split g symmetry algebra.

If the distribution D has an additional structure, such as e.g. the
para-CR split D = Dy & D., or other algebraic property, such as
e.g. being a symmetric tensorial power D — ‘S of some vector
bundle S, then the local noneqivalence can occur in lower ns
than 5.

In particular, although 3-dimensional contact distributions are all
locally equivalent, there are locally nonequivalent 3-dimensional
para-CR structures. It further follows, that the most symmetric of
the 3-dimensional para-CR structures is (M. D = Dy & Ds)
whose Lie algebra of local symmetries aut(D; & D») is

aut(Dy @ Dy) = sl(3,R).
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structures have local invariants, there are locally
nonequivalent structures of this sort, and there is the most
symmetric one among all of them, with the algebra of
symmetries being as large as s((3, R).

@ So how to characterize the 3-dim para-CR structure of the
configuration space of the skate blade?
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@ Theorem. The symmetry algebra aut(Dy & Do) of the para-CR structure D = Dy & Do on the

configuration space M = {(x, y, o) | (x,y) € B, o € '} of the skate blade is isomorphic to s1(3, ). It
is spanned over the reals by the following vector fields Y,,, jn = 1,2, ..., 8onM:

Y =x20y + yx0y — cos a(xsin o — y cos a)da s
Yo =xydx + 28y — sin a(xsin a — y cos @)Dy s
Y3 = — yOx + X0y + Oa,

Y4 =2y0y + sin 200,

Ys =yOx + X0y + cos2adq,,

Yo =xOx + ¥y,
Y7 =dx,
Ys =3y
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@ Since to define our skate blade we only used the notions of a line, of a point, the tangency, and the
incidence relation of a point being on a line, then the structure is obviously s[(3, R)symmetric.
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Ys =yOx + X0y + cos2adq,,

Yo =x0x + ydy,

Yy =y,

Ys =0y.

@ Since to define our skate blade we only used the notions of a line, of a point, the tangency, and the
incidence relation of a point being on a line, then the structure is obviously s((3, )symmetric. What is
dissapointing is that the symmetry is NOT larger.
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Is the skate blade one
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(LS T4

Figurg 1. The root diagram for st{3,R). The oot and the red root, together with
the two elements in the Cartan subalgebra, form a b-dimensional (parabolic) subalgebra
pin sl(3,B). The 3-dimensional SL(3,E} homogeneus space M = SL{3,RB)/P, with P
being a subgroup of SL(3,E} having Lie algebra p, is naturally equipped with the SL(3, B)
homegeneous para-CR structure, which at every point of M is in the tangent space identified
with sl(3,2)/p. In this space the blue roots represent the contact distribution D. Thhe
split in [ is represented by the directions spanned by oo and o respectively. The Dy =
Span(eio, 1), and Dz = Span(eg, 07, 0 2). This 3-dimensional para-CR structure is
the global version of the para-CR structure of the skate blade.
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Comparizon with

Figure . Comparizon of the root diagrams for sl(3, ]} and gz. The addition of

v, and ma a roots, extends sl{3,B] to be a subalgebra in g2, The N =
(2,3) distribution defining the para-CR structure in M = SL(3, E}/P of the skate blade,
is somehow related to the N = (2,3,5) distribution on the Gz-homogeneous N = (2;:3.:5)
distribution D defined on M® = G, /Py. This rank 2 distribution in five dimension is visible
in the tangent spaces ga/py as D =D _y = Span{oto, a1), D2 = Span{eg, a1y, o) and
D _'gfspillll'ﬂm.ﬂn, X12, In
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Is there something more exciting?

o Repeted question: Can we realize G» as a symetry of a
mechanical nonholonomic system on the plane? By this |
mean that the velocity constraints should be imposed on
points/lines contained in the plane.

@ To realize such a system, its configuration space should be
minimum 5-dimensional: the maximal dimension of the
proper subgroups H in G- is nine. So the minimal
dimension of a homogeneous space /" = G,/H is
n=14-9 =25,

@ Since a point on the plane 7 has 2 coordinates, 7 = (x, y),
we need a minimum number of three moving points
F,' = (X,',y,'), = 1,2,3.

41/48
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@ Consider a mechanical system of three ants on the floor,
which move according to two independent rules:
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line defined by the two other ants.
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In the next lecture, we will observe that Rule A equips the
6-dimensional configuration space of the ants with a structure
of a homogeneous N = (3, 6) distribution,
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Movement of three ants on the plane

In the next lecture, we will observe that Rule A equips the
6-dimensional configuration space of the ants with a structure
of a homogeneous N = (3. 6) distribution, and that Rule B
foliates this 6-dimensional configuration space onto
5-dimensional leaves, each of which is equiped with a
homogeneous N = (2,3, 5) distribution. The symmetry
properties and Bryant-Cartan local invariants of these
distributions will be determined.

43/48
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Movement of three ants on the plane: Rule A

@ We have three points in the plane 7, i = 1,2, 3, and we
want that
@ |

dt (E+1 - F/)
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@ We have three points in the plane 7, i = 1,2, 3, and we
want that
@ |

dt (E+1 — F/)

Here and in the following /,/ = 1,2,3 and / + j is counted
modulo 3.
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Movement of three ants on the plane: Rule A

@ We have three points in the plane 7, i = 1,2, 3, and we

want that -

Tl e =T
Here and in the following /,/ = 1,2,3 and / + j is counted
modulo 3.

@ This rule in coordinates r; = (x;, y;) can be written as:

Vie1 —Yi)Xi — (Xip1 — Xx)yi =0, i=1,2,3.
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In case of rule A the distribution D of admissible velocities on M s given by the anniulator of the
following three 1-forms:

wh = (Ui —yiddeg — (g —xidduyy 1= 1,2,3,
or which is the same. is spanned by the three vector fileds
(2.1) Zi = (i — %085, + (Ui yi]ay” =123
on M,

D =Spanl(Zy,Z:,Z3).
Taking the commutators of the vector fields Z4,Z;, Z; spanning the distribution D we get three new vector
fields
Lyt = [Z4,Z141] = (%11 —%i42)0x, + (Y141 — H\-iZJay.l i=1,2,3.

Now, caleulating Z; A Z; ALy A s ALy A Zys, one gets

3
2 3
ZAANZs AL AZia AZs AZzy = ( S (yixisr = Xeyiss j Bay A By, A By Ay, A ey Adyss
i=1

so it follows that the six vector fields £y, 25, Z3,Zy2, L3y, Z23 ave linearly independent at each point m of the
configuration space M everywhere, except the points on the singular locus, where coordinates of m satisfy
3
(2.2) A=Y (yoas — i) =0.
el
Since the number A defined above is the ares of the triangle having the three ants as its vertices, we see that
the velocity distribution D of the three ants moving under rule A has a growth vector (3,6) evervwhere,
except the configuration points corresponding to the three ants stayving on a line.
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Here again /,j = 1,2,3 and / +  is counted modulo 3.
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Movement of three ants on the plane: Rule B

@ We have three points in the plane 7, i = 1,2, 3, and now

we want that )
@ |

dt (FI—H _ Fi—&-Z)-

Here again /,j = 1,2,3 and / +  is counted modulo 3.
@ This rule in coordinates r; = (Xx;, y;) can be written as:

(Yig1 = Yige)Xi — (Xip1 — Xig2)yi =0, i=1,2,8.
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Movement of three ants on the plan

: Rule B

Now, applying rule B to the movement of the three ants, we find that their velocity distribution T is

given by the annihilator of the three Plaffian forms

Wi = (Ui —Yip2ldxg — (X —xep2)dyy, 1=1,2,3.

1t can be spanned by the three vector fileds
(3.1) ZL—{Ki.1—K;..zllaxl-i-[yl._|—gl._1}ay:. i=1,23
on M,

D =Span(Zy,Z3,2Z;]).
The commutators of the vector fields Zy,Z;, Z3 spanning D are
(3.2)
Zi it =iy Ziga) = (i =xi42) 0% + (Xp2 = X1 00500y + (Ui = Y1420y, +(Yis2

Y )0y, 1=1,2,3.
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Movement of three ants on the plane: Rule B

And now the story is different than in the case of rule A. Calculating Zy A Z; AZy A Ly ALy M ELzs, one
gets

FAWAVE VAW A PAW AT WAWATIFAY S T i
So the rank of the derived distribution P! = [P, D] + P is smaller than 6. The velocity distribution T for
the rule B is not bracket generating! Actually one easilly finds that there is precisely one linear relation
between the vector fields (Zy, 2, 22,272,231, Z;33), namely

(3.3) Ly +Zy+Z3+Zya+Za +Z23 =0.

This shows that the velocity distribution D for the ants moving under rule B has the growth vector (3, 5).
The first derived distribution T has rank 5 and is integrable! The f-dimensional configuration space M of
ants being in a motion obeying rule B is foliated by 5-dimensional leaves. Once ants are in the configuration
helor wional leal in M they can not leave this leaf by moving according rule B!
Now the question arises about the funetion that emunerates the leaves of the foliation of the distribution
D', What is the feature of motion of the ants whose preservation forces

to a given h-di

the ants to stay on a given leaf?
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@ We have three points in the plane 7, i — 1,2, 3, and we
want that
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@ We have three points in the plane 7, i — 1,2, 3, and we
want that )

Tl (R — 7).

Here and in the following /./ = 1,2, 3, and / + j is counted

modulo 3.
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want that )

Tl G — 7).
Here and in the following /./ = 1,2, 3, and / + j is counted
modulo 3.

@ We can parametrize the configuration space M by
coordinates (xq, y1, X2, o, X3, y3) of the three points
I = (x;, v;) in a chosen Cartesian coordinate system (x, y)
on the plane.
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@ We can parametrize the configuration space M by
coordinates (xq, y1, X2, o, X3, y3) of the three points
I = (x;, v;) in a chosen Cartesian coordinate system (x, y)
on the plane. In this parametrization the movement of the
system of ants is described in terms of a curve

q(t) = (x1(t), y1 (1), x2(t), yo(t), x3(t), ya(t)),
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@ We have three points in the plane 7, i — 1,2, 3, and we

want that )

Tl G — 7).
Here and in the following /./ = 1,2, 3, and / + j is counted
modulo 3.

@ We can parametrize the configuration space M by
coordinates (xq, y1, X2, o, X3, y3) of the three points
I = (x;, v;) in a chosen Cartesian coordinate system (x, y)
on the plane. In this parametrization the movement of the
system of ants is described in terms of a curve
q(t) = (x1(1), y1 (1), x2(1), (1), X3(1), y3(t)), and its velocity
at time 1 is given by
a(t) = (1 (1), 71 (1), %e(8), Ya(1), Xa(t), Ja(t))-
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@ We have three points in the plane 7, i — 1,2, 3, and we

want that )

Tl G — 7).
Here and in the following /./ = 1,2, 3, and / + j is counted
modulo 3.

@ We can parametrize the configuration space M by
coordinates (xq, y1, X2, o, X3, y3) of the three points
I = (x;, v;) in a chosen Cartesian coordinate system (x, y)
on the plane. In this parametrization the movement of the
system of ants is described in terms of a curve
q(t) = (x1(1), y1 (1), x2(1), (1), X3(1), y3(t)), and its velocity
at time 1 is given by
a(t) = (1 (1), 71 (1), %e(8), Ya(1), Xa(t), Ja(t))-

@ In these coordinates the above rule A becomes:

(Yier = yi)Xi — (Xip1 —Xi)yi =0, 1=1,2,3.
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@ Equivalently, we can say that the curves q(t) drawn in M by the
ants obeying rule A must be horizontal with respect to the
velocity distribution D, which annihilates the following three

1-forms on M:

W = (y,‘+1 — y,')dX,' — (X,‘+1 = Xi)d}/[-, i=1,2,3.

4/27



Movement of three ants on the plane: Rule A

@ Equivalently, we can say that the curves q(t) drawn in M by the
ants obeying rule A must be horizontal with respect to the
velocity distribution D, which annihilates the following three
1-forms on M:

W = (y,‘+1 — y,')dX,' — (X,‘+1 = Xi)d}/i~, i=1,2,3.

Saying it differently, the velocities of these curves should be
spanned by the three vector fileds

Zi = (Xip1 — Xi)Ox + (Yier — ¥i)Oy,, 1=1,2,3
on M.

4/27



Movement of three ants on the plane: Rule A

@ Equivalently, we can say that the curves q(t) drawn in M by the
ants obeying rule A must be horizontal with respect to the
velocity distribution D, which annihilates the following three
1-forms on M:

wi = (Vi1 — ¥)dX; — (Xie1 — xp)dy;, i=1,2,8.

Saying it differently, the velocities of these curves should be
spanned by the three vector fileds

Zi = (Xix1 — Xi)0x + (Yix1 — ¥i)Oy,, 1=1,2,3

on M. So the velocity distribution of the ants is given by
D= Span(Z1 5 Zz, Z3)

4/27



Movement of three ants on the plane: Rule A

@ Equivalently, we can say that the curves q(t) drawn in M by the
ants obeying rule A must be horizontal with respect to the
velocity distribution D, which annihilates the following three
1-forms on M:

wi = (Vi1 — ¥)dX; — (Xie1 — xp)dy;, i=1,2,8.
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Zi = (Xix1 — Xi)0x + (Yix1 — ¥i)Oy,, 1=1,2,3

on M. So the velocity distribution of the ants is given by
D= Span(Z1 5 Zz, Z3)

@ Taking the commutators of the vector fields Z;, Z>. Z; spanning
the distribution D we get three new vector fields

Zii1 = [Zi, Zis1]) = (Xip1 — Xiz2)Ox, + (Vig1 — Yig2)0y,, 1=1,2,3.

4/27



Movement of three ants on the plane: Rule A

5/27



Movement of three ants on the plane: Rule A

@ Now, calculating Zy A Zo A Z3 A\ Zio N\ Zsq1 A Zoz, wWe get

ZyNZo N2z \Zio N\ 231 N\ Loz =
3

3 )
(Z( YiXist — XYt )) By, ANy, A By A Dy, A Dy A Dy,
i=1
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@ Now, calculating Zy A Zo A Z3 A\ Zio N\ Zsq1 A Zoz, wWe get

ZyNZo N2z \Zio N\ 231 N\ Loz =

£ 3
(Z( YiXist — Xi¥isd )) By, Ay, Ay, A Dy, Ny Ay,

(=1

so it follows that the six vector fields 2, 2>, Z3, Zi5, Z31, Zo3 are
linearly independent at each point g of the configuration space
M everywhere, except the points on the singular locus, where
coordinates of g satisfy

&
32 A= Z(y/X/+1 — X,‘y,'+1) =0.

i=1

@ Since the number A defined above is the area of the triangle
having the three ants as its vertices, we see that the velocity
distribution D of the three ants moving under rule A has a
growth vector (3, 6) everywhere, except the configuration points
corresponding to the three ants staying on a line.
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@ Rank 3 distributions have differential invariants. We recall, that
two distributions D¢ and D> on respective manifolds M; and M-
are (locally) equivalent, if and only if there exists a (local)
diffeomorphism ¢ : M; — M. realizing ¢. Dy = D-. In particular
the statement about rank 3 distributions having invariants,
means that there are locally nonequivalent rank 3 distributions
on 6-dimensional manifolds. Among them the (3, 6) distributions
are generic, and the growth vector (3, 6) distinguishes them
locally from, for example, distributions with growth vector (3, 5);
these later distributions are rank 3 distributions D in dimension 6
such that in the sequence D = D, D_(;,q) = [D, D], with
i =1, ..., the distribution D » is integrable and has rank 5. More
importantly, there are locally nonequivalent (3, 6) distributions.
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@ One way of characterizing distributions locally is to determine
their Lie algebra of symmetries. Given a manifold \/ and
distribution D, the Lie algebra of symmetries of D consists of
vector fields Y on M such that [V, D] ¢ D. It is known that for
rank 3 distributions with the growth vector (3. 6) the maximal
algebra of symmetries is attained for the distribution locally given
in Cartesian coordinates (', p) in R° as the annihilator of three
1-forms \; = dp; + ejq/dgX, i = 1,2, 3, where ¢ is the totally
skew-symmetric levi-Civita symbol in %, This distribution has its
Lie algebra of symmetries isomorphic to the 21-dimensional Lie
algebra spin(4, 3).
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@ Since the velocity distribution D of the system of three ants
moving according rule A has growth vector (3, 6) almost
everywhere, it is interesting to ask how its Lie agebra of
symmetries is related to spin(4, 3). By the physical setting of the
system and the rule A, which requires only notions of points and
lines on the plane, it is obvious that this Lie algebra of
symmetries is at least as big as the Lie algebra s((3. R) of the
projective Lie group PGL(3,R). Actually, by explicitly solving the
symmetry equations [ X, D] C D for the velocity distribution D of
the ants, one gets the following theorem.
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Symmetry algebra of the ants’ system moving under rule A

@ Theorem The Lie algebra of all symmetries of the velocity distribution D of the system of three ants moving
according rule A is isomorphic to the Lie algebra s1((3, ).
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distributions, the ants distribution D, considered here, can be locally identified with one of the homogeneous

models of (3, 6) distributions;
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@ Thus although the symmetry of this (3, 6) distribution is far from being maximal among all (3, 6)
distributions, the ants distribution D, considered here, can be locally identified with one of the homogeneous
models of (3, 6) distributions; a model that lives on the homogeneous manifold PGL(3, ) /T2, where T¢ is
the maximal torus in PGL(3, ).

@ We close this theorem with a remark that the vector space over the real numbers spanned by the symmetry
vector fields Xy, X5, X5. X4, X5 — X; form a Lie algebra isomorphic to the semidirect sum of s((2, R) and
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the maximal torus in PGL(3, ).

@ We close this theorem with a remark that the vector space over the real numbers spanned by the symmetry
vector fields Xy, X5, X5. X4, X5 — X; form a Lie algebra isomorphic to the semidirect sum of s((2, R) and
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@ Theorem The Lie algebra of all symmetries of the velocity distribution D of the system of three ants moving
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2, 2 . 2. . .
Xg =Xy Ox; + X5 0x, + X30x5 + X1¥10y; + X2¥20y, + X3¥30y5 -

@ Thus although the symmetry of this (3, 6) distribution is far from being maximal among all (3, 6)
distributions, the ants distribution D, considered here, can be locally identified with one of the homogeneous
models of (3, 6) distributions; a model that lives on the homogeneous manifold PGL(3, ) /T2, where T¢ is
the maximal torus in PGL(3, ).

@ We close this theorem with a remark that the vector space over the real numbers spanned by the symmetry
vector fields Xy, X5, X5. X4, X5 — X; form a Lie algebra isomorphic to the semidirect sum of s((2, R) and
2, i.e. the Lie algebra of the area preserving group of motions on the plane 2. Here the vector fields X;
and X5 on 128 correspond to translations in the plane in respective directions 9y and dy. The vector fields
X3, X4 and X5 — X5 correspond to the linear transformations of the plane with unit determinant. In
particular we have the following identifications of the respective s((2, k) Lie algebra elements:

0o 1 0 0 1 0
X3 ~ <0 0>’X4 ~ <1 0> and X5 — Xz ~ (O 71>.
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(X1, V1, X2, Vo, X3, ¥3) of the three points 77 = (x;, ;) in a chosen
Cartesian coordinate system (x, y) on the plane.
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@ We have three points in the plane 7;, i = 1,2, 3, and we want that

@

dt (F;'+1 - F/’+2)~

Here again /.j = 1.2,3, and / + j is counted modulo 3.

@ We again parametrize the configuration space M by coordinates
(X1, V1, X2, Vo, X3, ¥3) of the three points 77 = (x;, ;) in a chosen
Cartesian coordinate system (x, y) on the plane. In this
parametrization the movement of the system of ants is described
in terms of a curve q(t) = (x1(t), y1 (1), X2(1), y2(t), X3(t), ya(1)),
and its velocity at time 1 is given by
q(t) = (x1(8), y1(1), x2(1), ya(1), X3(1), ya(1)).
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Movement of three ants on the plane: Rule B

@ We have three points in the plane 7;, i = 1,2, 3, and we want that

@

dt (F;'+1 - F/’+2)~

Here again /.j = 1.2,3, and / + j is counted modulo 3.

@ We again parametrize the configuration space M by coordinates
(X1, V1, X2, Vo, X3, ¥3) of the three points 77 = (x;, ;) in a chosen
Cartesian coordinate system (x, y) on the plane. In this

parametrization the movement of the system of ants is described

in terms of a curve q(t) = (x1(t), y1 (1), X2(1), y2(t), X3(t), ya(1)),
and its velocity at time 1 is given by

q(t) = (x1(8), y1 (1), x2(1), y2(t), Xa(t), ya(t)).
@ In these coordinates the above rule B becomes:

(Vig1 — Yig2)Xi — (Xig1 — Xiz2)yi =0, i=1,2,3.
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@ Equivalently, we can say that the curves q(t) drawn in M by the
ants obeying rule B must be horizontal with respect to the
velocity distribution D, which annihilates the following three

1-forms on M:
wi = (Yip1 — Yige)dXi — (Xip1 — Xip2)dy;, i=1,2,3.
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on M.
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@ Equivalently, we can say that the curves q(t) drawn in M by the
ants obeying rule B must be horizontal with respect to the
velocity distribution D, which annihilates the following three
1-forms on M:

wi = (Yip1 — Yige)dXi — (Xip1 — Xip2)dy;, i=1,2,3.

In other ords, the velocities of these curves should be spanned
by the three vector fileds

Zi = (Xi1 — Xiy2)Ox; + (Vig1 — Yig2)Oy,, 1=1,2,3

on M. So the velocity distribution of the ants is now given by
D = Span(z;, 22, Z3).

@ Taking the commutators of the vector fields Z;, 7>, Z; spanning
the distribution D we get three new vector fields

Zii1 = [Zi, Zis1] =(Xi — Xiz2)Ox + (Xiy2 — Xit1)Ox, +
(Vi — Yir2)Oy, + (Virz — Yir1)Oy,, i=1,2,3.
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@ And now the story is different than in the case of rule A.
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@ And now the story is different than in the case of rule A.
Calculating, Zi A Zo A Z3 A\ Zio N\ Zz1 N\ Zoz, We get

Zi /\ZQAZ3/\Z12/\Z31/\ZQ3:O.
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Movement of three ants on the plane: Rule B
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@ So the rank of the derived distribution D_» = [D. D] is smaller
than 6. The velocity distribution D for the rule B is not bracket
generating!

@ Actually one easilly finds that there is precisely one linear
relation between the vector fields (71, 2o, 25, Z1», Z31, Zo3),
namely

L+ Lo+ L3+ Zip + Za1 + Loz = 0.

@ This shows that the velocity distribution D for the ants moving
under rule B has the growth vector (3. 5). The first derived
distribution D_, has rank 5 and is integrable! The 6-dimensional
configuration space M of ants being in a motion obeying rule B
is foliated by 5-dimensional leaves. Once ants are in the
configuration belonging to a given 5-dimensional leaf in M they

can not leave this leaf by moving according rule B!
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@ Now the question arises about the function that enumerates the
leaves of the foliation of the distribution [D. D]. What is the
feature of motion of the ants whose preservation forces the ants
to stay on a given leaf?

@ There is a quick algebraic answer to this question:
@ Note that d(w1 + wo + ’w‘3) =0.

@ This means that that there exists a function F such that
dF = w1 + wo + w3.

@ One can directly check that
F = 32 A,

where A is the area of the triangle defined by the ants at every
moment. Since all three vector fields Z; annihilate w;, and thus
they ennihilate the 1-form wq + wy + w3z = 32dA, and in turn they
annihilate the one form dA, then they are tangent to the
5-dimensional submanifolds A = const in M.
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moving according rule B has in every moment of time the same
area.

@ Apart from the algebraic proof of this proposition given above, it
can be also seen by a ‘pure thought’ observing that any
movement of the three ants obeying rule B is a superposition of
three primitive moves: an ant #/ moves, and ants #(/ + 1) and
#(i + 2) rest, for each i = 1,2, 3. In each of the three primitive
situations, since the vertex #/ of the triangle moves in a line
parallel to the corresponding base #(/ + 1) — #(i + 2) of the
triangle, the area of the triangle formed by the ants #1, #2 and
#3 is obviously unchanged. Since the general movement
according to rule B is a linear combination of the three primitive
movements preserving the area, it also preserves the area.
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@ So we see that the movement of the ants according to rule B
stratifies the configuration space: once in an initial position the
ants defined a triangle A of area A, they move on a
5-dimensional submanifold M, of M whose configuration points
correspond to triangles A’ having the same area A as A.

@ For each fixed A, the three vector fields (21, 2>, Z3) are tangent
to the five manifold M. They define a distribution
D = Span(Zi, Z», Z3) there, whose growth vector is (3, 5).
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@ The 3-distribution D on each leaf M, is actually a square of a
rank 2-distribution Z. By this | mean that there is a rank
2-distribution 2 such that its first derived distribution
95 =2,7] equals D.

@ ltsis easy to check that ¥ = Span(Z; — Z,, Z; — Z;) indeed
makes the job. Since [Z; — 25, Z3 — Z4| = —Zo — Z31 — Zo3, then
using the dependence relation Z; + 2o + Z3 + Zyo, +Z31 + Zoz = 0
we get [Z — 25, Z3 — Z1| = Zy + Z» + Z3, and consequently
[Z1 — 2o, 24 723] /\(Z1 722) /\(Zg 721) =384 N2 N 2.

@ This shows (i) that for each A = const the commutator [Z, 7] is
tangent to M, and (i) that the first derived distribution of Z on
My is the entire 3-distribution, [, Z]| = D.
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@ Thus we have just established the following proposition.

@ Proposition: The 6-dimensional configuration space M of three
ants moving on the plane according to rule B is foliated by
5-dimensional submanifolds M, consisting of configuration
points defining triangles of equal area A on the plane. The ants
obeying rule B must stay on a given leaf M, of the foliation
during their motion. Their velocity distribution D of rank 3,
defines a rank 2 distribution 2, which is the ‘square root’ of D,
D = [2,2]. The rank 2 distribution & has the growth vector
(2,3,5) on each leaf Ma.

17/27



Few words about distributions

18/27



Few words about distributions

@ We recall that rank 2 distributions with growth vector (2, 3,5) on
5-dimensional manifolds have local differential invariants.

18/27



Few words about distributions

@ We recall that rank 2 distributions with growth vector (2, 3,5) on
5-dimensional manifolds have local differential invariants. In
particular their symmetry algebra can be as large as
14-dimensional Lie algebra g, of the split real form of the simple
exceptional complex Lie group Go.

18/27



Few words about distributions

@ We recall that rank 2 distributions with growth vector (2, 3,5) on
5-dimensional manifolds have local differential invariants. In
particular their symmetry algebra can be as large as
14-dimensional Lie algebra g, of the split real form of the simple
exceptional complex Lie group G.. This happens for the rank 2
distribution given on a 5-dimensional quadric p;q' = 1 in R®, with
coordinates (g, p;), as the annihilator of three 1-forms
A\i = dp; + ejxqdg’, i =1,2,3.

18/27



Few words about distributions

@ We recall that rank 2 distributions with growth vector (2, 3,5) on
5-dimensional manifolds have local differential invariants. In
particular their symmetry algebra can be as large as
14-dimensional Lie algebra g, of the split real form of the simple
exceptional complex Lie group G.. This happens for the rank 2
distribution given on a 5-dimensional quadric p;q' = 1 in R®, with
coordinates (g, p;), as the annihilator of three 1-forms
A\i = dp; + ejxqdg’, i =1,2,3.

18/27



Ants’ distribution

19/27



Ants’ distribution

@ ltis a nontrivial task to guess the symmetries of Z.

19/27



Ants’ distribution

@ ltis a nontrivial task to guess the symmetries of . They should have
something in common with symmetries of the plane.

19/27



Ants’ distribution

@ ltis a nontrivial task to guess the symmetries of . They should have
something in common with symmetries of the plane. The first few
symmetries of the plane that come to mind are the symmetries
generating area preserving affine transformations of the plane.

19/27



Ants’ distribution

@ lItis a nontrivial task to guess the symmetries of . They should have
something in common with symmetries of the plane. The first few
symmetries of the plane that come to mind are the symmetries
generating area preserving affine transformations of the plane. Recall
that we had vector fields infinitesimally realizing these transformations
in R® configuration space of the three ants, when we considered the
symmetries of the ants under rule A.

19/27



Ants’ distribution

@ lItis a nontrivial task to guess the symmetries of . They should have
something in common with symmetries of the plane. The first few
symmetries of the plane that come to mind are the symmetries
generating area preserving affine transformations of the plane. Recall
that we had vector fields infinitesimally realizing these transformations
in R® configuration space of the three ants, when we considered the
symmetries of the ants under rule A. These were the five symmetry
vector fields (Xi, Xo, X5, X4, Xs — X5) of the rule B regime.

19/27



Ants’ distribution

@ lItis a nontrivial task to guess the symmetries of . They should have
something in common with symmetries of the plane. The first few
symmetries of the plane that come to mind are the symmetries
generating area preserving affine transformations of the plane. Recall
that we had vector fields infinitesimally realizing these transformations
in R® configuration space of the three ants, when we considered the
symmetries of the ants under rule A. These were the five symmetry
vector fields (Xi, Xo, X5, X4, Xs — X5) of the rule B regime.

@ Denoting by S a vector field
S = aq X1 + ang + 83X3 + a4X4 + 35(X5 = X@), with a,, = const,
np=1,2,...5,

19/27



Ants’ distribution

@ lItis a nontrivial task to guess the symmetries of . They should have
something in common with symmetries of the plane. The first few
symmetries of the plane that come to mind are the symmetries
generating area preserving affine transformations of the plane. Recall
that we had vector fields infinitesimally realizing these transformations
in R® configuration space of the three ants, when we considered the
symmetries of the ants under rule A. These were the five symmetry
vector fields (Xi, Xo, X5, X4, Xs — X5) of the rule B regime.

@ Denoting by S a vector field
S = aq X1 + ang + 83X3 + a4X4 + 35(X5 = X@), with a,, = const,
uw=1,2,...5, one can directly check that for the function A defining the
area of the ants’ triangle,

19/27



Ants’ distribution

@ lItis a nontrivial task to guess the symmetries of . They should have
something in common with symmetries of the plane. The first few
symmetries of the plane that come to mind are the symmetries
generating area preserving affine transformations of the plane. Recall
that we had vector fields infinitesimally realizing these transformations
in R® configuration space of the three ants, when we considered the
symmetries of the ants under rule A. These were the five symmetry
vector fields (Xi, Xo, X5, X4, Xs — X5) of the rule B regime.

@ Denoting by S a vector field
S=aXi+ aXo+a3Xs+as Xy + 85(X5 — X@), with a,, = const,
uw=1,2,...5, one can directly check that for the function A defining the
area of the ants’ triangle, and for Z; defining D for the rule B we have:

19/27



Ants’ distribution

19/27

@ lItis a nontrivial task to guess the symmetries of . They should have

something in common with symmetries of the plane. The first few
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generating area preserving affine transformations of the plane. Recall
that we had vector fields infinitesimally realizing these transformations
in R® configuration space of the three ants, when we considered the
symmetries of the ants under rule A. These were the five symmetry
vector fields (Xi, Xo, X5, X4, Xs — X5) of the rule B regime.

Denoting by S a vector field

S = aq X1 + ang + 83X3 + a4X4 + 35(X5 = X@), with a,, = const,
uw=1,2,...5, one can directly check that for the function A defining the
area of the ants’ triangle, and for Z; defining D for the rule B we have:

S(A) =0,
[8,21 722] A (Z1 722) A (Zg 721) =0 and
(.2 — Z| A (Zi — Z2) AN(Zs — Z) = 0.
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in R® configuration space of the three ants, when we considered the
symmetries of the ants under rule A. These were the five symmetry
vector fields (Xi, Xo, X5, X4, Xs — X5) of the rule B regime.

Denoting by S a vector field

S=aXi+ aXo+a3Xs+as Xy + 85(X5 — X@), with a,, = const,
uw=1,2,...5, one can directly check that for the function A defining the
area of the ants’ triangle, and for Z; defining D for the rule B we have:
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something in common with symmetries of the plane. The first few
symmetries of the plane that come to mind are the symmetries
generating area preserving affine transformations of the plane. Recall
that we had vector fields infinitesimally realizing these transformations
in R® configuration space of the three ants, when we considered the
symmetries of the ants under rule A. These were the five symmetry
vector fields (Xi, Xo, X5, X4, Xs — X5) of the rule B regime.

Denoting by S a vector field

S=aXi+ aXo+a3Xs+as Xy + 85(X5 — X@), with a,, = const,
uw=1,2,...5, one can directly check that for the function A defining the
area of the ants’ triangle, and for Z; defining D for the rule B we have:

S(A) =0,
[8,21 722] A (Z1 722) A (Zg 721) =0 and
(.2 — Z| A (Zi — Z2) AN(Zs — Z) = 0.

This algebraic argument shows that the Lie algebra of area preserving
affine transformations of the plane, which is the semidirect product of
5I(2,R) and R?, is included in the symmetry algebra aut(Z) of the rank
2 distribution 7.
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The theorem about ants’ rule B

@ Theorem:

o The Lie algebra of all symmetries of the velocity distribution
2 of the system of three ants moving on the plane
according to rule B is isomorphic to the Lie algebra of area
preserving affine transformations of the plane.

o The distribution is one of the homogeneous models of
(2.8.5) distributions. It can be locally realized on the
5-manifold being the group of area preserving affine
transformations of the plane.

o The Cartan quartic invariant of  is of algebraic type D, or
what is the same, has no real roots.
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@ In our paper:
”Ants and bracket generating distributions in dimension 5 and 6’,
A. Agrachov, P. N., https://arxiv.org/pdf/2103.01058.pdf,

o we have proven that the symmetry algebra of ants under
the rule B is precisely equal to the area preserving affine
group Aff , as in the Theorem, in two ways: (i) by a ‘pure
thought’, and (ii) by the explicit construction of the Cartan
quartic for 7, employing the fact that the distribution 7 is
Aff homogeneous.

o we have also calculated the abnormal extremals — the
specially distinguished curves — for 2. They are defined in
terms of an interesting system of two ODEs of Fuchsian
type, with 3 poles at -1,0,1, which read

30'7\11 I I +1 0 1 +; 1 0
dr |r—-1\0 1 r\1 0 1+7\—-1 -1
where V = (¢, ().
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@ In our paper:
”Ants and bracket generating distributions in dimension 5 and 6’,
A. Agrachov, P. N., https://arxiv.org/pdf/2103.01058.pdf,

o we have proven that the symmetry algebra of ants under
the rule B is precisely equal to the area preserving affine
group Aff , as in the Theorem, in two ways: (i) by a ‘pure
thought’, and (ii) by the explicit construction of the Cartan
quartic for 7, employing the fact that the distribution 7 is
Aff homogeneous.

o we have also calculated the abnormal extremals — the
specially distinguished curves — for 2. They are defined in
terms of an interesting system of two ODEs of Fuchsian
type, with 3 poles at -1,0,1, which read

30'7\117L7171+101+;10
dr |r—-1\0 1 r\1 0 1+7\—-1 -1

where U = (¢4, ¢2)". Details in the quoted paper.
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