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Conformal transformations of spacetimes and Ricci

A conformal transformation: g → ĝ = 1
Ω2 g results in the following

transformation of the respective Ricci tensors:
R̂µν = Ω2Rµν + 2Ω∇νΩµ + gµν

(
Ω�Ω− 3g(∇Ω,∇Ω)

)
Contracting we get the following transformation of the Ricci
scalars:

R̂ = Ω2R + 6Ω�Ω− 12g(∇Ω,∇Ω).

Interpreting ĝ as the physical metric of spacetime, whose
conformal compactified metric g has I where Ω→ 0, we see
that the causal properties of I are governed by the formula:

R̂ = −12g(∇Ω,∇Ω).

Recall that the signature is (−,+,+,+), so I is spacelike if
∇Ω is timelike, i.e. if the Ricci scalar R̂ of the physical metric is
positive, R̂ > 0.
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Conformal transformations of spacetimes and Ricci

Using the Einstein equations satisfied by the metric ĝ,
R̂µν − 1

2 R̂ĝµν + Λ̂ĝµν = T̂µν

or
R̂µν = T̂µν + (Λ̂− 1

2 T̂ )ĝµν ,
one can express this also in terms of the cosmological constant
Λ̂ of the physical spacetime and the trace of its energy
momentum tensor T̂ :

4Λ̂− T̂ > 0.

This, in particular means that if close to I the trace of the
energy momentum T̂ vanishes, a positive cosmological
constant Λ̂ makes I spacelike.
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or
R̂µν = T̂µν + (Λ̂− 1

2 T̂ )ĝµν ,
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Brief history of theoretical cosmology

Perfect cosmological principle (Copernicus ?): The
Universe is the same everywhere, in every direction, and
at every moment of time.
A General Relativity model of such Universe is due to
Einstein (1917):

M = R× S3, and gEinst = −dt2 + Ω2gS3 ,
with gS3 is the standard metric on S3 of radius 1, and
Ω = const . This is the Einstein’s static Universe model.
The Ricci tensor for this spacetime is Ricci = 2

Ω2 gS3 .This
satisfies Einstein’s equations

Ricci − 1
2Rg + Λg = µu ⊗ u,

with u = −dt , and Λ = 1
Ω2 , µ = 2

Ω2 .
Thus it is a solution to Einstein’s field equations for
homogeneous dust with cosmological constant.
In particular the Ricci scalar R = 6

Ω2 is positive. This
means that Einstein’s model has spacelike I .
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Brief history of theoretical cosmology

After Lemaître-Hubble’s discovery of expansion of
Galaxies in 1927-29, it became clear that the perfect
cosmological principle is not correct, and it got changed
into: The Universe is the same everywhere and in every
direction.
The models of the Universe compatible with this principle,
due to Friedman, Lemaître, Robertson and Walker
(FLRW) are such that the spacetime manifold M is a
bundle S → M → R, with S = H3, or R3, or S3 - the
spaces of constant curvature, with the spacetime metric
g = −dt2 + Ω2(t)gS, in which gs is either the standard
metric on the hyperbolic space H3, or the flat metric on
R3, or the standard metric on the unit sphere S3.
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Brief history of theoretical cosmology: simple FLRW models

Universe spacetime: S → M → R, with g = −dt2 + Ω2(t)gS.

For example, there exists local coordinates (x , y , z) on S such
that gs = dx2+dy2+dz2

(1+ κ
4 (x2+y2+z2))2 , and κ = −1,0,1 corresponds to H3,

R3 and S3, respectively.

Special solutions:

Ω(t) = const and κ = 1: Einstein’s static Universe;
homogeneous dust with positive Λ.
Ω(t) = α cosh( t

α ) and κ = 1: deSitter Universe; vacuum
solution with Λ = 3

α2 ; spacetime of constant curvature.
Ω(t) satisfies Ω(Ω′2 + κ) = M

4π + 1
3 ΛΩ3, with M = const > 0,

Λ = const ; Friedman-Lemaître Universe with Λ of
arbitrary sign, filled with dust of energy density µ = M

4
3πΩ3 ,

comoving with 4-velocity u = −dt . For the Ricci scalar
being positive one needs Λ > −µ/4.

Note that all FLRW metrics are conformally flat!
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Penrose’s Conformal Cyclic Cosmology

The scheme of Penrose’s CCC is as follows:1

1See: P. Tod (2015), ‘The equations of Conformal Cyclic Cosmology’,
Gen. Rel. Grav. 47,https://doi.org/10.1007/s10714-015-1859-7, for details.
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Penrose’s Conformal Cyclic Cosmology

The Universe consists of eons, each being a time oriented
spacetime, whose conformal compactifications have
spacelike I . The Weyl tensor of the metric on each I is zero.

Eons are ordered, and the conformal compactifications of
consecutive eons, say #i and #(i + 1), are glued together
along I + of the eon #i , and I − of the eon #(i + 1).

The vicinity of the matching surface (the wound) of eons #i
and #(i + 1), this region Penrose calls bandaged region for the
two eons, is equipped with the following three metrics, which
are conformally flat at the wound:

a Lorentzian metric g which is regular everywhere,
a Lorentzian metric ǧ, which represents the physical metric
of the eon #(i + 1), and which is singular at the wound,
a Lorentzian metric ĝ, which represents the physical metric
of the eon #i , and which expands at the wound.
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a Lorentzian metric ĝ, which represents the physical metric
of the eon #i , and which expands at the wound.

8/20



Penrose’s Conformal Cyclic Cosmology

The Universe consists of eons, each being a time oriented
spacetime, whose conformal compactifications have
spacelike I . The Weyl tensor of the metric on each I is zero.

Eons are ordered, and the conformal compactifications of
consecutive eons, say #i and #(i + 1), are glued together
along I + of the eon #i , and I − of the eon #(i + 1).

The vicinity of the matching surface (the wound) of eons #i
and #(i + 1), this region Penrose calls bandaged region for the
two eons, is equipped with the following three metrics, which
are conformally flat at the wound:

a Lorentzian metric g which is regular everywhere,
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a Lorentzian metric ǧ, which represents the physical metric
of the eon #(i + 1), and which is singular at the wound,
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Penrose’s Conformal Cyclic Cosmology

In any bandaged region, the three metrics g, ǧ and ĝ, are
conformally related.
How to make this relation specific is debatable, but
Penrose proposes that

ǧ = Ω2g, and ĝ = 1
Ω2 g, with Ω→ 0 on the wound.

The metric ǧ in eon #(i + 1) is a physical metric there.
Likewise, the metric ĝ in eon #i is a physical metric
there.
Of course, the metric ǧ in eon #(i + 1), and the metric ĝ in
eon #i , as physical spacetime metrics, should satisfy
Einstein’s equations in #(i + 1) and #i , respectively.
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Ω2 g, with Ω→ 0 on the wound.
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conformally related.
How to make this relation specific is debatable, but
Penrose proposes that
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Ω2 g, with Ω→ 0 on the wound.
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conformally related.
How to make this relation specific is debatable, but
Penrose proposes that
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Modelling Penrose’s CCC scenario

Question: How to make a model of Penrose’s bandaged
region?
One needs a function Ω, vanishing on some spacelike
hypersurface, such that if ǧ = Ω2g satisfies Einstein
equations with some physically reasonable energy
momentum tensor, then ĝ = 1

Ω2 g also satisfies Einstein
equations with possibly different, but still physically
reasonable energy momentum tensor.
Similar, but seems to me simpler, than a problem of
Brinkman, who in 1925 asked a question ‘when in a
conformal class of metrics can be two different
Einstein metrics?’. Brinkman found all such metrics.
Why not to start with conformally flat situation
(reasonable, because compatible with the cosmological
principle/FLRW paradigm), and (various) perfect fluids?
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equations with some physically reasonable energy
momentum tensor, then ĝ = 1
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Polytrope perfect fluids in FLRW models

From now on I restrict myself to FLRW metrics with κ = 1,
g = −dt2 + Ω2(t)r2

0

(
dχ2 + sin2 χ

(
dθ2 + sin2 θdφ2)).

It is convenient to introduce a conformal time η =
∫ dt

a(t)
so that the FLRW metric looks

g = Ω2(η)
(
− dη2 + r2

0
(
dχ2 + sin2 χ(dθ2 + sin2 θdφ2)

))
,

i.e. g = Ω2(η)gEinst .
This parametrization is very convenient since taking
u = −Ω(η)dη, the most general FLRW metric g satisfying
Einstein’s equations

Ric − 1
2Rg = (µ+ p)u ⊗ u + pg

with polytropic equation of state p = wµ, w = const , is
given by

Ω(η) = Ω0

(
sin2 (1+3w)η

2r0

) 1
1+3w if w 6= −1

3 ,
and

Ω(η) = Ω0 exp(bη) if w = −1
3 .

12/20



Polytrope perfect fluids in FLRW models

From now on I restrict myself to FLRW metrics with κ = 1,
g = −dt2 + Ω2(t)r2

0

(
dχ2 + sin2 χ

(
dθ2 + sin2 θdφ2)).

It is convenient to introduce a conformal time η =
∫ dt

a(t)
so that the FLRW metric looks

g = Ω2(η)
(
− dη2 + r2

0
(
dχ2 + sin2 χ(dθ2 + sin2 θdφ2)

))
,

i.e. g = Ω2(η)gEinst .
This parametrization is very convenient since taking
u = −Ω(η)dη, the most general FLRW metric g satisfying
Einstein’s equations

Ric − 1
2Rg = (µ+ p)u ⊗ u + pg

with polytropic equation of state p = wµ, w = const , is
given by

Ω(η) = Ω0

(
sin2 (1+3w)η

2r0

) 1
1+3w if w 6= −1

3 ,
and

Ω(η) = Ω0 exp(bη) if w = −1
3 .

12/20



Polytrope perfect fluids in FLRW models

From now on I restrict myself to FLRW metrics with κ = 1,
g = −dt2 + Ω2(t)r2

0

(
dχ2 + sin2 χ

(
dθ2 + sin2 θdφ2)).

It is convenient to introduce a conformal time η =
∫ dt

a(t)
so that the FLRW metric looks

g = Ω2(η)
(
− dη2 + r2

0
(
dχ2 + sin2 χ(dθ2 + sin2 θdφ2)

))
,

i.e. g = Ω2(η)gEinst .
This parametrization is very convenient since taking
u = −Ω(η)dη, the most general FLRW metric g satisfying
Einstein’s equations

Ric − 1
2Rg = (µ+ p)u ⊗ u + pg

with polytropic equation of state p = wµ, w = const , is
given by

Ω(η) = Ω0

(
sin2 (1+3w)η

2r0

) 1
1+3w if w 6= −1

3 ,
and

Ω(η) = Ω0 exp(bη) if w = −1
3 .

12/20



Polytrope perfect fluids in FLRW models

From now on I restrict myself to FLRW metrics with κ = 1,
g = −dt2 + Ω2(t)r2

0

(
dχ2 + sin2 χ

(
dθ2 + sin2 θdφ2)).

It is convenient to introduce a conformal time η =
∫ dt

a(t)
so that the FLRW metric looks

g = Ω2(η)
(
− dη2 + r2

0
(
dχ2 + sin2 χ(dθ2 + sin2 θdφ2)

))
,

i.e. g = Ω2(η)gEinst .
This parametrization is very convenient since taking
u = −Ω(η)dη, the most general FLRW metric g satisfying
Einstein’s equations

Ric − 1
2Rg = (µ+ p)u ⊗ u + pg

with polytropic equation of state p = wµ, w = const , is
given by

Ω(η) = Ω0

(
sin2 (1+3w)η

2r0

) 1
1+3w if w 6= −1

3 ,
and

Ω(η) = Ω0 exp(bη) if w = −1
3 .

12/20



Polytrope perfect fluids in FLRW models

From now on I restrict myself to FLRW metrics with κ = 1,
g = −dt2 + Ω2(t)r2

0

(
dχ2 + sin2 χ

(
dθ2 + sin2 θdφ2)).

It is convenient to introduce a conformal time η =
∫ dt

a(t)
so that the FLRW metric looks

g = Ω2(η)
(
− dη2 + r2

0
(
dχ2 + sin2 χ(dθ2 + sin2 θdφ2)

))
,

i.e. g = Ω2(η)gEinst .
This parametrization is very convenient since taking
u = −Ω(η)dη, the most general FLRW metric g satisfying
Einstein’s equations

Ric − 1
2Rg = (µ+ p)u ⊗ u + pg

with polytropic equation of state p = wµ, w = const , is
given by

Ω(η) = Ω0

(
sin2 (1+3w)η

2r0

) 1
1+3w if w 6= −1

3 ,
and

Ω(η) = Ω0 exp(bη) if w = −1
3 .

12/20



Polytrope perfect fluids in FLRW models

From now on I restrict myself to FLRW metrics with κ = 1,
g = −dt2 + Ω2(t)r2

0

(
dχ2 + sin2 χ

(
dθ2 + sin2 θdφ2)).

It is convenient to introduce a conformal time η =
∫ dt

a(t)
so that the FLRW metric looks

g = Ω2(η)
(
− dη2 + r2

0
(
dχ2 + sin2 χ(dθ2 + sin2 θdφ2)

))
,

i.e. g = Ω2(η)gEinst .
This parametrization is very convenient since taking
u = −Ω(η)dη, the most general FLRW metric g satisfying
Einstein’s equations

Ric − 1
2Rg = (µ+ p)u ⊗ u + pg

with polytropic equation of state p = wµ, w = const , is
given by

Ω(η) = Ω0

(
sin2 (1+3w)η

2r0

) 1
1+3w if w 6= −1

3 ,
and

Ω(η) = Ω0 exp(bη) if w = −1
3 .

12/20



Polytrope perfect fluids in FLRW models

From now on I restrict myself to FLRW metrics with κ = 1,
g = −dt2 + Ω2(t)r2

0

(
dχ2 + sin2 χ

(
dθ2 + sin2 θdφ2)).

It is convenient to introduce a conformal time η =
∫ dt

a(t)
so that the FLRW metric looks

g = Ω2(η)
(
− dη2 + r2

0
(
dχ2 + sin2 χ(dθ2 + sin2 θdφ2)

))
,

i.e. g = Ω2(η)gEinst .
This parametrization is very convenient since taking
u = −Ω(η)dη, the most general FLRW metric g satisfying
Einstein’s equations

Ric − 1
2Rg = (µ+ p)u ⊗ u + pg

with polytropic equation of state p = wµ, w = const , is
given by

Ω(η) = Ω0

(
sin2 (1+3w)η

2r0

) 1
1+3w if w 6= −1

3 ,
and

Ω(η) = Ω0 exp(bη) if w = −1
3 .

12/20



Polytrope perfect fluids in FLRW models

From now on I restrict myself to FLRW metrics with κ = 1,
g = −dt2 + Ω2(t)r2

0

(
dχ2 + sin2 χ

(
dθ2 + sin2 θdφ2)).

It is convenient to introduce a conformal time η =
∫ dt

a(t)
so that the FLRW metric looks

g = Ω2(η)
(
− dη2 + r2

0
(
dχ2 + sin2 χ(dθ2 + sin2 θdφ2)

))
,

i.e. g = Ω2(η)gEinst .
This parametrization is very convenient since taking
u = −Ω(η)dη, the most general FLRW metric g satisfying
Einstein’s equations

Ric − 1
2Rg = (µ+ p)u ⊗ u + pg

with polytropic equation of state p = wµ, w = const , is
given by

Ω(η) = Ω0

(
sin2 (1+3w)η

2r0

) 1
1+3w if w 6= −1

3 ,
and

Ω(η) = Ω0 exp(bη) if w = −1
3 .

12/20



Polytrope perfect fluids in FLRW models

From now on I restrict myself to FLRW metrics with κ = 1,
g = −dt2 + Ω2(t)r2

0

(
dχ2 + sin2 χ

(
dθ2 + sin2 θdφ2)).

It is convenient to introduce a conformal time η =
∫ dt

a(t)
so that the FLRW metric looks

g = Ω2(η)
(
− dη2 + r2

0
(
dχ2 + sin2 χ(dθ2 + sin2 θdφ2)

))
,

i.e. g = Ω2(η)gEinst .
This parametrization is very convenient since taking
u = −Ω(η)dη, the most general FLRW metric g satisfying
Einstein’s equations

Ric − 1
2Rg = (µ+ p)u ⊗ u + pg

with polytropic equation of state p = wµ, w = const , is
given by

Ω(η) = Ω0

(
sin2 (1+3w)η

2r0

) 1
1+3w if w 6= −1

3 ,
and

Ω(η) = Ω0 exp(bη) if w = −1
3 .

12/20



Polytrope perfect fluids in FLRW models

From now on I restrict myself to FLRW metrics with κ = 1,
g = −dt2 + Ω2(t)r2

0

(
dχ2 + sin2 χ

(
dθ2 + sin2 θdφ2)).

It is convenient to introduce a conformal time η =
∫ dt

a(t)
so that the FLRW metric looks

g = Ω2(η)
(
− dη2 + r2

0
(
dχ2 + sin2 χ(dθ2 + sin2 θdφ2)

))
,

i.e. g = Ω2(η)gEinst .
This parametrization is very convenient since taking
u = −Ω(η)dη, the most general FLRW metric g satisfying
Einstein’s equations

Ric − 1
2Rg = (µ+ p)u ⊗ u + pg

with polytropic equation of state p = wµ, w = const , is
given by

Ω(η) = Ω0

(
sin2 (1+3w)η

2r0

) 1
1+3w if w 6= −1

3 ,
and

Ω(η) = Ω0 exp(bη) if w = −1
3 .

12/20



Polytrope perfect fluids in FLRW models

From now on I restrict myself to FLRW metrics with κ = 1,
g = −dt2 + Ω2(t)r2

0

(
dχ2 + sin2 χ

(
dθ2 + sin2 θdφ2)).

It is convenient to introduce a conformal time η =
∫ dt

a(t)
so that the FLRW metric looks

g = Ω2(η)
(
− dη2 + r2

0
(
dχ2 + sin2 χ(dθ2 + sin2 θdφ2)

))
,

i.e. g = Ω2(η)gEinst .
This parametrization is very convenient since taking
u = −Ω(η)dη, the most general FLRW metric g satisfying
Einstein’s equations

Ric − 1
2Rg = (µ+ p)u ⊗ u + pg

with polytropic equation of state p = wµ, w = const , is
given by

Ω(η) = Ω0

(
sin2 (1+3w)η

2r0

) 1
1+3w if w 6= −1

3 ,
and

Ω(η) = Ω0 exp(bη) if w = −1
3 .

12/20



Symmetry of solutions conformal to the Einstein Universe

Theorem
If Ω = Ω(η) is such that ǧ = Ω2gEinst satisfies Einstein’s
equations, with Λ = 0, and with the energy momentum
tensor Ť of a perfect fluid, whose presure p̌ is proportional to
the energy density µ̌, via p̌ = w̌ µ̌, w̌ = const , then

ĝ =
1

Ω2 gEinst satisfies Einstein’s equations, with Λ = 0, and

with the energy momentum tensor T̂ of a perfect fluid,
whose presure p̂ and the energy density µ̂ are related by
p̂ = ŵ µ̂ with

ŵ = −1
3

(2 + 3w̌) .

The Ricci sclar of the metric ǧ is
R = 3(1−3w̌)

Ω2
0r2

0

(
sin6 (1+3w̌)η

2r0

) 1+w
1+3w

if w̌ 6= −1/3 and R =
6(1+b2r2

0 )

Ω2
0r2

0 exp(2bη)
if w̌ = −1/3,

so it is positive if −1 ≤ w̌ < 1/3 (recall the energy conditions
−1 ≤ w̌ ≤ 1).13/20
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ŵ = −1
3

(2 + 3w̌) .

The Ricci sclar of the metric ǧ is
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tensor Ť of a perfect fluid, whose presure p̌ is proportional to
the energy density µ̌, via p̌ = w̌ µ̌, w̌ = const , then
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R = 3(1−3w̌)

Ω2
0r2

0

(
sin6 (1+3w̌)η

2r0

) 1+w
1+3w

if w̌ 6= −1/3 and R =
6(1+b2r2

0 )

Ω2
0r2

0 exp(2bη)
if w̌ = −1/3,

so it is positive if −1 ≤ w̌ < 1/3 (recall the energy conditions
−1 ≤ w̌ ≤ 1).13/20



Symmetry of solutions conformal to the Einstein Universe

Theorem
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Transformation ǧ → ĝ → ǧ → ĝ → . . . of fluids

Suspiscious points: w̌ = −1,1/3 (cosmological constant -
radiation), since the scalar curvature R = 0, when w̌ = 1/3;
and w̌ = −1/3 (gas of strings), when Ω 6= 0 on I .
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Transformation ǧ → ĝ → ǧ → ĝ → . . . of fluids: more careful approach

We come back to the FLRW metric ǧ = −dt2 + Ω2(t)r2
0 gS3 .

We write it as ǧ = Ω2(t)
(
− dt2

Ω2(t) + r2
0 gS3

)
, so that it is clear that

ǧ = Ω2(t)gEinst .

Then the condition that ǧ satisfies perfect fluid Eisntein’s
equations with ǔ = −dt , p̌ = w̌ µ̌, and the cosmological constant
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forcing it to be constant, because of the above ODE satisfied by
Ω, we find that it is possible provided that:

Λ̌Λ̂(1 + w̌)(1− 3w̌) = 0.

Thus, a neccessary condition for both Ω and Ω−1 to describe
the polytropes, is that either one of the Λs is zero, or w̌ is of the
‘radiation-Λ’ type.

16/20
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forcing it to be constant, because of the above ODE satisfied by
Ω, we find that it is possible provided that:

Λ̌Λ̂(1 + w̌)(1− 3w̌) = 0.

Thus, a neccessary condition for both Ω and Ω−1 to describe
the polytropes, is that either one of the Λs is zero, or w̌ is of the
‘radiation-Λ’ type.

16/20
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equations with ǔ = −dt , p̌ = w̌ µ̌, and the cosmological constant
Λ̌, is equivalent to the following ODE for Ω:

2r2
0 ΩΩ′′ = −(1 + 3w̌)(1 + r2

0 Ω′2) + (1 + w̌)Λ̌r2
0 Ω2.

We want that w̌ = const and that ĝ = 1
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equations with ǔ = −dt , p̌ = w̌ µ̌, and the cosmological constant
Λ̌, is equivalent to the following ODE for Ω:

2r2
0 ΩΩ′′ = −(1 + 3w̌)(1 + r2

0 Ω′2) + (1 + w̌)Λ̌r2
0 Ω2.

We want that w̌ = const and that ĝ = 1
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forcing it to be constant, because of the above ODE satisfied by
Ω, we find that it is possible provided that:

Λ̌Λ̂(1 + w̌)(1− 3w̌) = 0.

Thus, a neccessary condition for both Ω and Ω−1 to describe
the polytropes, is that either one of the Λs is zero, or w̌ is of the
‘radiation-Λ’ type.

16/20
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0 gS3 .

We write it as ǧ = Ω2(t)
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Ω2 , p̂ = ŵ µ̂, the
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Transformation ǧ → ĝ → ǧ → ĝ → . . . of fluids: more careful approach

Considering the case w̌ = 1/3, one shows that
remarkably ŵ = 1/3 (generalization of the result of Paul
Tod). More explicitly this case can be integrated to the very
end.
Theorem. The function Ω = Ω(t) given by:

Ω2 =
3−3 cosh(2

√
Λ̌
3 t)−2r2

0

√
Λ̌Λ̂ sinh(2

√
Λ̌
3 t)

Λ̌r2
0

has the property that both ǧ = Ω2gEinst and ĝ = Ω−2gEinst
satisfy Einstein’s equations with polytropic perfect fluid
equation of state, for which ŵ = w̌ = 1/3 (radiation), and
with the corresponding cosmological constants Λ̌ and Λ̂.
Here gEinst = −Ω−2dt2 + r2

0 gS3 .
Colloquially speaking incoherent radiation passes
happily through the wound. However, cosmological
constants can change from any positive value to any other
one. Ha...
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Transformation ǧ → ĝ → ǧ → ĝ → . . . of fluids: more careful approach

Considering the case w̌ = 1/3, one shows that
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Transformation ǧ → ĝ → ǧ → ĝ → . . . of fluids: more careful approach

Considering the case w̌ = 1/3, one shows that
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Possible generalizations

Consider (special) Bianchi models: ǧ = −dt2 + Ω2(t)hijσ
iσj ,

where σi , i , j = 1,2,3, are left invariant forms on a 3-dimensional
Lie group G, and

(
hij
)

is a symmetric positive definite matrix.
Here the Universe manifold is M = R×G, and the time variable
t is along the R factor. For each Bianchi type of G, decide which
metric should play the role of gEinst . In other words: find a
preferred basis σi of the left invariant forms on G, so that the
counterpart of gEinst is gE = −Ω−2(t)dt2 + (σ1)2 + (σ2)2 + (σ3)2;
and then play the game with ǧ = Ω2gE and ĝ = Ω−2gE , similar to
this I was describing in this talk. My game was Bianchi IX, i.e. I
took G = SU(2) = S3.

More generally, take as gE the metric gE = −Ω−2(t)dt2 + gS,
where M = R × S, and (S,gS) is a 3D Riemannian manifold
(possibly satisfying some interesting equations, or as in the
previous case symmetry conditions). Again play the game with
polytropic perfect fluids for ǧ = Ω2gE and ĝ = Ω−2gE
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