Differential invariants of curves in G₂ flag varieties

Andreu Llabrés

joint work with Boris Kruglikov

UiT The Arctic University of Norway Department of Mathematics and Statistics

August 20, 2021

Introduction

- The goal is to find differential invariants of regular unparametrized curves in G_2/P , where P is a parabolic subgroup.
- We compute the Hilbert function that counts the number of differential invariants for curves of constant type.
- We focus on integral curves and generic curves.
- Integral curves correspond to minimal orbits of the action

$$G_2 \bigcirc J^1(G_2/P, 1)$$
.

Differential invariants of such curves were computed by Doubrov and Zelenko, and we revisit them differently.

• The twistor correspondence of G_2/P_1 and G_2/P_2 via G_2/P_{12} gives us a correspondence between curves that allows us to relate the equivalence problems for all 3 choices of the parabolic subgroup P.

Invariants of curves in G_2/P

The filtration $\mathfrak{g}^{i} = \bigoplus_{j \ge i} \mathfrak{g}_{j}$ is invariant with respect to $\mathfrak{p} := \mathfrak{g}^{0}$.

G_2 invariant structures in G_2/P

• $M := G_2/P_1$. Coordinates (x, y, p, q, z) on M.

- Rank 2 distribution $\Pi = \langle \partial_x + p \partial_y + q \partial_p + q^2 \partial_z, \partial_q \rangle.$
- Nurowski conformal structure [g] with null cone N,

$$g = q^2 dx^2 - 2q \, dx \, dp + 6p \, dx \, dq - 3 \, dx \, dz - 6 \, dy \, dq + 4 \, dp^2 \, .$$

- $K := G_2/P_2$. Coordinates (x, y, p, q, z) on K.
 - Contact structure $D = Ann(\langle dz pdx qdy \rangle)$.
 - Cone field $\Gamma \subset D$ of rational normal curves given by the ideal

$$\langle 3\,dx\,dp-dy\,dq,\sqrt{3}\,dx\,dy-dq^2,\sqrt{3}\,dp\,dq-dy^2\rangle$$

Invariants of curves in $M := G_2/P_1$

- P_1 is the stabilizer of a point $o \in M$ under the action of G_2 .
- $J^k(M, 1)$ space of k-jets of unparametrized regular curves.
- The fiber of the bundle J¹(M, 1) = ℙTM over o ∈ M is identified with (T_oM\{0})/ℝ_× ≃ ℙm, where m = g/p.
- Bijection between the orbits of $G_2 \subset J^k(M, 1)$ and $P_1 \subset J^k_o(M, 1)$.
- Assume that at any point of the curve its 1-jet belongs always to the same P₁ orbit in ℙm: the type t of the curve is constant.
- The dimension of this orbit is d_t . A curve of type t is given by $4 d_t$ 1st order equations.

This gives a submanifold $\mathcal{E}_t \subset J^1(M, 1)$ of codimension $4 - d_t$. We construct a tower of bundles by prolonging \mathcal{E}_t

$$\begin{array}{ccc} & \mathcal{E}^k_t \subset J^k(M,1) \\ \pi_{k,k-1} & \downarrow \\ & \mathcal{E}^{k-1}_t \subset J^{k-1}(M,1) \end{array}$$

Number of invariants of curves in $M := G_2/P_1$

- s_k is the codimension of the orbit of the action of G₂ on J^k(M, 1). This coincides with the number of invariants of order k.
- $h_k = s_k s_{k-1}$ is the number of invariants of pure order k.

 G_2 is finite dimensional, hence $h_k = d_t$ for large enough k.

	L	(k)											
n _k		0	1	2	3	4	5	6	7	8	9	10	
t	$TM \setminus (N \cup \Pi^2)$	0	0	1	2	4	4	4	4	4	4	4	4
	$N \setminus \Pi^2$	0	0	0	1	2	3	3	3	3	3	3	3
	$\Pi^2 \setminus \Pi$	0	0	0	0	0	1	2	2	2	2	2	2
	$\Pi \backslash \left\{ 0 \right\}$	0	0	0	0	0	0	0	0	0	0	1	1

Number of invariants of curves in \hat{M} and K

h _k													
		0	T	2	3	4	5	6	1	8	9	10	• • •
12	$T\hat{M}ackslash(\Delta^4\cup\hat{N})$	0	0	2	5	5	5	5	5	5	5	5	5
P	$\hat{N} \setminus \Delta^4$	0	0	1	3	4	4	4	4	4	4	4	4
G	$\Delta^4ackslash (\Delta^3\cup\hat{N}\cup H_3)$	0	1	0	3	4	4	4	4	4	4	4	4
	$H_3ackslash(\Delta^3\cup\hat{N})$	0	0	0	1	3	3	3	3	3	3	3	3
(\mathbf{f})	$(\Delta^4 \cap \hat{N}) ackslash (\Delta^3 \cup H_3)$	0	0	0	1	3	3	3	3	3	3	3	3
	$\Delta^3ackslash(\Delta^2\cup H_2)$	0	0	0	1	3	3	3	3	3	3	3	3
	$(\hat{N}\cap H_3)ackslash\Delta^3$	0	0	0	0	0	2	2	2	2	2	2	2
	$H_2 ackslash \Delta^2$	0	0	0	0	0	2	2	2	2	2	2	2
	$\Delta^2 \setminus \Delta$	0	0	0	0	0	2	2	2	2	2	2	2
	$\Delta \setminus \{0\}$	0	0	0	0	0	0	0	0	0	1	1	1
50	$TK \setminus D$	0	0	0	3	4	4	4	4	4	4	4	4
P/F	$D \setminus T\Gamma$	0	0	0	1	2	3	3	3	3	3	3	3
³	ΤΓ\Γ	0	0	0	0	0	1	2	2	2	2	2	2
t	Γ \ {0}	0	0	0	0	0	0	0	0	0	0	1	1

Invariants of integral curves in M

There is an order 10 absolute differential invariant $I_{10} = \frac{R_{10}^3}{R_8^7}$, where

$$\begin{split} R_8 &= 196 \, q_2^5 q_8 - 2352 \, q_2^4 q_3 q_7 - 5040 \, q_2^4 q_4 q_6 - 3255 q_2^4 q_5^2 \\ &+ 16632 \, q_2^3 q_3^2 q_6 + 59598 \, q_2^3 q_3 q_4 q_5 + 13772 \, q_2^3 q_4^3 - 83160 \, q_2^2 q_3^3 q_5 \\ &- 174735 \, q_2^2 q_3^2 q_4^2 + 297000 \, q_2 q_3^4 q_4 - 118800 \, q_3^6 \, , \end{split}$$

$$R_{10} = 21q_2 R_8 \mathcal{D}_{x} (q_2 \mathcal{D}_{x} R_8) - rac{91}{4} (q_2 \mathcal{D}_{x} R_8)^2 + 9 R_8^2 (13q_3^2 - 19q_2q_4).$$

 \mathcal{D}_x is the operator of total derivative on \mathcal{E}_{Π} , $\mathcal{D}_x = \partial_x + p\partial_y + q\partial_p + q^2\partial_z + \sum_{i=0}^{\infty} q_{i+1}\partial_{q_i}$.

Theorem 1

The algebra \mathcal{A}_{int} of (micro-local) differential invariants of integral curves is generated in the Lie-Tresse sense by I_{10} and $\Box_{int} = \frac{q_2}{R_0^{1/6}} \cdot \mathcal{D}_{\times}$.

Invariants of generic curves in M

• 2nd order invariant $I_2 = \frac{R_2^2}{R_1^3}$, where

$$\begin{aligned} R_1 &= (q+2p_1)^2 + 6(q_1(p-y_1)-qp_1) - 3z_1 \,, \\ R_2 &= -\frac{(q+2p_1)^3}{18} + (p-y_1)\left(qp_2 - \frac{z_2}{2}\right) + (q+y_2)\left(qp_1 - \frac{z_1}{2}\right) + p_1z_1 - q^2\frac{y_2}{2} \,. \end{aligned}$$

- There exists a canonical frame $\underbrace{Y, V}_{\in \Pi}, \underbrace{Z, X, W}_{\in \Pi^2/\Pi}$ along γ adapted to the filtration.
- X is tangent to γ . $\mathcal{L}_X I_2 = 1$ and g(X, X) = 1.
- The Gram matrix of the frame Y, V, Z, X, W with respect to g is expressed through I₂.
- The Levi-Civita connection of g on the canonical frame produces invariants I_{31} , I_{32} (order 3) and I_{41} , I_{42} , I_{43} , I_{44} (order 4).

Theorem 2

The algebra \mathcal{A}_{gen} of differential invariants of generic curves is generated by 7 invariants l_2, l_{3i}, l_{4j} and invariant derivation $\Box_{gen} = \frac{1}{\mathcal{D}_x l_2} \cdot \mathcal{D}_x$, where $\mathcal{D}_x = \partial_x + \sum_{i=0}^{\infty} (y_{i+1}\partial_{y_i} + p_{i+1}\partial_{p_i} + q_{i+1}\partial_{q_i} + z_{i+1}\partial_{z_i}).$

Twistor correspondence

 G_2/P_{12} can be viewed both as the geometric prolongation \hat{M} of M and the geometric prolongation \hat{K} of K.

- \hat{M} is a collection of pairs (a, p_a) with $a \in M$ and $p_a \in \mathbb{P}\Pi$.
- \hat{K} is a collection of pairs (b, p_b) with $b \in K$ and $p_b \in [\Gamma]$.

 \exists diffeomorphism $\varphi: \hat{M} \longrightarrow \hat{K}$, given by $\varphi(x, y, p, q, z, r) =$

- φ interchanges the generators of the rank 2 distributions Δ and $\tilde{\Delta}$.
- We have the natural projections $\pi_I(a, p_a) = a$, $\pi_r(b, p_b) = b$.

Integral curves correspondence

Integral curves in G_2/P_1 and in G_2/P_2 are uniquely lifted to G_2/P_{12} given a point in the fiber, so we have

$$\mathcal{E}_{\mathsf{\Pi}} imes \mathbb{P}^1 \simeq \mathcal{E}_{\mathsf{\Delta}} \simeq \mathcal{E}_{\mathsf{\Gamma}} imes \mathbb{P}^1$$

which gives an isomorphism between algebras of differential invariants of G_2/P_1 and G_2/P_2 for integral curves

- On left side, prolongation is given by $r = q_1$.
- On right side, prolongation is given by $r = q_1/\sqrt{3}$.
- j_l and j_r are the right inverses of π_l and π_r respectively.
- π_l and π_r just discard the coordinate r.

Generic curves correspondence

For generic curves, the lift j_l is 1:1 and the lift j_r^{\pm} is 1:2.

• On left side, lift is given by r such that ℓ_r is aligned to Y, where $\ell_r = \langle \partial_x + p \partial_y + q \partial_\rho + q^2 \partial_z + r \partial_q \rangle \subset \Pi.$

On right side, take distinguished curve δ tangent to γ at b ∈ K.

δ - γ determines 2-plane in T_bK intersecting D_b on one line Υ_X.
A point in ℙD gives secant line intersecting [Γ] at points λ[±]_X.

The extra coordinate of the lift in \hat{K} is given by $\lambda_X^{\pm} \circ [\Upsilon_X]$.

Thank you for your attention

- B. Kruglikov, A. L, Differential invariants of curves in G(2) flag varieties, arXiv:2107.03664 (2021).
- B. Kruglikov, V. Lychagin, *The global Lie-Tresse theorem*, Selecta Math. **22**, 1357-411 (2016).
- B. Doubrov, I. Zelenko, *Geometry of curves in generalized flag varieties*, Transformation Groups **18**, no.2, 361-383 (2013).