Karin Melnick Department of Mathematics University of Maryland, USA joint work with Charles Frances

SCREAM workshop, August 2021

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

-Ferrand-Obata Theorem and the Lorentzian Lichnerowicz Conjecture

Outline

Ferrand-Obata Theorem and the Lorentzian Lichnerowicz Conjecture

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conformal groups of Riemannian manifolds Conformal transformations of the sphere Higher signature?

About the proof

Step 1: Essential conformal vector field Step 2: Bound on isotropy Step 3: Proofs for each dimension

-Ferrand-Obata Theorem and the Lorentzian Lichnerowicz Conjecture

Conformal transformations of the sphere

S'' with the usual metric g_{+1}

$$lsom(S^n) \cong O(n+1)$$

 $Conf(S^n) \cong PO(1, n+1)$

 $\frac{Def:}{if} A group H \leq Conf(M(g)) \text{ is essential}$ if H is not isometric for any $g' \in [g]$.

Ferrand-Obata Theorem and the Lorentzian Lichnerowicz Conjecture

Conformal transformations of the sphere

-Ferrand-Obata Theorem and the Lorentzian Lichnerowicz Conjecture

Higher signature?

Higher rank Q (D'Ambrar Giomor '90): higher signature analogue? model space S Remannian PO(1, n+1)S. P. V (p.g)-pseudo PO(p+1,q+1) higher rk_R once min(p_q)≥1 Riemannian ~> not just ource- sink

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

- Ferrand-Obata Theorem and the Lorentzian Lichnerowicz Conjecture

Higher signature?

Examples conf. Hopf manifold $\frac{Min^{1/2} \setminus 10}{\{2^{t} Id_{s} : R \in \mathbb{Z}\}}$ $\stackrel{\sim}{=} S^{1} \times S^{2} = M$ €^{1,2} But not

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

-Ferrand-Obata Theorem and the Lorentzian Lichnerowicz Conjecture

Higher signature?

Lorentzian Lichnerowicz Conjecture

Ferrand-Obata Theorem and the Lorentzian Lichnerowicz Conjecture

Higher signature?

Our result

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

About the proof

Outline

Ferrand-Obata Theorem and the Lorentzian Lichnerowicz Conjecture

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Conformal groups of Riemannian manifolds Conformal transformations of the sphere Higher signature?

About the proof

Step 1: Essential conformal vector field Step 2: Bound on isotropy Step 3: Proofs for each dimension

About the proof

Outline

1. \exists an essential conformal vector field X

About the proof

Outline

1. \exists an essential conformal vector field *X* 2.

 $\mathfrak{z}_X = \{ \text{local conformal vector fields commuting with } X \}$

Lie algebra is well-defined by Amores/Gromov, using C^{ω} . dim $\mathfrak{z}_X \leq 4$ —more precisely the isotropy at any $x \in M$ has dimension ≤ 1 .

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

About the proof

Outline

1. \exists an essential conformal vector field *X* 2.

 $\mathfrak{z}_X = \{ \text{local conformal vector fields commuting with } X \}$

Lie algebra is well-defined by Amores/Gromov, using C^{ω} . dim $\mathfrak{z}_X \leq 4$ —more precisely the isotropy at any $x \in M$ has dimension ≤ 1 .

3. dim
$$\mathfrak{z}_X = 4, 3, 2, 1$$

About the proof

Step 1: Essential conformal vector field

Zeghib's classification

About the proof

LStep 2: Bound on isotropy

Stable linear derivative

Goren
$$\langle \Psi^{\dagger} \rangle = Conf^{loc}(M, (g]) fixing p \in M,$$

if $D_{p} (\Psi^{\dagger} =) (UX)^{\dagger}$ with $O < M < A$
 $U < U < J^{\dagger} = U = U < UX$
 $U < U < J^{\dagger} = U = U < U < J^{\dagger} = U$
istable linear derivative
theta Cotton York $C_{p} \in \Lambda^{e} T_{p}^{*} M \otimes T_{p}^{*} M$
ranishes at P .
conformally unit.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

About the proof

Step 2: Bound on isotropy

Linearization theorem

r

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

About the proof

LStep 2: Bound on isotropy

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

About the proof

L Step 3: Proofs for each dimension

Table

Table 3D Lich Münster 6/28

dim
$$g_x = 4$$
: (M,(g)) locally homogeneous
construct confirmal invariants F_g
for which $F_g^{A_g}$ is invariant metric
 $d_{uni} = 3$
 R^3
heig: classification of left-nivt lorents
metrics (Rahmani+ Rahmani) rules out 3D
orbit
4 all orbits 2D, local coordinates
 \sim confirmally flat inetric
 $af(R) \oplus R$: \exists closed T^2 - orbit india a
complete (G,X)-structure (G is 4D)
flow corresponding to \times precompact #
 $d_{uni} = 2$ $3_X \cong R^2$ globalities on M to $Z = S' RR$
or bits obtaite an open dense subset Ω
 A leaves extend uniquely over 1D orbits n ΩR
 $d_{uni} = 1$ $3_X = RX$, has fixed paints
linear unipotent contradicts \odot locally
linear hyperbolic - find $a \ge b > 0$