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The symmetry gap problem

For systems of m ODEs of fixed order n+ 1, u is R™-valued function of t,
admitting finite dim (infinitesimal) symmetry algebra:

ulmy :f(t,u,u',...,u(")), (D

Q. What is the next largest realizable (submaximal) sym dim & ?

Example (parabolic geometries)

n m Pseudogroup max 9 (G}
1 1 point 8 3
2 1 contact 10 5
1 >2 contact (m+22—-1 m?>+5

Table: Submax sym dim for ODE of order n+ 1
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The main result

We considered the gap problem for
@ scalar ODEs of order > 4 (m=1, n> 3)
e vector ODEs of order >3 (m,n > 2)
Doubrov-Komrakov—Morimoto 1999: These are (
) with 9 = m? + (n+ 1)m + 3.
Theorem (K-The 2021)

Fix (n,m) with m=1,n> 3 or m,n > 2. Among the ODEs (1),
the submaximal contact symmetry dimension is

9N — 2, otherwise.

o {zm—1, ifm=1,nec {46}

v

Recover the classical result for scalar cases and resolve the problem
for vector cases.
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Approach

For m =1, the problem was resolved using methods relying on the
complete classification of Lie algebras of contact vector fields on
plane.

Our approach is based on a categorically equivalent reformulation
of ODEs & given by (1) as regular, normal Cartan geometries

(G — &, w) of type (G, P), for some appropriate Lie group G and
closed subgroup P C G.

For parabolic geometries, the gap problem was resolved by
Kruglikov—The 2013. In particular, they established a

L on &. We adapt their approach to the
(non-parabolic) ODE setup.
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The trivial ODE (flat model)

Abstractly, the contact sym algebra g for u("*1) = 0:
g=qx V, where q:=shxgl, V=V,0W.
V. slo-irrep of dim n+1 and W = R™, the standard rep of gl,,.

The grading element Z = —% (H + (n+ 2) id ),

Eo @ wy, E; ® wg, Ep—1 ® wy, Ep @ wy,

Figure: Grading on g

X, H, Y- standard sl,-triple and E; for V,, with
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Filtration: g’ := 2 j>i0j, S0 p = a® = (H,e,Y), ps :=g" = (Y).
At the group level, let

@ m=1. G=GL:xV,and P = ST, C GL;, the subgroup of lower
triangular matrices;

® m>2 G=(SLyx GLy)x V and P = ST, x GL,.
In either case, let Go := {g € P : Adg(go) C go}-
Doubrov—Komrakov—Morimoto 1999: All ODEs & (1) are filtered Go-structures,
and there is an equivalence of categories between filtered Go-structures and
regular, normal Cartan geometries (G — &,w) of fixed type (G, P).
For (G — &,w):
(infinitesimal) symmetries: inf(G,w) := {£ € [(G)" : Lew = 0}.
K(&,n) == dw(&,n) + [w(&),w(n)], Curvature two-form, is determined by the
P-equivariant curvature function x valued in A%(g/p)* ® g:
k(A B) = K(w™*(A),w }(B)), ABeg.
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ODEs as Cartan geometries

w is regular if k(g',¢’) C g for all i,j and normal : &*k = 0, where 9* is
the adjoint of the usual standard cohomology differential with respect to some
natural inner product on g.

Since (8*)? = 0, then for regular, normal Cartan geometries one obtains the
(P-equivariant) harmonic curvature function Ky : G — f:g* .

ky = 0 iff (the trivial ODE).

Cap-Doubrov—The (2020): The P-module l?;rg: is completely reducible, i.e. g*
acts trivially.

Doubrov 2001, Medvedev 2010 have identified the

E C H?*(g_, g) such that im(ky) C E for any regular, normal Cartan geometry
of type (G, P) associated to ODE (for fixed n, m).
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Upper bound i on &

S = max {diminf(G,w) : (§ — &, w) regular, normal of type (G, P), ky # 0} .

Definition (Tanaka prolongation algebra)

For ag C go, TPA is the graded subalgebra a := pr(g_, ao) of g with a_ :=g_
and a; :={X € g1 : [X,9-1] C ao}. Given ¢ in some go-module, let
ann(¢) C go be its annihilator and define a® := pr(g—, ann(¢)).

= max{dimad’: 0¢¢€E}.
Theorem (K-The 2021)

For a regular, normal Cartan geometry (G — M,w) of type (G, P)
associated to an ODE, G < il < dimg.

In fact, for a Gp-irrep U C E, im(ky) C U with ky # 0, define &y
analogously to & and set Uy := max{dima® : 0 # ¢ € U} . Then

Sy < Uy. For E = P, U;, Gp-irreps U; (Gp is reductive), we have
U= max,-LlU,..
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Computations of {l and LUy

g = (sl x gl,,) x (V, ® W). We refine the grading to a bi-grading (Z1,2>) :
Z, = f%(H +nidp), Zo=—idm with Z=27;+Zs.

Have induced bi-gradings on the effective part E C H3(g_,g). Given
(a,b) €Z° let Bap:={p EE:Z1-¢ = ag, Zo - ¢ = b}, similarly, gap.

Lemma

Let 0 # ¢ € E. Then af # 0 iff ¢ lies in the direct sum of all E, , for (a, b)
that is a multiple of (n,2).

V.

Note that af # 0 iff af = g1 = RY. Since [Y, go,—1] = 0, then this occurs iff
[Y,X] = —H € af := ann(¢). But H = —2Z; + nZ,, so H € ann(¢) iff ¢ lies in
the direct sum of the claimed modules. O

v
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Definition (Prolongation rigidity)

We say that a go-submodule U C E is PR if af’ =0 forany 0 # ¢ € U.

E : Doubrov 2001 (m = 1, n > 3), Medvedev 2011
(m >2,n=1) and Doubrov—Medvedev (m > 2, n > 2).

l n  go-irrep U Bi-grade Range ‘

>3 W; (7,0) 3<i<n+1
3 B3 (1,2) -
3 Ba (2,2) —
4 Bs (4,2) -

>4 A, (1,1) —

>5 As (2,1) —

>6 Ag (3,1) -

Table: Effective part E C H2(g_, g) for scalar ODEs of order n+ 1 > 4
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(a) E is not PR iff n =4 or 6. In particular, (n,U) = (4,Bs) and (6,A4) are
not PR.

n+4, if(n,U) = (4,B6) or (6,As);

b) IfU C E is a go-irrep, then iy =
(b) R mE {n—&—37 otherwise.

M—1=n+4, ifn=4,6;
(c) U=
Clm-2= n—+3, otherwise.

| n go-irrep U Bi-grade sl(W)-module U sI(W) hw. |

>2 WFF (I'7 0) 5[( W) A+ A1
2<i<n+1
>2 W (i,0) Rid,» 0
3<i<n+1
2 B, (2,2) Swr 2Am—1
>2 AY (1,1) (SPW* @ W)o A1 +2Am_1
>3 AY (1,1) w* Am_1

Table: Effective part E C H2(g_,g) for m > 2 ODEs of order n+1 >3
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(a) E is not PR iff n = 2. In particular, (n,U) = (2, A¥) and (2,B4) are not
PR.

(b) IfU C E is a go-irrep, then iy is given in Table below.
(c) U=M—-2=m?+(n+1)m+1.

n  go-irrep U O;n;gwdlm ann(¢) U PR? $y ‘
>2 W m> —2m+3 v m +(n—1)m+4
>2 W m? v m* 4+ (n+1)m+1
2 B4 m —m+1 X m?> +2m+3
2 AY m? —2m+3 X m*+m+5
>3 AY m? —2m+3 v  m4(n—-1)m+4
>3 AY m*—m+1 v m? + nm + 2

Table: Upper bounds Ly for m > 2 ODE of order n+1 >3
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Conclusion and remarks

Since 4l is realized by ODEs in Table below, then . Hence the result.
m n ODE
4 9u3us — 45w usus + 40U5 =0 8
1003 ur — 7003 ugus — 4903 u?
6 2 4 10
1 +280usuzus — 175u; =0
3,5,>7 | nup1tnyr—(n+1)u2=0 n+3
>2 >2 Uy =up, 1<i<m m’ +(n+1)m+1

Unlike the classical approach, ours provides a uniform way to study the
symmetry gap problem for both scalar and vector ODEs.

Moreover, it can be used to finer gap problem namely: Among all ODEs (1)
with 0 # ky valued in a Go-irrep U C E, determine Gy? In this direction, it
turns out that for vector cases Sy = Uy. Scalar cases are still under
investigations.
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