Differential invariants of curves in G_{2} flag varieties

Andreu Llabrés
joint work with Boris Kruglikov
UiT The Arctic University of Norway
Department of Mathematics and Statistics

August 20, 2021

Introduction

- The goal is to find differential invariants of regular unparametrized curves in G_{2} / P, where P is a parabolic subgroup.
- We compute the Hilbert function that counts the number of differential invariants for curves of constant type.
- We focus on integral curves and generic curves.
- Integral curves correspond to minimal orbits of the action

$$
G_{2} \subset J^{1}\left(G_{2} / P, 1\right)
$$

Differential invariants of such curves were computed by Doubrov and Zelenko, and we revisit them differently.

- The twistor correspondence of G_{2} / P_{1} and G_{2} / P_{2} via G_{2} / P_{12} gives us a correspondence between curves that allows us to relate the equivalence problems for all 3 choices of the parabolic subgroup P.

Invariants of curves in G_{2} / P

The filtration
$\mathfrak{g}^{i}=\bigoplus_{j \geq i} \mathfrak{g}_{j}$
is invariant with
respect to $\mathfrak{p}:=\mathfrak{g}^{0}$.

G_{2} invariant structures in G_{2} / P

- $M:=G_{2} / P_{1}$. Coordinates (x, y, p, q, z) on M.
- Rank 2 distribution $\Pi=\left\langle\partial_{x}+p \partial_{y}+q \partial_{p}+q^{2} \partial_{z}, \partial_{q}\right\rangle$.
- Nurowski conformal structure $[g]$ with null cone N,

$$
g=q^{2} d x^{2}-2 q d x d p+6 p d x d q-3 d x d z-6 d y d q+4 d p^{2} .
$$

- $\hat{M}:=G_{2} / P_{12}$. Coordinates (x, y, p, q, z, r) on \hat{M}.
- Rank 2 distribution $\Delta=\left\langle\partial_{x}+p \partial_{y}+q \partial_{p}+q^{2} \partial_{z}+r \partial_{q}, \partial_{r}\right\rangle$.
- Induced degenerate conformal structure from M with null cone $\hat{N} \cong N \times \mathbb{R}^{1}$.
- $K:=G_{2} / P_{2}$. Coordinates (x, y, p, q, z) on K.

■ Contact structure $D=\operatorname{Ann}(\langle d z-p d x-q d y\rangle)$.
■ Cone field $\Gamma \subset D$ of rational normal curves given by the ideal

$$
\left\langle 3 d x d p-d y d q, \sqrt{3} d x d y-d q^{2}, \sqrt{3} d p d q-d y^{2}\right\rangle
$$

Invariants of curves in $M:=G_{2} / P_{1}$

- P_{1} is the stabilizer of a point $o \in M$ under the action of G_{2}.
- $J^{k}(M, 1)$ space of k-jets of unparametrized regular curves.
- The fiber of the bundle $J^{1}(M, 1)=\mathbb{P} T M$ over $o \in M$ is identified with $\left(T_{o} M \backslash\{0\}\right) / \mathbb{R}_{\times} \cong \mathbb{P} \mathfrak{m}$, where $\mathfrak{m}=\mathfrak{g} / \mathfrak{p}$.
- Bijection between the orbits of $G_{2} \subset J^{k}(M, 1)$ and $P_{1} \subset J_{o}^{k}(M, 1)$.
- Assume that at any point of the curve its 1 -jet belongs always to the same P_{1} orbit in $\mathbb{P m}$: the type t of the curve is constant.
- The dimension of this orbit is d_{t}. A curve of type t is given by $4-d_{\mathrm{t}}$ 1st order equations.
This gives a submanifold $\mathcal{E}_{\mathrm{t}} \subset J^{1}(M, 1)$ of codimension $4-d_{\mathrm{t}}$. We construct a tower of bundles by prolonging \mathcal{E}_{t}

$$
\begin{array}{ll}
& \mathcal{E}_{\mathrm{t}}^{k} \subset J^{k}(M, 1) \\
\pi_{k, k-1} & \downarrow \\
& \mathcal{E}_{\mathrm{t}}^{k-1} \subset J^{k-1}(M, 1)
\end{array}
$$

Number of invariants of curves in $M:=G_{2} / P_{1}$

- s_{k} is the codimension of the orbit of the action of G_{2} on $J^{k}(M, 1)$. This coincides with the number of invariants of order k.
- $h_{k}=s_{k}-s_{k-1}$ is the number of invariants of pure order k.
G_{2} is finite dimensional, hence $h_{k}=d_{\mathrm{t}}$ for large enough k.

Number of invariants of curves in \hat{M} and K

h_{k}	0	1	2	3	4	5	6	7	8	9	10	
$\sim \quad T \hat{M} \backslash\left(\Delta^{4} \cup \hat{N}\right)$	0	0	2	5	5	5	5	5	5	5	5	5
$\bigcirc \hat{N} \backslash \Delta^{4}$	0	0	1	3	4	4	4	4	4	4	4	4
ஸ゙ $\Delta^{4} \backslash\left(\Delta^{3} \cup \hat{N} \cup H_{3}\right)$	0	1	0	3	4	4	4	4	4	4	4	4
$H_{3} \backslash\left(\Delta^{3} \cup \hat{N}\right)$	0	0	0	1	3	3	3	3	3	3	3	3
(t) $\left(\Delta^{4} \cap \hat{N}\right) \backslash\left(\Delta^{3} \cup H_{3}\right)$	0	0	0	1	3	3	3	3	3	3	3	3
(t) $\Delta^{3} \backslash\left(\Delta^{2} \cup H_{2}\right)$	0	0	0	1	3	3	3	3	3	3	3	3
$\left(\hat{N} \cap H_{3}\right) \backslash \Delta^{3}$	0	0	0	0	0	2	2	2	2	2	2	2
$\mathrm{H}_{2} \backslash \Delta^{2}$	0	0	0	0	0	2	2	2	2	2	2	2
$\Delta^{2} \backslash \Delta$	0	0	0	0	0	2	2	2	2	2	2	2
$\Delta \backslash\{0\}$	0	0	0	0	0	0	0	0	0	1	1	1
$\mathrm{Q}^{\sim} \quad T K \backslash D$	0	0	0	3	4	4	4	4	4	4	4	4
¢ $D \backslash T \Gamma$	0	0	0	1	2	3	3	3	3	3	3	3
¢ $T \Gamma \backslash \Gamma$	0	0	0	0	0	1	2	2	2	2	2	2
(t) $\Gamma \backslash\{0\}$	0	0	0	0	0	0	0	0	0	0	1	1

Invariants of integral curves in M

There is an order 10 absolute differential invariant $I_{10}=\frac{R_{10}{ }^{3}}{R_{8}{ }^{7}}$, where

$$
\begin{array}{r}
R_{8}=196 q_{2}^{5} q_{8}-2352 q_{2}^{4} q_{3} q_{7}-5040 q_{2}^{4} q_{4} q_{6}-3255 q_{2}^{4} q_{5}^{2} \\
+16632 q_{2}^{3} q_{3}^{2} q_{6}+59598 q_{2}^{3} q_{3} q_{4} q_{5}+13772 q_{2}^{3} q_{4}^{3}-83160 q_{2}^{2} q_{3}^{3} q_{5} \\
-174735 q_{2}^{2} q_{3}^{2} q_{4}^{2}+297000 q_{2} q_{3}^{4} q_{4}-118800 q_{3}^{6}, \\
R_{10}=21 q_{2} R_{8} \mathcal{D}_{\times}\left(q_{2} \mathcal{D}_{\times} R_{8}\right)-\frac{91}{4}\left(q_{2} \mathcal{D}_{\times} R_{8}\right)^{2}+9 R_{8}^{2}\left(13 q_{3}^{2}-19 q_{2} q_{4}\right) .
\end{array}
$$

\mathcal{D}_{x} is the operator of total derivative on \mathcal{E}_{Π},

$$
\mathcal{D}_{x}=\partial_{x}+p \partial_{y}+q \partial_{p}+q^{2} \partial_{z}+\sum_{i=0}^{\infty} q_{i+1} \partial_{q_{i}}
$$

Theorem 1

The algebra $\mathcal{A}_{\text {int }}$ of (micro-local) differential invariants of integral curves is generated in the Lie-Tresse sense by I_{10} and $\square_{i n t}=\frac{q_{2}}{R_{8}{ }^{1 / 6}} \cdot \mathcal{D}_{x}$.

Invariants of generic curves in M

- 2nd order invariant $I_{2}=\frac{R_{2}{ }^{2}}{R_{1}{ }^{3}}$, where

$$
\begin{aligned}
& R_{1}=\left(q+2 p_{1}\right)^{2}+6\left(q_{1}\left(p-y_{1}\right)-q p_{1}\right)-3 z_{1}, \\
& R_{2}=-\frac{\left(q+2 p_{1}\right)^{3}}{18}+\left(p-y_{1}\right)\left(q p_{2}-\frac{z_{2}}{2}\right)+\left(q+y_{2}\right)\left(q p_{1}-\frac{z_{1}}{2}\right)+p_{1} z_{1}-q^{2} \frac{y_{2}}{2} .
\end{aligned}
$$

- There exists a canonical frame $\underbrace{Y, V}, Z, X, W$ along γ adapted to the filtration.
$\in \Pi \quad \in \Pi^{2} / \Pi$
- X is tangent to $\gamma . \mathcal{L}_{X} I_{2}=1$ and $g(X, X)=1$.
- The Gram matrix of the frame Y, V, Z, X, W with respect to g is expressed through I_{2}.
- The Levi-Civita connection of g on the canonical frame produces invariants I_{31}, I_{32} (order 3) and $I_{41}, I_{42}, I_{43}, I_{44}$ (order 4).

Theorem 2

The algebra $\mathcal{A}_{\text {gen }}$ of differential invariants of generic curves is generated by 7 invariants $I_{2}, I_{3 i}, I_{4 j}$ and invariant derivation $\square_{g e n}=\frac{1}{\mathcal{D}_{x} l_{2}} \cdot \mathcal{D}_{x}$, where $\mathcal{D}_{\times}=\partial_{\times}+\sum_{i=0}^{\infty}\left(y_{i+1} \partial_{y_{i}}+p_{i+1} \partial_{p_{i}}+q_{i+1} \partial_{q_{i}}+z_{i+1} \partial_{z_{i}}\right)$.

Twistor correspondence

G_{2} / P_{12} can be viewed both as the geometric prolongation \hat{M} of M and the geometric prolongation \hat{K} of K.

- \hat{M} is a collection of pairs $\left(a, p_{a}\right)$ with $a \in M$ and $p_{a} \in \mathbb{P} \Pi$.
- \hat{K} is a collection of pairs $\left(b, p_{b}\right)$ with $b \in K$ and $p_{b} \in[\Gamma]$.
\exists diffeomorphism $\varphi: \hat{M} \longrightarrow \hat{K}$, given by $\varphi(x, y, p, q, z, r)=$

$$
\left(-\frac{1}{r}, \sqrt{3}\left(2 p-\frac{q^{2}}{r}\right), 3 z-\frac{q^{3}}{r}, \sqrt{3}\left(x-\frac{q}{r}\right), 6(x p-y)-\frac{3}{r}\left(z+x q^{2}\right)+\frac{2 q^{3}}{r^{2}}, q\right)
$$

- φ interchanges the generators of the rank 2 distributions Δ and $\tilde{\Delta}$.
- We have the natural projections $\pi_{l}\left(a, p_{a}\right)=a, \pi_{r}\left(b, p_{b}\right)=b$.

Integral curves correspondence

Integral curves in G_{2} / P_{1} and in G_{2} / P_{2} are uniquely lifted to G_{2} / P_{12} given a point in the fiber, so we have

$$
\mathcal{E}_{\Pi} \times \mathbb{P}^{1} \simeq \mathcal{E}_{\Delta} \simeq \mathcal{E}_{\Gamma} \times \mathbb{P}^{1}
$$

which gives an isomorphism between algebras of differential invariants of G_{2} / P_{1} and G_{2} / P_{2} for integral curves

- On left side, prolongation is given by $r=q_{1}$.
- On right side, prolongation is given by $r=q_{1} / \sqrt{3}$.
- \jmath_{l} and \jmath_{r} are the right inverses of π_{l} and π_{r} respectively.
- π_{l} and π_{r} just discard the coordinate r.

Generic curves correspondence

For generic curves, the lift \jmath_{\jmath} is $1: 1$ and the lift $\jmath_{r}^{ \pm}$is $1: 2$.

- On left side, lift is given by r such that ℓ_{r} is aligned to Y, where $\ell_{r}=\left\langle\partial_{x}+p \partial_{y}+q \partial_{p}+q^{2} \partial_{z}+r \partial_{q}\right\rangle \subset \Pi$.
- On right side, take distinguished curve δ tangent to γ at $b \in K$.
- $\delta-\gamma$ determines 2-plane in $T_{b} K$ intersecting D_{b} on one line Υ_{X}.
- A point in $\mathbb{P D}$ gives secant line intersecting $[\Gamma]$ at points $\lambda_{x}^{ \pm}$.

The extra coordinate of the lift in \hat{K} is given by $\lambda_{X}^{ \pm} \circ\left[\Upsilon_{X}\right]$.

Thank you for your attention
B. Kruglikov, A. L, Differential invariants of curves in G(2) flag varieties, arXiv:2107. 03664 (2021).
國 B. Kruglikov, V. Lychagin, The global Lie-Tresse theorem, Selecta Math. 22, 1357-411 (2016).
圊 B. Doubrov, I. Zelenko, Geometry of curves in generalized flag varieties, Transformation Groups 18, no.2, 361-383 (2013).

