Symmetry gaps for higher order ODEs

Johnson Allen Kessy

(Joint work with Dennis The)

Department of Mathematics & Statistics University of Tromsø

20 August 2021

The symmetry gap problem

For systems of *m* ODEs of fixed order n + 1, **u** is \mathbb{R}^m -valued function of *t*, admitting finite dim (infinitesimal) symmetry algebra:

$$\mathbf{u}^{(n+1)} = \mathbf{f}(t, \mathbf{u}, \mathbf{u}', \dots, \mathbf{u}^{(n)}), \tag{1}$$

Q. What is the next largest realizable (submaximal) sym dim \mathfrak{S} ?

Example (parabolic geometries)

n	т	Pseudogroup	max M	S
1	1	point	8	3
2	1	contact	10	5
1	≥ 2	contact	$(m+2)^2 - 1$	$m^2 + 5$

Table: Submax sym dim for ODE of order n + 1

The main result

We considered the gap problem for higher order ODEs:

- scalar ODEs of order \geq 4 ($m = 1, n \geq$ 3)
- vector ODEs of order $\geq 3 \ (m, n \geq 2)$

Doubrov–Komrakov–Morimoto 1999: These are (non-parabolic Cartan geometries) with $\mathfrak{M} = m^2 + (n+1)m + 3$.

Theorem (K–The 2021)

Fix (n, m) with $m = 1, n \ge 3$ or $m, n \ge 2$. Among the ODEs (1), the submaximal contact symmetry dimension is

$$\mathfrak{S} = \begin{cases} \mathfrak{M} - 1, & \text{if } m = 1, n \in \{4, 6\}; \\ \mathfrak{M} - 2, & \text{otherwise.} \end{cases}$$

Recover the classical result for scalar cases and resolve the problem for vector cases.

For m = 1, the problem was resolved using methods relying on the complete classification of Lie algebras of contact vector fields on plane. Those methods are not feasible for $m \ge 2$.

Our approach is based on a categorically equivalent reformulation of ODEs \mathcal{E} given by (1) as *regular*, *normal Cartan geometries* $(\mathcal{G} \rightarrow \mathcal{E}, \omega)$ of type $(\mathcal{G}, \mathcal{P})$, for some appropriate Lie group \mathcal{G} and closed subgroup $\mathcal{P} \subset \mathcal{G}$.

For parabolic geometries, the gap problem was resolved by Kruglikov–The 2013. In particular, they established a universal algebraic upper bound \mathfrak{U} on \mathfrak{S} . We adapt their approach to the (non-parabolic) ODE setup.

The trivial ODE (flat model)

Abstractly, the contact sym algebra \mathfrak{g} for $\mathbf{u}^{(n+1)} = 0$: $\mathfrak{g} = \mathfrak{q} \ltimes V$, where $\mathfrak{q} := \mathfrak{sl}_2 \times \mathfrak{gl}_m$, $V := \mathbb{V}_n \otimes W$. \mathbb{V}_n , \mathfrak{sl}_2 -irrep of dim n+1 and $W = \mathbb{R}^m$, the standard rep of \mathfrak{gl}_m . The grading element $\mathbb{Z} = -\frac{1}{2} (\mathbb{H} + (n+2) \operatorname{id}_m)$,

Figure: Grading on g

X, H, Y- standard \mathfrak{sl}_2 -triple and E_i for \mathbb{V}_n with $[X, E_i] = E_{i-1}$ and $[Y, E_n] = 0$.

Filtration: $\mathfrak{g}^i := \sum_{j \ge i} \mathfrak{g}_j$, so $\mathfrak{p} := \mathfrak{g}^0 = \langle \mathsf{H}, e^i_j, \mathsf{Y} \rangle$, $\mathfrak{p}_+ := \mathfrak{g}^1 = \langle \mathsf{Y} \rangle$. At the group level, let

• m = 1: $G = GL_2 \ltimes \mathbb{V}_n$ and $P = ST_2 \subset GL_2$, the subgroup of lower triangular matrices;

• $m \ge 2$: $G = (SL_2 \times GL_m) \ltimes V$ and $P = ST_2 \times GL_m$.

In either case, let $G_0 := \{g \in P : \operatorname{Ad}_g(\mathfrak{g}_0) \subset \mathfrak{g}_0\}.$

Doubrov–Komrakov–Morimoto 1999: All ODEs \mathcal{E} (1) are filtered G_0 -structures, and there is an equivalence of categories between filtered G_0 -structures and regular, normal Cartan geometries ($\mathcal{G} \rightarrow \mathcal{E}, \omega$) of fixed type (G, P).

For $(\mathcal{G} \to \mathcal{E}, \omega)$: (infinitesimal) symmetries: $\inf(\mathcal{G}, \omega) := \{\xi \in \Gamma(\mathcal{G})^P : \mathcal{L}_{\xi}\omega = 0\}$. $K(\xi, \eta) := d\omega(\xi, \eta) + [\omega(\xi), \omega(\eta)]$, Curvature two-form, is determined by the *P*-equivariant curvature function κ valued in $\wedge^2(\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g}$: $\kappa(A, B) := K(\omega^{-1}(A), \omega^{-1}(B)), \quad A, B \in \mathfrak{g}$. ω is regular if $\kappa(\mathfrak{g}^i,\mathfrak{g}^j) \subset \mathfrak{g}^{i+j+1}$ for all i,j and normal : $\partial^*\kappa = 0$, where ∂^* is the adjoint of the usual standard cohomology differential with respect to some natural inner product on \mathfrak{g} .

Since $(\partial^*)^2 = 0$, then for *regular*, *normal* Cartan geometries one obtains the (*P*-equivariant) harmonic curvature function $\kappa_H : \mathcal{G} \to \frac{\ker \partial^*}{\operatorname{im} \partial^*}$. $\kappa_H \equiv 0$ iff the geometry is locally equivalent to the flat model (the trivial ODE).

Čap–Doubrov–The (2020): The *P*-module $\frac{\ker \partial^*}{\operatorname{im} \partial^*}$ is completely reducible, i.e. \mathfrak{g}^1 acts trivially.

Doubrov 2001, Medvedev 2010 have identified the the effective part $\mathbb{E} \subsetneq H^2(\mathfrak{g}_-,\mathfrak{g})$ such that $\operatorname{im}(\kappa_H) \subset \mathbb{E}$ for any regular, normal Cartan geometry of type (G, P) associated to ODE (for fixed n, m).

 $\mathfrak{S} := \max \left\{ \dim \mathfrak{inf}\left(\mathcal{G},\omega\right) : \left(\mathcal{G} \to \mathcal{E},\omega\right) \text{regular, normal of type } \left(\mathcal{G},\mathcal{P}\right), \, \kappa_{\mathcal{H}} \not\equiv \mathsf{0} \right\}.$

Definition (Tanaka prolongation algebra)

For $\mathfrak{a}_0 \subset \mathfrak{g}_0$, TPA is the graded subalgebra $\mathfrak{a} := \operatorname{pr}(\mathfrak{g}_-, \mathfrak{a}_0)$ of \mathfrak{g} with $\mathfrak{a}_- := \mathfrak{g}_$ and $\mathfrak{a}_1 := \{X \in \mathfrak{g}_1 : [X, \mathfrak{g}_{-1}] \subset \mathfrak{a}_0\}$. Given ϕ in some \mathfrak{g}_0 -module, let $\mathfrak{ann}(\phi) \subset \mathfrak{g}_0$ be its annihilator and define $\mathfrak{a}^{\phi} := \operatorname{pr}(\mathfrak{g}_-, \mathfrak{ann}(\phi))$.

$$\mathfrak{U} := \max \left\{ \dim \mathfrak{a}^{\phi} : \, \mathsf{0} \neq \phi \in \mathbb{E} \right\}.$$

Theorem (K–The 2021)

For a regular, normal Cartan geometry $(\mathcal{G} \to M, \omega)$ of type (G, P) associated to an ODE, $\mathfrak{S} \leq \mathfrak{U} < \dim \mathfrak{g}$.

In fact, for a G_0 -irrep $\mathbb{U} \subset \mathbb{E}$, $\operatorname{im}(\kappa_H) \subset \mathbb{U}$ with $\kappa_H \not\equiv 0$, define $\mathfrak{S}_{\mathbb{U}}$ analogously to \mathfrak{S} and set $\mathfrak{U}_{\mathbb{U}} := \max\{\dim \mathfrak{a}^{\phi} : 0 \neq \phi \in \mathbb{U}\}$. Then $\mathfrak{S}_{\mathbb{U}} \leq \mathfrak{U}_{\mathbb{U}}$. For $\mathbb{E} = \bigoplus_i \mathbb{U}_i$, G_0 -irreps \mathbb{U}_i (G_0 is reductive), we have $\mathfrak{U} = \max_i \mathfrak{U}_{\mathbb{U}_i}$. $\mathfrak{g} = (\mathfrak{sl}_2 \times \mathfrak{gl}_m) \ltimes (\mathbb{V}_n \otimes W)$. We refine the grading to a *bi-grading* $(\mathsf{Z}_1, \mathsf{Z}_2)$:

$$Z_1 = -\frac{1}{2}(H + n \operatorname{id}_m), \quad Z_2 = -\operatorname{id}_m \quad \text{with} \quad Z = Z_1 + Z_2.$$

Have induced bi-gradings on the effective part $\mathbb{E} \subset H^2_+(\mathfrak{g}_-,\mathfrak{g})$. Given $(a,b) \in \mathbb{Z}^2$, let $\mathbb{E}_{a,b} := \{\phi \in \mathbb{E} : Z_1 \cdot \phi = a\phi, Z_2 \cdot \phi = b\phi\}$, similarly, $\mathfrak{g}_{a,b}$.

Lemma

Let $0 \neq \phi \in \mathbb{E}$. Then $\mathfrak{a}_1^{\phi} \neq 0$ iff ϕ lies in the direct sum of all $\mathbb{E}_{a,b}$ for (a, b) that is a multiple of (n, 2).

Proof.

Note that $\mathfrak{a}_1^{\phi} \neq 0$ iff $\mathfrak{a}_1^{\phi} = \mathfrak{g}_1 = \mathbb{R}Y$. Since $[Y, \mathfrak{g}_{0,-1}] = 0$, then this occurs iff $[Y, X] = -H \in \mathfrak{a}_0^{\phi} := \mathfrak{ann}(\phi)$. But $H = -2Z_1 + nZ_2$, so $H \in \mathfrak{ann}(\phi)$ iff ϕ lies in the direct sum of the claimed modules.

Definition (Prolongation rigidity)

We say that a \mathfrak{g}_0 -submodule $\mathbb{U} \subset \mathbb{E}$ is PR if $\mathfrak{a}_1^{\phi} = 0$ for any $0 \neq \phi \in \mathbb{U}$.

 \mathbb{E} has been computed: Doubrov 2001 ($m = 1, n \ge 3$), Medvedev 2011 ($m \ge 2, n = 1$) and Doubrov–Medvedev ($m \ge 2, n \ge 2$).

n	$\mathfrak{g}_0\text{-}irrep~\mathbb{U}$	Bi-grade	Range
≥ 3	Wi	(<i>i</i> ,0)	$3 \le i \le n+1$
3	\mathbb{B}_3	(1,2)	_
3	\mathbb{B}_4	(2,2)	_
4	\mathbb{B}_{6}	(4,2)	_
\geq 4	\mathbb{A}_2	(1, 1)	_
≥ 5	\mathbb{A}_3	(2,1)	_
≥ 6	\mathbb{A}_4	(3,1)	_

Table: Effective part $\mathbb{E} \subset H^2_+(\mathfrak{g}_-,\mathfrak{g})$ for scalar ODEs of order $n+1 \ge 4$

Lemma

(a) \mathbb{E} is not PR iff n = 4 or 6. In particular, $(n, \mathbb{U}) = (4, \mathbb{B}_6)$ and $(6, \mathbb{A}_4)$ are not PR.

(b) If $\mathbb{U} \subset \mathbb{E}$ is a \mathfrak{g}_0 -irrep, then $\mathfrak{U}_{\mathbb{U}} = \begin{cases} n+4, & \text{if } (n,\mathbb{U}) = (4,\mathbb{B}_6) \text{ or } (6,\mathbb{A}_4); \\ n+3, & \text{otherwise.} \end{cases}$

(c)
$$\mathfrak{U} = \begin{cases} \mathfrak{M} - 1 = n + 4, & \text{if } n = 4, 6; \\ \mathfrak{M} - 2 = n + 3, & \text{otherwise.} \end{cases}$$

п	$\mathfrak{g}_0\text{-}irrep~\mathbb{U}$	Bi-grade	$\mathfrak{sl}(W)$ -module $\mathbb U$	$\mathfrak{sl}(W)$ h.w. λ
≥ 2	\mathbb{W}_{i}^{tf}	(<i>i</i> ,0)	$\mathfrak{sl}(W)$	$\lambda_1 + \lambda_{m-1}$
≥ 2	\mathbb{W}_{i}^{tr}	(<i>i</i> , 0)	$\mathbb{R} \operatorname{id}_m$	0
2	$\frac{3 \le i \le n+1}{\mathbb{R}_4}$	(2 2)	S ² W*	2λ _m 1
≥ 2	\mathbb{A}_2^{tf}	(2, 2) (1, 1)	$(S^2W^*\otimes W)_0$	$\lambda_1 + 2\lambda_{m-1}$
\geq 3	\mathbb{A}_2^{tr}	(1, 1)	`` W*	λ_{m-1}

Table: Effective part $\mathbb{E} \subset H^2_+(\mathfrak{g}_-,\mathfrak{g})$ for $m \geq 2$ ODEs of order $n+1 \geq 3$

Lemma

(a) \mathbb{E} is not PR iff n = 2. In particular, $(n, \mathbb{U}) = (2, \mathbb{A}_2^{\text{tf}})$ and $(2, \mathbb{B}_4)$ are not PR.

(b) If $\mathbb{U} \subset \mathbb{E}$ is a \mathfrak{g}_0 -irrep, then $\mathfrak{U}_{\mathbb{U}}$ is given in Table below.

(c)
$$\mathfrak{U} = \mathfrak{M} - 2 = m^2 + (n+1)m + 1$$
.

п	\mathfrak{g}_0 -irrep $\mathbb U$	$\max_{0 eq\phi\in\mathbb{U}}\dim\mathfrak{ann}(\phi)$	U PR?	$\mathfrak{U}_\mathbb{U}$
≥ 2	\mathbb{W}_{i}^{tf}	$m^2 - 2m + 3$	\checkmark	$m^2 + (n-1)m + 4$
≥ 2	\mathbb{W}_{i}^{tr}	m^2	\checkmark	$m^2 + (n+1)m + 1$
2	\mathbb{B}_4	$m^2 - m + 1$	×	$m^2 + 2m + 3$
2	\mathbb{A}_2^{tf}	$m^2 - 2m + 3$	×	$m^2 + m + 5$
\geq 3	\mathbb{A}_2^{tf}	$m^2 - 2m + 3$	\checkmark	$m^2 + (n-1)m + 4$
\geq 3	\mathbb{A}_2^{tr}	$m^2 - m + 1$	\checkmark	$m^2 + nm + 2$

Table: Upper bounds $\mathfrak{U}_{\mathbb{U}}$ for $m \geq 2$ ODE of order $n+1 \geq 3$

Conclusion and remarks

Since \mathfrak{U} is realized by ODEs in Table below, then $\mathfrak{U} = \mathfrak{S}$. Hence the result.

т	n	ODE	$Symdim=\mathfrak{U}$
	4	$9u_2^2u_5 - 45u_2u_3u_4 + 40u_3^3 = 0$	8
1	6	$\begin{array}{l} 10u_3^3u_7-70u_3^2u_4u_6-49u_3^2u_5^2\\ +280u_3u_4^2u_5-175u_4^4=0 \end{array}$	10
	$3,5,\geq7$	$nu_{n-1}u_{n+1} - (n+1)u_n^2 = 0$	n + 3
≥ 2	≥ 2	$u_{n+1}^i = u_0^i, \ 1 \le i \le m$	$m^2 + (n+1)m + 1$

Unlike the classical approach, ours provides a uniform way to study the symmetry gap problem for both scalar and vector ODEs.

Moreover, it can be used to finer gap problem namely: Among all ODEs (1) with $0 \not\equiv \kappa_H$ valued in a G_0 -irrep $\mathbb{U} \subset \mathbb{E}$, determine $\mathfrak{S}_{\mathbb{U}}$? In this direction, it turns out that for vector cases $\mathfrak{S}_{\mathbb{U}} = \mathfrak{U}_{\mathbb{U}}$. Scalar cases are still under investigations.