Variational approach to conformal curves

Josef Šilhan (joint with V. Žádník)
Masaryk University, Brno, Czech Republic

"SCREAM" opening workshop, Aug 2021, Ilawa

Plan

- Motivation: curves in the Euclidean/Riemannian space
- Conformal curves
- Variational approach: the simplest conformal invariant α
- The second variation of α

Motivation: curves in the Euclidean/Riemannian space

Conformal curves

Variational approach to conformal curves

The second variation of d

Motivation: curves in Euclidean/Riemannian space

- How to deal with a curve $\Gamma \subseteq E_{n}$ or a Riemannian manifold M^{n} :
$>$ arc length parametrization $s: \Gamma \rightarrow \mathbb{R}$ for which the corresponding tangent vector $U^{a}, U^{a} \nabla_{a} s=1$ has unit length,
- canonical way how to differentiate vectors along 「 using $\frac{d}{d s}()=U^{a} \nabla_{a}()=()^{\prime}$ where $\nabla_{a}=\frac{\partial}{\partial x^{a}}$ (or Levi-Civita connect.)
- the canonically associated ortonormal Frenet frame $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ along Γ where $e_{1}=U^{a} \leadsto$ curvatures/torsions - arc-length parametrized geodesics: $e_{1}^{\prime}=U^{\prime}=0$, i.e. all $\kappa_{i}=0$. - Variational approach: minimize $\int_{t_{1}}^{t_{2}} U$. U (with fived endpoints) yields the same equation.

Motivation: curves in Euclidean/Riemannian space

- How to deal with a curve $\Gamma \subseteq E_{n}$ or a Riemannian manifold M^{n} :
- arc length parametrization $s: \Gamma \rightarrow \mathbb{R}$ for which the corresponding tangent vector $U^{a}, U^{a} \nabla_{a} s=1$ has unit length,
- canonical way how to differentiate vectors along 「using $\frac{d}{d s}()=U^{a} \nabla_{a}()=()^{\prime}$ where $\nabla_{a}=\frac{\partial}{\partial x^{a}}$ (or Levi-Civita connect.)
- the canonically associated ortonormal Frenet frame $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ along Γ where $e_{1}=U^{a} \leadsto$ curvatures/torsions - arc-length parametrized geodesics: $e_{1}^{\prime}=U^{\prime}=0$, i.e. all $\kappa_{i}=0$. - Variational approach: minimize $\int_{t_{1}}^{t_{2}} U$. U (with fixed endpoints) yields the same equation.

Motivation: curves in Euclidean/Riemannian space

- How to deal with a curve $\Gamma \subseteq E_{n}$ or a Riemannian manifold M^{n} :
- arc length parametrization $s: \Gamma \rightarrow \mathbb{R}$ for which the corresponding tangent vector $U^{a}, U^{a} \nabla_{a} s=1$ has unit length,
- canonical way how to differentiate vectors along Γ using $\frac{d}{d s}()=U^{a} \nabla_{a}()=()^{\prime}$ where $\nabla_{a}=\frac{\partial}{\partial x^{a}}$ (or Levi-Civita connect.)
- the canonically associated ortonormal Frenet frame $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ along Γ where $e_{1}=U^{a} \leadsto$ curvatures/torsions $\kappa_{1}, \ldots, \kappa_{n-1}$

$$
\begin{aligned}
& e_{1}^{\prime}=\kappa_{1} e_{2} \\
& e_{i}^{\prime}=-\kappa_{i-1} e_{i-1}+\kappa_{i+1} e_{i+1}, \quad 2 \leq i \leq n-1, \\
& e_{n}^{\prime}=-\kappa_{n-1} e_{n} .
\end{aligned}
$$

- arc-length parametrized geodesics: $e_{1}^{\prime}=U^{\prime}=0$, i.e. all $\kappa_{i}=0$.
- Variational approach: minimize $\int_{t_{1}}^{t_{2}} U \cdot U$ (with fixed endpoints)
yields the same equation.

Motivation: curves in Euclidean/Riemannian space

- How to deal with a curve $\Gamma \subseteq E_{n}$ or a Riemannian manifold M^{n} :
- arc length parametrization $s: \Gamma \rightarrow \mathbb{R}$ for which the corresponding tangent vector $U^{a}, U^{a} \nabla_{a} s=1$ has unit length,
- canonical way how to differentiate vectors along Γ using $\frac{d}{d s}()=U^{a} \nabla_{a}()=()^{\prime}$ where $\nabla_{a}=\frac{\partial}{\partial x^{a}}$ (or Levi-Civita connect.)
- the canonically associated ortonormal Frenet frame $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ along Γ where $e_{1}=U^{a} \leadsto$ curvatures/torsions $\kappa_{1}, \ldots, \kappa_{n-1}$

$$
\begin{aligned}
& e_{1}^{\prime}=\kappa_{1} e_{2} \\
& e_{i}^{\prime}=-\kappa_{i-1} e_{i-1}+\kappa_{i+1} e_{i+1}, \quad 2 \leq i \leq n-1, \\
& e_{n}^{\prime}=-\kappa_{n-1} e_{n} .
\end{aligned}
$$

- arc-length parametrized geodesics: $e_{1}^{\prime}=U^{\prime}=0$, i.e. all $\kappa_{i}=0$.
- Variational approach: minimize $\int_{t_{1}}^{t_{2}} U \cdot U$ (with fixed endpoints) yields the same equation.

Motivation: curves in the Euclidean/Riemannian space

Conformal curves

Variational approach to conformal curves

The second variation of d

Conformal geometry

- Conformal geometry ($M,\left[g_{a b}\right]$) on a smooth manifold M, $n=\operatorname{dim} M$ is the class of metrics $\left[g_{a b}\right]=\left\{e^{2 \Upsilon} g_{a b} \mid \Upsilon \in C^{\infty}(M)\right\}$. This leads in particular to following data:

where $\Upsilon_{a}=\nabla_{a} \Upsilon \in \mathcal{E}_{a}$.

Conformal geometry

- Conformal geometry $\left(M,\left[g_{a b}\right]\right)$ on a smooth manifold M, $n=\operatorname{dim} M$ is the class of metrics $\left[g_{a b}\right]=\left\{e^{2 \Upsilon} g_{a b} \mid \Upsilon \in C^{\infty}(M)\right\}$. This leads in particular to following data:
- density bundles $\mathcal{E}[w], w \in \mathbb{R}$ such that $\mathcal{E}[-n]=\Lambda^{n} T^{*} M$,
- the conformal metric $\boldsymbol{g}_{a b} \in \mathcal{E}_{(a b)}[2] \leadsto$ raising and lowering of abstract indices,

where $\Upsilon_{a}=\nabla_{a} \Upsilon \in \mathcal{E}_{a}$.

Conformal geometry

- Conformal geometry $\left(M,\left[g_{a b}\right]\right)$ on a smooth manifold M, $n=\operatorname{dim} M$ is the class of metrics $\left[g_{a b}\right]=\left\{e^{2 \Upsilon} g_{a b} \mid \Upsilon \in C^{\infty}(M)\right\}$. This leads in particular to following data:
- density bundles $\mathcal{E}[w], w \in \mathbb{R}$ such that $\mathcal{E}[-n]=\Lambda^{n} T^{*} M$,
- the conformal metric $\boldsymbol{g}_{a b} \in \mathcal{E}_{(a b)}[2] \leadsto$ raising and lowering of abstract indices,
- if ∇_{a} and $\hat{\nabla}_{a}$ are Levi-Civita connections of metrics $g_{a b}$ and $\hat{g}_{a b}=e^{2 \Upsilon} g_{a b}$, respectively, then

$$
\hat{\nabla}_{a} \mu^{b}=\nabla_{a} \mu^{b}+\Upsilon_{a} \mu^{b}-\mu_{a} \Upsilon^{b}+\mu^{c} \Upsilon_{c} \delta_{a}^{b}, \quad \mu^{a} \in \mathcal{E}^{a}
$$

where $\Upsilon_{a}=\nabla_{a} \Upsilon \in \mathcal{E}_{a}$.

How to deal with conformal curves

- Considering a curve $\Gamma \subseteq M$ on a conformal manifold M, we would like to find a conformal Frenet construction. We face two obvious problems:
> - Problem 1.: Is there a conformal arc length parametrization? Answer: generically yes but actually more than that.
> - Problem 2.: Is there an invariant differentiation along Г, i.e. independent on the choice of $g \in[g]$? Answer: yes but complicated (Fialkow) \leadsto we replace the tangent Frenet frame by tractors (more conceptual)
> - Our setup: choosing an arbitrary parametrization t, we have $U^{a} \in \mathcal{E}^{a}$ and $u \in \mathcal{E}[1]$ along Γ as follows:

How to deal with conformal curves

- Considering a curve $\Gamma \subseteq M$ on a conformal manifold M, we would like to find a conformal Frenet construction. We face two obvious problems:
- Problem 1.: Is there a conformal arc length parametrization? Answer: generically yes but actually more than that.

- Considering a curve $\Gamma \subseteq M$ on a conformal manifold M, we would like to find a conformal Frenet construction. We face two obvious problems:
- Problem 1.: Is there a conformal arc length parametrization? Answer: generically yes but actually more than that.
- Problem 2.: Is there an invariant differentiation along Г, i.e. independent on the choice of $g \in[g]$?
Answer: yes but complicated (Fialkow) \leadsto we replace the tangent Frenet frame by tractors (more conceptual).

- Considering a curve $\Gamma \subseteq M$ on a conformal manifold M, we would like to find a conformal Frenet construction. We face two obvious problems:
- Problem 1.: Is there a conformal arc length parametrization? Answer: generically yes but actually more than that.
- Problem 2.: Is there an invariant differentiation along Г, i.e. independent on the choice of $g \in[g]$? Answer: yes but complicated (Fialkow) \sim we replace the tangent Frenet frame by tractors (more conceptual).
- Our setup: choosing an arbitrary parametrization t, we have $U^{a} \in \mathcal{E}^{a}$ and $u \in \mathcal{E}[1]$ along Γ as follows:

$$
t: \Gamma \rightarrow \mathbb{R}, \quad U^{a} \nabla_{a} t=1, \quad u:=\sqrt{U^{a} U_{a}} \in \mathcal{E}[1] .
$$

— Fialkow: "The Conformal Theory of Curves" (TAMS, 1942)
\leadsto the classical (although technical) presentation of conformal invariants of curves.

- Bailey and Eastwood: "Conformal circles and parametrizations of curves in conformal manifolds" (PAMS), 108(I):215-221, 1990 \leadsto the first attempt to variational study of curves: a (conformally noninvariant) "BE-functional".
- Bailey, Eastwood and Gover: "Thomas's Structure Bundle for Conformal, Projective and Related Structures" (Rocky Mountain J. Math., 1994)
\leadsto introduces tractors along curves (and our main motivation).
- Musso: "The Conformal Arclength Functional" (Math. Nachr., 165:107-131, 1994)
\leadsto variational approach focused on a different functional than we discuss here.

Tractor calculus

- The tractor bundle \mathcal{T} is isomorphic, depending on the choice of the metric $g \in[g]$, to the direct sum $[\mathcal{T}]_{g}=\mathcal{E}[1] \oplus \mathcal{E}_{a}[1] \oplus \mathcal{E}[-1]$. - The tractor bundle \mathcal{T} admits an invariant connection $\nabla^{\mathcal{T}}$
where $\boldsymbol{g}_{a b} \in \mathcal{E}_{(a b)}[2]$ is the conformal metric and $\mathrm{P}_{a b}$ the Schouten tensor. Further, we have $\nabla^{\mathcal{T}}$-parallel Lorenzian metric h on \mathcal{T},

Tractor calculus

- The tractor bundle \mathcal{T} is isomorphic, depending on the choice of the metric $g \in[g]$, to the direct sum $[\mathcal{T}]_{g}=\mathcal{E}[1] \oplus \mathcal{E}_{a}[1] \oplus \mathcal{E}[-1]$. - The tractor bundle \mathcal{T} admits an invariant connection $\nabla^{\mathcal{T}}$,

$$
\nabla_{a}^{\mathcal{T}}\left(\begin{array}{c}
\alpha \\
\mu_{b} \\
\tau
\end{array}\right)=\left(\begin{array}{c}
\nabla_{a} \alpha-\mu_{a} \\
\nabla_{a} \mu_{b}+\boldsymbol{g}_{a b} \tau+\mathrm{P}_{a b} \alpha \\
\nabla_{a} \tau-\mathrm{P}_{a b} \mu^{b}
\end{array}\right)
$$

where $\boldsymbol{g}_{a b} \in \mathcal{E}_{(a b)}[2]$ is the conformal metric and $\mathrm{P}_{a b}$ the Schouten tensor. Further, we have $\nabla^{\mathcal{T}}$-parallel Lorenzian metric h on \mathcal{T},

$$
h=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & \boldsymbol{g}_{a b} & 0 \\
1 & 0 & 0
\end{array}\right)
$$

[^0]
Tractor calculus

- The tractor bundle \mathcal{T} is isomorphic, depending on the choice of the metric $g \in[g]$, to the direct sum $[\mathcal{T}]_{g}=\mathcal{E}[1] \oplus \mathcal{E}_{a}[1] \oplus \mathcal{E}[-1]$. - The tractor bundle \mathcal{T} admits an invariant connection $\nabla^{\mathcal{T}}$,

$$
\nabla_{a}^{\mathcal{T}}\left(\begin{array}{c}
\alpha \\
\mu_{b} \\
\tau
\end{array}\right)=\left(\begin{array}{c}
\nabla_{a} \alpha-\mu_{a} \\
\nabla_{a} \mu_{b}+\boldsymbol{g}_{a b} \tau+\mathrm{P}_{a b} \alpha \\
\nabla_{a} \tau-\mathrm{P}_{a b} \mu^{b}
\end{array}\right)
$$

where $\boldsymbol{g}_{a b} \in \mathcal{E}_{(a b)}[2]$ is the conformal metric and $\mathrm{P}_{a b}$ the Schouten tensor. Further, we have $\nabla^{\mathcal{T}}$-parallel Lorenzian metric h on \mathcal{T},

$$
h=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & \boldsymbol{g}_{a b} & 0 \\
1 & 0 & 0
\end{array}\right)
$$

- Problem 2 is solved if we build the Frenet frame using tractors.

Passing from parametrized curves to tractors

- The naive tractor frame for a fixed parametrization $t: \Gamma \rightarrow \mathbb{R}$ with $u=\sqrt{U^{a} U_{a}}$ starts with tractors

$$
\boldsymbol{T}:=\left(\begin{array}{c}
0 \\
0 \\
u^{-1}
\end{array}\right), \quad \boldsymbol{U}:=\frac{d}{d t} \boldsymbol{T}=\left(\begin{array}{c}
0 \\
u^{-1} U^{a} \\
*
\end{array}\right), \quad \boldsymbol{U}^{\prime}:=\frac{d^{2}}{d t^{2}} \boldsymbol{T}=\left(\begin{array}{c}
-u \\
* \\
*
\end{array}\right),
$$

where $*$ denotes unspecified terms and

$$
\boldsymbol{U}:=\frac{d}{d t} \boldsymbol{T}, \quad \boldsymbol{U}^{\prime}:=\frac{d^{2}}{d t^{2}} \boldsymbol{T}, \quad \ldots, \quad \boldsymbol{U}^{(i)}:=\frac{d^{i+1}}{d t^{i+1}} \boldsymbol{T} .
$$

Passing from parametrized curves to tractors

- The naive tractor frame for a fixed parametrization $t: \Gamma \rightarrow \mathbb{R}$ with $u=\sqrt{U^{a} U_{a}}$ starts with tractors
$\boldsymbol{T}:=\left(\begin{array}{c}0 \\ 0 \\ u^{-1}\end{array}\right), \quad \boldsymbol{U}:=\frac{d}{d t} \boldsymbol{T}=\left(\begin{array}{c}0 \\ u^{-1} U^{a} \\ *\end{array}\right), \quad \boldsymbol{U}^{\prime}:=\frac{d^{2}}{d t^{2}} \boldsymbol{T}=\left(\begin{array}{c}-u \\ * \\ *\end{array}\right)$,
where $*$ denotes unspecified terms and

$$
\boldsymbol{U}:=\frac{d}{d t} \boldsymbol{T}, \quad \boldsymbol{U}^{\prime}:=\frac{d^{2}}{d t^{2}} \boldsymbol{T}, \quad \ldots, \quad \boldsymbol{U}^{(i)}:=\frac{d^{i+1}}{d t^{i+1}} \boldsymbol{T} .
$$

— We consider Gram matrices of $\left(\boldsymbol{T}, \boldsymbol{U}, \boldsymbol{U}^{\prime}, \ldots, \boldsymbol{U}^{(i)}\right)$, e.g.
$\operatorname{Gram}\left(\boldsymbol{T}, \boldsymbol{U}, \boldsymbol{U}^{\prime}, \boldsymbol{U}^{\prime \prime}\right)=\left(\begin{array}{cccc}0 & 0 & -1 & 0 \\ 0 & 1 & 0 & -\alpha \\ -1 & 0 & \alpha & \frac{1}{2} \alpha^{\prime} \\ 0 & -\alpha & \frac{1}{2} \alpha^{\prime} & \beta\end{array}\right), \quad \begin{aligned} & \alpha=\boldsymbol{U}^{\prime} \cdot \boldsymbol{U}^{\prime}, \\ & \beta=\boldsymbol{U}^{\prime \prime} \cdot \boldsymbol{U}^{\prime \prime} .\end{aligned}$

Reparametrizations

— Another parameter $\tilde{t}=g(t)$ yields the new frame $\widetilde{\boldsymbol{T}}, \widetilde{\boldsymbol{U}}, \widetilde{\boldsymbol{U}}^{\prime}, \ldots$ where $\frac{d}{d \tilde{t}}=g^{\prime-1} \frac{d}{d t}$. Which quantities can we normalize by a suitable reparametrization? Firstly,
$\widetilde{\boldsymbol{U}}^{\prime} \cdot \widetilde{\boldsymbol{U}}^{\prime}=g^{\prime-2}\left(\boldsymbol{U}^{\prime} \cdot \boldsymbol{U}^{\prime}-2 \mathcal{S}(g)\right) \leadsto$ normalization $\widetilde{\boldsymbol{U}}^{\prime} \cdot \widetilde{\boldsymbol{U}}^{\prime}=0$
yields a projective class of distingushed parameters. Here $\mathcal{S}(g)$ denotes the Schwarzian derivative. Secondly, put

$$
\Delta_{i}:=\operatorname{det}\left(\operatorname{Gram}\left(\boldsymbol{T}, \boldsymbol{U}, \boldsymbol{U}^{\prime}, \ldots, \boldsymbol{U}^{(i-2)}\right)\right)
$$

with $\Delta_{1}=\Delta_{2}=0, \Delta_{3}=1$ and Δ_{4} the first nontrivial. Then

$$
\widetilde{\Delta}_{i}=g^{\prime-i(i-3)} \Delta_{i} \quad \leadsto \quad \text { generic normalization } \quad \Delta_{i}= \pm 1
$$

Summary: relative and absolute invariants of curves

- Δ_{i} are relative invariants of the curve Γ,
- in fact $\Delta_{4} \geq 0$ i.e. generically we can reparametrize to

$$
\widetilde{\Delta}_{i}=1 \leadsto \sim \text { conformal arc length parametrization, }
$$

- the (parametrization independent) condition $\Delta_{4}=0$ defines a class of conformal circles, i.e. distinguished curves in conformal geometry.
- Construction of the tractor Frenet frame:
- find the conformal arc length parametrization,
- build the frame ($\boldsymbol{T},\|,\|^{\prime}$
- use the Gramm-Schmidt ortonormalization to find its (Lorenzian) orthonormal version,
- derive corresponding Frenet formulae analogously as in Lorenzian geometry \leadsto absolute invariants $=$ curvatures/torsions.

Summary: relative and absolute invariants of curves

- Δ_{i} are relative invariants of the curve Γ,
- in fact $\Delta_{4} \geq 0$ i.e. generically we can reparametrize to

$$
\widetilde{\Delta}_{i}=1 \leadsto \sim \text { conformal arc length parametrization, }
$$

- the (parametrization independent) condition $\Delta_{4}=0$ defines a class of conformal circles, i.e. distinguished curves in conformal geometry.
- Construction of the tractor Frenet frame:
- find the conformal arc length parametrization,

- use the Gramm-Schmidt ortonormalization to find its (Lorenzian) orthonormal version,
- derive corresponding Frenet formulae analogously as in Lorenzian geometry \leadsto absolute invariants $=$ curvatures/torsions.

Summary: relative and absolute invariants of curves

- Δ_{i} are relative invariants of the curve Γ,
- in fact $\Delta_{4} \geq 0$ i.e. generically we can reparametrize to

$$
\widetilde{\Delta}_{i}=1 \leadsto \underline{\text { conformal arc length parametrization, }}
$$

- the (parametrization independent) condition $\Delta_{4}=0$ defines a class of conformal circles, i.e. distinguished curves in conformal geometry.
- Construction of the tractor Frenet frame:
- find the conformal arc length parametrization,
- build the frame $\left(\boldsymbol{T}, \boldsymbol{U}, \boldsymbol{U}^{\prime}, \ldots, \boldsymbol{U}^{(i)}\right)$,
- use the Gramm-Schmidt ortonormalization to find its (Lorenzian) orthonormal version,
- derive corresponding Frenet formulae analogously as in Lorenzian geometry \leadsto absolute invariants $=$ curvatures/torsions.

Motivation: curves in the Euclidean/Riemannian space

Conformal curves

Variational approach to conformal curves

The second variation of d

Conformally invariant functionals for curves

- Obvious candidates for such functionals are

$$
\alpha=\boldsymbol{U}^{\prime} \cdot \boldsymbol{U}^{\prime}, \quad \beta=\boldsymbol{U}^{\prime \prime} \cdot \boldsymbol{U}^{\prime \prime}, \quad \gamma=\boldsymbol{U}^{\prime \prime \prime} \cdot \boldsymbol{U}^{\prime \prime \prime}
$$

or their combinations, e.g. $-\Delta_{4}=\beta-\alpha^{2} \geq 0$.

- The simplest functional is

is of the 3rd order. (That is, the tangent vector U^{a} is of the first order.)

- The order can be reduced by adding an exact term:
- The right hand side is exactly (conformally noninvariant) BE-functional $\leadsto \mathrm{BE}$-functional and α have the same family

Conformally invariant functionals for curves

- Obvious candidates for such functionals are

$$
\alpha=\boldsymbol{U}^{\prime} \cdot \boldsymbol{U}^{\prime}, \quad \beta=\boldsymbol{U}^{\prime \prime} \cdot \boldsymbol{U}^{\prime \prime}, \quad \gamma=\boldsymbol{U}^{\prime \prime \prime} \cdot \boldsymbol{U}^{\prime \prime \prime}
$$

or their combinations, e.g. $-\Delta_{4}=\beta-\alpha^{2} \geq 0$.

- The simplest functional is
$\alpha=U^{\prime} \cdot \boldsymbol{U}^{\prime}=3 u^{-2} U_{c}^{\prime} U^{\prime c}+2 u^{-2} U_{c} U^{\prime \prime c}-6 u^{-4}\left(U_{c} U^{\prime c}\right)^{2}+2 \mathrm{P}_{c d} U^{c} U^{d}$ is of the 3rd order. (That is, the tangent vector U^{a} is of the first order.)
- The order can be reduced by adding an exact term:
- The right hand side is exactly (conformally noninvariant) BE-functional $\leadsto \mathrm{BE}$-functional and α have the same family

Conformally invariant functionals for curves

- Obvious candidates for such functionals are

$$
\alpha=\boldsymbol{U}^{\prime} \cdot \boldsymbol{U}^{\prime}, \quad \beta=\boldsymbol{U}^{\prime \prime} \cdot \boldsymbol{U}^{\prime \prime}, \quad \gamma=\boldsymbol{U}^{\prime \prime \prime} \cdot \boldsymbol{U}^{\prime \prime \prime}
$$

or their combinations, e.g. $-\Delta_{4}=\beta-\alpha^{2} \geq 0$.

- The simplest functional is
$\alpha=U^{\prime} \cdot U^{\prime}=3 u^{-2} U_{c}^{\prime} U^{\prime c}+2 u^{-2} U_{c} U^{\prime \prime c}-6 u^{-4}\left(U_{c} U^{\prime c}\right)^{2}+2 \mathrm{P}_{c d} U^{c} U^{d}$
is of the 3rd order. (That is, the tangent vector U^{a} is of the first order.)
- The order can be reduced by adding an exact term:

$$
\alpha-2 U^{r} \nabla_{r}\left(u^{-2} U_{c} U^{\prime c}\right)=u^{-2} U_{c}^{\prime} U^{\prime c}-2 u^{-4}\left(U_{c} U^{\prime c}\right)^{2}+2 \mathrm{P}_{a b} U^{a} U^{b} .
$$

- The right hand side is exactly (conformally noninvariant) BE-functional $\leadsto \mathrm{BE}$-functional and α have the same family critical curves.

Euler-Lagrange equations of critical curves for $\alpha \mathbf{I}$.

- The setup for variation: fix endpoints $x_{1}, x_{2} \in M$ and tangent vectors at endpoints $A_{i} \in T_{x_{i}} M$.
- Given a curve $c(t)$ parametrised on interval $\left[t_{1}, t_{2}\right]$ with $c\left(t_{i}\right)=x_{i} \in M$ and tangent vectors at endpoints $U\left(t_{i}\right)=A_{i}$, we put

$$
\mathcal{J}(c)=\int_{t_{1}}^{t_{2}} \boldsymbol{U}^{\prime} \cdot \boldsymbol{U}^{\prime}
$$

- Given such a curve, we consider a variational vector field Z along $c(t)$ such that

$$
Z\left(x_{i}\right)=Z^{\prime}\left(x_{i}\right)=0 \quad \text { and } \quad[U, Z]=\nabla_{U} Z-\nabla_{Z} U=0,
$$

where we extended Z and U to some neighbourhood of $c(t)$.

- Further consider $\boldsymbol{Z}:=\nabla_{Z} \boldsymbol{T}=\left(\begin{array}{c}0 \\ u^{-1} Z^{a} \\ -u^{-3} U^{r} Z_{r}^{\prime}\end{array}\right)$ where $Z^{\prime}=\nabla_{U} Z$.

Euler-Lagrange equations of critical curves for α II.

- Since $\nabla_{Z} \boldsymbol{U}^{\prime}=\nabla_{U} \nabla_{U} \boldsymbol{Z}+Z^{r} U^{s} \Omega_{r s}(\boldsymbol{U}) \cdot \boldsymbol{U}^{\prime}$, integration by parts yields

$$
\begin{aligned}
\nabla_{Z} \mathcal{J}(c) & =\nabla_{Z} \int_{t_{1}}^{t_{2}} \boldsymbol{U}^{\prime} \cdot \boldsymbol{U}^{\prime}=2 \int_{t_{1}}^{t_{2}} \boldsymbol{Z} \cdot \boldsymbol{U}^{\prime \prime \prime}+Z^{r} U^{s} \Omega_{r s}(\boldsymbol{U}) \cdot \boldsymbol{U}^{\prime}= \\
& =2 \int_{t_{1}}^{t_{2}} \boldsymbol{Z} \cdot\left(\boldsymbol{U}^{\prime \prime \prime}+\alpha \boldsymbol{U}^{\prime}+\alpha^{\prime} \boldsymbol{U}\right)+Z^{r} U^{s} \Omega_{r s}(\boldsymbol{U}) \cdot \boldsymbol{U}^{\prime}=0
\end{aligned}
$$

for every Z (modulo boundary terms).

- Further we assume conformally flat case, i.e. $\Omega_{a b}=0$. Since the tractor field $\boldsymbol{U}^{\prime \prime \prime}+\alpha \boldsymbol{U}^{\prime}+\alpha^{\prime} \boldsymbol{U}$ has zero top slot, we obtain the tractor version of the Euler-Lagrange equations

$$
\boldsymbol{U}^{\prime \prime \prime}+\alpha \boldsymbol{U}^{\prime}+\alpha^{\prime} \boldsymbol{U}+\boldsymbol{\Phi} \boldsymbol{T}=0 \quad \text { for a function } \boldsymbol{\phi} .
$$

In fact, one can show that $\Phi=-\Delta_{4}=\beta-\alpha^{2}$.

What are critical curves?

- Recall curves on n-dimensional conformal manifolds have conformal curvatures and K_{1}, \ldots, K_{n-1}. Alternatively, K_{2}, \ldots, K_{n-1} are refered to as (higher) conformal torsions.
- The condition $\boldsymbol{U}^{\prime \prime} \in\left\langle\boldsymbol{U}^{\prime}, \boldsymbol{U}, \boldsymbol{T}\right\rangle$ means $K_{1}=\ldots=K_{n-1}=0$; these curves are conformal circles.
- The condition $\boldsymbol{U}^{\prime \prime \prime} \in\left\langle\boldsymbol{U}^{\prime \prime}, \boldsymbol{U}^{\prime}, \boldsymbol{U}, \boldsymbol{T}\right\rangle$ means $K_{2}=\ldots=K_{n-1}=0$.
- Our condition $\boldsymbol{U}^{\prime \prime \prime}+\alpha \boldsymbol{U}^{\prime}+\alpha^{\prime} \boldsymbol{U}+\boldsymbol{\Phi} \boldsymbol{T}=0$ is even more restrictive: it equivalently means

$$
\begin{equation*}
\alpha=\text { const }, \quad \Phi=\text { const }, \quad K_{1}=\text { const }, \quad K_{2}=\ldots=K_{n-1}=0 \tag{1}
\end{equation*}
$$

> - Conclusion: on locally flat manifolds, critical curves for the simplest conformal functional $\alpha=\boldsymbol{U}^{\prime} \cdot \boldsymbol{U}^{\prime}$ given by (1) are loxodromas (spirals on a sphere); these, in a more general sense, include circles and lines.

What are critical curves?

- Recall curves on n-dimensional conformal manifolds have conformal curvatures and K_{1}, \ldots, K_{n-1}. Alternatively, K_{2}, \ldots, K_{n-1} are refered to as (higher) conformal torsions.
- The condition $\boldsymbol{U}^{\prime \prime} \in\left\langle\boldsymbol{U}^{\prime}, \boldsymbol{U}, \boldsymbol{T}\right\rangle$ means $K_{1}=\ldots=K_{n-1}=0$; these curves are conformal circles.
- The condition $\boldsymbol{U}^{\prime \prime \prime} \in\left\langle\boldsymbol{U}^{\prime \prime}, \boldsymbol{U}^{\prime}, \boldsymbol{U}, \boldsymbol{T}\right\rangle$ means $K_{2}=\ldots=K_{n-1}=0$.
- Our condition $\boldsymbol{U}^{\prime \prime \prime}+\alpha \boldsymbol{U}^{\prime}+\alpha^{\prime} \boldsymbol{U}+\boldsymbol{\Phi} \boldsymbol{T}=0$ is even more restrictive: it equivalently means

$$
\begin{equation*}
\alpha=\text { const }, \Phi=\text { const }, \quad K_{1}=\text { const }, \quad K_{2}=\ldots=K_{n-1}=0 \tag{1}
\end{equation*}
$$

- Conclusion: on locally flat manifolds, critical curves for the simplest conformal functional $\alpha=\boldsymbol{U}^{\prime} \cdot \boldsymbol{U}^{\prime}$ given by (1) are loxodromas (spirals on a sphere); these, in a more general sense, include circles and lines.

Alternative equation for critical curves

- In order to build tractor Frenet frame, we observe $\boldsymbol{U}^{\prime \prime}+\alpha \boldsymbol{U} \perp\left\langle\boldsymbol{T}, \boldsymbol{U}, \boldsymbol{U}^{\prime}\right\rangle$ where

$$
\boldsymbol{U}^{\prime \prime}+\alpha \boldsymbol{U}=\left(\begin{array}{c}
0 \\
N^{a} \\
*
\end{array}\right)
$$

where $N \perp U$ is the Fialkow normal. Explicitly,

$$
N^{a}=u^{-1} U^{\prime \prime a}-3 u^{-3}\left(U_{r} U^{\prime r}\right) U^{\prime a}+u^{-1}(\ldots) U^{a}-u^{-1} U^{r} \mathrm{P}_{r}^{a} .
$$

- Using the Filakow normal, we recover the following:
- The equation for conformal circles: $N=0$
- The condition for the conformal arc length: $\|N\|=1$. - The equation for loxodromas: $N^{\prime a} \propto U^{a}$ and $\alpha \in \mathbb{R}$.

Alternative equation for critical curves

- In order to build tractor Frenet frame, we observe $\boldsymbol{U}^{\prime \prime}+\alpha \boldsymbol{U} \perp\left\langle\boldsymbol{T}, \boldsymbol{U}, \boldsymbol{U}^{\prime}\right\rangle$ where

$$
\boldsymbol{U}^{\prime \prime}+\alpha \boldsymbol{U}=\left(\begin{array}{c}
0 \\
N^{a} \\
*
\end{array}\right)
$$

where $N \perp U$ is the Fialkow normal. Explicitly,

$$
N^{a}=u^{-1} U^{\prime \prime a}-3 u^{-3}\left(U_{r} U^{\prime r}\right) U^{\prime a}+u^{-1}(\ldots) U^{a}-u^{-1} U^{r} \mathrm{P}_{r}^{a} .
$$

- Using the Filakow normal, we recover the following:
- The equation for conformal circles: $N=0$
- The condition for the conformal arc length: $\|N\|=1$.
- The equation for loxodromas: $N^{\prime a} \propto U^{a}$ and $\alpha \in \mathbb{R}$.

Motivation: curves in the Euclidean/Riemannian space

Conformal curves

Variational approach to conformal curves

The second variation of α

- Assuming the locally flat case, critical curves of $\mathcal{J}(c)$ are charecterized by

$$
\boldsymbol{U}^{\prime \prime \prime}+\alpha \boldsymbol{U}^{\prime}-\boldsymbol{\Phi} \boldsymbol{T}=0, \quad \Phi=\beta-\alpha^{2} \geq 0, \alpha, \beta \in \mathbb{R}
$$

- Let us compute the second variation at such curve (modulo boundary terms):

- Is there really a chance for local extremals? No - a suitable reparametrization can increase or decrease $\mathcal{J}(c)$. Further observe: - Variation vector field Z tangent to the curve \sim reparametrization of $c(t)$
- Thus we have the following question: are there local extremals of $\mathcal{J}(c)$ with respect to normal variations only?
- Clearly second (normal) variation cannot be definite for circles any variation in the plane of the circle is zero.
- Assuming the locally flat case, critical curves of $\mathcal{J}(c)$ are charecterized by

$$
\boldsymbol{U}^{\prime \prime \prime}+\alpha \boldsymbol{U}^{\prime}-\boldsymbol{\Phi} \boldsymbol{T}=0, \quad \Phi=\beta-\alpha^{2} \geq 0, \alpha, \beta \in \mathbb{R}
$$

- Let us compute the second variation at such curve (modulo boundary terms):

$$
\nabla_{Z} \nabla_{Z} \mathcal{J}(c)=\int_{t_{1}}^{t_{2}} \boldsymbol{Z}^{\prime \prime} \cdot \boldsymbol{Z}^{\prime \prime}-\alpha \boldsymbol{Z}^{\prime} \cdot \boldsymbol{Z}^{\prime}-\Phi \boldsymbol{Z} \cdot \boldsymbol{Z}
$$

- Is there really a chance for local extremals? No - a suitable reparametrization can increase or decrease $\mathcal{J}(c)$. Further observe: - Variation vector field Z tangent to the curve \leadsto reparametrization of $c(t)$
- Thus we have the following question: are there local extremals of $\mathcal{J}(c)$ with respect to normal variations only?
- Clearly second (normal) variation cannot be definite for circles any variation in the plane of the circle is zero.
- Assuming the locally flat case, critical curves of $\mathcal{J}(c)$ are charecterized by

$$
\boldsymbol{U}^{\prime \prime \prime}+\alpha \boldsymbol{U}^{\prime}-\boldsymbol{\Phi} \boldsymbol{T}=0, \quad \Phi=\beta-\alpha^{2} \geq 0, \alpha, \beta \in \mathbb{R}
$$

- Let us compute the second variation at such curve (modulo boundary terms):

$$
\nabla_{Z} \nabla_{Z} \mathcal{J}(c)=\int_{t_{1}}^{t_{2}} \boldsymbol{Z}^{\prime \prime} \cdot \boldsymbol{Z}^{\prime \prime}-\alpha \boldsymbol{Z}^{\prime} \cdot \boldsymbol{Z}^{\prime}-\Phi \boldsymbol{Z} \cdot \boldsymbol{Z}
$$

- Is there really a chance for local extremals? No - a suitable reparametrization can increase or decrease $\mathcal{J}(c)$. Further observe:
- Variation vector field Z tangent to the curve \leadsto reparametrization of $c(t)$.
- Thus we have the following question: are there local extremals of $\mathcal{J}(c)$ with respect to normal variations only?
- Clearly second (normal) variation cannot be definite for circles any variation in the plane of the circle is zero.

Loxodromas: local minimizers for normal variation of α

- For simplicity we restrict to dimension three. Then we have orthogonal decomposition

$$
\left.\mathcal{T}\right|_{c(t)}=\left\langle\boldsymbol{T}, \boldsymbol{U}, \boldsymbol{U}^{\prime}\right\rangle \oplus\left\langle\boldsymbol{U}^{\prime \prime}+\alpha \boldsymbol{U}\right\rangle \oplus\langle\boldsymbol{V}\rangle, \quad \boldsymbol{V}^{\prime}=0
$$

- A normal variation $Z \perp U$ means $\boldsymbol{Z} \perp\left\langle\boldsymbol{T}, \boldsymbol{U}, \boldsymbol{U}^{\prime}\right\rangle$.

$$
\boldsymbol{Z}=f\left(\boldsymbol{U}^{\prime \prime}+\alpha \boldsymbol{U}\right)+h \boldsymbol{V}, \quad f, h:\left[t_{1}, t_{2}\right] \rightarrow \mathbb{R}
$$

hence the second normal variation is

$$
\nabla_{Z} \nabla_{Z} \mathcal{J}(c)=2 \int_{t_{2}}^{t_{2}} \Phi\left(f^{\prime \prime 2}-\alpha f^{\prime 2}\right)+\left(h^{\prime \prime 2}-\alpha h^{\prime 2}-\Phi h^{2}\right)
$$

- Another ingredient: Wirtinger's inequality

Loxodromas: local minimizers for normal variation of α

- For simplicity we restrict to dimension three. Then we have orthogonal decomposition

$$
\left.\mathcal{T}\right|_{c(t)}=\left\langle\boldsymbol{T}, \boldsymbol{U}, \boldsymbol{U}^{\prime}\right\rangle \oplus\left\langle\boldsymbol{U}^{\prime \prime}+\alpha \boldsymbol{U}\right\rangle \oplus\langle\boldsymbol{V}\rangle, \quad \boldsymbol{V}^{\prime}=0
$$

- A normal variation $Z \perp U$ means $Z \perp\left\langle\boldsymbol{T}, \boldsymbol{U}, \boldsymbol{U}^{\prime}\right\rangle$.

$$
\boldsymbol{Z}=f\left(\boldsymbol{U}^{\prime \prime}+\alpha \boldsymbol{U}\right)+h \boldsymbol{V}, \quad f, h:\left[t_{1}, t_{2}\right] \rightarrow \mathbb{R}
$$

hence the second normal variation is

$$
\nabla_{Z} \nabla_{Z} \mathcal{J}(c)=2 \int_{t_{2}}^{t_{2}} \Phi\left(f^{\prime \prime 2}-\alpha f^{\prime 2}\right)+\left(h^{\prime \prime 2}-\alpha h^{\prime 2}-\Phi h^{2}\right)
$$

- Another ingredient: Wirtinger's inequality

$$
\int_{t_{1}}^{t_{2}} h^{\prime 2} \geq \frac{\pi^{2}}{\left(t_{2}-t_{1}\right)^{2}} \int_{t_{1}}^{t_{2}} h^{2}, \quad h\left(t_{1}\right)=h\left(t_{2}\right)=0
$$

Loxodromas: local minimizers for normal variation of α

- For simplicity we restrict to dimension three. Then we have orthogonal decomposition

$$
\left.\mathcal{T}\right|_{c(t)}=\left\langle\boldsymbol{T}, \boldsymbol{U}, \boldsymbol{U}^{\prime}\right\rangle \oplus\left\langle\boldsymbol{U}^{\prime \prime}+\alpha \boldsymbol{U}\right\rangle \oplus\langle\boldsymbol{V}\rangle, \quad \boldsymbol{V}^{\prime}=0
$$

- A normal variation $Z \perp U$ means $Z \perp\left\langle\boldsymbol{T}, \boldsymbol{U}, \boldsymbol{U}^{\prime}\right\rangle$.

$$
\boldsymbol{Z}=f\left(\boldsymbol{U}^{\prime \prime}+\alpha \boldsymbol{U}\right)+h \boldsymbol{V}, \quad f, h:\left[t_{1}, t_{2}\right] \rightarrow \mathbb{R}
$$

hence the second normal variation is

$$
\nabla_{Z} \nabla_{Z} \mathcal{J}(c)=2 \int_{t_{2}}^{t_{2}} \Phi\left(f^{\prime \prime 2}-\alpha f^{\prime 2}\right)+\left(h^{\prime \prime 2}-\alpha h^{\prime 2}-\Phi h^{2}\right)
$$

- Another ingredient: Wirtinger's inequality

$$
\int_{t_{1}}^{t_{2}} h^{\prime 2} \geq \frac{\pi^{2}}{\left(t_{2}-t_{1}\right)^{2}} \int_{t_{1}}^{t_{2}} h^{2}, \quad h\left(t_{1}\right)=h\left(t_{2}\right)=0
$$

- Conclusion: Loxodromas are local minima of $\mathcal{J}(c)$ wrt. to normal variations for $t_{2}-t_{1}$ sufficiently small.

Final comments

- Let us briefly comment upon the CR (or Lagrange-contact) geometry.
- There are CR analogues of α for both transversal and tangent curves to the distribution. In the transversal case, the family of critical curves contains (but is bigger larger than) chains.
- But chains are variational: Chains in CR geometry as geodesics of a Kropina metric, CMMM, Adv. Math. \leadsto a possible relation to tractor-build objects is unclear.
- Back to possible variational characterization of circles: there is a suprise in dimension three. We have Euclidean torsion τ. Critical are exactly circles: Energy density functions for protein structures, TCH, J. Mech. Appl. Math.

Final comments

- Let us briefly comment upon the CR (or Lagrange-contact) geometry.
- There are CR analogues of α for both transversal and tangent curves to the distribution. In the transversal case, the family of critical curves contains (but is bigger larger than) chains.
- But chains are variational: Chains in CR geometry as geodesics of a Kropina metric, CMMM, Adv. Math. \leadsto a possible relation to tractor-build objects is unclear.
- Back to possible variational characterization of circles: there is a suprise in dimension three. We have Euclidean torsion τ. Critical curves of

$$
\int \tau d s
$$

are exactly circles: Energy density functions for protein structures, - An analogue in other dimensions is unclear.

Final comments

- Let us briefly comment upon the CR (or Lagrange-contact) geometry.
- There are CR analogues of α for both transversal and tangent curves to the distribution. In the transversal case, the family of critical curves contains (but is bigger larger than) chains.
- But chains are variational: Chains in CR geometry as geodesics of a Kropina metric, CMMM, Adv. Math. \leadsto a possible relation to tractor-build objects is unclear.
- Back to possible variational characterization of circles: there is a suprise in dimension three. We have Euclidean torsion τ. Critical curves of

$$
\int \tau d s
$$

are exactly circles: Energy density functions for protein structures, TCH, J. Mech. Appl. Math.

- An analogue in other dimensions is unclear.

Thank you for your attention!

[^0]: - Problem 2 is solved if we build the Frenet frame using tractors.

