Symmetry gaps for higher order ODEs

Johnson Allen Kessy
(Joint work with Dennis The)
Department of Mathematics \& Statistics
University of Tromsø
20 August 2021

The symmetry gap problem

For systems of m ODEs of fixed order $n+1, \mathbf{u}$ is \mathbb{R}^{m}-valued function of t, admitting finite dim (infinitesimal) symmetry algebra:

$$
\begin{equation*}
\mathbf{u}^{(n+1)}=\mathbf{f}\left(t, \mathbf{u}, \mathbf{u}^{\prime}, \ldots, \mathbf{u}^{(n)}\right) \tag{1}
\end{equation*}
$$

Q. What is the next largest realizable (submaximal) sym $\operatorname{dim} \mathfrak{S}$?

Example (parabolic geometries)

n	m	Pseudogroup	$\max \mathfrak{M}$	\mathfrak{S}
1	1	point	8	3
2	1	contact	10	5
1	≥ 2	contact	$(m+2)^{2}-1$	$m^{2}+5$

Table: Submax sym dim for ODE of order $n+1$

The main result

We considered the gap problem for higher order ODEs:

- scalar ODEs of order $\geq 4(m=1, n \geq 3)$
- vector ODEs of order $\geq 3(m, n \geq 2)$

Doubrov-Komrakov-Morimoto 1999: These are (non-parabolic Cartan geometries) with $\mathfrak{M}=m^{2}+(n+1) m+3$.

Theorem (K-The 2021)

Fix (n, m) with $m=1, n \geq 3$ or $m, n \geq 2$. Among the ODEs (1), the submaximal contact symmetry dimension is

$$
\mathfrak{S}= \begin{cases}\mathfrak{M}-1, & \text { if } m=1, n \in\{4,6\} \\ \mathfrak{M}-2, & \text { otherwise }\end{cases}
$$

Recover the classical result for scalar cases and resolve the problem for vector cases.

Approach

For $m=1$, the problem was resolved using methods relying on the complete classification of Lie algebras of contact vector fields on plane. Those methods are not feasible for $m \geq 2$.

Our approach is based on a categorically equivalent reformulation of ODEs \mathcal{E} given by (1) as regular, normal Cartan geometries $(\mathcal{G} \rightarrow \mathcal{E}, \omega)$ of type (G, P), for some appropriate Lie group G and closed subgroup $P \subset G$.

For parabolic geometries, the gap problem was resolved by Kruglikov-The 2013. In particular, they established a universal algebraic upper bound \mathfrak{U} on \mathfrak{S}. We adapt their approach to the (non-parabolic) ODE setup.

The trivial ODE (flat model)

Abstractly, the contact sym algebra \mathfrak{g} for $\mathbf{u}^{(n+1)}=0$: $\mathfrak{g}=\mathfrak{q} \ltimes V, \quad$ where $\quad \mathfrak{q}:=\mathfrak{s l}_{2} \times \mathfrak{g l}_{m}, \quad V:=\mathbb{V}_{n} \otimes W$.
$\mathbb{V}_{n}, \mathfrak{s l}_{2}$-irrep of $\operatorname{dim} n+1$ and $W=\mathbb{R}^{m}$, the standard rep of $\mathfrak{g l}_{m}$. The grading element $Z=-\frac{1}{2}\left(\mathrm{H}+(n+2) \mathrm{id}_{m}\right)$,

Figure: Grading on \mathfrak{g}
$\mathrm{X}, \mathrm{H}, \mathrm{Y}$ - standard $\mathfrak{s l}_{2}$-triple and E_{i} for \mathbb{V}_{n} with $\left[\mathrm{X}, E_{i}\right]=E_{i-1}$ and $\left[Y, E_{n}\right]=0$.

Filtration: $\mathfrak{g}^{i}:=\sum_{j \geq i} \mathfrak{g}_{j}$, so $\mathfrak{p}:=\mathfrak{g}^{0}=\left\langle\mathrm{H}, e_{j}^{i}, \mathrm{Y}\right\rangle, \mathfrak{p}_{+}:=\mathfrak{g}^{1}=\langle\mathrm{Y}\rangle$.
At the group level, let

- $m=1: G=G L_{2} \ltimes \mathbb{V}_{n}$ and $P=S T_{2} \subset G L_{2}$, the subgroup of lower triangular matrices;
- $m \geq 2: G=\left(S L_{2} \times G L_{m}\right) \ltimes V$ and $P=S T_{2} \times G L_{m}$.

In either case, let $G_{0}:=\left\{g \in P: \operatorname{Ad}_{g}\left(\mathfrak{g}_{0}\right) \subset \mathfrak{g}_{0}\right\}$.
Doubrov-Komrakov-Morimoto 1999: All ODEs \mathcal{E} (1) are filtered G_{0}-structures, and there is an equivalence of categories between filtered G_{0}-structures and regular, normal Cartan geometries $(\mathcal{G} \rightarrow \mathcal{E}, \omega)$ of fixed type (G, P).

For $(\mathcal{G} \rightarrow \mathcal{E}, \omega)$:
(infinitesimal) symmetries: $\mathfrak{i n f}(\mathcal{G}, \omega):=\left\{\xi \in \Gamma(\mathcal{G})^{P}: \mathcal{L}_{\xi} \omega=0\right\}$.
$K(\xi, \eta):=d \omega(\xi, \eta)+[\omega(\xi), \omega(\eta)]$, Curvature two-form, is determined by the P-equivariant curvature function κ valued in $\wedge^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g}$:
$\kappa(A, B):=K\left(\omega^{-1}(A), \omega^{-1}(B)\right), \quad A, B \in \mathfrak{g}$.

ODEs as Cartan geometries

ω is regular if $\kappa\left(\mathfrak{g}^{i}, \mathfrak{g}^{j}\right) \subset \mathfrak{g}^{i+j+1}$ for all i, j and normal : $\partial^{*} \kappa=0$, where ∂^{*} is the adjoint of the usual standard cohomology differential with respect to some natural inner product on \mathfrak{g}.

Since $\left(\partial^{*}\right)^{2}=0$, then for regular, normal Cartan geometries one obtains the (P-equivariant) harmonic curvature function $\kappa_{H}: \mathcal{G} \rightarrow \frac{\text { ker } \partial^{*}}{\operatorname{im} \partial^{*}}$. $\kappa_{H} \equiv 0$ iff the geometry is locally equivalent to the flat model (the trivial ODE).

Čap-Doubrov-The (2020): The P-module $\frac{\operatorname{ker} \partial^{*}}{\operatorname{im} \partial^{*}}$ is completely reducible, i.e. \mathfrak{g}^{1} acts trivially.

Doubrov 2001, Medvedev 2010 have identified the the effective part $\mathbb{E} \subsetneq H^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$ such that $\operatorname{im}\left(\kappa_{H}\right) \subset \mathbb{E}$ for any regular, normal Cartan geometry of type (G, P) associated to ODE (for fixed n, m).

Upper bound \mathfrak{U} on \mathfrak{S}

$\mathfrak{S}:=\max \left\{\operatorname{diminf}(\mathcal{G}, \omega):(\mathcal{G} \rightarrow \mathcal{E}, \omega)\right.$ regular, normal of type $\left.(G, P), \kappa_{H} \not \equiv 0\right\}$.

Definition (Tanaka prolongation algebra)

For $\mathfrak{a}_{0} \subset \mathfrak{g}_{0}$, TPA is the graded subalgebra $\mathfrak{a}:=\operatorname{pr}\left(\mathfrak{g}_{-}, \mathfrak{a}_{0}\right)$ of \mathfrak{g} with $\mathfrak{a}_{-}:=\mathfrak{g}_{-}$ and $\mathfrak{a}_{1}:=\left\{X \in \mathfrak{g}_{1}:\left[X, \mathfrak{g}_{-1}\right] \subset \mathfrak{a}_{0}\right\}$. Given ϕ in some \mathfrak{g}_{0}-module, let $\mathfrak{a n n}(\phi) \subset \mathfrak{g}_{0}$ be its annihilator and define $\mathfrak{a}^{\phi}:=\operatorname{pr}\left(\mathfrak{g}_{-}, \mathfrak{a n n}(\phi)\right)$.
$\mathfrak{U}:=\max \left\{\operatorname{dim} \mathfrak{a}^{\phi}: 0 \neq \phi \in \mathbb{E}\right\}$.

Theorem (K-The 2021)

For a regular, normal Cartan geometry $(\mathcal{G} \rightarrow M, \omega)$ of type (G, P) associated to an $O D E, \mathfrak{S} \leq \mathfrak{U}<\operatorname{dim} \mathfrak{g}$.

In fact, for a G_{0}-irrep $\mathbb{U} \subset \mathbb{E}, \operatorname{im}\left(\kappa_{H}\right) \subset \mathbb{U}$ with $\kappa_{H} \not \equiv 0$, define $\mathfrak{S}_{\mathbb{U}}$ analogously to \mathfrak{S} and set $\mathfrak{U}_{\mathbb{U}}:=\max \left\{\operatorname{dim} \mathfrak{a}^{\phi}: 0 \neq \phi \in \mathbb{U}\right\}$. Then $\mathfrak{S}_{\mathbb{U}} \leq \mathfrak{U}_{\mathbb{U}}$. For $\mathbb{E}=\bigoplus_{i} \mathbb{U}_{i}, G_{0}$-irreps $\mathbb{U}_{i}\left(G_{0}\right.$ is reductive), we have $\mathfrak{U}=\max _{i} \mathfrak{U}_{\mathbb{U}_{i}}$.

Computations of \mathfrak{U} and $\mathfrak{U}_{\mathbb{U}}$

$\mathfrak{g}=\left(\mathfrak{s l}_{2} \times \mathfrak{g l}_{m}\right) \ltimes\left(\mathbb{V}_{n} \otimes W\right)$. We refine the grading to a bi-grading $\left(Z_{1}, Z_{2}\right)$:

$$
\mathrm{Z}_{1}=-\frac{1}{2}\left(\mathrm{H}+n \mathrm{id}_{m}\right), \quad \mathrm{Z}_{2}=-\mathrm{id}_{m} \quad \text { with } \quad \mathrm{Z}=\mathrm{Z}_{1}+\mathrm{Z}_{2}
$$

Have induced bi-gradings on the effective part $\mathbb{E} \subset H_{+}^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$. Given
$(a, b) \in \mathbb{Z}^{2}$, let $\mathbb{E}_{a, b}:=\left\{\phi \in \mathbb{E}: \mathrm{Z}_{1} \cdot \phi=a \phi, \mathrm{Z}_{2} \cdot \phi=b \phi\right\}$, similarly, $\mathfrak{g}_{a, b}$.

Lemma

Let $0 \neq \phi \in \mathbb{E}$. Then $\mathfrak{a}_{1}^{\phi} \neq 0$ iff ϕ lies in the direct sum of all $\mathbb{E}_{a, b}$ for (a, b) that is a multiple of $(n, 2)$.

Proof.

Note that $\mathfrak{a}_{1}^{\phi} \neq 0$ iff $\mathfrak{a}_{1}^{\phi}=\mathfrak{g}_{1}=\mathbb{R} Y$. Since $\left[Y, \mathfrak{g}_{0,-1}\right]=0$, then this occurs iff $[\mathrm{Y}, \mathrm{X}]=-\mathrm{H} \in \mathfrak{a}_{0}^{\phi}:=\mathfrak{a n n}(\phi)$. But $\mathrm{H}=-2 \mathrm{Z}_{1}+n \mathrm{Z}_{2}$, so $\mathrm{H} \in \mathfrak{a n n}(\phi)$ iff ϕ lies in the direct sum of the claimed modules.

Definition (Prolongation rigidity)

We say that a \mathfrak{g}_{0}-submodule $\mathbb{U} \subset \mathbb{E}$ is PR if $\mathfrak{a}_{1}^{\phi}=0$ for any $0 \neq \phi \in \mathbb{U}$.
\mathbb{E} has been computed: Doubrov $2001(m=1, n \geq 3)$, Medvedev 2011 ($m \geq 2, n=1$) and Doubrov-Medvedev ($m \geq 2, n \geq 2$).

n	\mathfrak{g}_{0}-irrep \mathbb{U}	Bi-grade	Range
≥ 3	\mathbb{W}_{i}	$(i, 0)$	$3 \leq i \leq n+1$
3	\mathbb{B}_{3}	$(1,2)$	-
3	\mathbb{B}_{4}	$(2,2)$	-
4	\mathbb{B}_{6}	$(4,2)$	-
≥ 4	\mathbb{A}_{2}	$(1,1)$	-
≥ 5	\mathbb{A}_{3}	$(2,1)$	-
≥ 6	\mathbb{A}_{4}	$(3,1)$	-

Table: Effective part $\mathbb{E} \subset H_{+}^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$ for scalar ODEs of order $n+1 \geq 4$

Lemma
(a) \mathbb{E} is not $P R$ iff $n=4$ or 6 . In particular, $(n, \mathbb{U})=\left(4, \mathbb{B}_{6}\right)$ and $\left(6, \mathbb{A}_{4}\right)$ are not $P R$.
(b) If $\mathbb{U} \subset \mathbb{E}$ is a \mathfrak{g}_{0}-irrep, then $\mathfrak{U}_{\mathbb{U}}= \begin{cases}n+4, & \text { if }(n, \mathbb{U})=\left(4, \mathbb{B}_{6}\right) \text { or }\left(6, \mathbb{A}_{4}\right) \text {; } \\ n+3, & \text { otherwise. }\end{cases}$
(c) $\mathfrak{U}= \begin{cases}\mathfrak{M}-1=n+4, & \text { if } n=4,6 ; \\ \mathfrak{M}-2=n+3, & \text { otherwise. }\end{cases}$

n	\mathfrak{g}_{0}-irrep \mathbb{U}	Bi-grade	$\mathfrak{s l}(W)$-module \mathbb{U}	$\mathfrak{s l}(W)$ h.w. λ
≥ 2	$\underset{\substack{W_{i}^{t f} \\ 2 \leq i \leq n+1}}{ }$	$(i, 0)$	$\mathfrak{s l}(W)$	$\lambda_{1}+\lambda_{m-1}$
≥ 2	$\begin{gathered} 2 \leq i \leq n+1 \\ \mathbb{W} \boldsymbol{W}^{t r} \\ 3 \leq i \leq n+1 \end{gathered}$	$(i, 0)$	$\mathbb{R} \mathrm{id}_{m}$	0
2	\mathbb{B}_{4}	$(2,2)$	$S^{2} W^{*}$	$2 \lambda_{m-1}$
≥ 2	$\mathbb{A}_{2}^{\text {tf }}$	$(1,1)$	$\left(S^{2} W^{*} \otimes W\right)_{0}$	$\lambda_{1}+2 \lambda_{m-1}$
≥ 3	$\mathbb{A}_{2}^{\text {tr }}$	$(1,1)$	W^{*}	λ_{m-1}

Table: Effective part $\mathbb{E} \subset H_{+}^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$ for $m \geq 2$ ODEs of order $n+1 \geq 3$
(a) \mathbb{E} is not $P R$ iff $n=2$. In particular, $(n, \mathbb{U})=\left(2, \mathbb{A}_{2}^{\mathrm{tf}}\right)$ and $\left(2, \mathbb{B}_{4}\right)$ are not PR.
(b) If $\mathbb{U} \subset \mathbb{E}$ is a \mathfrak{g}_{0}-irrep, then $\mathfrak{U}_{\mathbb{U}}$ is given in Table below.
(c) $\mathfrak{U}=\mathfrak{M}-2=m^{2}+(n+1) m+1$.

n	\mathfrak{g}_{0}-irrep \mathbb{U}	$\max _{0 \neq \phi \in \mathbb{U}} \operatorname{dim} \mathfrak{a n n}(\phi)$	\mathbb{U} PR?	$\mathfrak{U}_{\mathbb{U}}$
≥ 2	$\mathbb{W}_{i}^{\mathrm{tf}}$	$m^{2}-2 m+3$	\checkmark	$m^{2}+(n-1) m+4$
≥ 2	$\mathbb{W}_{i}^{\text {tr }}$	m^{2}	\checkmark	$m^{2}+(n+1) m+1$
2	\mathbb{B}_{4}	$m^{2}-m+1$	\times	$m^{2}+2 m+3$
2	$\mathbb{A}_{2}^{\text {tf }}$	$m^{2}-2 m+3$	\times	$m^{2}+m+5$
≥ 3	$\mathbb{A}_{2}^{\text {tf }}$	$m^{2}-2 m+3$	\checkmark	$m^{2}+(n-1) m+4$
≥ 3	$\mathbb{A}_{2}^{\text {tr }}$	$m^{2}-m+1$	\checkmark	$m^{2}+n m+2$

Table: Upper bounds $\mathfrak{U}_{\mathbb{U}}$ for $m \geq 2$ ODE of order $n+1 \geq 3$

Conclusion and remarks

Since \mathfrak{U} is realized by ODEs in Table below, then $\mathfrak{U}=\mathfrak{S}$. Hence the result.

m	n	ODE	Sym dim $=\mathfrak{U}$
	4	$9 u_{2}^{2} u_{5}-45 u_{2} u_{3} u_{4}+40 u_{3}^{3}=0$	8
1	6	$10 u_{3}^{3} u_{7}-70 u_{3}^{2} u_{4} u_{6}-49 u_{3}^{2} u_{5}^{2}$ $+280 u_{3} u_{4}^{2} u_{5}-175 u_{4}^{4}=0$	10
	$3,5, \geq 7$	$n u_{n-1} u_{n+1}-(n+1) u_{n}^{2}=0$	$n+3$
≥ 2	≥ 2	$u_{n+1}^{i}=u_{0}^{i}, 1 \leq i \leq m$	$m^{2}+(n+1) m+1$

Unlike the classical approach, ours provides a uniform way to study the symmetry gap problem for both scalar and vector ODEs.

Moreover, it can be used to finer gap problem namely: Among all ODEs (1) with $0 \not \equiv \kappa_{H}$ valued in a G_{0}-irrep $\mathbb{U} \subset \mathbb{E}$, determine $\mathfrak{S}_{\mathbb{U}}$? In this direction, it turns out that for vector cases $\mathfrak{S}_{\mathbb{U}}=\mathfrak{U}_{\mathbb{U}}$. Scalar cases are still under investigations.

