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Einstein-Weyl structures

A Weyl structure (∇, [g]) on a manifold is defined by the property

∇g = 2ϕ⊗g,

for a 1-forms ϕ where (g,ϕ) is equivalence class under the
transformation

g → e2λg, ϕ→ϕ+dλ.

For Einstein-Weyl structures the symmetric trace-free part of the Ricci
tensor of ∇ vanishes for some g ∈ [g]:

Ric(ij) =Λg

In 3D, EW str are in 1-1 correspondence with point equiv classes of
3rd order ODEs with vanishing Wünschmann and Cartan invariants.
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Twistorial characterization and causal generalization
Proposition (Cartan, Hitchin): EW property is equivalent to the
existence a 2-parameter family of null surfaces (wrt [g]) which are
totally geodesic (wrt [∇]).

A surface is null if the annihilator of its tangent planes at each point is
null.

The 2-parameter family of null surf: at each point x ∈ M3 and along
each null plane in TxM there passes a unique null surface.

The null cone Ĉx is the envelope of the 1-param family of null planes.

The sky bundle (projectivized null cone bundle) is Cx →C 4 → M 3 where

Cx := {[v] ∈PTxM | g(v,v) = 0}.

Question : What if we start with a causal structure (null cones not
necessarily quadratic) endowed with a 2D family of “null surfaces”
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Causal structures and 3rd order ODEs
Proposition (Holland-Sparling)

3D causal structures ⇐⇒ 3rd order ODEs under contact
transformations

y′′′ = f (x,y,y′,y′′), x 7→ x̃ =ψ(x,y,y′), y 7→ ỹ =φ(x,y,y′), y′ 7→ ỹ′ = ξ(x,y,y′)
∃! Lagrangian on the soln space of a 3rd order ODE defined up to a
scale.

Let Cx →C 4 π→ M be the sky bdle (C ⊂PM).

C has an Engel structure D = π−1∗ (ŷ) = ℓ⊕
V .

where V is vertical wrt C → M and ℓ is the characteristic line field of D.
The int curves of ℓ and V are “null geodesics” and skies and have proj
str.
Theorem (Chern, Godlinski-Nurowski, Holland-Sparling): 3D causal
strs correspond to parabolic geometry (G 10 →C 4,ω) of type
(SO(3,2),P12) where C 4 is the sky bundle equipped with an Engel
structure D = ℓ⊕V . The harmonic invariants are given by two weighted
scalars Y0 and I0.
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∃! Lagrangian on the soln space of a 3rd order ODE defined up to a
scale.

Let Cx →C 4 π→ M be the sky bdle (C ⊂PM).

C has an Engel structure D = π−1∗ (ŷ) = ℓ⊕
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Augmentation and reduction of causal structures
Locally view C ⊂PTM as a graph

{(x;y) ∈ TM | y3 = h(x ; t),y2 = t,y1 = 1},

where (x1,x2,x3; t) coordinates on C then Y0(= fqqqq) has > 2300 terms
and

I0 = 1
h9/2

tt
9httttth2

tt +40h3
ttt −45htttthttthtt .

Definition : A causal structure (C ,M) is augmented if it is equipped
with a 2-parameter family of “null surfaces” ↔ C is foliated by surfaces
which are transversal to Cx with tangent plane ⊂ T̂C .

In augmented causal structure

∂Dy =π−1
∗ (T̂yCx) = V ⊕F

where F ⊂ TC is integ. The splitting gives 3D reduction of the str bdle.
Theorem (Cartan, Nurowski): 3D augmented causal structures are
Cartan geom (G 7,C 4,ω) of type (R3⋊CO(2,1),B) where B ⊂ CO(2,1) are
upper triangular matrices. Fund. inv are I0,C0,S0,R0.
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Path geometry and totally geodesic null surfaces
Augmented causal str ⇐⇒ point equiv classes of 3rd order ODEs.

Locally 2D family of surfaces are level surfaces of 1D family of foliations

u = z(x1,x2,x3, t) ⇐⇒ u′′′ = f (u,u′,u′′, t).

Recall that abstractly a 3D path geometry is a 5D manifold locally
modeled on PTM → M 3 and foliated by curves transversal to PTxM.

Proposition : The manifold Σ5 :=G 7/C 2 defines a path geometry over
M 3 where C 2 ⊂ CO(2,1) is the Cartan subgroup. Its harmonic inv:
torsion T (binary quadric) and curvature S (binary quartic) with
repeated root of multi ≥ 3.

I0 = C0 = 0 is suff condition of this path geometry to be projective.

The null surfaces are “totally geodesic” in this path geometry. The
induced 2D path geometry is always a projective structure→ mimics
EW condition.
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Finsler-Weyl structures
(Pseudo-)Finsler geom, as a generalization of (pseudo-)Riem geom, is
modeled on SM (HM) where the unit spheres (hyperboloids) are not
necessarily quadratic but are tangentially nondegenerate
hypersurface.

Abstractly, they are contact manifolds (Σ5,M3) with a distinguished
contact form α and a Legendrian foliation equipped with a bilinear form
h.

Finsler-Weyl structures (Aikou-Ichijyo (1990)) are (∇, [α]) where ∇ is a
Weyl conn on Σ5 arising from a path geometry on (Σ5,M3) s.t

∇α= 2β⊗α,

where β is semi-basic wrt Σ→ M and satisfy the transformation

α 7→ e2σ(x)α, β 7→β+dσ

Proposition 3D Finsler-Weyl structures define Cartan geometry
(F 7,Σ5,ω) of type (R3⋊CO(2,1),CO(1,1)). The fundamental invariants
are

I = I(ijk)β
i ◦βj ◦βk, R = Rijα

i ◦αj, W = Wijα
i ∧αj.
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Ruled affine spheres and Integrable FW structures
Ix is the centro-affine invariant (cubic form) of hypersurfaces Σx ⊂ TxM .

I = 0 ⇐⇒ FW str. descends to a Weyl str.

Ix = hiahjbhkcIijkIabc = 0,h indefinite ⇐⇒ Σx is ruled.

Ti(x) = Iijkhjk = 0 ⇐⇒Σx is proper affine sphere centered at the origin
i.e. (x,y) 7→ yA(x)+A′(x) and det[A,A′A′′], 0.

Definition : A 3D FW str. π : Σ→ M is called integrable if the fibers Σx

are ruled surfaces and Σ5 is equipped with a 2-parameter family of
3-manifolds N ⊂Σ which are null wrt the degenerate bilinear form on Σ,
whose projection to M are surfaces and N ∩Σx is a ruling line for all
x ∈ M .

Proposition :
Int. FW str. with Σx ruled affine spheres ⇐⇒ 3rd order ODEs with
C0 = 0. They depend on 4 functions of 3 variables.
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Finsler-Einstein-Weyl condition and ε-Kähler metrics
C0 = 0 ⇒ the FW str on Σ defines a path geometry with invariants
[T], [S].

Additionally Σ is equipped with a conformal class of a degenerate
quadratic form [g] (arising from the osculating quadric of Σx.)

Defined Finsler-Einstein-Weyl condition on Σ as

[T] = [g].

Theorem (- 2021): FEW structures arising from 3rd order ODEs are
either EW (I = 0) or closed FW structures of constant flag curvature (up
to homothety) with T = 0.
The 4D space of paths of these proper FEW metrics are equipped with
half-flat ε-Kähler metrics of type III whose Ricci curvature defines
ε-Kähler-Einstein metrics of type II with non-zero scalar curvature.
They depend on 3 functions of 2 variables.
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Special class of ε-Kähler metrics and an ansatz
Here we assume ε= 1. Other cases are treated similarly.
Theorem (- 2021): Let g = θ1θ̄2 +θ2θ̄1 be a self-dual para-Kähler such
that there is a coframe reduction wrt which Ric = θ1θ̄2 −θ2θ̄1 such that
Ker{θ1, θ̄1} is principal null plane of multiplicity III . Then Ric defines a
para-Kähler-Einstein metric of type II .

All such para-Kähler metrics arise from proper integrable FEW
structures of constant negative flag curvature whose indicatrices are
ruled affine spheres.

Third ODEs defining such FEW structure satisfy certain PDEs e.g.

D2

dx2 fqq − D
dx fpq + fyq = 0, fqqq = 0, R1 = 0

which can be explicitly solved!

This suggests that one should be able to integrate the structure
equations such ε-Kähler metrics.
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Future directions

- Cartan invariants for 4D causal and Finsler-Weyl structures arising
from a pair of 2nd order PDEs and the analogue of FEW condition.

- Other classes of Kähler metrics whose Ricci tensor is Einstein.

Thank you for your attention
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