On the conformal transformation between two anisotropic fluid spacetimes

Jarosław Kopiński

Center for Theoretical Physics PAS

Overview

- Conformal Cyclic Cosmology
- Obstructions to conformally Einstein metrics
- Anisotropic fluid spacetimes
- Obstructions to conformally anisotropic fluid metric
- Conformal class with two anisotropic fluid metrics

Notation and conventions:

- abstract index notation, e.g. $v^a \in \Gamma(TM)$, $v_a \in \Gamma(T^*M)$
- signature of a 4-dimensional metric (-, +, +, +)
- symmetrization and antisymmetrization brackets

$$\begin{split} T_{\dots(ab)\dots} &:= \frac{1}{2}T_{\dots ab\dots} + \frac{1}{2}T_{\dots ba\dots}, \\ T_{\dots[ab]\dots} &:= \frac{1}{2}T_{\dots ab\dots} - \frac{1}{2}T_{\dots ba\dots}, \end{split}$$

Einstein field equations

Spacetime is a 4-dimensional manifold M with the metric g_{ab} which satisfies

$$R_{ab} - \frac{1}{2}Rg_{ab} + \Lambda g_{ab} = T_{ab}, \qquad (1)$$

where R_{ab} is a Ricci tensor, R is a scalar curvature, Λ is a **positive** constant and T_{ab} is an energy-momentum tensor.

Asymptotically de Sitter spacetime (M, g_{ab}) Let

- \mathfrak{M} be a manifold with boundary $\mathcal{I} := \partial \mathfrak{M}$ and metric \mathfrak{g}_{ab}
- Ω be a smooth function such that:
 - $\Omega>0$ on $\mathfrak{M}\backslash \mathcal{I}$
 - $\Omega = 0, \ d\Omega \neq 0 \ \text{on} \ \mathcal{I}$
- there exists $\varphi: M \to \mathfrak{M}$ such that $\varphi(M) = \mathfrak{M} \setminus \mathcal{I}$ and $\varphi^*(\mathfrak{g}_{ab}) = \Omega^2 g_{ab}$
- each null geodesic of (M, g_{ab}) acquires two distinct endpoints on $\mathcal I$ (on $\mathcal I^-$ and $\mathcal I^+$)
- $T_{ab} = 0$ in a neighbourhood of \mathcal{I}^+ in $\varphi^{-1}(\mathfrak{M})$

Conformal compactification of a spacetime

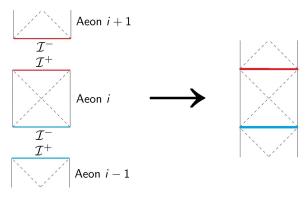
Asymptotically de Sitter spacetime – compactification

Future endpoints of all null geodesics of of (M, g_{ab}) form a spacelike hypersurface \mathcal{I}^+

Conformal Cyclic Cosmology (CCC)

Summary:

- the universe consist of aeons
- each aeon is a conformally conformally compactifiable spacetime with spacelike \mathcal{I}^- and \mathcal{I}^+
- two consecutive aeons are matched along null infinities
- the Weyl tensor vanishes at the matching surface



Conformal Cyclic Cosmology (CCC)

Mathing of two aeons

Let $(\widehat{M}, \widehat{g}_{ab})$ and $(\widecheck{M}, \widecheck{g}_{ab})$ be two aeons with the same conformal extension, i.e.

$$\hat{g}_{ab} = \hat{\Omega}^{-2} \mathfrak{g}_{ab}, \quad \check{g}_{ab} = \check{\Omega}^{-2} \mathfrak{g}_{ab}, \quad (2)$$

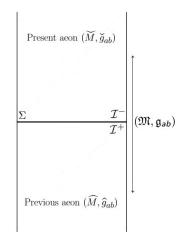
Moreover

$$\mathfrak{M}=\widehat{M}\cup\Sigma\cup\widecheck{M},$$

where a common boundary

$$\Sigma = \{\widehat{\Omega} = 0\} = \{\widecheck{\Omega}^{-1} = 0\}$$

is a future null infinity of the previous aeon $\mathcal{I}^+\left(\hat{M}\right)$ and a past null infinity of the present aeon $\mathcal{I}^-\left(\check{M}\right)$.



Conformal Cyclic Cosmology (CCC)

Reciprocal hypothesis Because of the conformal freedom we can impose

$$\check{\Omega}\widehat{\Omega} = -1$$
 (3)

Hence

$$\check{g}_{ab} = \widehat{\Omega}^4 \widehat{g}_{ab} \tag{4}$$

i.e. the metric from the present aeon is determined by the metric from the previous aeon if one can provide a unique $\hat{\Omega}$. **Simplified Brinkmann's question** Find \mathfrak{g}_{ab} and $\hat{\Omega}$ such that

$$\widehat{g}_{ab} = \widehat{\Omega}^{-2} \mathfrak{g}_{ab}, \quad \widecheck{g}_{ab} = \widehat{\Omega}^2 \mathfrak{g}_{ab}, \tag{5}$$

solve the Einstein field equations.

Alternative view Assume (\hat{M}, \hat{g}_{ab}) and $(\check{M}, \check{g}_{ab})$ are spacetimes with the energy-momentum tensor of the same type. What are the restrictions on $\hat{\Omega}$?

Schouten, Cotton and Bach tensors

The Riemann tensor can be decomposed in the following way,

$$R_{abcd} = C_{abcd} + 2\left(g_{c[a}P_{b]d} + g_{d[b}P_{a]c}\right), \qquad (6)$$

where P_{ab} is the Schouten tensor,

$$P_{ab} := \frac{1}{2}R_{ab} - \frac{R}{12}g_{ab}.$$
 (7)

It can be used to define the Cotton (A_{abc}) and Bach (B_{ab}) tensors,

$$A_{abc} := 2\nabla_{[b}P_{c]a},$$

$$B_{ab} := -\nabla^{c}A_{abc} + P^{dc}C_{dacb}.$$
(8)

Conformal properties of C_{abcd} , P_{ab} , A_{abc} and B_{ab} Let

$$\hat{g}_{ab} = e^{2\psi} \check{g}_{ab}. \tag{9}$$

Then

$$\hat{C}^{a}{}_{bcd} = \check{C}^{a}{}_{bcd},$$

$$\hat{P}_{ab} = \check{P}_{ab} - \check{\nabla}_{a}\psi_{b} + \psi_{a}\psi_{b} - \frac{1}{2}\check{g}_{ab}\check{g}^{cd}\psi_{c}\psi_{d},$$

$$\hat{A}_{abc} = \check{A}_{abc} + \psi^{d}\check{C}_{dabc},$$

$$\hat{B}_{ab} = e^{-2\psi}\check{B}_{ab}$$
(10)

where $\psi_a := \partial_a \psi$.

Conformal Einstein space

Conformal Einstein space Let \hat{g}_{ab} be the Einstein metric,

$$\hat{R}_{ab} = c\hat{g}_{ab} \iff \hat{P}_{ab} = \frac{c}{6}\hat{g}_{ab}$$
 (11)

Therefore

$$\widehat{A}_{abc} = 0, \quad \widehat{B}_{ab} = 0. \tag{12}$$

Necessary conditions for \check{g}_{ab} to be conformally Einstein metric $\hat{g}_{ab} = e^{2\psi}\check{g}_{ab}$:

$$\check{A}_{abc} + \psi^d \check{C}_{dabc} = 0, \quad \check{B}_{ab} = 0$$
 (13)

for some gradient ψ_a .

Conformally anisotropic fluid metrics

Assume that the Ricci tensor has the form dictated by the energymomentum tensor of anisotropic fluid type and obtain the necessary conditions analogous to (13).

Anisotropic fluid

Energy-momentum tensor of an anisotropic fluid Let (M, g_{ab}) be a spacetime with

$$T_{ab} = (\rho + p) u_a u_b + pg_{ab} + \pi_{ab}$$
(14)

where

- u^a is a timelike unit vector field (four-velocity of the fluid)
- ρ and p are scalar fields (density and isotropic pressure)
- π_{ab} is the anisotropic pressure tensor

Decomposition of the derivative of u^a

Let

- $h_a{}^b := \delta_a{}^b + u_a u^b$ be a projector onto $\Sigma \perp u^a$
- $\omega_{ab} := h_{[a}{}^{c} h_{b]}{}^{d} \nabla_{c} u_{d}$ be the vorticity tensor
- $\theta := h^{ab} \nabla_a u_b$ be the expansion scalar
- $\sigma_{ab} := h_{(a}{}^{c}h_{b)}{}^{d}\nabla_{c}u_{d} \frac{1}{3}h_{ab}\theta$ be the shear tensor
- $\dot{u}_a := u^b \nabla_b u_a$ be the acceleration vector

Decomposition of the derivative of *u*^{*a*} Ultimately

$$\nabla_a u_b = \omega_{ab} + \sigma_{ab} + \frac{1}{3}\theta h_{ab} - u_a \dot{u}_b \tag{15}$$

Continuity equation for T_{ab} In the present setting $\nabla_b T_a{}^b = 0$ reduces to

$$u^{a}\nabla_{a}\rho + (\rho + p)\theta + \pi_{ab}\sigma^{ab} = 0,$$

(\(\rho + p)\) $\dot{u}_{a} + h_{a}{}^{b}(\nabla_{b}p + \nabla_{c}\pi^{c}{}_{b}) = 0.$ (16)

First equation can be interpreted as a rate of change of entropy of the system, hence

$$\pi_{ab} = -\lambda \sigma_{ab}, \quad \lambda = \lambda \left(\rho, p \right) \tag{17}$$

will be imposed to keep it positive.

Obstructions to conformally anisotropic fluid metric

Let $(\widehat{M}, \widehat{g}_{ab})$ be an anisotropic fluid spacetime with

- vanishing vorticity $\hat{\omega}_{ab} = 0$
- vanishing acceleration $\dot{\hat{u}}_a = 0$
- ho and p constant on $\Sigma \perp \widehat{u}^a$

In that case shear $\hat{\sigma}_{ab}$ is an obstruction to conformal flatness. Cotton and Bach tensors We have

$$\hat{u}^{a}\hat{A}_{abc} = 0,$$

$$\hat{u}^{a}\hat{h}_{b}{}^{c}\hat{B}_{ac} = 0.$$
(18)

Conformal anisotropic fluid metric

Let
$$\hat{g}_{ab} = e^{2\psi}\check{g}_{ab}$$
 and
 $\check{u}^a = e^{\psi}\hat{u}^a \implies \check{g}^{cd}\check{u}_c\check{u}_d = -1$ (19)

Then

$$\begin{split} \breve{u}^{a} \left(\breve{A}_{abc} + \psi^{d} \breve{C}_{dabc} \right) &= 0, \\ \breve{u}^{a} \breve{h}_{b}{}^{c} \breve{B}_{ac} &= 0. \end{split} \tag{20}$$

Obstructions to conformally anisotropic fluid metric

Electric and magnetic parts of the Weyl tensor

Timelike vector \check{u}^a induces a decomposition of the Weyl tensor into \check{E}_{ab} and \check{H}_{ab} ,

$$\check{E}_{ab} := \check{u}^c \check{u}^d \check{C}_{acbd}, \quad \check{H}_{ab} := \frac{1}{2} \check{u}^c \check{u}^d \check{\eta}_{ackl} \check{C}^{kl}{}_{bd}$$
(21)

where $\check{\eta}_{ackl}$ the covariant Levi-Civita tensor and \check{E}_{ab} , $\check{H}_{ab} \perp \check{u}^a$. **Decomposition of the necessary condition** Equation

$$\check{u}^{a}\left(\check{A}_{abc}+\psi^{d}\check{C}_{dabc}
ight)=0.$$

splits into

$$\check{u}^{a}\check{u}^{b}\check{h}_{i}{}^{c}\check{A}_{abc}-\check{E}_{ia}\check{D}^{a}\psi=0, \tag{22}$$

$$\check{u}^{a}\check{h}_{i}{}^{b}\check{h}_{j}{}^{c}\check{A}_{abc}+\check{\eta}_{jik}\check{H}_{a}{}^{k}\check{D}^{a}\psi=0. \tag{23}$$

where $\check{D}_{a}\psi = \check{h}_{a}{}^{b}\check{\nabla}_{b}\psi$.

Obstructions to conformally anisotropic fluid metric

Simplification for invertible \check{E}_{ab} Suppose that there exists $\check{\check{E}}_{ab}$ such that

$$\check{\tilde{E}}^{bc}\check{E}_{ac} = \left|\check{E}\right|\delta_a{}^b \tag{24}$$

Then (22) yields

$$\check{D}_{j}\psi = \frac{\check{u}^{a}\check{u}^{b}\check{\widetilde{E}}_{j}{}^{c}\check{A}_{abc}}{\left|\check{E}\right|},$$
(25)

so from (23),

$$\check{u}^{a}\check{A}_{abc}\left(\check{h}_{i}{}^{b}\check{h}_{j}{}^{c}\left|\check{E}\right|+\check{\eta}_{jik}\check{H}_{d}{}^{k}\check{u}^{b}\check{\widetilde{E}}{}^{dc}\right)=0.$$
(26)

This gives an **obstruction tensor** to conformally anisotropic fluid metric.

Conformal class with two anisotropic fluid metrics

Let $(\check{M}, \check{g}_{ab})$ also be an anisotropic fluid spacetime with the fourvelocity of a fluid \check{u}^a conformally related to \hat{u}^a ,

$$\check{u}^a = e^\psi \hat{u}^a \tag{27}$$

i.e.

$$\check{T}_{ab} = (\check{\rho} + \check{p}) \,\check{u}_{a}\check{u}_{b} + \check{p}\check{g}_{ab} - \check{\lambda}\check{\sigma}_{ab}, \tag{28}$$

Then

$$\check{\omega}_{ab} = 0, \quad \check{\sigma}_{ab} = e^{-\psi} \widehat{\sigma}_{ab}, \quad \dot{\check{u}}_{a} = -\check{D}_{a}\psi,$$
(29)

Let $\check{\rho}, \check{p}$ be constant functions on $\Sigma \perp \check{u}^a$. **Condition on** ψ The continuity equation $\check{\nabla}_b \check{T}_a{}^b = 0$ and the transformation rules (29) lead to

$$\left(\left(\breve{\rho} + \breve{\rho} \right)^2 + 2e^{2\psi} \breve{\lambda}^2 \widehat{\sigma}_{ab} \widehat{\sigma}^{ab} \right) \breve{D}_c \psi = 0, \tag{30}$$

Conformal class with two anisotropic fluid metrics

Equation

$$\left(\left(\breve{\rho} + \breve{\rho} \right)^2 + 2e^{2\psi}\breve{\lambda}^2 \widehat{\sigma}_{ab} \widehat{\sigma}^{ab} \right) \breve{D}_c \psi = 0,$$

can only be satisfied if

$$\check{D}_{c}\psi=0$$

i.e. ψ is constant on $\Sigma \perp \check{u}^a$ (also $\Sigma \perp \hat{u}^a$). Evolution equation for ψ

Conformal transformation of $\hat{R}_{ab}\hat{u}^{a}\hat{u}^{b}$ yields

$$3\hat{u}^{a}\hat{u}^{b}\hat{\nabla}_{a}\psi_{b}+\hat{\theta}\hat{u}^{a}\psi_{a}+e^{-2\psi}\left(\check{\Lambda}-\frac{1}{2}\left(\check{\rho}+3\check{\rho}\right)\right)=\hat{\Lambda}-\frac{1}{2}\left(\hat{\rho}+3\hat{\rho}\right).$$

References

- H. Brinkmann, *Einstein spaces which are mapped conformally* on each other, Math. Ann. 94, 119, 1925
- C. N. Kozameh, E. T. Newman and K. P. Tod, *Conformal Einstein spaces*, Gen Relativ. Gravit. 17, 343–352, 1985
- R. Penrose, *Cycles of Time: An Extraordinary New View of the Universe*, pub. Bodley Head, 2010
- P. Tod, *The equations of Conformal Cyclic Cosmology*, Gen. Relativ. Gravit. 47 17, 2015
- P. Nurowski, *Poincare–Einstein approach to Penrose's conformal cyclic cosmology*, Class. Quant. Grav. 38 145004, 2021
- J. Kopiński, On the conformal transformation between two anisotropic fluid spacetimes, Class. Quant. Grav. 38 135029, 2021

Thank you!