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— How to deal with a curve ' C E, or a Riemannian manifold M":

> arc length parametrization s : [ — R for which the

corresponding tangent vector U?, U?V,s = 1 has unit length,

» canonical way how to differentiate vectors along I using

4()=UV,() = () where V, = % (or Levi-Civita connect.)

> the canonically associated ortonormal Frenet frame

(e1,€,...,€e,) along I where e; = U? ~» curvatures/torsions
K1y ...y RKn—1
/ —

€1 = R1€2,

/ i .

€ = —Kj-16i-1+ Kjir1€+1, 2<i<n—1,

/

€, = —Knp—1€n.

» arc-length parametrized geodesics: €] = U' =0, i.e. all k; = 0.

» Variational approach: minimize ft? U - U (with fixed endpoints)

yields the same equation.
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Conformal geometry

— Conformal geometry (M, [g.5]) on a smooth manifold M,

n = dim M is the class of metrics [g.p] = {€?Tgap | T € C®(M)}.

This leads in particular to following data:
» density bundles £[w], w € R such that E[—n] = A"T*M,

> the conformal metric g, € E(,p)[2] ~ raising and lowering of
abstract indices,

» if V, and @a are Levi-Civita connections of metrics g, and
Zap = eﬂgab, respectively, then

Vol = Vop® 4+ Topb — T 4 pf7 0,8, p2 e el

where T, =V,T € &,.
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How to deal with conformal curves

— Considering a curve [ € M on a conformal manifold M,
we would like to find a conformal Frenet construction. We face
two obvious problems:

» Problem 1.: Is there a conformal arc length parametrization?
Answer: generically yes but actually more than that.

» Problem 2.: s there an invariant differentiation along I, i.e.
independent on the choice of g € [g]?
Answer: yes but complicated (Fialkow) ~» we replace the
tangent Frenet frame by tractors (more conceptual).

— Our setup: choosing an arbitrary parametrization t, we have
U? € £2 and u € £[1] along T as follows:

t:IF =R, UV t=1, u:=+U2U,e€][l].



How to deal with conformal curves: literature

— Fialkow : “The Conformal Theory of Curves” (TAMS, 1942)
~> the classical (although technical) presentation of conformal
invariants of curves.

— Bailey and Eastwood: "Conformal circles and parametrizations
of curves in conformal manifolds” (PAMS), 108(1):215-221, 1990
~> the first attempt to variational study of curves: a (conformally
noninvariant) " BE-functional”.

— Bailey, Eastwood and Gover: “Thomas's Structure Bundle for

Conformal, Projective and Related Structures” (Rocky Mountain J.

Math., 1994)
~> introduces tractors along curves (and our main motivation).

— Musso: “The Conformal Arclength Functional” (Math. Nachr.,
165:107-131, 1994)

~» variational approach focused on a different functional than we
discuss here.
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Tractor calculus

— The tractor bundle 7 is isomorphic, depending on the choice of
the metric g € [g] , to the direct sum [T]g = £[1] @ E[1] @ E[-1].

— The tractor bundle 7 admits an invariant connection V7,

a Vo — L,
VZ p va/l,b + g7 + Paba
T Vo — Pabub

where g, € E(ap)[2] is the conformal metric and P, the Schouten
tensor. Further, we have VT—paraIIeI Lorenzian metric h on T,

0 0 1
h=10 8gab 0
1 0

— Problem 2 is solved if we build the Frenet frame using tractors.



Passing from parametrized curves to tractors 1
— The naive tractor frame for a fixed parametrization t : [ — R
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Passing from parametrized curves to tractors L

— The naive tractor frame for a fixed parametrization t : [ — R
with v = /U2 U, starts with tractors

0 0 —u

2
T=1|0], U::%T: utU? |, U = —jtzT: *
ul * *

where * denotes unspecified terms and

u=4r, v=9%T1, ..., UD=dTT
— We consider Gram matrices of (T, U, U/, ..., U(i)), e.g.

0 0O -1 0

0 1 0 —« a=U U,

-1 0 a i« B=U"-U"
0 —« %o/ Ié;

Gram(T,U,U",U") =



Reparametrizations i

— Another parameter f = g(t) yields the new frame T, U, U, . ..
Where =gt d . Which quantities can we normalize by a
swtable reparametr|zat|on7 Firstly,

U-U=g2(U-U -25g)) ~ normalization U'- U =0

yields a projective class of distingushed parameters. Here S(g)
denotes the Schwarzian derivative. Secondly, put

A; = det <Gram (T, uu,..., U("*2)>> 7
with A1 = Ay =0, Az = 1 and A4 the first nontrivial. Then

K,- = g'*"("* )A,- ~>  generic normalization A; = +1.
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Summary: relative and absolute invariants of curves

» A; are relative invariants of the curve I,

> in fact A4 > 0 i.e. generically we can reparametrize to

A;j=1 <« conformal arc length parametrization,

» the (parametrization independent) condition A4 = 0 defines a
class of conformal circles, i.e. distinguished curves in conformal
geometry.

— Construction of the tractor Frenet frame:

» find the conformal arc length parametrization,
» build the frame (T, U, U',..., UD),
» use the Gramm-Schmidt ortonormalization to find its

(Lorenzian) orthonormal version,

» derive corresponding Frenet formulae analogously as in Lorenzian
geometry ~» absolute invariants = curvatures/torsions.

12
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Conformally invariant functionals for curves

— Obvious candidates for such functionals are
Oé:U/'U/ BZU”‘UN ']/ZUN/'U/N

or their combinations, e.g. —A4 = 3 —a? > 0.
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Conformally invariant functionals for curves

— Obvious candidates for such functionals are
Oé:U/'U/ BZU”‘UN '}/ZUN/'U/”

or their combinations, e.g. —A4 = 3 —a? > 0.

— The simplest functional is
a=U"U =3u 20U +2u™ 20U U" —6u* (U U'€)?+2P 4 U U
is of the 3rd order. (That is, the tangent vector U? is of the first
order.)
> The order can be reduced by adding an exact term:

a—2U"V, (12U U) = u2ULU —2u™ (U U'€)?+2P U UP.
» The right hand side is exactly (conformally noninvariant)

BE-functional ~+ BE-functional and « have the same family
critical curves.

14
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Euler-Lagrange equations of critical curves for « |.

— The setup for variation: fix endpoints x;, x> € M and tangent
vectors at endpoints A; € T, M.

» Given a curve c(t) parametrised on interval [t;, to] with
c(t;) = x; € M and tangent vectors at endpoints U(t;) = A;, we

put t2
J(c)_/ U
Jt

» Given such a curve, we consider a variational vector field Z
along c(t) such that

Z(x)=2'(x)=0 and [U,Z]=VyZ-VzU=0,
where we extended Z and U to some neighbourhood of c¢(t).

0
— Further consider Z:=V,;T=| u'Z? | where Z/=V,Z.
—u3UZ!



Euler-Lagrange equations of critical curves for « |l. 1

» Since VzU' =V yVyZ + Z"UQ,s(U) - U, integration by parts
yields

VzJ(c)

tr [%)
vz/ u’~u’:2/ Z-U"+Z2U°Q,(U) - U =

t1 t1

%]
= 2/ Z - (U"+alU +dU)+Z"U°Qs(U)- U =0

Jt

for every Z (modulo boundary terms).

» Further we assume conformally flat case, i.e. Q,, = 0. Since
the tractor field U"” + aU’ + o’/ U has zero top slot, we obtain
the tractor version of the Euler-Lagrange equations

U"+alU +d’U+dT =0 for a function o.

In fact, one can show that ® = —Ay4 = 5 — o?.



What are critical curves? i

— Recall curves on n-dimensional conformal manifolds have
conformal curvatures and Ki, ..., K,_1. Alternatively,
K, ..., K,—1 are refered to as (higher) conformal torsions.

» The condition U” € (U', U, T) means K1=...=K,_1=0;
these curves are conformal circles.

» The condition U"” € (U", U, U, T) means K=...=K,_1=0.

» Our condition U + aU’ + /U + ®T = 0 is even more
restrictive: it equivalently means

o = const, & = const, Ki = const, Kr=...=K,_1=0 (1)



What are critical curves? i

— Recall curves on n-dimensional conformal manifolds have
conformal curvatures and Ki, ..., K,_1. Alternatively,
K, ..., K,—1 are refered to as (higher) conformal torsions.

» The condition U” € (U', U, T) means K1=...=K,_1=0;
these curves are conformal circles.
» The condition U"” € (U", U, U, T) means K=...=K,_1=0.
» Our condition U"” 4+ alU’' + /U + ®T =0 is even more

restrictive: it equivalently means

o = const, & = const, Ki = const, Kr=...=K,_1=0 (1)

— Conclusion: on locally flat manifolds, critical curves for the
simplest conformal functional o = U’ - U’ given by (1) are
loxodromas (spirals on a sphere); these, in a more general sense,
include circles and lines.



Alternative equation for critical curves
— In order to build tractor Frenet frame, we observe
U'+aU L (T, U,U’) where

0
U'+alU= | N?

x
where N 1 U is the Fialkow normal. Explicitly,

Ne =y tU" —3u 3 (U UNUP + u (.. )02 —u TUP,2.
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Alternative equation for critical curves 18

— In order to build tractor Frenet frame, we observe
U'+aU L (T, U,U’) where

0
U'+aU= [ N?

x
where N 1 U is the Fialkow normal. Explicitly,
Ne =y tU" —3u=3 (U UNUP + u (.. ) UP — u tUTP,2

— Using the Filakow normal, we recover the following:

» The equation for conformal circles: N =0
» The condition for the conformal arc length: ||N|| = 1.

» The equation for loxodromas: N2  U? and « € R.
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— Assuming the locally flat case, critical curves of J(c) are
charecterized by

U" +alU —oT =0, d=8-0a°>>0, a,B8€R.
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The index form of the second variation of «

— Assuming the locally flat case, critical curves of J(c) are
charecterized by

U" +alU —oT =0, d=5-0a?>>0, o,f €R.

— Let us compute the second variation at such curve (modulo
boundary terms):

153
VzVzTJ(c) :/ Z' . Z2'-aZ - Z -7 Z.

t1
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The index form of the second variation of « 2

— Assuming the locally flat case, critical curves of J(c) are
charecterized by

U" +alU —oT =0, d=8-0a°>>0, a,B8€R.

— Let us compute the second variation at such curve (modulo
boundary terms):

t

VzVzJ(c) = / z2". 2" -aZ - Z -0Z Z.
t1

— Is there really a chance for local extremals? No — a suitable

reparametrization can increase or decrease J(c). Further observe:

» Variation vector field Z tangent to the curve ~
reparametrization of c(t).

> Thus we have the following question: are there local extremals
of J(c) with respect to normal variations only?

» Clearly second (normal) variation cannot be definite for circles —
any variation in the plane of the circle is zero.



Loxodromas: local minimizers for normal variation of @ 2

— For simplicity we restrict to dimension three. Then we have
orthogonal decomposition

T‘C(t):<T7 U, Ul>@<U//+(¥U>@<V>, V' =o.
— A normal variation Z | U means Z | (T, U, U’).
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— For simplicity we restrict to dimension three. Then we have
orthogonal decomposition

T‘C(t):<T7 U, Ul>@<U//+(¥U>@<V>, V' =o.
— A normal variation Z | U means Z | (T, U, U’).
Z:f(U”Jr(XU)JrhV, foh:[t;, ] > R

hence the second normal variation is

t
VzVzJ(c)=2 / ’ cp(f//z _ O“clz) + (h//2 —ah?— <Dh2)

Jt

— Another ingredient: Wirtinger's inequality

e ) 2 = 2
hz/h, h(t1) = h(t>) = 0.
/tl e /. (1) = h(22)

— Conclusion: Loxodromas are local minima of J(c) wrt. to
normal variations for t, —t; sufficiently small.



Final comments

— Let us briefly comment upon the CR (or Lagrange-contact)
geometry.

» There are CR analogues of « for both transversal and tangent
curves to the distribution. In the transversal case, the family of
critical curves contains (but is bigger larger than) chains.

» But chains are variational: Chains in CR geometry as geodesics
of a Kropina metric, CMMM, Adv. Math. ~» a possible relation
to tractor-build objects is unclear.
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Final comments

— Let us briefly comment upon the CR (or Lagrange-contact)
geometry.

» There are CR analogues of « for both transversal and tangent
curves to the distribution. In the transversal case, the family of
critical curves contains (but is bigger larger than) chains.

» But chains are variational: Chains in CR geometry as geodesics
of a Kropina metric, CMMM, Adv. Math. ~» a possible relation
to tractor-build objects is unclear.

— Back to possible variational characterization of circles: there is
a suprise in dimension three. We have Euclidean torsion 7. Critical

curves of
/ Tds

are exactly circles: Energy density functions for protein structures,
TCH, J. Mech. Appl. Math.

» An analogue in other dimensions is unclear.
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Thank you for your attention!
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