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The symmetry gap problem

For systems of m ODEs of fixed order n + 1, u is Rm-valued function of t,
admitting finite dim (infinitesimal) symmetry algebra:

u(n+1) = f(t, u, u′, . . . , u(n)), (1)

Q. What is the next largest realizable (submaximal) sym dim S ?

Example (parabolic geometries)

n m Pseudogroup max M S

1 1 point 8 3
2 1 contact 10 5
1 ≥ 2 contact (m + 2)2 − 1 m2 + 5

Table: Submax sym dim for ODE of order n + 1
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The main result

We considered the gap problem for higher order ODEs:

scalar ODEs of order ≥ 4 (m = 1, n ≥ 3)

vector ODEs of order ≥ 3 (m, n ≥ 2)

Doubrov–Komrakov–Morimoto 1999: These are (non-parabolic
Cartan geometries) with M = m2 + (n + 1)m + 3.

Theorem (K–The 2021)

Fix (n,m) with m = 1, n ≥ 3 or m, n ≥ 2. Among the ODEs (1),
the submaximal contact symmetry dimension is

S =

{
M− 1, if m = 1, n ∈ {4, 6};
M− 2, otherwise.

Recover the classical result for scalar cases and resolve the problem
for vector cases.
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Approach

For m = 1, the problem was resolved using methods relying on the
complete classification of Lie algebras of contact vector fields on
plane. Those methods are not feasible for m ≥ 2.

Our approach is based on a categorically equivalent reformulation
of ODEs E given by (1) as regular, normal Cartan geometries
(G → E , ω) of type (G ,P), for some appropriate Lie group G and
closed subgroup P ⊂ G .

For parabolic geometries, the gap problem was resolved by
Kruglikov–The 2013. In particular, they established a universal
algebraic upper bound U on S. We adapt their approach to the
(non-parabolic) ODE setup.
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The trivial ODE (flat model)

Abstractly, the contact sym algebra g for u(n+1) = 0:
g = qn V , where q := sl2 × glm, V := Vn ⊗W .
Vn, sl2-irrep of dim n + 1 and W = Rm, the standard rep of glm.
The grading element Z = −1

2 (H + (n + 2) idm),

· · ·

X ,−1 H, e ij , 0 Y , 1

En ⊗ wk ,−1En−1 ⊗ wk ,−2E1 ⊗ wk ,−nE0 ⊗ wk ,−n − 1

Figure: Grading on g

X,H,Y– standard sl2-triple and Ei for Vn with [X,Ei ] = Ei−1 and [Y,En] = 0.
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Filtration: gi :=
∑

j≥i gj , so p := g0 = 〈H, e ij ,Y〉, p+ := g1 = 〈Y〉.
At the group level, let

m = 1: G = GL2 n Vn and P = ST2 ⊂ GL2, the subgroup of lower
triangular matrices;

m ≥ 2: G = (SL2 × GLm) n V and P = ST2 × GLm.

In either case, let G0 := {g ∈ P : Adg (g0) ⊂ g0}.

Doubrov–Komrakov–Morimoto 1999: All ODEs E (1) are filtered G0-structures,
and there is an equivalence of categories between filtered G0-structures and
regular, normal Cartan geometries (G → E , ω) of fixed type (G ,P).

For (G → E , ω):

(infinitesimal) symmetries: inf(G, ω) :=
{
ξ ∈ Γ(G)P : Lξω = 0

}
.

K(ξ, η) := dω(ξ, η) + [ω(ξ), ω(η)], Curvature two-form, is determined by the

P-equivariant curvature function κ valued in ∧2(g/p)∗ ⊗ g:

κ(A,B) := K(ω−1(A), ω−1(B)), A,B ∈ g.
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ODEs as Cartan geometries

ω is regular if κ(gi , gj) ⊂ gi+j+1 for all i , j and normal : ∂∗κ = 0, where ∂∗ is
the adjoint of the usual standard cohomology differential with respect to some
natural inner product on g.

Since (∂∗)2 = 0, then for regular, normal Cartan geometries one obtains the
(P-equivariant) harmonic curvature function κH : G → ker ∂∗

im ∂∗ .
κH ≡ 0 iff the geometry is locally equivalent to the flat model (the trivial ODE).

Čap–Doubrov–The (2020): The P-module ker ∂∗

im ∂∗ is completely reducible, i.e. g1

acts trivially.

Doubrov 2001, Medvedev 2010 have identified the the effective part
E ( H2(g−, g) such that im(κH) ⊂ E for any regular, normal Cartan geometry
of type (G ,P) associated to ODE (for fixed n,m).
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Upper bound U on S

S := max {dim inf (G, ω) : (G → E , ω) regular, normal of type (G ,P), κH 6≡ 0} .

Definition (Tanaka prolongation algebra)

For a0 ⊂ g0, TPA is the graded subalgebra a := pr(g−, a0) of g with a− := g−
and a1 := {X ∈ g1 : [X , g−1] ⊂ a0}. Given φ in some g0-module, let
ann(φ) ⊂ g0 be its annihilator and define aφ := pr(g−, ann(φ)).

U := max
{

dim aφ : 0 6= φ ∈ E
}
.

Theorem (K–The 2021)

For a regular, normal Cartan geometry (G → M, ω) of type (G ,P)
associated to an ODE, S ≤ U < dim g.

In fact, for a G0-irrep U ⊂ E, im(κH) ⊂ U with κH 6≡ 0, define SU
analogously to S and set UU := max{dim aφ : 0 6= φ ∈ U} . Then
SU ≤ UU. For E =

⊕
i Ui , G0-irreps Ui (G0 is reductive), we have

U = maxi UUi
.
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Computations of U and UU

g = (sl2 × glm) n (Vn ⊗W ). We refine the grading to a bi-grading (Z1,Z2) :

Z1 = −1

2
(H + n idm), Z2 = − idm with Z = Z1 + Z2.

Have induced bi-gradings on the effective part E ⊂ H2
+(g−, g). Given

(a, b) ∈ Z2, let Ea,b := {φ ∈ E : Z1 · φ = aφ, Z2 · φ = bφ}, similarly, ga,b.

Lemma

Let 0 6= φ ∈ E. Then aφ1 6= 0 iff φ lies in the direct sum of all Ea,b for (a, b)
that is a multiple of (n, 2).

Proof.

Note that aφ1 6= 0 iff aφ1 = g1 = RY . Since [Y, g0,−1] = 0, then this occurs iff
[Y,X] = −H ∈ aφ0 := ann(φ). But H = −2Z1 + nZ2, so H ∈ ann(φ) iff φ lies in
the direct sum of the claimed modules.

Johnson Allen Kessy Symmetry gaps for higher order ODEs 9/13



Definition (Prolongation rigidity)

We say that a g0-submodule U ⊂ E is PR if aφ1 = 0 for any 0 6= φ ∈ U.

E has been computed: Doubrov 2001 (m = 1, n ≥ 3), Medvedev 2011
(m ≥ 2, n = 1) and Doubrov–Medvedev (m ≥ 2, n ≥ 2).

n g0-irrep U Bi-grade Range

≥ 3 Wi (i , 0) 3 ≤ i ≤ n + 1

3 B3 (1, 2) −
3 B4 (2, 2) −
4 B6 (4, 2) −
≥ 4 A2 (1, 1) −
≥ 5 A3 (2, 1) −
≥ 6 A4 (3, 1) −

Table: Effective part E ⊂ H2
+(g−, g) for scalar ODEs of order n + 1 ≥ 4
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Lemma

(a) E is not PR iff n = 4 or 6. In particular, (n,U) = (4,B6) and (6,A4) are
not PR.

(b) If U ⊂ E is a g0-irrep, then UU =

{
n + 4, if (n,U) = (4,B6) or (6,A4);

n + 3, otherwise.

(c) U =

{
M− 1 = n + 4, if n = 4, 6;

M− 2 = n + 3, otherwise.

n g0-irrep U Bi-grade sl(W )-module U sl(W ) h.w. λ

≥ 2 Wtf
i

2≤i≤n+1
(i , 0) sl(W ) λ1 + λm−1

≥ 2 Wtr
i

3≤i≤n+1
(i , 0) R idm 0

2 B4 (2, 2) S2W ∗ 2λm−1

≥ 2 Atf
2 (1, 1) (S2W ∗ ⊗W )0 λ1 + 2λm−1

≥ 3 Atr
2 (1, 1) W ∗ λm−1

Table: Effective part E ⊂ H2
+(g−, g) for m ≥ 2 ODEs of order n + 1 ≥ 3
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Lemma

(a) E is not PR iff n = 2. In particular, (n,U) = (2,Atf
2 ) and (2,B4) are not

PR.

(b) If U ⊂ E is a g0-irrep, then UU is given in Table below.

(c) U = M− 2 = m2 + (n + 1)m + 1.

n g0-irrep U max
06=φ∈U

dim ann(φ) U PR? UU

≥ 2 Wtf
i m2 − 2m + 3 X m2 + (n − 1)m + 4

≥ 2 Wtr
i m2 X m2 + (n + 1)m + 1

2 B4 m2 −m + 1 × m2 + 2m + 3
2 Atf

2 m2 − 2m + 3 × m2 + m + 5
≥ 3 Atf

2 m2 − 2m + 3 X m2 + (n − 1)m + 4
≥ 3 Atr

2 m2 −m + 1 X m2 + nm + 2

Table: Upper bounds UU for m ≥ 2 ODE of order n + 1 ≥ 3
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Conclusion and remarks

Since U is realized by ODEs in Table below, then U = S. Hence the result.

m n ODE Sym dim = U

1

4 9u2
2u5 − 45u2u3u4 + 40u3

3 = 0 8

6
10u3

3u7 − 70u2
3u4u6 − 49u2

3u
2
5

+280u3u
2
4u5 − 175u4

4 = 0
10

3, 5,≥ 7 nun−1un+1 − (n + 1)u2
n = 0 n + 3

≥ 2 ≥ 2 ui
n+1 = ui

0, 1 ≤ i ≤ m m2 + (n + 1)m + 1

Unlike the classical approach, ours provides a uniform way to study the
symmetry gap problem for both scalar and vector ODEs.

Moreover, it can be used to finer gap problem namely: Among all ODEs (1)
with 0 6≡ κH valued in a G0-irrep U ⊂ E, determine SU? In this direction, it
turns out that for vector cases SU = UU. Scalar cases are still under
investigations.
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