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Jet formalism and conformal structures

Let J `M →M be the bundle, whose points are `-jets of functions
u : M → R. A choice of coordinates xi on M leads to coordinates
(xi, uα) on J `M , with α being a multi-index of length |α| ≤ `.
Note that π`,`−1 : J `M → J `−1M is an affine bundle modelled on
S`T ∗M . In particular, the fiber of π2,1 consists of quadrics on TM .

A (nonlinear) differential operator of order ≤ ` on M is a function
F ∈ C∞(J `M) ⊂ C∞(J∞M). It defines a PDE (system)
E = {F = 0} ⊂ J `M , as well as its prolongation

E(∞) = {DαF = 0} ⊂ J∞M.

Restriction of the dF ∈ Ω1(J∞M) to π−1
`,`−1(∗) is a homogeneous

polynomial of degree ` on π∗∞T
∗M called the symbol of F :

σF =
∑
|α|=`

(∂uαF )∂α ∈ Γ(π∗∞S
`TM).

Its conformal class depends only on E .
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Symbol and Characteristic variety

For a solution u ∈ Sol(E) we identify Mu ' j∞u(M) ⊂ J∞M .
Restriction of the symbol σF to Mu is a symmetric `-vector

σF |u ∈ Γ(S`TMu).

The characteristic variety is the zero locus of the symbol: its fiber
at x ∈Mu is the projective variety

Char(E , u)x = {[θ] ∈ P(T ∗xMu) : σF (θ) = 0}.

In coordinates to compute the characteristic variety one converts
the symbol of linearization of F (“Fourier transform”: ∂i 7→ pi)

σF =
∑
|α|=`

σα(u)∂α to the polynomial σF (p) =
∑
|α|=`

σα(u)pα

where p = (p1, . . . , pd) is a coordinate on the fiber of T ∗Mu and
pα = pi11 · · · p

id
d for a multi-index α = (i1, . . . , id).
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PDEs of the second order

For an operator F of the second order

σF =
∑
i≤j

∂F

∂uij
∂i∂j =

∑
i,j

σij(u)∂i ⊗ ∂j ,

where σij(u) = 1
2(1 + δij)∂uijF .

Thus, for second order PDEs the characteristic variety is a field of
quadrics, which we assume nondegenerate, i.e. det(σij(u)) 6= 0.

The nondegeneracy of σF implies that is inverse

gF =
∑
ij

gij(u)dxidxj , (gij(u)) = (σij(u))−1,

defines a symmetric bilinear form on TxMu. The canonical
conformal structure cF = [gF ] on solutions of E is a base for
geometric approach to integrability.
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Nondegeneracy condition: geometric interpretation

Freezing 1-jet of u, equation F = 0 determines a hypersurface E ′

in the Lagrangian Grassmannian Λ
loc' R(d+1

2 )(uij), and ∀ L ∈ E ′

the tangent TLΛ ' S2L∗ ' R(d+1
2 )(vij) contains two ingredients:

(a) the Veronese cone V = {p� p : p ∈ L∗} of rank 1 matrices;
(b) tangent hyperplane TLE ′ defined by the linearized equation∑

i≤j

∂F

∂uij
vij = 0.

The non-degeneracy of E means TLE ′ is not tangential to V .

In fact, because TpV = p� L∗ for p 6= 0, the kernel of the
quadratic form

σF (p) =
∑
i≤j

∂F

∂uij
pipj

on L∗ ' T ∗xM is

KerσF = {p ∈ L∗ : TpV ⊂ TLE}.
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Dispersionless Lax pairs (dLp)

Definition

A dispersionless Lax pair of order k is a bundle π̂ : M̂u →Mu

(correspondence space), whose fibres are connected curves,
together with a rank 2 distribution Π̂ ⊆ TM̂u such that:

∀ x̂ ∈ M̂u, Π̂(x̂) depends only on jkxu,

Π̂ is transversal to the fibres of π̂,

Frobenius integrability [Γ(Π̂),Γ(Π̂)] = Γ(Π̂) holds mod E .

Thus we have the twistor fibration

M̂d+1
u

P1

||

Π̂2

##
Md
u Twd−1

2-plane congruence Π(x̂) := (dπ̂)x̂(Π̂) ⊂ TxM is parametrized by
a spectral parameter λ (P1 coordinate).
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The characteristic condition

Theorem (D. Calderbank & BK 2016-2018)

A dLp Π̂ is characteristic for E , i.e. ∀ u ∈ Sol(E), x̂ ∈ M̂u and
θ ∈ Ann(Π(x̂)) ⊆ T ∗xMu we have σF (θ) = 0 ⇔ [θ] ∈ Char(E).

This means that for each solution u and x̂ ∈ M̂u, Π(x̂) is a
coisotropic 2-plane for the conformal structure cF . Such 2-planes
can only exist for 2 ≤ d ≤ 4: for d = 2 the condition is vacuous;
for d = 3 the coisotropic 2-planes at each point x form a rational
conic P1; for d = 4 they form a disjoint union of two rational
curves 2× P1, the so-called α-planes and β-planes.

The passage from a 2-plane congruence Π = 〈X,Y 〉 to a dLp can
be understood as a lift, with respect to the projection π̂:

X̂ = X +m∂λ, Ŷ = Y + n∂λ.

The resulting rank 2 distribution Π̂ = 〈X̂, Ŷ 〉 on M̂u is integrable
mod E (on-shell), but not identically (off-shell).
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Integrable background geometry for d = 3: Example

Einstein-Weyl structure on M3 is a conformal structure [g], 1-form
ω and a torsion-free linear connection D that satisfy for some
Λ ∈ C∞(M):

Dg = ω ⊗ g, Ricsym
D = Λ g.

Example (3D: EW from dKP)

The dispersionless Kadomtsev-Petviashvili equation:

utx = (uux)x + uyy.

EW structure on solutions and dLp Π̂ ⊆ TM̂u, M̂u ' R4(x, y, t, λ):

g = 4 dx dt− dy2 + 4u dt2, ω = −4ux dt,

X̂ = ∂y − λ∂x + ux∂λ, Ŷ = ∂t − (λ2 + u)∂x + (uxλ+ uy)∂λ.

This gives a large family of EW structures parametrized by
solutions of the Gibbons-Tsarev system.
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Integrable background geometry for d = 4: Example

In 4D, the key invariant of a conformal structure [g] is its Weyl
tensor W . Its self-dual and anti-self-dual parts are
W± = 1

2(W ± ∗W ), where ∗ is the Hodge star operator

∗W i
jkl =

1

2

√
det g giagbcεajbdW

d
ckl.

A conformal structure is said to be half-flat if W− or W+ vanishes.
The SD/ASD conditions switch under change of orientation.

Example (4D: Self-dual gravity)

The second Plebanski equation:

uxz + uyt + uxxuyy − u2
xy = 0.

SD structure on solutions, Mu ' R4(x, y, z, t):

g = dx dz + dy dt− uyydz2 + 2uxydz dt− uxxdt2,
X̂ = ∂t + uxx∂y − (uxy − λ)∂x, Ŷ = ∂z − (uxy + λ)∂y + uyy∂x.
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Two theorems on integrability

Let E : F = 0 be a nondegenerate determined PDE of the second
order with the corresponding conformal structure cF .

Theorem (E. Ferapontov & BK 2014)

The integrability of E by the method of hydrodynamic reductions is
equivalent to

3D: the Einstein–Weyl property for cF on any solution of the PDE ;

4D: the self-duality property for cF on any solution of the PDE.

Theorem (D. Calderbank & BK 2018)

The integrability of E via a nondegenerate dispersionless Lax pair is
equivalent to

3D: the Einstein–Weyl property for cF on any solution of the PDE ;

4D: the self-duality property for cF on any solution of the PDE.
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The Monge-Ampère property

Monge-Ampère equation E : F = 0 is a second order PDE that is
linear combinations of minors of the Hessian matrix
d2u = (uij)d×d with coefficients being arbitrary functions on J1M .
Freezing the 1-jet, the equation E can be written in the form

u00 = f(u01, . . . , u0n, u11, u12, . . . , unn), d = n+ 1. (†)

Theorem (E. Ferapontov, BK & V.Novikov 2019)

Equation (†) is of Monge-Ampère type if and only if d2f is a linear
combination of the 2nd fundamental forms of the Plücker
embedding of the Lagrangian Grassmannian Λ restricted to the
hypersurface defined by (†). This property is characterized by
N(n) = 1

24n(n+ 1)(n+ 2)(n+ 7) relations, forming an involutive
second-order quasilinear PDE system for f .

E(d+1
2 )−1 ⊂ Λ ⊂ Pp(d)−1, p(n) =

2(2n+ 1)!

n!(n+ 2)!
.

Boris Kruglikov (UiT Tromsø Norway) Integrable second order PDEs ∗ SCREAM 2021



Hirota type integrable systems in 4D

For Hirota type PDEs of the second order F (uij) = 0 in 4D
integrability implies the Monge-Ampère property as proved by
Ferapontov-BK-Novikov (2019).

Integrabile Monge-Ampère equations of Hirota type were
investigated by Doubrov-Ferapontov (2010). The classification
over C consists of 1 linear ultra-wave PDE and 5 versions of the
Plebanski equation, obtained by deformations of the general
heavenly equation

αu12u34 + βu13u24 + γu14u23 = 0, α+ β + γ = 0.

Here integrability is understood both in hydrodynamic and Lax
sense. Note that for d = 4 no additional ingredient (connection) is
required for the lift, so the Lax pair (dLp) is uniquely obtained
from the conformal structure and the equation.
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General integrable systems in 4D

For general (translationally non-invariant) PDE integrability in
hydrodynamic sense is not yet understood, hence integrability is
considered only as the existence of a dispersionless Lax pair.

For general (translation non-invariant) PDEs in 4D we have:

Theorem (S.Berjawi, E.Ferapontov, BK, V.Novikov 2020)

Every nondegenerate equation of the second order such that cF is
half-flat on every solution is of Monge-Ampère type.

Freezing 1-jet of a solution yields a PDE that is linearizable or
contact equivalent to one of five heavenly type equations.

Classification of the latter PDEs is out of reach at present.
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Example of integrable deformation: 4D

There are several contact non-equivalent deformations of the
heavenly equations, preserving integrability. Consider, for instance,
the following family (f = 1 yields the 1st Plebansky equation)

uxzuyt − uxtuyz = f(x, u, ux).

The corresponding conformal structure is

g = uxzdx dz + uxtdx dt+ uyzdy dz + uytdy dt.

Here det g = f2/16, the choice
√

det g = f/4 has implications:
W+ = 0⇒ f = 0; W− = 0⇒ [consistent system of PDEs].
Solving/simplifying it mod equivalence group, the general branch:

f =
uxuz

(y − t)2
.

The corresp dLp:

{
X̂ = uxz∂t − uxt∂z + uz(λ−y)

(λ−t)(y−t)∂x,

Ŷ = uyz∂t − uyt∂z + uz(λ−y)
(λ−t)(y−t)∂y.
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Translation non-invariance
The above deformations explicitly involve independent variables,
but can be made translation-invariant by a contact transformation.
The necessary and sufficient condition for this in general dim = d
is the existence of rank d comm algebra of contact symmetries.

Proposition

There exist nondegenerate integrable PDEs in dimensions d = 3, 4
that are not contact equivalent to any translationally invariant eqn.

For d = 3 such is an integrable deformation of the Veronese web
equation (BK, A.Panasyuk 2017):

(x1 − x2)u3u12 + (x2 − x3)u1u23 + (x3 − x1)u2u13 = 0. (†)
It possesses dLp and its contact symmetry algebra

Xh = h(u)∂u, Y0 = ∂x1 + ∂x2 + ∂x3 , Y1 = x1∂x1 + x2∂x2 + x3∂x3

does not contain any three-dimensional Abelian subalgebra.
A generic combination of the LHS of (†) extends the phenomenon
to d = 4, but for higher dimension this becomes impossible.
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Integrable systems in higher dimensions d > 4

Attempts to generalise this result to higher dimensions meet an
immediate obstacle: all known multi-dimensional (d > 4) PDEs
possessing a dispersionless Lax pair are degenerate.

For instance, both the 6-dimensional version of the second
heavenly equation (Takasaki, Przanovski)

u15 + u26 + u13u24 − u14u23 = 0,

as well as the 8-dimensional generalisation of the general heavenly
equation (Konopelchenko, Schief)

(u16−u25)(u38−u47)+(u27−u36)(u18−u45)+(u35−u17)(u28−u46) = 0

have symbols σF of rank 4. We however have the following

Theorem (S.Berjawi, E.Ferapontov, BK, V.Novikov 2020)

Integrability of a rank 4 second order PDE in any dimension d ≥ 4
via a non-trivial dLp implies the Monge-Ampère property.
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3D: Weyl potential  dLp

Let E be a second order PDE in 3D such that its conformal
structure cF has EW property, with Weyl covector ω = ωiθ

i. Then
E is integrable and the corresponding dispersionless Lax pair can
be calculated explicitly (no integration).

Let us introduce the so-called null coframe θ0, θ1, θ2 (it depends
on a finite jet of a solution u ∈ Sol(E)) such that

gF = 4θ0θ2 − (θ1)2.

Let V0, V1, V2 be the dual frame, and let ckij be the structure

functions defined by commutator expansions [Vi, Vj ] = ckijVk.
The Lax pair is given by the vector fields

X̂ = V0 + λV1 +m∂λ, Ŷ = V1 + λV2 + n∂λ,

where

m =(1
2c

1
12 − 1

4ω2)λ3 + (1
2c

1
02 − c2

12 − 1
2ω1)λ2 + (1

2c
1
01 − c2

02 − 1
4ω0)λ− c2

01,

n =− c0
12λ

3 + (1
2c

1
12 − c0

02 + 1
4ω2)λ2 + (1

2c
1
02 − c0

01 + 1
2ω1)λ+ (1

2c
1
01 + 1

4ω0)
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General integrable systems in 3D

For Hirota type PDEs of the second order F (uij) = 0 in 3D
integrability and Monge-Ampère property imply linearizability by a
contact transformation. The general integrable equation is a
modular form. The EW background structure is given by gF and
the following components of the Weyl covector

ωk = 2gkjDxs(gjs) +Dxk(ln det gij).

For general PDEs of second order F (xi, u, ui, uij) = 0 this formula
is not applicable. Yet the EW structure can be determined.

Theorem (S.Berjawi, E.Ferapontov, BK, V.Novikov)

For nondegenerate non-Monge-Ampère equations of second order
with EW property, the Weyl covector ω is algebraically determined.

Corollary

Under the above condition, the dispersionless Lax pair is
algebraically determined by the equation.
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Example of integrable deformation: 3D

Consider Monge-Ampère equations of the form

(utt − u)uxy − (uxt − ux)(uyt + uy) = f(x, y, t, u, ux, uy, ut).

For f = 4e2ρt this equation was derived by Dunajski and Tod in
the context of hyper-Kähler metrics with conformal symmetry. Its
conformal structure cF and Weyl covector are:

g = (udt+ uxdx− uydy − dut)2 + 4fdxdy;

ω = 2
(uxt − ux
utt − u

dx−uyt + uy
utt − u

dy
)

+2R
(
dt+

uxt − ux
utt − u

dx+
uyt + uy
utt − u

dy
)
,

where R = Dtf
f . The EW requirement is a PDE system with

solutions mod the equivalence giving 6 cases in addition to DT.
The most general is:

f = c2 (ux + ut + u)(uy + ut − u)

cosh2 c(x+ y − t)
.

The generalised DT equation is quasi-linearisable: via a contact
transformation it is a deformation of the Bogdanov equation.
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