Second order PDEs, conformal structure on solutions and dispersionless integrability

Boris Kruglikov (UiT the Arctic University of Norway)

> Research program GRIEG SCREAM workshop 2021

Boris Kruglikov (UiT Tromsø Norway)

Jet formalism and conformal structures

Let $J^{\ell}M \to M$ be the bundle, whose points are ℓ -jets of functions $u: M \to \mathbb{R}$. A choice of coordinates x^i on M leads to coordinates (x^i, u_{α}) on $J^{\ell}M$, with α being a multi-index of length $|\alpha| \leq \ell$. Note that $\pi_{\ell,\ell-1}: J^{\ell}M \to J^{\ell-1}M$ is an affine bundle modelled on $S^{\ell}T^*M$. In particular, the fiber of $\pi_{2,1}$ consists of quadrics on TM.

A (nonlinear) differential operator of order $\leq \ell$ on M is a function $F \in C^{\infty}(J^{\ell}M) \subset C^{\infty}(J^{\infty}M)$. It defines a PDE (system) $\mathcal{E} = \{F = 0\} \subset J^{\ell}M$, as well as its prolongation

$$\mathcal{E}^{(\infty)} = \{ D_{\alpha}F = 0 \} \subset J^{\infty}M.$$

Restriction of the $dF \in \Omega^1(J^{\infty}M)$ to $\pi_{\ell,\ell-1}^{-1}(*)$ is a homogeneous polynomial of degree ℓ on $\pi_{\infty}^*T^*M$ called the symbol of F:

$$\sigma_F = \sum_{|\alpha|=\ell} (\partial_{u_{\alpha}} F) \partial_{\alpha} \in \Gamma(\pi_{\infty}^* S^{\ell} TM).$$

Its conformal class depends only on \mathcal{E} .

Boris Kruglikov (UiT Tromsø Norway)

Symbol and Characteristic variety

For a solution $u \in \text{Sol}(\mathcal{E})$ we identify $M_u \simeq j_{\infty} u(M) \subset J^{\infty} M$. Restriction of the symbol σ_F to M_u is a symmetric ℓ -vector

 $\sigma_{F|u} \in \Gamma(S^{\ell}TM_u).$

The characteristic variety is the zero locus of the symbol: its fiber at $x \in M_u$ is the projective variety

$$\operatorname{Char}(\mathcal{E}, u)_{\boldsymbol{x}} = \{ [\theta] \in \mathbb{P}(T_{\boldsymbol{x}}^* M_u) : \sigma_F(\theta) = 0 \}.$$

In coordinates to compute the characteristic variety one converts the symbol of linearization of F ("Fourier transform": $\partial_i \mapsto p_i$)

$$\sigma_F = \sum_{|\alpha| = \ell} \sigma_\alpha(u) \partial_\alpha \quad \text{to the polynomial} \quad \sigma_F(p) = \sum_{|\alpha| = \ell} \sigma_\alpha(u) p^\alpha$$

where $p = (p_1, \ldots, p_d)$ is a coordinate on the fiber of T^*M_u and $p^{\alpha} = p_1^{i_1} \cdots p_d^{i_d}$ for a multi-index $\alpha = (i_1, \ldots, i_d)$.

PDEs of the second order

For an operator F of the second order

$$\sigma_F = \sum_{i \leq j} \frac{\partial F}{\partial u_{ij}} \partial_i \partial_j = \sum_{i,j} \sigma_{ij}(u) \partial_i \otimes \partial_j,$$

where $\sigma_{ij}(u) = \frac{1}{2}(1 + \delta_{ij})\partial_{u_{ij}}F$.

Thus, for second order PDEs the characteristic variety is a field of quadrics, which we assume nondegenerate, i.e. $det(\sigma_{ij}(u)) \neq 0$.

The nondegeneracy of σ_F implies that is inverse

$$g_F = \sum_{ij} g_{ij}(u) dx^i dx^j, \qquad (g_{ij}(u)) = (\sigma_{ij}(u))^{-1},$$

defines a symmetric bilinear form on $T_x M_u$. The canonical conformal structure $c_F = [g_F]$ on solutions of \mathcal{E} is a base for geometric approach to integrability.

Nondegeneracy condition: geometric interpretation

Freezing 1-jet of u, equation F = 0 determines a hypersurface \mathcal{E}' in the Lagrangian Grassmannian $\Lambda \stackrel{\text{loc}}{\simeq} \mathbb{R}^{\binom{d+1}{2}}(u_{ij})$, and $\forall L \in \mathcal{E}'$ the tangent $T_L \Lambda \simeq S^2 L^* \simeq \mathbb{R}^{\binom{d+1}{2}}(v_{ij})$ contains two ingredients:

(a) the Veronese cone $V = \{p \odot p : p \in L^*\}$ of rank 1 matrices; (b) tangent hyperplane $T_L \mathcal{E}'$ defined by the linearized equation

$$\sum_{i \le j} \frac{\partial F}{\partial u_{ij}} \, v_{ij} = 0.$$

The non-degeneracy of \mathcal{E} means $T_L \mathcal{E}'$ is not tangential to V. In fact, because $T_p V = p \odot L^*$ for $p \neq 0$, the kernel of the quadratic form

$$\sigma_F(p) = \sum_{i \le j} \frac{\partial F}{\partial u_{ij}} \, p_i p_j$$

on $L^* \simeq T^*_{\boldsymbol{x}} M$ is

$$\operatorname{Ker} \sigma_F = \{ p \in L^* : T_p V \subset T_L \mathcal{E} \}.$$

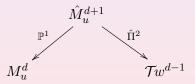
Dispersionless Lax pairs (dLp)

Definition

A dispersionless Lax pair of order k is a bundle $\hat{\pi}: \hat{M}_u \to M_u$ (correspondence space), whose fibres are connected curves, together with a rank 2 distribution $\hat{\Pi} \subseteq T\hat{M}_u$ such that:

- $\forall \; \hat{m{x}} \in \hat{M}_u$, $\hat{\Pi}(\hat{m{x}})$ depends only on $j_{m{x}}^k u$,
- $\hat{\Pi}$ is transversal to the fibres of $\hat{\pi}$,
- Frobenius integrability $[\Gamma(\hat{\Pi}), \Gamma(\hat{\Pi})] = \Gamma(\hat{\Pi})$ holds mod \mathcal{E} .

Thus we have the twistor fibration



2-plane congruence $\Pi(\hat{x}) := (d\hat{\pi})_{\hat{x}}(\hat{\Pi}) \subset T_{x}M$ is parametrized by a spectral parameter λ (\mathbb{P}^{1} coordinate).

Theorem (D. Calderbank & BK 2016-2018)

A dLp $\hat{\Pi}$ is characteristic for \mathcal{E} , i.e. $\forall u \in \text{Sol}(\mathcal{E})$, $\hat{x} \in \hat{M}_u$ and $\theta \in \text{Ann}(\Pi(\hat{x})) \subseteq T^*_{x}M_u$ we have $\sigma_F(\theta) = 0 \Leftrightarrow [\theta] \in \text{Char}(\mathcal{E})$.

This means that for each solution u and $\hat{x} \in \hat{M}_u$, $\Pi(\hat{x})$ is a coisotropic 2-plane for the conformal structure c_F . Such 2-planes can only exist for $2 \leq d \leq 4$: for d = 2 the condition is vacuous; for d = 3 the coisotropic 2-planes at each point x form a rational conic \mathbb{P}^1 ; for d = 4 they form a disjoint union of two rational curves $2 \times \mathbb{P}^1$, the so-called α -planes and β -planes.

The passage from a 2-plane congruence $\Pi = \langle X, Y \rangle$ to a dLp can be understood as a lift, with respect to the projection $\hat{\pi}$:

$$\hat{X} = X + m \,\partial_{\lambda}, \quad \hat{Y} = Y + n \,\partial_{\lambda}.$$

The resulting rank 2 distribution $\hat{\Pi} = \langle \hat{X}, \hat{Y} \rangle$ on \hat{M}_u is integrable mod \mathcal{E} (on-shell), but not identically (off-shell).

Integrable background geometry for d = 3: Example

Einstein-Weyl structure on M^3 is a conformal structure [g], 1-form ω and a torsion-free linear connection \mathbb{D} that satisfy for some $\Lambda \in C^{\infty}(M)$:

$$\mathbb{D}g = \omega \otimes g, \quad \operatorname{Ric}_{\mathbb{D}}^{\operatorname{sym}} = \Lambda g.$$

Example (3D: EW from dKP)

The dispersionless Kadomtsev-Petviashvili equation:

$$u_{tx} = (uu_x)_x + u_{yy}.$$

EW structure on solutions and dLp $\hat{\Pi} \subseteq T\hat{M}_u$, $\hat{M}_u \simeq \mathbb{R}^4(x, y, t, \lambda)$:

$$g = 4 dx dt - dy^2 + 4 u dt^2, \quad \omega = -4u_x dt,$$

 $\hat{X} = \partial_y - \lambda \partial_x + u_x \partial_\lambda, \ \hat{Y} = \partial_t - (\lambda^2 + u) \partial_x + (u_x \lambda + u_y) \partial_\lambda.$

This gives a large family of EW structures parametrized by solutions of the Gibbons-Tsarev system.

Boris Kruglikov (UiT Tromsø Norway)

Integrable background geometry for d = 4: Example

In 4D, the key invariant of a conformal structure [g] is its Weyl tensor W. Its self-dual and anti-self-dual parts are $W_{\pm} = \frac{1}{2}(W \pm *W)$, where * is the Hodge star operator

$$*W^i_{jkl} = \frac{1}{2}\sqrt{\det g} \ g^{ia}g^{bc}\epsilon_{ajbd}W^d_{ckl}.$$

A conformal structure is said to be half-flat if W_- or W_+ vanishes. The SD/ASD conditions switch under change of orientation.

Example (4D: Self-dual gravity)

The second Plebanski equation:

$$u_{xz} + u_{yt} + u_{xx}u_{yy} - u_{xy}^2 = 0.$$

SD structure on solutions, $M_u \simeq \mathbb{R}^4(x, y, z, t)$:

$$g = dx \, dz + dy \, dt - u_{yy} dz^2 + 2u_{xy} dz \, dt - u_{xx} dt^2,$$
$$\hat{X} = \partial_t + u_{xx} \partial_y - (u_{xy} - \lambda) \partial_x, \ \hat{Y} = \partial_z - (u_{xy} + \lambda) \partial_y + u_{yy} \partial_x.$$

Let $\mathcal{E}: F = 0$ be a nondegenerate determined PDE of the second order with the corresponding conformal structure c_F .

Theorem (E. Ferapontov & BK 2014)

The integrability of ${\mathcal E}$ by the method of hydrodynamic reductions is equivalent to

3D: the Einstein–Weyl property for c_F on any solution of the PDE;

4D: the self-duality property for c_F on any solution of the PDE.

Theorem (D. Calderbank & BK 2018)

The integrability of ${\mathcal E}$ via a nondegenerate dispersionless Lax pair is equivalent to

3D: the Einstein–Weyl property for c_F on any solution of the PDE;

4D: the self-duality property for c_F on any solution of the PDE.

The Monge-Ampère property

Monge-Ampère equation $\mathcal{E}: F = 0$ is a second order PDE that is linear combinations of minors of the Hessian matrix $d^2u = (u_{ij})_{d \times d}$ with coefficients being arbitrary functions on J^1M . Freezing the 1-jet, the equation \mathcal{E} can be written in the form

$$u_{00} = f(u_{01}, \dots, u_{0n}, u_{11}, u_{12}, \dots, u_{nn}), \quad d = n + 1.$$
 (†)

Theorem (E. Ferapontov, BK & V.Novikov 2019)

Equation (†) is of Monge-Ampère type if and only if $d^2 f$ is a linear combination of the 2nd fundamental forms of the Plücker embedding of the Lagrangian Grassmannian Λ restricted to the hypersurface defined by (†). This property is characterized by $N(n) = \frac{1}{24}n(n+1)(n+2)(n+7)$ relations, forming an involutive second-order quasilinear PDE system for f.

$$\mathcal{E}^{\binom{d+1}{2}-1} \subset \Lambda \subset \mathbb{P}^{p(d)-1}, \quad p(n) = \frac{2(2n+1)!}{n!(n+2)!}.$$

For Hirota type PDEs of the second order $F(u_{ij}) = 0$ in 4D integrability implies the Monge-Ampère property as proved by Ferapontov-BK-Novikov (2019).

Integrabile Monge-Ampère equations of Hirota type were investigated by Doubrov-Ferapontov (2010). The classification over $\mathbb C$ consists of 1 linear ultra-wave PDE and 5 versions of the Plebanski equation, obtained by deformations of the general heavenly equation

$$\alpha u_{12}u_{34} + \beta u_{13}u_{24} + \gamma u_{14}u_{23} = 0, \quad \alpha + \beta + \gamma = 0.$$

Here integrability is understood both in hydrodynamic and Lax sense. Note that for d = 4 no additional ingredient (connection) is required for the lift, so the Lax pair (dLp) is uniquely obtained from the conformal structure and the equation.

For general (translationally non-invariant) PDE integrability in hydrodynamic sense is not yet understood, hence integrability is considered only as the existence of a dispersionless Lax pair.

For general (translation non-invariant) PDEs in 4D we have:

Theorem (S.Berjawi, E.Ferapontov, BK, V.Novikov 2020)

Every nondegenerate equation of the second order such that c_F is half-flat on every solution is of Monge-Ampère type.

Freezing 1-jet of a solution yields a PDE that is linearizable or contact equivalent to one of five heavenly type equations.

Classification of the latter PDEs is out of reach at present.

Example of integrable deformation: 4D

There are several contact non-equivalent deformations of the heavenly equations, preserving integrability. Consider, for instance, the following family (f = 1 yields the 1st Plebansky equation)

$$u_{xz}u_{yt} - u_{xt}u_{yz} = f(\boldsymbol{x}, u, u_{\boldsymbol{x}}).$$

The corresponding conformal structure is

$$g = u_{xz} dx \, dz + u_{xt} dx \, dt + u_{yz} dy \, dz + u_{yt} dy \, dt.$$

Here det $g = f^2/16$, the choice $\sqrt{\det g} = f/4$ has implications: $W_+ = 0 \Rightarrow f = 0$; $W_- = 0 \Rightarrow$ [consistent system of PDEs]. Solving/simplifying it mod equivalence group, the general branch:

$$f = \frac{u_x u_z}{(y-t)^2}$$

The corresp dLp:
$$\begin{cases} \hat{X} = u_{xz}\partial_t - u_{xt}\partial_z + \frac{u_z(\lambda - y)}{(\lambda - t)(y - t)}\partial_x, \\ \hat{Y} = u_{yz}\partial_t - u_{yt}\partial_z + \frac{u_z(\lambda - y)}{(\lambda - t)(y - t)}\partial_y. \end{cases}$$

Translation non-invariance

The above deformations explicitly involve independent variables, but can be made translation-invariant by a contact transformation. The necessary and sufficient condition for this in general $\dim = d$ is the existence of rank d comm algebra of contact symmetries.

Proposition

There exist nondegenerate integrable PDEs in dimensions d = 3, 4 that are not contact equivalent to any translationally invariant eqn.

For d = 3 such is an integrable deformation of the Veronese web equation (BK, A.Panasyuk 2017):

$$(x_1 - x_2)u_3u_{12} + (x_2 - x_3)u_1u_{23} + (x_3 - x_1)u_2u_{13} = 0.$$
 (†)

It possesses dLp and its contact symmetry algebra

$$X_h = h(u)\partial_u, \ Y_0 = \partial_{x_1} + \partial_{x_2} + \partial_{x_3}, \ Y_1 = x_1\partial_{x_1} + x_2\partial_{x_2} + x_3\partial_{x_3}$$

does not contain any three-dimensional Abelian subalgebra. A generic combination of the LHS of (\dagger) extends the phenomenon to d = 4, but for higher dimension this becomes impossible.

Integrable second order PDEs * SCREAM 2021

Integrable systems in higher dimensions d > 4

Attempts to generalise this result to higher dimensions meet an immediate obstacle: all known multi-dimensional (d > 4) PDEs possessing a dispersionless Lax pair are degenerate.

For instance, both the 6-dimensional version of the second heavenly equation (Takasaki, Przanovski)

 $u_{15} + u_{26} + u_{13}u_{24} - u_{14}u_{23} = 0,$

as well as the 8-dimensional generalisation of the general heavenly equation (Konopelchenko, Schief)

 $(u_{16}-u_{25})(u_{38}-u_{47})+(u_{27}-u_{36})(u_{18}-u_{45})+(u_{35}-u_{17})(u_{28}-u_{46})=0$

have symbols σ_F of rank 4. We however have the following

Theorem (S.Berjawi, E.Ferapontov, BK, V.Novikov 2020)

Integrability of a rank 4 second order PDE in any dimension $d \ge 4$ via a non-trivial dLp implies the Monge-Ampère property.

3D: Weyl potential \rightsquigarrow dLp

Let \mathcal{E} be a second order PDE in 3D such that its conformal structure c_F has EW property, with Weyl covector $\omega = \omega_i \theta^i$. Then \mathcal{E} is integrable and the corresponding dispersionless Lax pair can be calculated explicitly (no integration).

Let us introduce the so-called null coframe $\theta^0, \theta^1, \theta^2$ (it depends on a finite jet of a solution $u \in Sol(\mathcal{E})$) such that

$$g_F = 4\theta^0 \theta^2 - (\theta^1)^2.$$

Let V_0, V_1, V_2 be the dual frame, and let c_{ij}^k be the structure functions defined by commutator expansions $[V_i, V_j] = c_{ij}^k V_k$. The Lax pair is given by the vector fields

$$\hat{X} = V_0 + \lambda V_1 + m\partial_\lambda, \quad \hat{Y} = V_1 + \lambda V_2 + n\partial_\lambda,$$

where

$$m = (\frac{1}{2}c_{12}^{1} - \frac{1}{4}\omega_{2})\lambda^{3} + (\frac{1}{2}c_{02}^{1} - c_{12}^{2} - \frac{1}{2}\omega_{1})\lambda^{2} + (\frac{1}{2}c_{01}^{1} - c_{02}^{2} - \frac{1}{4}\omega_{0})\lambda - c_{01}^{2},$$

$$n = -c_{12}^{0}\lambda^{3} + (\frac{1}{2}c_{12}^{1} - c_{02}^{0} + \frac{1}{4}\omega_{2})\lambda^{2} + (\frac{1}{2}c_{02}^{1} - c_{01}^{0} + \frac{1}{2}\omega_{1})\lambda + (\frac{1}{2}c_{01}^{1} + \frac{1}{4}\omega_{0})$$
By the Krielikov (UT Transé Norway)
Integrable second order PDEs * SCREAM 2021

General integrable systems in 3D

For Hirota type PDEs of the second order $F(u_{ij}) = 0$ in 3D integrability and Monge-Ampère property imply linearizability by a contact transformation. The general integrable equation is a modular form. The EW background structure is given by g_F and the following components of the Weyl covector

$$\omega_k = 2g_{kj}\mathcal{D}_{x^s}(g^{js}) + \mathcal{D}_{x^k}(\ln \det g_{ij}).$$

For general PDEs of second order $F(x^i, u, u_i, u_{ij}) = 0$ this formula is not applicable. Yet the EW structure can be determined.

Theorem (S.Berjawi, E.Ferapontov, BK, V.Novikov)

For nondegenerate non-Monge-Ampère equations of second order with EW property, the Weyl covector ω is algebraically determined.

Corollary

Under the above condition, the dispersionless Lax pair is algebraically determined by the equation.

Example of integrable deformation: 3D

Consider Monge-Ampère equations of the form

$$(u_{tt} - u)u_{xy} - (u_{xt} - u_x)(u_{yt} + u_y) = f(x, y, t, u, u_x, u_y, u_t).$$

For $f = 4e^{2\rho t}$ this equation was derived by Dunajski and Tod in the context of hyper-Kähler metrics with conformal symmetry. Its conformal structure c_F and Weyl covector are:

$$g = (udt + u_x dx - u_y dy - du_t)^2 + 4f dx dy;$$

$$\omega = 2\left(\frac{u_{xt} - u_x}{u_{tt} - u}dx - \frac{u_{yt} + u_y}{u_{tt} - u}dy\right) + 2R\left(dt + \frac{u_{xt} - u_x}{u_{tt} - u}dx + \frac{u_{yt} + u_y}{u_{tt} - u}dy\right),$$

where $R = \frac{\mathcal{D}_{tf}}{f}$. The EW requirement is a PDE system with
solutions mod the equivalence giving 6 cases in addition to DT.
The most general is:

$$f = c^2 \frac{(u_x + u_t + u)(u_y + u_t - u)}{\cosh^2 c(x + y - t)}$$

The generalised DT equation is quasi-linearisable: via a contact transformation it is a deformation of the Bogdanov equation.

Boris Kruglikov (UiT Tromsø Norway)

Integrable second order PDEs * SCREAM 2021

References

- D. Calderbank, B. Kruglikov, *Integrability via geometry: dispersionless differential equations in three and four dimensions*, Comm. Math. Phys. **382** (2021)
- B. Doubrov, E. Ferapontov, *On the integrability of symplectic Monge-Ampère equations*, J. Geom. Phys. **60** (2010)
- F. Cléry, E. Ferapontov, *Dispersionless Hirota equations and the genus 3 hyperelliptic divisor*, Comm. Math. Phys. (2020)
- E. Ferapontov, B. Kruglikov, V. Novikov, Integrability of dispersionless Hirota type equations in 4D and the symplectic Monge-Ampère property, IMRN (2020)
- S. Berjawi, E. Ferapontov, B. Kruglikov, V. Novikov, Second-order PDEs in 4D with half-flat conformal structure, Proc. Royal Soc. A. **476** (2020)
- S. Berjawi, E. Ferapontov, B. Kruglikov, V. Novikov, Second-order PDEs in 3D with Einstein-Weyl conformal structure, arXiv:2104.02716 (2021)

