Poisson transforms adapted to BGG-complexes

Christoph Harrach

University of Vienna

Symmetry, Curvature Reduction, and EquivAlence Methods August 20, 2021

Overview

- Parabolic geometries v.s. symmetric spaces
 - BGG-complexes on homogeneous parabolic geometries
 - Intertwining operators adapted to BGG-complexes
- Poisson transforms
 - Construction of PT
 - PT and Differential operators
 - Poisson transforms for complex hyperbolic space

Parabolic geometries and BGG-complexes Intertwining operators

Poisson transforms

Conformal compactification BGG-complexes

Conformal compactification

Let (S^{n+1}, c) be the conformal sphere of dimension n+1 with the natural action of $\hat{G} := SO_0(n+2,1)$. Breaking the symmetry via a tractor $I^A \in \Gamma(\mathcal{T})$ with $I^2 = 1$ we obtain a natural action of the group $G = \operatorname{Stab}_{\hat{G}}(I)$ isomorphic to $SO_0(n+1,1)$ on S^{n+1} .

Let $K \subset G$ maximal compact and $P \subset G$ parabolic. The two open G-orbits S_{\pm} are isomorphic to the real hyperbolic space G/K with common boundary S_0 being the closed G-orbit isomorphic to the conformal n-sphere G/P.

More generally: G connected semisimple Lie group, $K \subset G$ maximal compact subgroup, $P \subset G$ parabolic subgroup, G/K of non-compact type. Then we can view G/P as (part of) the boundary of the symmetric space G/K at infinity.

The topology and geometry of these two spaces are quite different:

- *G*/*K*: complete Riemannian manifold; invariant inner products and connections on every vector bundle; various local invariants and natural differential operators.
- *G*/*P*: compact manifold; local invariants and natural differential operators are rare

The boundary relation was exploited to find joint eigenfunctions of invariant DO on G/K. However: the geometry of G/P was mostly disregarded.

One important example of natural differential operators on parabolic geometries is given by BGG-sequences. We recall their construction in the case of homogeneous parabolic geometries G/P.

Conformal compactification BGG-complexes

BGG-complex I

Let \mathbb{V} be a *G*-representation and $V := G \times_P \mathbb{V}$ its associated vector bundle. Then *V* naturally carries a flat *G*-invariant connection ∇^V , inducing a family of covariant exterior derivatives

$$d^V \colon \Omega^k(G/P, V) \to \Omega^{k+1}(G/P, V)$$

with $d^V \circ d^V = 0$.

The cotangent bundle $T^*(G/P)$ is naturally a bundle of Lie algebras. Thus, the differentials in Lie algebra homology induce G-equivariant bundle maps

$$\partial^* = \partial^*_k \colon \Lambda^k T^*(G/P) \otimes V \to \Lambda^{k-1} T^*(G/P) \otimes V,$$

called the Kostant codifferential. Since $\ker(\partial_k^*) \supset \operatorname{im}(\partial_{k+1}^*)$ are G-subbundles we can define the G-bundle

$$\mathcal{H}_k(G/P, V) := \ker(\partial_k^*) / \operatorname{im}(\partial_{k+1}^*).$$

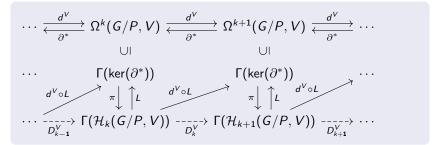
Conformal compactification BGG-complexes

BGG-complex II

For all k there is a unique natural differential operator

$$L = L_k \colon \Gamma(\mathcal{H}_k(G/P, V)) o \Gamma(\ker(\partial^*))$$

with $\pi \circ L = 0$ and $\partial^* \circ d^V \circ L = 0$ ("splitting operator").



The operator $D_k^V := \pi \circ d^V \circ L_k$ is the *k*-th BGG-operator and the lower line is the BGG-complex.

Intertwining operators

We want to relate the BGG-complex on G/P to differential forms on G/K as follows:

Let $W \to G/K$ be a natural vector bundle. Assume there exists a smooth intertwining operator

 $\Phi \colon \Omega^k(G/P, V) \to \Omega^\ell(G/K, W).$

which is trivial on $im(\partial^*)$ and $im(d^V\partial^*)$. Then Φ factors to a *G*-equivariant map

$$\underline{\Phi}\colon \Gamma(\mathcal{H}_k(G/P,V))\to \Omega^k(G/K,W)$$

which satisfies:

- For $\sigma \in \Gamma(\mathcal{H}_k(G/P, V))$ we have $\underline{\Phi}(\sigma) := \Phi(\alpha)$ for any $\alpha \in \pi^{-1}(\sigma)$,
- For $\tau \in \Gamma(\mathcal{H}_{k-1}(G/P, V))$ we have $\underline{\Phi}(D_{k-1}^V \tau) = \Phi(d^V \beta)$ for any $\beta \in \pi^{-1}(\tau)$.

Tractor calculus on G/K |

For relating the BGG-complex to geometry on G/K we need to consider tractor bundles and define the differential operators induced by the tractor connection.

Let \mathbb{W} be an irreducible *G*-representation and $W := G \times_{K} \mathbb{W}$ the associated vector bundle. This comes with the tractor connection ∇^{W} and the induced covariant exterior derivative d^{W} on $\Omega^{\bullet}(G/K, W)$.

Moreover, there is a unique inner product on $\mathbb W$ which is compatible with the Cartan involution $\theta,$ i.e.

$$\langle X \cdot w_1, w_2 \rangle = -\langle w_1, \theta(X) \cdot w_2 \rangle$$
 $X \in \text{Lie}(G), w_1, w_2 \in \mathbb{W}.$

This induces a *G*-invariant bundle metric on $\Lambda^* T^*(G/K) \otimes W$ and thus a Hodge star operator $*^W$ as well as an L^2 -inner product $\langle \langle , \rangle \rangle$ on $\Omega^{\bullet}(G/K, W)$.

Define the *covariant codifferential* δ^W to be the formal adjoint of d^W with respect to $\langle\!\langle \ , \ \rangle\!\rangle$ and the *covariant Laplace* $\Delta^W := d^W \delta^W + \delta^W d^W$.

Intertwining operators adapted to BGG-complexes

Theorem

Let \mathbb{V} be an irreducible G-representation and define $V_K := G \times_K \mathbb{V}$ and $V_P := G \times_P \mathbb{V}$. Let

$$\Phi\colon \Omega^k(G/P,V_P)\to \Omega^\ell(G/K,V_K)$$

be a smooth intertwining operator. Then the following are equivalent:

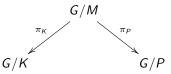
- $\Delta^{V_{\mathcal{K}}} \circ \Phi = 0$
- **2** $\Phi \circ \partial^* = 0$ and $\Phi \circ d^{V_P} \circ \partial^* = 0$.

In this case we say that Φ is BGG-compatible.

Construction of Poisson transforms Poisson transforms and differential operators PT for complex hyperbolic space

Construction of Poisson transforms |

Via the Iwasawa decomposition we obtain $G/K \times G/P \cong G/M$ with $M := K \cap P$ and thus a double fibration



with G-equivariant projections.

The product structure induces a pointwise decomposition

$$\Lambda^{k}T^{*}(G/M) \cong \bigoplus_{p+q=k} \left(\Lambda^{p}T^{*}(G/K)\right) \otimes \left(\Lambda^{q}T^{*}(G/P)\right).$$

Thus, we have a natural notion of a (p,q)-form on G/M. In particular, for $n := \dim(G/P)$ we can integrate (ℓ, n) -forms over the compact fibre of π_K , which is isomorphic to G/P.

Construction of Poisson transforms Poisson transforms and differential operators PT for complex hyperbolic space

Construction of Poisson transforms II

Fix a differential form $\phi \in \Omega^{\ell,n-k}(G/M)$. For $\alpha \in \Omega^k(G/P)$ we construct $\Phi(\alpha) \in \Omega^{\ell}(G/K)$ as follows:

- Consider the pullback $\pi_P^* \alpha \in \Omega^{0,k}(G/M)$.
- Integrate over G/P.

Lemma

If ϕ is G-invariant, then Φ is G-equivariant.

Definition (Poisson transform)

For all $\phi \in \Omega^{\ell,n-k} \left({G}/{M}
ight)^G$ we call the intertwining operator

$$\Phi\colon \Omega^k(G/P)\to \Omega^\ell(G/K), \qquad \alpha\mapsto \int_{G/P}\phi\wedge \pi_P^*\alpha.$$

the Poisson transform associated to the Poisson kernel ϕ .

Reduction to representation theory

A Poisson kernel ϕ is a *G*-invariant differential form on *G*/*M* and thus determined by its value in any point.

Let \mathfrak{g} and \mathfrak{m} be the Lie algebras of G and M, respectively. Then

 $\phi(eM) \in \Lambda^{ullet}(\mathfrak{g}/\mathfrak{m})^*$

is *M*-invariant.

Theorem

There is a bijective correspondence between Poisson transforms

$$\Phi\colon \Omega^k(G/P)\to \Omega^\ell(G/K)$$

and the set of M-invariant elements in $\Lambda^{\ell,n-k}(\mathfrak{g}/\mathfrak{m})^*$.

In particular, we can construct smooth intertwining operators by determining invariant elements in finite dimensional representations of a reductive Lie group.

Poisson transforms and differential operators I

We define the following operators on $\Omega^{\bullet}(G/M)$:

- The derivative d on $\Omega^{\bullet}(G/M)$ splits into partial derivatives $d = d_K + d_P$, where d_K raises the first degree and d_P the second.
- The Hodge star * on $\Omega^{\bullet}(G/K)$ induces

$$*_{\kappa} \colon \Omega^{p,q}(G/M) \to \Omega^{\dim(G/K)-p,q}(G/M).$$

- Define $\delta_{\mathcal{K}} := (-1)^p *_{\mathcal{K}}^{-1} d_{\mathcal{K}} *_{\mathcal{K}} \text{ and } \Delta_{\mathcal{K}} := d_{\mathcal{K}} \delta_{\mathcal{K}} + \delta_{\mathcal{K}} d_{\mathcal{K}}.$
- The Kostant codifferential ∂^* on $\Omega^{\bullet}(G/P)$ induces

$$\partial_P^*\colon \Omega^{p,q}(G/M) \to \Omega^{p,q-1}(G/M).$$

All these operators are *G*-equivariant, so they induce *M*-equivariant maps on $(\Lambda^{\bullet}(\mathfrak{g}/\mathfrak{m})^*)^M$.

Construction of Poisson transforms Poisson transforms and differential operators PT for complex hyperbolic space

Poisson transforms and differential operators II

Theorem

Let $\Phi: \Omega^k(G/P) \to \Omega^\ell(G/K)$ be a Poisson transform with associated kernel ϕ .

- The compositions $\Phi \circ d$ and $\Phi \circ \partial^*$ are again Poisson transforms with associated kernels $(-1)^{n-k+\ell} d_P \phi$ and $(-1)^{n-k+\ell+1} \partial_P^* \phi$, respectively.
- **2** The compositions $d \circ \Phi$, $* \circ \Phi$, $\delta \circ \Phi$ and $\Delta \circ \Phi$ are again Poisson transforms with associated kernels $d_K \phi$, $*_K \phi$, $\delta_K \phi$ and $\Delta_K \phi$, respectively.

In particular, we can design intertwining operators adapted to BGG-complexes via computations in finite dimensional representations. Let G = SU(n + 1, 1) so that $G/K \cong H^{n+1}_{\mathbb{C}}$ is the complex hyperbolic space and $G/P \cong S^{2n+1}$ is the CR-sphere.

In this case, the BGG-complex on G/P coincides with the Rumin complex. Explicitly, let $H \subset T(G/P)$ be the contact subbundle and put Q := T(G/P)/H. Then for all $1 \le k \le 2n$ we have the short exact sequence

$$0 \longrightarrow \Lambda^{k-1}H^* \otimes Q^* \longrightarrow \Lambda^k T^*(G/P) \longrightarrow \Lambda^k H^* \longrightarrow 0.$$

The Kostant codifferential induces a bundle map

$$\underline{\partial}^* \colon \Lambda^k H^* \to \Lambda^{k-2} H^* \otimes Q$$

which is surjective for $k \leq n$ and injective for $k \geq n+1$. Thus, the homology bundles \mathcal{H}_k are subbundles of $\Lambda^k H^*$ for $k \leq n$ and quotients of $\Lambda^{k-2}H^* \otimes Q$ for $k \geq n+1$.

Theorem (Čap, H., Julg, 2020)

Let G = SU(n+1,1), K = U(n+1) and $P \subset G$ parabolic.

 If p + q ≤ n, there is a unique BGG-compatible Poisson transform Ω^{p+q}(G/P, C) → Ω^{p,q}(G/K) (up to multiples). The image of the induced map

$$\underline{\Phi}_{p,q} \colon \Gamma(\mathcal{H}_{p+q} \otimes \mathbb{C}) \to \Omega^{p,q}(G/K)$$

consist of harmonic, coclosed and primitive (p, q)-forms.

3 If p + q ≥ n + 1, there is a 2-parameter family of Poisson transforms $\Omega^{p+q}(G/P, \mathbb{C}) \rightarrow \Omega^{p,q}(G/K)$. The image of the induced maps

$$\Phi_{p,q}^{lpha,eta}\colon \Gamma(\mathcal{H}_{p+q}\otimes\mathbb{C}) o\Omega^{p,q}(G/K)$$

consist of harmonic and coprimitive (p,q)-forms and satisfy $\partial^* \Phi_{p+1,q}^{\alpha,*} = \overline{\partial}^* \Phi_{p,q+1}^{*,\alpha}$.

Theorem (Čap, H., Julg, 2020)

For all $0 \le k \le 2n+1$ there is a family of BGG-compatible Poisson transforms $\Omega^k(G/P) \to \Omega^k(G/K)$ so that the induced maps

 $\underline{\Phi}_k\colon \Gamma(\mathcal{H}_k)\to \Omega^k(G/K)$

satisfy

● their image consist of harmonic and coclosed differential forms which are primitive for 0 ≤ k ≤ n and coprimitive for n + 1 ≤ k ≤ 2n + 1

2 for the k-th BGG-operator D_k we have

$$d \circ \underline{\Phi}_k = c_k \underline{\Phi}_{k+1} \circ D_k$$

with

$$c_k = \begin{cases} n-k+1 & k \leq n \\ n-k-1 & k \geq n+1. \end{cases}$$

Construction of Poisson transforms Poisson transforms and differential operators PT for complex hyperbolic space

References

- A. Čap, C. Harrach, P. Julg: *A Poisson transform adapted to the Rumin complex*, to appear in J. Topol. Anal.
- C. Harrach: *Poisson transforms adapted to BGG-complexes,* Diff. Geom. Appl., Vol. 64, 2019, pp. 92-113
- C. Harrach: Poisson transforms for differential forms, Arch. Math. (Brno), Tomus 52 (2016), pp. 303-311
- P.-Y. Gaillard: Transformation de Poisson de formes differentielles. Le cas de l'espace hyperbolique. Comment. Math. Helvetici, Vol. 61 (1986), Birkhäuser.