On uniqueness of submaximally symmetric parabolic geometries

Dennis The

Department of Mathematics & Statistics UiT The Arctic University of Norway

20 August 2021

SCREAM opening workshop, GRIEG project 2019/34/H/ST1/00636

Apologies

Sorry we couldn't make it to Poland this year. Hope to see you all in Norway next year!

Symmetry gaps

Let \mathfrak{M} & \mathfrak{S} be the max & submax sym dim for structures below:

Structure	G	Ρ	M	\mathfrak{S}
2-dim projective	A_2	P_1	8	3
2nd order ODE	A_2	$P_{1,2}$	8	3
(2,3,5)-distributions	G_2	P_1	14	7
5-dim <i>G</i> ₂ -contact	G ₂	P_2	14	7
3-dim projective	A_3	P_1	15	8
4-dim split-conformal	A_3	P_2	15	9
5-dim Legendrian contact	A_3	$P_{1,3}$	15	8
(3,6)-distributions	B_3	P_3	21	11
57-dim <i>E</i> ₈ -contact	E_8	P_8	248	147

Kruglikov–T. (2014): Framework for sym gaps; found many \mathfrak{S} .

Locally, $\exists!$ maximally symmetric structure (the "flat" model).

Q: Locally classify all submaximally symmetric structures.

(3 techniques for classification, e.g. Cartan reduction, but they are cumbersome to apply beyond low dimensions.)

- Examples and main theorem
- Recap of framework for symmetry gaps
- Main thm proof ideas

Examples and main theorem

Rank 2 examples

• 2nd order ODE y'' = f(x, y, y'), $(A_2, P_{1,2})$, $\mathfrak{M} = 8$, $\mathfrak{S} = 3$:

	Tresse (relative) invariants	
Submax sym model ($\mathfrak{S} = 3$)	<i>I</i> ₁	$I_2 = f_{y'y'y'y'}$
$y'' = e^{y'}$	≠ 0	≠ 0
$y^{\prime\prime}=\left(y^{\prime} ight)^{a}$ $(a\in\mathbb{C}ackslash\{0,1,2,3\})$	\neq 0	\neq 0
$y'' = 6yy' - 4y^3 + c(y' - y^2)^{3/2}$ ($c \in \mathbb{C} \setminus \{0\}$)	\neq 0	\neq 0
$y'' = \frac{3(y')^2}{2y} + y^3$	≠ 0	0

Note $y'' = (xy' - y)^3$ has $I_1 \neq 0$ a.e. $(I_1 = 0 \text{ along } xy' = y)$ and $I_2 = 0$. It has 3-dim intransitive symmetry.

• (2,3,5)-distributions, (G_2 , P_1), $\mathfrak{M} = 14$, $\mathfrak{S} = 7$. Monge form: $\langle \partial_x + p \partial_y + q \partial_p + f \partial_z, \partial_q \rangle$, with f = f(x, y, p, q, z), $f_{qq} \neq 0$.

Submax sym model ($\mathfrak{S} = 7$)	Cartan quartic
$f = q^m (m \notin \{-1, 0, \frac{1}{3}, \frac{2}{3}, 1, 2\})$	N
$f = \log(q)$	N

G₂-contact structures, (G₂, P₂), M = 14, S = 7.
 T. 2021: Locally, ∃! G₂-contact str. with 7-dim sym.

Parabolic subalgebras and gradings

 \mathfrak{g} : s.s. Lie algebra; $(\mathfrak{g}, \mathfrak{p}) \rightsquigarrow \mathbb{Z}$ -grading: $\mathfrak{g} = \mathfrak{g}_{-} \oplus \widetilde{\mathfrak{g}_{0} \oplus \mathfrak{g}_{+}}$, \exists grading element Z with $\mathfrak{g}_{j} = \{x \in \mathfrak{g} : [Z, x] = jx\}$. \bigwedge Grading is auxilliary! Filtration $\mathfrak{g}^{i} := \bigoplus_{i \geq i} \mathfrak{g}_{j}$ is important.



Rank 3 examples

• 5-dim Legendrian contact $(M^5, \mathcal{C} = \mathcal{E} \oplus \mathcal{F})$, $(SL(4), P_{1,3})$, $\mathfrak{M} = 15, \mathfrak{S} = 8$. Basic invariants:

- $\tau_{\mathcal{E}}, \tau_{\mathcal{F}}$: obstruct Frobenius-integrability;
- \mathcal{W} : binary quartic (analogue of Weyl curvature).

When $\tau_{\mathcal{F}} = 0$, can describe as PDE $u_{ij} = f_{ij}(x^k, u, u_\ell)$. FACT: \exists three inequivalent models with 8-dim symmetry, each with exactly one of these invariants being nonzero. When $\tau_{\mathcal{E}} = \tau_{\mathcal{F}} = 0$, the model (Doubrov–Medvedev–T. 2020) is:

$$u_{xx} = (u_y)^2, \quad u_{xy} = 0, \quad u_{yy} = 0.$$

- Real CR hypersurfaces in \mathbb{C}^3 with Levi form that is:
 - positive-def: (SU(1,3), P_{1,3}), 𝔅 = 15, 𝔅 = 7; several parametric families of submax models (Loboda 2001).
 - indefinite: (SU(2,2), $P_{1,3}$), $\mathfrak{M} = 15$, $\mathfrak{S} = 8$; $\exists !$ submax model:

 $\mathfrak{Im}(w + \overline{z}_1 z_2) = |z_1|^4$ (Winkelmann hypersurface).

Parabolic geometries

Starting point: \exists equivalence of categories between regular, normal parabolic geometries and underlying geometric structures (Tanaka, Morimoto, Čap–Schichl). Upshot: study symmetry "upstairs".

Let $(\mathcal{G} \to M, \omega)$ be a parabolic geometry of type (G, P). • Curvature: $\mathcal{K} = d\omega + \frac{1}{2}[\omega, \omega]$, $\kappa(x, y) = \mathcal{K}(\omega^{-1}(x), \omega^{-1}(y))$, $\kappa : \mathcal{G} \to \bigwedge^2(\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g} \cong \bigwedge^2 \mathfrak{g}_+ \otimes \mathfrak{g}$. Flat if $\kappa = 0$. • Regular: $\operatorname{im}(\kappa)$ valued in the positive subspace wrt Z.

- Normal: $\partial^* \kappa = 0$, with ∂^* the Lie alg homology differential.
- Harmonic curvature: κ_H := κ mod im(∂*), valued in H₂(g₊, g)¹, i.e. positive part of H₂(g₊, g) := ker∂*/im∂* (completely reducible, so only the g₀-action is relevant).

Thm: $(\mathcal{G} \to M, \omega)$ is flat iff $\kappa_H = 0$.

Submax sym dim: $\mathfrak{S} := \max\{\dim(\mathfrak{inf}(\mathcal{G},\omega)) \mid \kappa_H \neq 0\}$.

Given: P-irrep $\mathbb{V} \subset H_2(\mathfrak{g}_+,\mathfrak{g})^1$. Say $(\mathcal{G} \to M,\omega)$ is type $(\mathcal{G}, \mathcal{P}, \mathbb{V})$ if it is of type $(\mathcal{G}, \mathcal{P})$ and $\operatorname{im}(\kappa_H) \subset \mathbb{V}$. Analogously define $\mathfrak{S}_{\mathbb{V}}$.

Theorem (T. 2021)

Let G be a complex or split-real simple Lie group, P a parabolic subgroup. Let $(\mathcal{G} \to M, \omega)$ be a reg./nor. parabolic geometry of type (G, P, \mathbb{V}) , where $\mathbb{V} \subset H_2(\mathfrak{g}_+, \mathfrak{g})^1$ is a P-irrep. Suppose that $\diminf(\mathcal{G}, \omega) = \mathfrak{S}_{\mathbb{V}}$, and $\operatorname{rank}(G) \ge 3$ or $(G, P) = (G_2, P_2)$. Then about any $u \in \mathcal{G}$ with $\kappa_H(u) \ne 0$, the geometry is locally homogeneous and is:

- complex case: locally unique;
- split-real case: locally one of at most two possibilities.

NB. The result is constructive in the "Cartan sense". (More later.)

Framework for studying symmetry gaps

Key algebraic ingredient #1: Kostant theory

Given
$$(\mathfrak{g},\mathfrak{p})$$
, we have $\mathfrak{g} = \mathfrak{g}_- \oplus \overbrace{\mathfrak{g}_0 \oplus \mathfrak{g}_+}^r$. Kostant (1961)
 $\Rightarrow H_2(\mathfrak{g}_+,\mathfrak{g})^1 \cong_{\mathfrak{g}_0} H_+^2(\mathfrak{g}_-,\mathfrak{g})$, and this is easily computed using

'n

Theorem (Simplified Kostant thm for $\mathfrak{g} \mathbb{C}$ -simple with highest weight λ)

 $H^{k}(\mathfrak{g}_{-},\mathfrak{g})\cong_{\mathfrak{g}_{0}}\bigoplus_{w\in W^{\mathfrak{p}}(k)}\mathbb{V}_{-w\bullet\lambda}.$ Also have explicit lowest weight vectors ϕ_{0} .

- \mathbb{V}_{μ} is the \mathfrak{g}_0 -irrep with lowest weight μ .
- w λ := w(λ + ρ) − ρ (affine action of Weyl group W).
- W^p(k) := length k words of the Hasse subset W^p ⊂ W.
- Efficient Dynkin diagram recipes, cf. Baston–Eastwood (1989).

Example $(G_2/P_1: \mathbb{Z} = \mathbb{Z}_1, W^{\mathfrak{p}}(1) = \{(1)\}, W^{\mathfrak{p}}(2) = \{(12)\})$

Calculation	Lowest wt	Interpretation
$(1) \bullet \overset{0}{\times} \overset{1}{\longleftarrow} = \overset{-2}{\times} \overset{2}{\longleftarrow}$	$2\lambda_1 - 2\lambda_2 = -\frac{2\alpha_1 - 2\alpha_2}{2\alpha_1 - 2\alpha_2}$	$ \begin{aligned} & H^{1}_{\geq 0}(\mathfrak{g}_{-},\mathfrak{g}) = 0 \\ & (: \cdot \operatorname{pr}(\mathfrak{g}_{-}) \cong \mathfrak{g}.) \end{aligned} $
$(12) \bullet \overset{0}{\times} \overset{1}{\longleftarrow} = \overset{-8}{\times} \overset{4}{\longleftarrow}$	$8\lambda_1 - 4\lambda_2 \\ = +4\alpha_1$	$H^2_+(\mathfrak{g},\mathfrak{g})\cong S^4\mathfrak{g}_1\cong S^4(\mathfrak{g}_{-1})^*$

Key algebraic ingredient #2: Tanaka prolongation

Definition (Extrinsic Tanaka prolongation)

Given ϕ in a \mathfrak{g}_0 -rep, let $\mathfrak{a} := \mathfrak{a}^{\phi} \subset \mathfrak{g}$ be the graded Lie subalg with:

$${ ar u} \,\, \mathfrak{a}_{\leq 0} := \mathfrak{g}_{-} \oplus \mathfrak{ann}(\phi),$$
 and

$$\mathfrak{a}_k := \{ x \in \mathfrak{g}_k : [x, \mathfrak{g}_{-1}] \subset \mathfrak{a}_{k-1} \}, \quad \forall k > 0.$$

Of interest:

•
$$0 \neq \phi \in H^2_+(\mathfrak{g}_-,\mathfrak{g});$$

- $0 \neq \phi \in \mathbb{V} \subset H^2_+(\mathfrak{g}_-, \mathfrak{g})$, where \mathbb{V} is a (irreducible) submodule;
- $0 \neq \phi \in \mathcal{O} \subset H^2_+(\mathfrak{g}_-, \mathfrak{g})$, where \mathcal{O} is a G_0 -orbit.

Definition

If
$$\mathfrak{a}^{\phi}_{+} = 0$$
, $\forall \phi \in H^{2}_{+}(\mathfrak{g}_{-}, \mathfrak{g})$, then $(\mathfrak{g}, \mathfrak{p})$ is prolongation-rigid (PR).

Kruglikov–T. (2014): If $\mathfrak{p} \subset \mathfrak{g}$ is maximal parabolic, i.e. single cross, then $(\mathfrak{g}, \mathfrak{p})$ is PR.

Symmetry gaps - brief summary

Kruglikov-T. (2014):

• Fix any (G, P). Then $\mathfrak{S} \leq \mathfrak{U}$ for some universal upper bound

 $\mathfrak{U} := \max \{ \dim \mathfrak{a}^{\phi} : \mathfrak{0} \neq \phi \in H^2_+(\mathfrak{g}_-, \mathfrak{g}) \} \;.$

 $({\rm Analogously},\ \mathfrak{S}_{\mathbb{V}} \leq \mathfrak{U}_{\mathbb{V}} \ {\rm or} \ \mathfrak{S}_{\mathcal{O}} \leq \mathfrak{U}_{\mathcal{O}}.)$

- Complex or split-real simple G setting:
 - Efficient Dynkin diagram recipes to compute \mathfrak{U} , e.g.

$$\not \longleftrightarrow \qquad \rightsquigarrow \quad \mathfrak{U}=7.$$

- $\mathfrak{S} = \mathfrak{U}$, but some $\mathfrak{S} < \mathfrak{U}$ exceptions only when $\operatorname{rank}(\mathcal{G}) = 2$.
- Non-exceptional cases: any submax sym structure is locally homogeneous near u ∈ G with κ_H(u) ≠ 0.
- In fact, we proved a much stronger result (KT 2014 / 2016):

$$\mathfrak{s}(u) \subset \mathfrak{a}^{\kappa_H(u)}, \quad \forall u \in \mathcal{G},$$

where $\mathfrak{s}(u) := \operatorname{gr}(\mathfrak{f}(u))$, with $\mathfrak{f}(u) := \omega_u(\operatorname{inf}(\mathcal{G}, \omega))$.

Q: How to exhibit a homogeneous model?

Example ((2, 3, 5)-distributions)

- Coordinate model: $\mathcal{D} := \langle \partial_x + p \partial_y + q \partial_p + q^m \partial_z, \partial_q \rangle$, where $m \in \mathbb{C} \setminus \{-1, 0, \frac{1}{3}, \frac{2}{3}, 1, 2\}$; syms $X_1, ..., X_7$.
- Lie-theoretic model: $(\mathfrak{f},\mathfrak{f}^0)$ infinitesimally effective pair, with $\mathfrak{f}^0\text{-invariant filtration}$

?

$$\mathfrak{f}=\mathfrak{f}^{-3}\supset\mathfrak{f}^{-2}\supset\mathfrak{f}^{-1}\supset\mathfrak{f}^0\supset0$$

• Cartan-theoretic model:

Any homogeneous parabolic geometry over $M = F/F^0$ that is "infinitesimally effective" admits a description as:

Definition (Cartan-theoretic description of homog. structures)

An algebraic model $(\mathfrak{f}; \mathfrak{g}, \mathfrak{p})$ is a Lie algebra $(\mathfrak{f}, [\cdot, \cdot]_{\mathfrak{f}})$ such that:

- $\begin{array}{ll} \mathsf{M1:} \ \mathfrak{f} \subset \mathfrak{g} \ \textit{is a filtered subspace, with filtrands} \ \mathfrak{f}^i := \mathfrak{f} \cap \mathfrak{g}^i, \ \textit{and} \\ \mathfrak{s} := \operatorname{gr}(\mathfrak{f}) \ \textit{satisfying} \ \mathfrak{s}_- = \mathfrak{g}_-. \ \textit{(Thus, } \mathfrak{f}/\mathfrak{f}^0 \cong \mathfrak{g}/\mathfrak{p}_. \textit{)} \end{array}$
- M2: \mathfrak{f}^0 inserts trivially into $\kappa(x, y) := [x, y] [x, y]_{\mathfrak{f}}$. (Thus, $\kappa \in \bigwedge^2 (\mathfrak{f}/\mathfrak{f}^0)^* \otimes \mathfrak{g} \cong \bigwedge^2 (\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g}$.)

M3: κ is regular and normal, i.e. $\kappa \in \text{ker}(\partial^*)_+$.

Given (G, P), let \mathcal{M} be the set of all algebraic models $(\mathfrak{f}; \mathfrak{g}, \mathfrak{p})$.

- \mathcal{M} is partially ordered: $\mathfrak{f} \leq \mathfrak{f}'$ iff $\mathfrak{f} \hookrightarrow \mathfrak{f}'$ as Lie algs.
- \mathcal{M} admits a *P*-action: i.e. $p \cdot \mathfrak{f} = \mathrm{Ad}_p \mathfrak{f}$.

Upshot: Classify maximal elements in (\mathcal{M}, \leq) with $\kappa_H \neq 0$.

Necessary constraints

Proposition

Let $(\mathfrak{f};\mathfrak{g},\mathfrak{p})$ be an algebraic model. Then

- (f, [·, ·]_f) is a filtered Lie alg, and s = gr(f) ⊂ g is a graded Lie subalg.
- **2** $f^0 \cdot \kappa = 0$, *i.e.* $[z, \kappa(x, y)] = \kappa([z, x], y) + \kappa(x, [z, y]), \forall x, y \in f, \forall z \in f^0.$
- **3** $\mathfrak{s} \subset \mathfrak{a}^{\kappa_{H}}$, i.e. \mathfrak{f} is a "constrained filtered sub-deformation" of $\mathfrak{a}^{\kappa_{H}}$.

Proof.

- **1** Recall $\mathfrak{f}^i := \mathfrak{f} \cap \mathfrak{g}^i$. Hence, $[\mathfrak{f}^i, \mathfrak{f}^j]_{\mathfrak{f}} \subset \mathfrak{f}^{i+j}$ follows from regularity.
- 2 Use Jacobi identity for $[\cdot, \cdot]_{\mathfrak{f}} = [\cdot, \cdot] \kappa(\cdot, \cdot).$
- So ∂* is p-equiv., so im(∂*) is p-inv. Then (2) ⇒ f⁰ · κ_H = 0, so $\mathfrak{s}_0 \cdot \kappa_H = 0, \text{ since } \mathfrak{g}_+ \text{ is trivial on } H_2(\mathfrak{g}_+, \mathfrak{g}). \text{ For } k > 0,$ $[\mathfrak{s}_k, \mathfrak{g}_{-1}] = [\mathfrak{s}_k, \mathfrak{s}_{-1}] \subset \mathfrak{s}_{k-1}. \text{ Let } \mathfrak{a} := \mathfrak{a}^{\kappa_H}, \text{ so } \mathfrak{s}_0 \subset \mathfrak{a}_0 := \mathfrak{ann}(\kappa_H).$ Inductively, $\mathfrak{s}_k \subset \mathfrak{a}_k, \forall k > 0.$

The canonical curved model

Fix (G, P, \mathbb{V}) complex or split-real, where $\mathbb{V} \subset H^2_+(\mathfrak{g}_-, \mathfrak{g})$ is a \mathfrak{g}_0 -irrep. with lowest weight vector ϕ_0 .

Define $\mathfrak{f} := \mathfrak{a}^{\phi_0} \subset \mathfrak{g}$ as a filtered subspace, but with bracket

$$[\cdot, \cdot]_{\mathfrak{f}} := [\cdot, \cdot] - \phi_0(\cdot, \cdot),$$

where we view ϕ_0 as a harmonic 2-cochain. Well-defined?

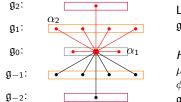
- $\operatorname{im}(\phi_0) \subset \mathfrak{g}_- \subset \mathfrak{a}$ almost always. Exceptions when $\operatorname{rank}(G) = 2$.
- Is Jacobi identity satisfied? Yes
- Get (f; g, p) with κ_H = φ₀, dim f = 𝔄_V, maximal in (𝓜, ≤). Called "canonical curved model of type (𝔅, 𝒫, 𝒱)"; have
 𝔅_V = 𝔄_V. This relies on the following (KT 2014):

Prop: dim $\mathfrak{a}^{\phi} = \dim \mathfrak{a}^{\phi_0}$ iff $[\phi] \in G_0 \cdot [\phi_0]$ (so $\mathfrak{U}_{\mathbb{V}} = \dim \mathfrak{a}^{\phi_0}$).

Q: Classify (up to *P*-action) all $(\mathfrak{f}; \mathfrak{g}, \mathfrak{p})$ with $\mathfrak{s} = \operatorname{gr}(\mathfrak{f}) = \mathfrak{a}^{\phi_0}$.

Main theorem - proof ideas

(G_2, P_2) case



Let {Z₁, Z₂} be dual to {
$$\alpha_1, \alpha_2$$
}. Set Z := Z₂.
 $\mathfrak{g}_0 = \langle \mathsf{Z}, h_{\alpha_1}, e_{\alpha_1}, e_{-\alpha_1} \rangle \cong \mathfrak{gl}_2$
 $7 \quad -4$
 $H_+^2(\mathfrak{g}_-, \mathfrak{g}) = \longrightarrow =: \mathbb{V}_{\mu}$
 $\mu = -7\lambda_1 + 4\lambda_2 = -2\alpha_1 + \alpha_2$ (degree +1)
 $\phi_0 = e_{\alpha_2} \wedge e_{\alpha_1 + \alpha_2} \otimes e_{-3\alpha_1 - \alpha_2}$
 $\mathfrak{a} = \mathfrak{g}_- \oplus \mathfrak{a}_0, \quad \mathfrak{a}_0 = \langle \mathsf{Z}_1 + 2\mathsf{Z}_2 \rangle \oplus \mathfrak{g}_{-\alpha_1}$

GOAL: Classify $(\mathfrak{f}; \mathfrak{g}, \mathfrak{p})$ with $\operatorname{gr}(\mathfrak{f}) = \mathfrak{a}$. Step 1: Determine subspace $\mathfrak{f} \subset \mathfrak{g}$.

- Let $T \in \mathfrak{f}^0$ with $\operatorname{gr}_0(T) = Z_1 + 2Z_2$. Since $(Z_1 + 2Z_2)(\alpha) \neq 0$, $\forall \alpha \in \Delta(\mathfrak{g}_+)$, use P_+ -action $\xrightarrow{\operatorname{normalize}} T = Z_1 + 2Z_2 \in \mathfrak{f}^0$.
- Define a[⊥] = (Z₂) ⊕ g_{α1} ⊕ g₊, so g = a ⊕ a[⊥] (ad_T-invariant). Write f as a graph over a, i.e. f ∋ x = a + ∂(a) for a ∈ a and ∂ ∈ a^{*} ⊗ a[⊥], positive degree and T ⋅ ∂ = 0, i.e. ∂ is a sum of weight vectors for weights that are multiples of μ = -2α₁ + α₂. Weights of a^{*} (and a[⊥]):

$$0, \quad \alpha_1, \quad \alpha_2, \quad \alpha_1 + \alpha_2, \quad 2\alpha_1 + \alpha_2, \quad 3\alpha_1 + \alpha_2, \quad 3\alpha_1 + 2\alpha_2.$$

Must have $\mathfrak{d} = 0$, so $\mathfrak{f} = \mathfrak{a}$ as filtered subspaces of \mathfrak{g} .

(G_2, P_2) continued

Step 2: Determine curvature $\kappa \in \ker(\partial^*)_+ \subset \bigwedge^2 \mathfrak{g}_+ \otimes \mathfrak{g}$.

- Thm: Lowest degree part of κ is harmonic. (Čap–Slovak, Thm.3.1.12.)
- $H^2_+(\mathfrak{g}_-,\mathfrak{g}) \cong \mathbb{V}_{\mu}$, with $\mu = -2\alpha_1 + \alpha_2$ has degree +1. (Apply $Z = Z_2$.)
- Since $T \cdot \kappa = 0$, want 2-cochain wts:

$$\sigma = r\mu = \alpha + \beta + \gamma, \quad \alpha, \beta \in \Delta(\mathfrak{g}_+) \text{ distinct}, \ \gamma \in \Delta \cup \{0\}, \boxed{r \geq 1}.$$

• Highest weight of \mathfrak{g} is $\lambda = 3\alpha_1 + 2\alpha_2$. Note $-\lambda \leq \gamma < \sigma = r\mu$. Apply Z₁:

$$-3 \leq \mathsf{Z}_1(\sigma) = r\mathsf{Z}_1(\mu) = -2r \quad \Rightarrow \quad \boxed{r \leq \frac{3}{2}}.$$

- μ has degree +1 and $\sigma = k\alpha_1 + \ell\alpha_2$ with $k, \ell \in \mathbb{Z}$, so r = 1.
- H²₊(g₋, g) ≅ V_μ is a g₀-irrep, with unique lwv φ₀, then κ = cφ₀ for c ≠ 0.
 Use Ad_{exp(tZ)} to rescale: over C, we have wlog c = 1.

Conclusion: We get only the canonical curved model. NB.

- **1** Over \mathbb{R} , we might have at most $c = \pm 1$ after rescaling.
- 2 Did not use full structure equations for (G_2, P_2) geometries!
- Made efficient use of G₂ weights.

General case

The general case is similar, but more technical, using specific knowledge coming from Kostant's thm for the lowest weight μ and lwv ϕ_0 . Starting point:

$$\mathfrak{a}_0 = \mathfrak{ann}(\phi_0) = \mathsf{ker}(\mu) \oplus igoplus_{\gamma \in \Delta(\mathfrak{g}_{0,\leq 0})} \mathfrak{g}_\gamma$$

wrt a certain secondary grading. Let $\mathfrak{a}:=\mathfrak{a}^{\phi_0}=\mathfrak{g}_-\oplus\mathfrak{a}_0\oplus....$

Given a geometry of type (G, P, \mathbb{V}) , we can appeal to Čap (2005) and equivalently regard it as a geometry on a "minimal twistor space":

$$G/P$$

$$\downarrow$$
 G/\bar{P}

("Normality" and "regularity" are well-behaved in passing down.)

Example $(A_m/P_{1,2} \rightarrow \underline{A}_m/P_1)$

For 2nd order ODE systems, κ_H is comprised of Fels torsion \mathcal{T} (hom. +2) and Fels curvature \mathcal{S} (hom. +3). If $\mathcal{S} = 0$, the system is geodesic (for some $[\nabla]$).

Benefits of this "twistor simplification" (KT 2014): $a_+ = 0$, so $f^1 = 0$.

Generic case – strategy

Lemma

Let \mathfrak{g} be complex simple, $\ell := \operatorname{rank}(\mathfrak{g}) \geq 3$, λ its highest root, $\mathfrak{p} \subset \mathfrak{g}$ parabolic. Let $w = (jk) \in W^{\mathfrak{p}}(2)$ with $\mu = -w \bullet \lambda$ satisfies $Z(\mu) > 0$. Then:

(L1) $\mu = \sum_{i=1}^{\ell} m_i \alpha_i$ has coefficients m_i of opposite sign. More precisely, $m_i < 0, \forall i \neq j, k$, and either $m_i > 0$ or $m_k > 0$.

(L2)
$$\exists H_0 \in \ker(\mu) \text{ with } f(H_0) \neq 0 \text{ for all } f = \alpha + \beta \text{ with} \\ (\alpha, \beta) \in \mathcal{R} := \Delta^+ \times (\Delta^+ \cup \{0\}).$$

Given $(G, P, \phi_0 \in \mathbb{V}_{\mu})$, classify (wrt *P*-action) all $(\mathfrak{f}; \mathfrak{g}, \mathfrak{p})$ with $\mathfrak{s} = \operatorname{gr}(\mathfrak{f}) = \mathfrak{a}^{\phi_0}$. Strategy:

1 WLOG, pass to the minimal twistor space. Then $f^1 = 0$.

2 Pick H_0 as in Lemma. Use P_+ -action to normalize to that $H_0 \in \mathfrak{f}^0$.

3 ker
$$(\mu) \subset \mathfrak{f}^0$$
: Set $H' := H'_0 + H'_+ \in \mathfrak{f}^0$ for $H'_0 \in \ker(\mu), \ H'_+ \in \mathfrak{g}^1$. Then

$$[H_0,H']_{\mathfrak{f}}=[H_0,H']=[H_0,H'_+]\in\mathfrak{g}_+\cap\mathfrak{f}=\mathfrak{f}^1=0\quad \stackrel{(L2)}{\Rightarrow}\quad H'_+=0.$$

General case - 3

• Show $f = \mathfrak{a}$ as filtered subspaces of \mathfrak{g} .

$$\mathfrak{a} = \mathfrak{g}_- \oplus \mathfrak{a}_0, \quad \mathfrak{a}_0 := \mathsf{ker}(\mu) \oplus igoplus_{\gamma \in \Delta(\mathfrak{g}_{0, \leq 0})} \mathfrak{g}_\gamma$$

$$\mathfrak{a}^{\perp}:=\mathsf{ker}(\mu)^{\perp}\oplus\mathfrak{g}_{0,+}\oplus\mathfrak{g}_{+}$$

Have $\mathfrak{f} \ni x = a + \mathfrak{d}(a)$ for $\mathfrak{d} : \mathfrak{a} \to \mathfrak{a}^{\perp}$ of positive degree; admissible weights are multiples of μ . But by (L1), μ has coeffs of opposite sign!

- $\mathfrak{d}|_{\mathfrak{g}_{-}} = 0$: immediate all weights of $\mathfrak{g}_{-}^{*} \otimes \mathfrak{a}^{\perp}$ are non-negative.
- $\mathfrak{d}|_{\mathfrak{a}_0} = 0$: Bit more technical part see my article.

5 Determine $\kappa \in \ker(\partial^*)_+ \subset \bigwedge^2 \mathfrak{g}_+ \otimes \mathfrak{g}$. Get canonical curved model.

•
$$\mathfrak{f}^0 \cdot \kappa = 0$$
. Want 2-cochain wts $\sigma = r\mu = \alpha + \beta + \gamma$ with

$$\alpha, \beta \in \Delta(\mathfrak{g}_+) \text{ distinct}, \quad \gamma \in \Delta \cup \{0\}, \quad \boxed{r \ge 1}.$$

• Hw of \mathfrak{g} is $\lambda = \sum_{i} n_{i} \alpha_{i}$, $n_{i} > 0$, $\forall i$]. Have $-\lambda \leq \gamma < \sigma = r\mu$. Have $\mu = -(jk) \bullet \lambda \equiv -\lambda \mod \{\alpha_{j}, \alpha_{k}\}$. Apply Z_{i} for $i \neq j, k$: $-n_{i} \leq rZ_{i}(\mu) = -rn_{i}$. Thus, $r \leq 1$, so r = 1. • $H^{2}(\mathfrak{g}, \mathfrak{g}) \cong \mathbb{V}$ irrep $\kappa = c\phi_{i}, c \neq 0$. When $\kappa = \phi_{i}$ over \mathbb{C} .

•
$$H^2_+(\mathfrak{g}_-,\mathfrak{g})\cong \mathbb{V}_\mu$$
 irrep, $\kappa=c\phi_0,\ c
eq 0$. Wlog $\kappa=\phi_0$ over \mathbb{C} .

- We used a Cartan-theoretic approach to establish a local uniqueness result for submax sym models.
- Coordinate models associated to some of these canonical curved models are known, e.g. in the settings of
 - projective structure $(M^n, [\nabla])$, $n \ge 3$ (Egorov 1951);
 - split-conformal structures (Mⁿ, [g]), n ≥ 4 (Casey–Dunajski–Tod 2013, Kruglikov–T. 2014);
 - G-contact structures (T. 2018);
 - C₃-Monge (Anderson–Nurowski 2017);
 - Legendrian contact structures (Doubrov-Medvedev-T. 2020)
- Advantages of the Cartan-theoretic approach:
 - Efficient / uniform classification strategy.
 - Take advantage of basic rep theory of ${\mathfrak g}.$