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Motivation: curves in Euclidean/Riemannian space 4
23

— How to deal with a curve Γ ⊆ En or a Riemannian manifold Mn:

I arc length parametrization s : Γ→ R for which the
corresponding tangent vector Ua, Ua∇as = 1 has unit length,

I canonical way how to differentiate vectors along Γ using
d
ds ( ) = Ua∇a( ) = ( )′ where ∇a = ∂

∂xa (or Levi-Civita connect.)

I the canonically associated ortonormal Frenet frame
(e1, e2, . . . , en) along Γ where e1 = Ua ; curvatures/torsions
κ1, . . . , κn−1

e ′1 = κ1e2,

e ′i = −κi−1ei−1 + κi+1ei+1, 2 ≤ i ≤ n − 1,

e ′n = −κn−1en.

I arc-length parametrized geodesics: e ′1 = U ′ = 0, i.e. all κi = 0.

I Variational approach: minimize
∫ t2

t1
U · U (with fixed endpoints)

yields the same equation.
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Conformal geometry 6
23

— Conformal geometry (M, [gab]) on a smooth manifold M,
n = dimM is the class of metrics [gab] = {e2Υgab | Υ ∈ C∞(M)}.
This leads in particular to following data:

I density bundles E [w ], w ∈ R such that E [−n] = ΛnT ∗M,

I the conformal metric g ab ∈ E(ab)[2] ; raising and lowering of
abstract indices,

I if ∇a and ∇̂a are Levi-Civita connections of metrics gab and
ĝab = e2Υgab, respectively, then

∇̂aµ
b = ∇aµ

b + Υaµ
b − µaΥb + µcΥcδa

b, µa ∈ Ea

where Υa = ∇aΥ ∈ Ea.
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How to deal with conformal curves 7
23

— Considering a curve Γ ⊆ M on a conformal manifold M,
we would like to find a conformal Frenet construction. We face
two obvious problems:

I Problem 1.: Is there a conformal arc length parametrization?
Answer: generically yes but actually more than that.

I Problem 2.: Is there an invariant differentiation along Γ, i.e.
independent on the choice of g ∈ [g ]?
Answer: yes but complicated (Fialkow) ; we replace the
tangent Frenet frame by tractors (more conceptual).

— Our setup: choosing an arbitrary parametrization t, we have
Ua ∈ Ea and u ∈ E [1] along Γ as follows:

t : Γ→ R, Ua∇at = 1, u :=
√

UaUa ∈ E [1].
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How to deal with conformal curves: literature 8
23

— Fialkow : “The Conformal Theory of Curves” (TAMS, 1942)
; the classical (although technical) presentation of conformal
invariants of curves.

— Bailey and Eastwood: “Conformal circles and parametrizations
of curves in conformal manifolds” (PAMS), 108(I):215–221, 1990
; the first attempt to variational study of curves: a (conformally
noninvariant) ”BE-functional”.

— Bailey, Eastwood and Gover: “Thomas’s Structure Bundle for
Conformal, Projective and Related Structures” (Rocky Mountain J.
Math., 1994)
; introduces tractors along curves (and our main motivation).

— Musso: “The Conformal Arclength Functional” (Math. Nachr.,
165:107–131, 1994)
; variational approach focused on a different functional than we
discuss here.



Tractor calculus 9
23

— The tractor bundle T is isomorphic, depending on the choice of
the metric g ∈ [g ] , to the direct sum [T ]g = E [1]⊕Ea[1]⊕E [−1].

— The tractor bundle T admits an invariant connection ∇T ,

∇Ta

 α
µb
τ

 =

 ∇aα− µa
∇aµb + g abτ + Pabα
∇aτ − Pabµ

b

 .

where g ab ∈ E(ab)[2] is the conformal metric and Pab the Schouten

tensor. Further, we have ∇T -parallel Lorenzian metric h on T ,

h =

0 0 1
0 g ab 0
1 0 0

 .

— Problem 2 is solved if we build the Frenet frame using tractors.
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Passing from parametrized curves to tractors 10
23

— The naive tractor frame for a fixed parametrization t : Γ→ R
with u =

√
UaUa starts with tractors

T :=

 0
0

u−1

 , U := d
dt T =

 0
u−1Ua

∗

 , U ′ := d2

dt2 T =

−u∗
∗

 ,

where ∗ denotes unspecified terms and

U := d
dt T , U ′ := d2

dt2 T , . . . , U(i) := d i+1

dt i+1 T .

— We consider Gram matrices of (T ,U ,U ′, . . . ,U(i)), e.g.

Gram(T ,U ,U ′,U ′′) =


0 0 −1 0

0 1 0 −α
−1 0 α 1

2α
′

0 −α 1
2α
′ β

 ,
α = U ′ ·U ′,
β = U ′′ ·U ′′.
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Reparametrizations 11
23

— Another parameter t̃ = g(t) yields the new frame T̃ , Ũ , Ũ ′, . . .
where d

dt̃
= g ′−1 d

dt . Which quantities can we normalize by a
suitable reparametrization? Firstly,

Ũ ′ · Ũ ′ = g ′−2
(
U ′ · U ′ − 2S(g)

)
; normalization Ũ ′ · Ũ ′ = 0

yields a projective class of distingushed parameters. Here S(g)
denotes the Schwarzian derivative. Secondly, put

∆i := det
(

Gram
(
T ,U ,U ′, . . . ,U(i−2)

))
,

with ∆1 = ∆2 = 0, ∆3 = 1 and ∆4 the first nontrivial. Then

∆̃i = g ′−i(i−3)∆i ; generic normalization ∆i = ±1.



Summary: relative and absolute invariants of curves 12
23

I ∆i are relative invariants of the curve Γ,

I in fact ∆4 ≥ 0 i.e. generically we can reparametrize to

∆̃i = 1 ;conformal arc length parametrization,

I the (parametrization independent) condition ∆4 = 0 defines a
class of conformal circles, i.e. distinguished curves in conformal
geometry.

— Construction of the tractor Frenet frame:

I find the conformal arc length parametrization,

I build the frame (T ,U ,U ′, . . . ,U(i)),

I use the Gramm-Schmidt ortonormalization to find its
(Lorenzian) orthonormal version,

I derive corresponding Frenet formulae analogously as in Lorenzian
geometry ; absolute invariants = curvatures/torsions.
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Conformally invariant functionals for curves 14
23

— Obvious candidates for such functionals are

α = U ′ ·U ′, β = U ′′ ·U ′′, γ = U ′′′ ·U ′′′

or their combinations, e.g. −∆4 = β − α2 ≥ 0.

— The simplest functional is

α = U ′·U ′ = 3u−2U ′cU
′c+2u−2UcU

′′c−6u−4(UcU
′c)2+2PcdU

cUd

is of the 3rd order. (That is, the tangent vector Ua is of the first
order.)

I The order can be reduced by adding an exact term:

α−2U r∇r

(
u−2UcU

′c) = u−2U ′cU
′c−2u−4(UcU

′c)2+2PabU
aUb.

I The right hand side is exactly (conformally noninvariant)
BE-functional ; BE-functional and α have the same family
critical curves.
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Euler-Lagrange equations of critical curves for α I. 15
23

— The setup for variation: fix endpoints x1, x2 ∈ M and tangent
vectors at endpoints Ai ∈ TxiM.

I Given a curve c(t) parametrised on interval [t1, t2] with
c(ti ) = xi ∈ M and tangent vectors at endpoints U(ti ) = Ai , we
put

J (c) =

∫ t2

t1

U ′ ·U ′.

I Given such a curve, we consider a variational vector field Z
along c(t) such that

Z (xi ) = Z ′(xi ) = 0 and [U,Z ] = ∇UZ −∇ZU = 0,

where we extended Z and U to some neighbourhood of c(t).

— Further consider Z :=∇ZT =

 0
u−1Z a

−u−3U rZ ′r

 where Z ′=∇UZ .



Euler-Lagrange equations of critical curves for α II. 16
23

I Since ∇ZU ′ = ∇U∇UZ + Z rUsΩrs(U) ·U ′, integration by parts
yields

∇ZJ (c) = ∇Z

∫ t2

t1

U ′ ·U ′ = 2

∫ t2

t1

Z ·U ′′′ + Z rUsΩrs(U) ·U ′ =

= 2

∫ t2

t1

Z · (U ′′′ + αU ′ + α′U) + Z rUsΩrs(U) ·U ′ = 0

for every Z (modulo boundary terms).

I Further we assume conformally flat case, i.e. Ωab = 0. Since
the tractor field U ′′′ + αU ′ + α′U has zero top slot, we obtain
the tractor version of the Euler-Lagrange equations

U ′′′ + αU ′ + α′U + ΦT = 0 for a function Φ.

In fact, one can show that Φ = −∆4 = β − α2.



What are critical curves? 17
23

— Recall curves on n-dimensional conformal manifolds have
conformal curvatures and K1, . . . ,Kn−1. Alternatively,
K2, . . . ,Kn−1 are refered to as (higher) conformal torsions.

I The condition U ′′ ∈ 〈U ′,U ,T 〉 means K1 = . . .=Kn−1 =0;
these curves are conformal circles.

I The condition U ′′′ ∈ 〈U ′′,U ′,U ,T 〉 means K2 = . . .=Kn−1 =0.

I Our condition U ′′′ + αU ′ + α′U + ΦT = 0 is even more
restrictive: it equivalently means

α = const, Φ = const, K1 = const, K2 = . . .=Kn−1 =0 (1)

— Conclusion: on locally flat manifolds, critical curves for the
simplest conformal functional α = U ′ ·U ′ given by (1) are
loxodromas (spirals on a sphere); these, in a more general sense,
include circles and lines.
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Alternative equation for critical curves 18
23

— In order to build tractor Frenet frame, we observe
U ′′ + αU ⊥ 〈T ,U ,U ′〉 where

U ′′ + αU =

 0
Na

∗


where N ⊥ U is the Fialkow normal . Explicitly,

Na = u−1U ′′a − 3u−3(UrU
′r )U ′a + u−1(. . .)Ua − u−1U rPr

a.

— Using the Filakow normal, we recover the following:

I The equation for conformal circles: N = 0

I The condition for the conformal arc length: ||N|| = 1.

I The equation for loxodromas: N ′a ∝ Ua and α ∈ R.
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The index form of the second variation of α 20
23

— Assuming the locally flat case, critical curves of J (c) are
charecterized by

U ′′′ + αU ′ − ΦT = 0, Φ = β − α2 ≥ 0, α, β ∈ R.

— Let us compute the second variation at such curve (modulo
boundary terms):

∇Z∇ZJ (c) =

∫ t2

t1

Z ′′ · Z ′′ − αZ ′ · Z ′ − ΦZ · Z .

— Is there really a chance for local extremals? No – a suitable
reparametrization can increase or decrease J (c). Further observe:

I Variation vector field Z tangent to the curve ;

reparametrization of c(t).
I Thus we have the following question: are there local extremals

of J (c) with respect to normal variations only?
I Clearly second (normal) variation cannot be definite for circles –

any variation in the plane of the circle is zero.
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I Clearly second (normal) variation cannot be definite for circles –

any variation in the plane of the circle is zero.



The index form of the second variation of α 20
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— Assuming the locally flat case, critical curves of J (c) are
charecterized by
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Loxodromas: local minimizers for normal variation of α 21
23

— For simplicity we restrict to dimension three. Then we have
orthogonal decomposition

T |c(t) = 〈T ,U ,U ′〉 ⊕ 〈U ′′ + αU〉 ⊕ 〈V 〉, V ′ = 0.

— A normal variation Z ⊥ U means Z ⊥ 〈T ,U ,U ′〉.

Z = f (U ′′ + αU) + hV , f , h : [t1, t2]→ R

hence the second normal variation is

∇Z∇ZJ (c) = 2

∫ t2

t2

Φ
(
f ′′2 − αf ′2

)
+
(
h′′2 − αh′2 − Φh2

)
— Another ingredient: Wirtinger’s inequality∫ t2

t1

h′2 ≥ π2

(t2−t1)2

∫ t2

t1

h2, h(t1) = h(t2) = 0.

— Conclusion: Loxodromas are local minima of J (c) wrt. to
normal variations for t2−t1 sufficiently small.
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Final comments 22
23

— Let us briefly comment upon the CR (or Lagrange-contact)
geometry.

I There are CR analogues of α for both transversal and tangent
curves to the distribution. In the transversal case, the family of
critical curves contains (but is bigger larger than) chains.

I But chains are variational: Chains in CR geometry as geodesics
of a Kropina metric, CMMM, Adv. Math. ; a possible relation
to tractor-build objects is unclear.

— Back to possible variational characterization of circles: there is
a suprise in dimension three. We have Euclidean torsion τ . Critical
curves of ∫

τds

are exactly circles: Energy density functions for protein structures,
TCH, J. Mech. Appl. Math.

I An analogue in other dimensions is unclear.
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Thank you for your attention!
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