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Apologies

Sorry we couldn’t make it to Poland this year. Hope to see you all
in Norway next year!
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Symmetry gaps

Let M & S be the max & submax sym dim for structures below:

Structure G P M S

2-dim projective A2 P1 8 3
2nd order ODE A2 P1,2 8 3

(2,3,5)-distributions G2 P1 14 7
5-dim G2-contact G2 P2 14 7
3-dim projective A3 P1 15 8

4-dim split-conformal A3 P2 15 9
5-dim Legendrian contact A3 P1,3 15 8

(3,6)-distributions B3 P3 21 11
57-dim E8-contact E8 P8 248 147

Kruglikov–T. (2014): Framework for sym gaps; found many S.

Locally, ∃! maximally symmetric structure (the “flat” model).

Q: Locally classify all submaximally symmetric structures.

(∃ techniques for classification, e.g. Cartan reduction, but they are cumbersome to apply beyond low dimensions.)
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Examples and main theorem
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Rank 2 examples

2nd order ODE y ′′ = f (x , y , y ′), (A2,P1,2),M = 8,S = 3:

Tresse (relative) invariants

Submax sym model (S = 3) I1 I2 = fy′y′y′y′

y ′′ = ey
′

6= 0 6= 0
y ′′ = (y ′)a (a ∈ C\{0, 1, 2, 3}) 6= 0 6= 0

y ′′ = 6yy ′ − 4y 3 + c(y ′ − y 2)3/2
(c ∈ C\{0}) 6= 0 6= 0

y ′′ = 3(y′)2

2y
+ y 3 6= 0 0

Note y ′′ = (xy ′ − y)3 has I1 6= 0 a.e. (I1 = 0 along xy ′ = y)
and I2 = 0. It has 3-dim intransitive symmetry.

(2, 3, 5)-distributions, (G2,P1), M = 14, S = 7. Monge form:
〈∂x + p∂y + q∂p + f ∂z , ∂q〉, with f = f (x , y , p, q, z), fqq 6= 0.

Submax sym model (S = 7) Cartan quartic

f = qm
(m 6∈ {−1, 0, 1

3
, 2

3
, 1, 2}) N

f = log(q) N

G2-contact structures, (G2,P2), M = 14, S = 7.
T. 2021: Locally, ∃! G2-contact str. with 7-dim sym.
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Parabolic subalgebras and gradings

g : s.s. Lie algebra; (g, p) Z-grading: g = g− ⊕
p︷ ︸︸ ︷

g0 ⊕ g+,
∃ grading element Z with gj = {x ∈ g : [Z, x ] = jx}.
4! Grading is auxilliary! Filtration gi :=

⊕
j≥i gj is important.

Example (A2/P1,2, G2/P1, G2/P2)

(
0 1 2

-1 0 1

-2 -1 0

)

Curved versions:
2nd order ODE (2, 3, 5)-distrib. G2-contact str.
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Rank 3 examples

5-dim Legendrian contact (M5, C = E ⊕ F), (SL(4),P1,3),
M = 15, S = 8. Basic invariants:

τE , τF : obstruct Frobenius-integrability;
W: binary quartic (analogue of Weyl curvature).

When τF = 0, can describe as PDE uij = fij(x
k , u, u`).

FACT: ∃ three inequivalent models with 8-dim symmetry, each
with exactly one of these invariants being nonzero. When
τE = τF = 0, the model (Doubrov–Medvedev–T. 2020) is:

uxx = (uy )2, uxy = 0, uyy = 0.

Real CR hypersurfaces in C3 with Levi form that is:

positive-def: (SU(1, 3),P1,3), M = 15, S = 7; several
parametric families of submax models (Loboda 2001).
indefinite: (SU(2, 2),P1,3), M = 15, S = 8; ∃! submax model:

Im(w + z̄1z2) = |z1|4 (Winkelmann hypersurface).
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Parabolic geometries

Starting point: ∃ equivalence of categories between regular, normal
parabolic geometries and underlying geometric structures (Tanaka,
Morimoto, Čap–Schichl). Upshot: study symmetry “upstairs”.

Let (G → M, ω) be a parabolic geometry of type (G ,P).

Curvature: K = dω + 1
2 [ω, ω], κ(x , y) = K (ω−1(x), ω−1(y)),

κ : G →
∧

2(g/p)∗ ⊗ g ∼=
∧

2g+ ⊗ g. Flat if κ = 0.
Regular: im(κ) valued in the positive subspace wrt Z.
Normal: ∂∗κ = 0, with ∂∗ the Lie alg homology differential.
Harmonic curvature: κH := κ mod im(∂∗), valued in
H2(g+, g)1, i.e. positive part of H2(g+, g) := ker ∂∗

im ∂∗

(completely reducible, so only the g0-action is relevant).

Thm: (G → M, ω) is flat iff κH = 0 .

Submax sym dim: S := max{dim(inf(G, ω)) | κH 6≡ 0} .

Given: P-irrep V ⊂ H2(g+, g)1. Say (G → M, ω) is type (G ,P,V)
if it is of type (G ,P) and im(κH) ⊂ V. Analogously define SV.
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Main theorem

Theorem (T. 2021)

Let G be a complex or split-real simple Lie group, P a parabolic
subgroup. Let (G → M, ω) be a reg./nor. parabolic geometry of
type (G ,P,V), where V ⊂ H2(g+, g)1 is a P-irrep. Suppose that
diminf(G, ω) = SV, and rank(G ) ≥ 3 or (G ,P) = (G2,P2). Then
about any u ∈ G with κH(u) 6= 0, the geometry is locally
homogeneous and is:

complex case: locally unique;

split-real case: locally one of at most two possibilities.

NB. The result is constructive in the “Cartan sense”. (More later.)
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Framework for studying symmetry gaps
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Key algebraic ingredient #1: Kostant theory

Given (g, p), we have g = g− ⊕
p︷ ︸︸ ︷

g0 ⊕ g+. Kostant (1961)
⇒ H2(g+, g)1 ∼=g0 H2

+(g−, g), and this is easily computed using:

Theorem (Simplified Kostant thm for g C-simple with highest weight λ)

Hk(g−, g) ∼=g0

⊕
w∈Wp(k)

V−w•λ. Also have explicit lowest weight vectors φ0.

Vµ is the g0-irrep with lowest weight µ.

w • λ := w(λ+ ρ)− ρ (affine action of Weyl group W ).

W p(k) := length k words of the Hasse subset W p ⊂W .

Efficient Dynkin diagram recipes, cf. Baston–Eastwood (1989).

Example (G2/P1: Z = Z1, W p(1) = {(1)}, W p(2) = {(12)})

Calculation Lowest wt Interpretation

(1) •
0 1

=
−2 2 2λ1 − 2λ2 =

−2α1 − 2α2

H1
≥0(g−, g) = 0

(∴ pr(g−) ∼= g.)

(12) •
0 1

=
−8 4 8λ1 − 4λ2

= +4α1
H2

+(g−, g) ∼= S4g1
∼= S4(g−1)∗
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Key algebraic ingredient #2: Tanaka prolongation

Definition (Extrinsic Tanaka prolongation)

Given φ in a g0-rep, let a := aφ ⊂ g be the graded Lie subalg with:

1 a≤0 := g− ⊕ ann(φ), and

2 ak := {x ∈ gk : [x , g−1] ⊂ ak−1}, ∀k > 0.

Of interest:

0 6= φ ∈ H2
+(g−, g);

0 6= φ ∈ V ⊂ H2
+(g−, g), where V is a (irreducible) submodule;

0 6= φ ∈ O ⊂ H2
+(g−, g), where O is a G0-orbit.

Definition

If aφ+ = 0, ∀φ ∈ H2
+(g−, g), then (g, p) is prolongation-rigid (PR).

Kruglikov–T. (2014): If p ⊂ g is maximal parabolic, i.e. single
cross, then (g, p) is PR.
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Symmetry gaps – brief summary

Kruglikov-T. (2014):

Fix any (G ,P). Then S ≤ U for some universal upper bound

U := max{dim aφ : 0 6= φ ∈ H2
+(g−, g)} .

(Analogously, SV ≤ UV or SO ≤ UO.)
Complex or split-real simple G setting:

Efficient Dynkin diagram recipes to compute U, e.g.

 U = 7.

S = U , but some S < U exceptions only when rank(G ) = 2.
Non-exceptional cases: any submax sym structure is locally
homogeneous near u ∈ G with κH(u) 6= 0.

In fact, we proved a much stronger result (KT 2014 / 2016):

s(u) ⊂ aκH(u) , ∀u ∈ G ,

where s(u) := gr(f(u)), with f(u) := ωu(inf(G, ω)).
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Exhibiting homogeneous models

Q: How to exhibit a homogeneous model?

Example ((2, 3, 5)-distributions)

Coordinate model: D := 〈∂x + p∂y + q∂p + qm∂z , ∂q〉, where
m ∈ C\{−1, 0, 1

3 ,
2
3 , 1, 2}; syms X1, ...,X7.

Lie-theoretic model: (f, f0) infinitesimally effective pair, with
f0-invariant filtration

f = f−3 ⊃ f−2 ⊃ f−1 ⊃ f0 ⊃ 0

Cartan-theoretic model: ?
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Algebraic models

Any homogeneous parabolic geometry over M = F/F 0 that is
“infinitesimally effective” admits a description as:

Definition (Cartan-theoretic description of homog. structures)

An algebraic model (f; g, p) is a Lie algebra (f, [·, ·]f) such that:

M1: f ⊂ g is a filtered subspace, with filtrands fi := f ∩ gi , and
s := gr(f) satisfying s− = g−. (Thus, f/f0 ∼= g/p.)

M2: f0 inserts trivially into κ(x , y) := [x , y ]− [x , y ]f.
(Thus, κ ∈

∧2(f/f0)∗ ⊗ g ∼=
∧2(g/p)∗ ⊗ g.)

M3: κ is regular and normal, i.e. κ ∈ ker(∂∗)+.

Given (G ,P), let M be the set of all algebraic models (f; g, p).

M is partially ordered: f ≤ f′ iff f ↪→ f′ as Lie algs.

M admits a P-action: i.e. p · f = Adpf.

Upshot: Classify maximal elements in (M,≤) with κH 6= 0.
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Necessary constraints

Proposition

Let (f; g, p) be an algebraic model. Then

1 (f, [·, ·]f) is a filtered Lie alg, and s = gr(f) ⊂ g is a graded Lie
subalg.

2 f0 · κ = 0, i.e. [z , κ(x , y)] = κ([z , x ], y) + κ(x , [z , y ]), ∀x , y ∈ f,
∀z ∈ f0.

3 s ⊂ aκH , i.e. f is a “constrained filtered sub-deformation” of aκH .

Proof.

1 Recall fi := f ∩ gi . Hence, [fi , fj ]f ⊂ fi+j follows from regularity.

2 Use Jacobi identity for [·, ·]f = [·, ·]− κ(·, ·).

3 ∂∗ is p-equiv., so im(∂∗) is p-inv. Then (2) ⇒ f0 · κH = 0, so
s0 · κH = 0, since g+ is trivial on H2(g+, g). For k > 0,
[sk , g−1] = [sk , s−1] ⊂ sk−1. Let a := aκH , so s0 ⊂ a0 := ann(κH).
Inductively, sk ⊂ ak , ∀k > 0.
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The canonical curved model

Fix (G ,P,V) complex or split-real, where V ⊂ H2
+(g−, g) is a

g0-irrep. with lowest weight vector φ0.

Define f := aφ0 ⊂ g as a filtered subspace, but with bracket

[·, ·]f := [·, ·]− φ0(·, ·),

where we view φ0 as a harmonic 2-cochain. Well-defined?

im(φ0) ⊂ g− ⊂ a almost always.

Exceptions when rank(G ) = 2.

Is Jacobi identity satisfied? Yes

Get (f; g, p) with κH = φ0, dim f = UV, maximal in (M,≤).
Called “canonical curved model of type (G ,P,V)”; have
SV = UV. This relies on the following (KT 2014):

Prop: dim aφ = dim aφ0 iff [φ] ∈ G0 · [φ0] (so UV = dim aφ0).

Q: Classify (up to P-action) all (f; g, p) with s = gr(f) = aφ0 .
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Main theorem – proof ideas
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(G2,P2) case

α2

α1

g2:

g1:

g0:

g−1:

g−2:

Let {Z1,Z2} be dual to {α1, α2}. Set Z := Z2.
g0 = 〈Z, hα1 , eα1 , e−α1〉 ∼= gl2

H2
+(g−, g) =

7 −4
=: Vµ

µ = −7λ1 + 4λ2 = −2α1 + α2 (degree +1)
φ0 = eα2 ∧ eα1+α2 ⊗ e−3α1−α2

a = g− ⊕ a0, a0 = 〈Z1 + 2Z2〉 ⊕ g−α1

GOAL: Classify (f; g, p) with gr(f) = a. Step 1: Determine subspace f ⊂ g.

Let T ∈ f0 with gr0(T ) = Z1 + 2Z2. Since (Z1 + 2Z2)(α) 6= 0,

∀α ∈ ∆(g+), use P+-action
normalize
 T = Z1 + 2Z2 ∈ f0.

Define a⊥ = 〈Z2〉 ⊕ gα1 ⊕ g+, so g = a⊕ a⊥ (adT -invariant). Write f as a
graph over a, i.e. f 3 x = a + d(a) for a ∈ a and d ∈ a∗ ⊗ a⊥, positive

degree and T · d = 0 , i.e. d is a sum of weight vectors for weights that

are multiples of µ = −2α1 + α2. Weights of a∗ (and a⊥):

0, α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 + 2α2.

Must have d = 0, so f = a as filtered subspaces of g.
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(G2,P2) continued

Step 2: Determine curvature κ ∈ ker(∂∗)+ ⊂
∧2 g+ ⊗ g.

Thm: Lowest degree part of κ is harmonic. (Čap–Slovak, Thm.3.1.12.)

H2
+(g−, g) ∼= Vµ, with µ = −2α1 + α2 has degree +1. (Apply Z = Z2.)

Since T · κ = 0, want 2-cochain wts:

σ = rµ = α + β + γ, α, β ∈ ∆(g+) distinct, γ ∈ ∆ ∪ {0}, r ≥ 1 .

Highest weight of g is λ = 3α1 + 2α2. Note −λ ≤ γ < σ = rµ. Apply Z1:

−3 ≤ Z1(σ) = rZ1(µ) = −2r ⇒ r ≤ 3
2
.

µ has degree +1 and σ = kα1 + `α2 with k, ` ∈ Z, so r = 1 .

H2
+(g−, g) ∼= Vµ is a g0-irrep, with unique lwv φ0, then κ = cφ0 for c 6= 0.

Use Adexp(tZ) to rescale: over C, we have wlog c = 1.

Conclusion: We get only the canonical curved model.

NB.

1 Over R, we might have at most c = ±1 after rescaling.

2 Did not use full structure equations for (G2,P2) geometries!

3 Made efficient use of G2 weights.
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General case

The general case is similar, but more technical, using specific knowledge
coming from Kostant’s thm for the lowest weight µ and lwv φ0. Starting point:

a0 = ann(φ0) = ker(µ)⊕
⊕

γ∈∆(g0,≤0)

gγ

wrt a certain secondary grading. Let a := aφ0 = g− ⊕ a0 ⊕ ....

Given a geometry of type (G ,P,V), we can appeal to Čap (2005) and
equivalently regard it as a geometry on a “minimal twistor space”:

G/P

G/P̄

(“Normality” and “regularity” are well-behaved in passing down.)

Example (Am/P1,2 → Am/P1)

For 2nd order ODE systems, κH is comprised of Fels torsion T (hom. +2) and
Fels curvature S (hom. +3). If S = 0, the system is geodesic (for some [∇]).

Benefits of this “twistor simplification” (KT 2014): a+ = 0 , so f1 = 0 .
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Generic case – strategy

Lemma

Let g be complex simple, ` := rank(g) ≥ 3, λ its highest root, p ⊂ g parabolic.
Let w = (jk) ∈W p(2) with µ = −w • λ satisfies Z(µ) > 0. Then:

(L1) µ =
∑`

i=1 miαi has coefficients mi of opposite sign. More precisely,
mi < 0, ∀i 6= j , k, and either mj > 0 or mk > 0.

(L2) ∃H0 ∈ ker(µ) with f (H0) 6= 0 for all f = α + β with
(α, β) ∈ R := ∆+ × (∆+ ∪ {0}).

Given (G ,P, φ0 ∈ Vµ), classify (wrt P-action) all (f; g, p) with s = gr(f) = aφ0 .

Strategy:

1 WLOG, pass to the minimal twistor space. Then f1 = 0 .

2 Pick H0 as in Lemma. Use P+-action to normalize to that H0 ∈ f0 .

3 ker(µ) ⊂ f0 : Set H ′ := H ′0 + H ′+ ∈ f0 for H ′0 ∈ ker(µ), H ′+ ∈ g1. Then

[H0,H
′]f = [H0,H

′] = [H0,H
′
+] ∈ g+ ∩ f = f1 = 0

(L2)⇒ H ′+ = 0.
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General case - 3

4 Show f = a as filtered subspaces of g.

a = g− ⊕ a0, a0 := ker(µ)⊕
⊕

γ∈∆(g0,≤0)

gγ

a⊥ := ker(µ)⊥ ⊕ g0,+ ⊕ g+

Have f 3 x = a + d(a) for d : a→ a⊥ of positive degree; admissible

weights are multiples of µ. But by (L1), µ has coeffs of opposite sign!

d|g− = 0: immediate - all weights of g∗−⊗ a⊥ are non-negative.
d|a0 = 0: Bit more technical part – see my article.

5 Determine κ ∈ ker(∂∗)+ ⊂
∧2 g+ ⊗ g. Get canonical curved model.

f0 · κ = 0. Want 2-cochain wts σ = rµ = α + β + γ with

α, β ∈ ∆(g+) distinct, γ ∈ ∆ ∪ {0}, r ≥ 1 .

Hw of g is λ =
∑

i niαi , ni > 0, ∀i . Have −λ ≤ γ < σ = rµ.

Have µ = −(jk) • λ ≡ −λmod {αj , αk}. Apply Zi for i 6= j , k:

−ni ≤ rZi (µ) = −rni . Thus, r ≤ 1 , so r = 1 .

H2
+(g−, g) ∼= Vµ irrep, κ = cφ0, c 6= 0. Wlog κ = φ0 over C.
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Summary

We used a Cartan-theoretic approach to establish a local
uniqueness result for submax sym models.

Coordinate models associated to some of these canonical
curved models are known, e.g. in the settings of

projective structure (Mn, [∇]), n ≥ 3 (Egorov 1951);
split-conformal structures (Mn, [g ]), n ≥ 4
(Casey–Dunajski–Tod 2013, Kruglikov–T. 2014);
G -contact structures (T. 2018);
C3-Monge (Anderson–Nurowski 2017);
Legendrian contact structures (Doubrov–Medvedev–T. 2020)

Advantages of the Cartan-theoretic approach:

Efficient / uniform classification strategy.
Take advantage of basic rep theory of g.
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