Conformal transformations and the beginning of the Universe. Part III.

Pawel Nurowski
Centrum Fizyki Teoretycznej
Polska Akademia Nauk

GRIEG running seminar nr. 4, 12.01.2021

- A conformal transformation: $g \rightarrow \hat{g}=\frac{1}{\Omega^{2}} g$ results in the following transformation of the respective Ricci tensors:
$\hat{h}_{\mu v}=\Omega^{2} R_{\mu \nu}+2 \Omega \nabla \Omega_{\mu}+g_{\mu v}\left(\Omega-\Omega-3 g^{\prime}\left(\nabla \Omega,-\Omega^{\prime}\right)\right.$
- Contracting we get the following transformation of the Ricci scalars:

$$
\hat{n}=\Omega^{2} n+6 \Omega \square \Omega-12 g(\nabla \Omega, \nabla \Omega)
$$

- Interpreting \hat{g} as the physical metric of spacetime, whose conformal compactified metric g has \mathscr{I} where $\Omega \rightarrow 0$, we see that the causal properties of are governed by the formula: $\hat{R}=-12 g(\nabla \Omega, \nabla \Omega)$.
- Recall that the signature is $(-\perp+\perp)$, so is spacelike if $\nabla \Omega$ is timelike, i.e. if the Ricci scalar \hat{R} of the physical metric is positive, $R>0$.
- A conformal transformation: $g \rightarrow \hat{g}=\frac{1}{\Omega^{2}} g$ results in the following transformation of the respective Ricci tensors: $\hat{R}_{\mu \nu}=\Omega^{2} R_{\mu \nu}+2 \Omega \nabla_{\nu} \Omega_{\mu}+g_{\mu \nu}(\Omega \square \Omega-3 g(\nabla \Omega, \nabla \Omega))$
- Contracting we get the following transformation of the Ricci scalars:
- Interpreting \hat{g} as the physical metric of spacetime, whose conformal compactified metric g has \mathscr{I} where $\Omega \rightarrow 0$, we see that the causal properties of are governed by the formula: $\hat{R}=-12 g(\nabla \Omega, \nabla \Omega)$.
- Recall that the signature is $(-\perp+\perp)$ so is spacelike if $\nabla \Omega$ is timelike, i.e. if the Ricci scalar \hat{R} of the physical metric is positive, $\hat{R}>0$.
- A conformal transformation: $g \rightarrow \hat{g}=\frac{1}{\Omega^{2}} g$ results in the following transformation of the respective Ricci tensors:
- Contracting we get the following transformation of the Ricci scalars:
- Interpreting \hat{g} as the physical metric of spacetime, whose conformal compactified metric g has \mathscr{I} where $\Omega \rightarrow 0$, we see that the causal properties of are governed by the formula:
- Recall that the signature is $(-,+,+,+)$, so \mathscr{I} is spacelike if $\nabla \Omega$ is timelike, i.e. if the Ricci scalar \hat{R} of the physical metric is positive, \hat{R}
- A conformal transformation: $g \rightarrow \hat{g}=\frac{1}{\Omega^{2}} g$ results in the following transformation of the respective Ricci tensors:

$$
\hat{R}_{\mu \nu}=\Omega^{2} R_{\mu \nu}+2 \Omega \nabla_{\nu} \Omega_{\mu}+g_{\mu \nu}(\Omega \square \Omega-3 g(\nabla \Omega, \nabla \Omega))
$$

- Contracting we get the following transformation of the Ricci scalars:
- Interpreting \hat{g} as the physical metric of spacetime, whose conformal compactified metric g has \mathscr{I} where $\Omega \rightarrow 0$, we see that the causal properties of are governed by the formula:
- Recall that the signature is $(-,+,+,+)$, so \mathscr{I} is spacelike if $\nabla \Omega$ is timelike, i.e. if the Ricci scalar \hat{R} of the physical metric is positive, \hat{R}
- A conformal transformation: $g \rightarrow \hat{g}=\frac{1}{\Omega^{2}} g$ results in the following transformation of the respective Ricci tensors:

$$
\hat{R}_{\mu \nu}=\Omega^{2} R_{\mu \nu}+2 \Omega \nabla_{\nu} \Omega_{\mu}+g_{\mu \nu}(\Omega \square \Omega-3 g(\nabla \Omega, \nabla \Omega))
$$

- Contracting we get the following transformation of the Ricci scalars:
- Interpreting \hat{g} as the physical metric of spacetime, whose conformal compactified metric g has \mathscr{I} where $\Omega \rightarrow 0$, we see that the causal properties of are governed by the formula:
- Recall that the signature is $(-,+,+,+)$, so \mathscr{I} is spacelike if $\nabla \Omega$ is timelike, i.e. if the Ricci scalar \hat{R} of the physical metric is positive,
- A conformal transformation: $g \rightarrow \hat{g}=\frac{1}{\Omega^{2}} g$ results in the following transformation of the respective Ricci tensors:

$$
\hat{R}_{\mu \nu}=\Omega^{2} R_{\mu \nu}+2 \Omega \nabla_{\nu} \Omega_{\mu}+g_{\mu \nu}(\Omega \square \Omega-3 g(\nabla \Omega, \nabla \Omega))
$$

- Contracting we get the following transformation of the Ricci scalars:

$$
\hat{R}=\Omega^{2} R+6 \Omega \square \Omega-12 g(\nabla \Omega, \nabla \Omega) .
$$

- Interpreting \hat{g} as the physical metric of spacetime, whose conformal compactified metric g has \mathscr{I} where $\Omega \rightarrow 0$, we see that the causal properties of \mathscr{I} are governed by the formula:
- Recall that the signature is $(-,+,+,+)$, so \mathscr{I} is spacelike if $\nabla \Omega$ is timelike, i.e. if the Ricci scalar \hat{R} of the physical metric is positive,
- A conformal transformation: $g \rightarrow \hat{g}=\frac{1}{\Omega^{2}} g$ results in the following transformation of the respective Ricci tensors:

$$
\hat{R}_{\mu \nu}=\Omega^{2} R_{\mu \nu}+2 \Omega \nabla_{\nu} \Omega_{\mu}+g_{\mu \nu}(\Omega \square \Omega-3 g(\nabla \Omega, \nabla \Omega))
$$

- Contracting we get the following transformation of the Ricci scalars:

$$
\hat{R}=\Omega^{2} R+6 \Omega \square \Omega-12 g(\nabla \Omega, \nabla \Omega) .
$$

- Interpreting \hat{g} as the physical metric of spacetime, whose conformal compactified metric g has \mathscr{I} where $\Omega \rightarrow 0$, we see that the causal properties of \mathscr{I} are governed by the formula:
- Recall that the signature is $(-,+,+,+)$, so \mathscr{I} is spacelike if $\nabla \Omega$ is timelike, i.e. if the Ricci scalar \hat{R} of the physical metric is positive,
- A conformal transformation: $g \rightarrow \hat{g}=\frac{1}{\Omega^{2}} g$ results in the following transformation of the respective Ricci tensors:

$$
\hat{R}_{\mu \nu}=\Omega^{2} R_{\mu \nu}+2 \Omega \nabla_{\nu} \Omega_{\mu}+g_{\mu \nu}(\Omega \square \Omega-3 g(\nabla \Omega, \nabla \Omega))
$$

- Contracting we get the following transformation of the Ricci scalars:

$$
\hat{R}=\Omega^{2} R+6 \Omega \square \Omega-12 g(\nabla \Omega, \nabla \Omega) .
$$

- Interpreting \hat{g} as the physical metric of spacetime, whose conformal compactified metric g has \mathscr{I} where $\Omega \rightarrow 0$, we see that the causal properties of \mathscr{I} are governed by the formula:

$$
\hat{R}=-12 g(\nabla \Omega, \nabla \Omega) .
$$

- Recall that the signature is
so \mathscr{I} is spacelike if $\nabla \Omega$ is timelike, i.e. if the Ricci scalar \hat{R} of the physical metric is positive,
- A conformal transformation: $g \rightarrow \hat{g}=\frac{1}{\Omega^{2}} g$ results in the following transformation of the respective Ricci tensors:

$$
\hat{R}_{\mu \nu}=\Omega^{2} R_{\mu \nu}+2 \Omega \nabla_{\nu} \Omega_{\mu}+g_{\mu \nu}(\Omega \square \Omega-3 g(\nabla \Omega, \nabla \Omega))
$$

- Contracting we get the following transformation of the Ricci scalars:

$$
\hat{R}=\Omega^{2} R+6 \Omega \square \Omega-12 g(\nabla \Omega, \nabla \Omega) .
$$

- Interpreting \hat{g} as the physical metric of spacetime, whose conformal compactified metric g has \mathscr{I} where $\Omega \rightarrow 0$, we see that the causal properties of \mathscr{I} are governed by the formula:
$\hat{R}=-12 g(\nabla \Omega, \nabla \Omega)$.
- Recall that the signature is $(-,+,+,+)$, so \mathscr{I} is spacelike if $\nabla \Omega$ is timelike, i.e. if the Ricci scalar \hat{R} of the physical metric is positive, $\hat{R}>0$.
- Using the Einstein equations satisfied by the metric \hat{g},

$$
\hat{R}_{\mu \nu}-\frac{1}{2} \hat{R} \hat{g}_{\mu \nu}+\hat{\Lambda} \hat{g}_{\mu \nu}=\hat{T}_{\mu \nu}
$$

or

one can express this also in terms of the cosmological constant
$\hat{\Lambda}$ of the physical spacetime and the trace of its energy momentum tensor T :

- This, in particular means that if close to \mathscr{I} the trace of the energy momentum \hat{T} vanishes, a positive cosmological constant \wedge makes spacelike.
- Using the Einstein equations satisfied by the metric \hat{g},
- Using the Einstein equations satisfied by the metric \hat{g},

$$
\hat{R}_{\mu \nu}-\frac{1}{2} \hat{R} \hat{g}_{\mu \nu}+\hat{\Lambda} \hat{g}_{\mu \nu}=\hat{T}_{\mu \nu}
$$

or
one can express this also in terms of the cosmological constant
$\hat{\Lambda}$ of the physical spacetime and the trace of its energy
momentum tensor

- This, in particular means that if close to \mathscr{I} the trace of the energy momentum \hat{T} vanishes, a positive cosmological constant A makes spacelike.
- Using the Einstein equations satisfied by the metric \hat{g},

$$
\hat{R}_{\mu \nu}-\frac{1}{2} \hat{R} \hat{g}_{\mu \nu}+\hat{\Lambda} \hat{g}_{\mu \nu}=\hat{T}_{\mu \nu}
$$

or

$$
\hat{R}_{\mu \nu}=\hat{T}_{\mu \nu}+\left(\hat{\Lambda}-\frac{1}{2} \hat{T}\right) \hat{g}_{\mu \nu},
$$

one can express this also in terms of the cosmological constant $\hat{\Lambda}$ of the physical spacetime and the trace of its energy momentum tensor T :

- This, in particular means that if close to \mathscr{I} the trace of the energy momentum \hat{T} vanishes, a positive cosmological constant $\hat{\wedge}$ makes \mathscr{I} spacelike.

Conformal transformations of spacetimes and Ricci

- Using the Einstein equations satisfied by the metric \hat{g},

$$
\hat{R}_{\mu \nu}-\frac{1}{2} \hat{R} \hat{g}_{\mu \nu}+\hat{\Lambda} \hat{g}_{\mu \nu}=\hat{T}_{\mu \nu}
$$

or

$$
\hat{R}_{\mu \nu}=\hat{T}_{\mu \nu}+\left(\hat{\Lambda}-\frac{1}{2} \hat{T}\right) \hat{g}_{\mu \nu},
$$

one can express this also in terms of the cosmological constant $\hat{\Lambda}$ of the physical spacetime and the trace of its energy momentum tensor \hat{T} :

- This, in particular means that if close to \mathscr{I} the trace of the energy momentum \hat{T} vanishes, a positive cosmological constant A makes spacelike.

Conformal transformations of spacetimes and Ricci

- Using the Einstein equations satisfied by the metric \hat{g},

$$
\hat{R}_{\mu \nu}-\frac{1}{2} \hat{R} \hat{g}_{\mu \nu}+\hat{\Lambda} \hat{g}_{\mu \nu}=\hat{T}_{\mu \nu}
$$

or

$$
\hat{R}_{\mu \nu}=\hat{T}_{\mu \nu}+\left(\hat{\Lambda}-\frac{1}{2} \hat{T}\right) \hat{g}_{\mu \nu},
$$

one can express this also in terms of the cosmological constant $\hat{\Lambda}$ of the physical spacetime and the trace of its energy momentum tensor \hat{T} :

$$
4 \hat{\Lambda}-\hat{T}>0
$$

- This, in particular means that if close to \mathscr{I} the trace of the energy momentum \widehat{T} vanishes, a positive cosmological constant \wedge makes \mathscr{I} spacelike.
- Using the Einstein equations satisfied by the metric \hat{g},

$$
\hat{R}_{\mu \nu}-\frac{1}{2} \hat{R} \hat{g}_{\mu \nu}+\hat{\Lambda} \hat{g}_{\mu \nu}=\hat{T}_{\mu \nu}
$$

or

$$
\hat{R}_{\mu \nu}=\hat{T}_{\mu \nu}+\left(\hat{\Lambda}-\frac{1}{2} \hat{T}\right) \hat{g}_{\mu \nu},
$$

one can express this also in terms of the cosmological constant $\hat{\Lambda}$ of the physical spacetime and the trace of its energy momentum tensor \hat{T} :

$$
4 \hat{\Lambda}-\hat{T}>0
$$

- This, in particular means that if close to \mathscr{I} the trace of the energy momentum \hat{T} vanishes, a positive cosmological constant $\hat{\wedge}$ makes \mathscr{I} spacelike.

Brief history of theoretical cosmology

- Perfect cosmological principle (Copernicus ?): The Universe is the same everywhere, in every direction, and at every moment of time.
- A General Relativity model of such Universe is due to Einstein (1917):

$$
M=\mathbb{R} \times \mathbb{S}^{3} \text {, and } g_{\text {Einst }}=-\mathrm{d} t^{2}+\Omega^{2} g_{\mathrm{B}},
$$

with $g_{s^{3}}$ is the standard metric on \mathbb{S}^{3} of radius 1 , and $\Omega=$ const. This is the Einstein's static Universe model.

- The Ricci tensor for this spacetime is Ricci $=\frac{2}{n^{2}} g_{\mathbb{*}}$.This satisfies Einstein's equations

$$
R i c c i-\frac{1}{2} R g+\Lambda g=\mu u \otimes u,
$$

with $u=-\mathrm{d} t$, and $\Lambda=\frac{1}{\Omega^{2}}, \mu=\frac{2}{\Omega^{2}}$.

- Thus it is a solution to Einstein's field equations for homogeneous dust with cosmological constant.
- In particular the Ricci scalar $R=\frac{6}{\Omega^{2}}$ is positive. This means that Einstein's model has spacelike
- Perfect cosmological principle (Copernicus ?): The Universe is the same everywhere, in every direction, and at every moment of time.
A General Relativity model of such Universe is due to Einstein (1917):
with $g_{s_{3}}$ is the standard metric on \mathbb{S}^{3} of radius 1 , and $\Omega=$ const. This is the Einstein's static Universe model.
- The Ricci tensor for this spacetime is Ricci $=\frac{2}{n^{2}} g_{s_{3}}$. This satisfies Einstein's equations
with $u=-\mathrm{d} t$, and
- Thus it is a solution to Einstein's field equations for homogeneous dust with cosmological constant.
- In particular the Ricci scalar $R=\frac{6}{\Omega^{2}}$ is positive. This means that Einstein's model has spacelike
- Perfect cosmological principle (Copernicus ?): The Universe is the same everywhere, in every direction, and at every moment of time.
- A General Relativity model of such Universe is due to Einstein (1917):
with $g_{\mathbb{S}^{3}}$ is the standard metric on \mathbb{S}^{3} of radius 1 , and $\Omega=$ const. This is the Einstein's static Universe model.
- The Ricci tensor for this spacetime is Ricci $=\frac{2}{\rho^{2}} g_{s_{3}}$. This satisfies Einstein's equations
with $u=-\mathrm{d} t$, and
- Thus it is a solution to Einstein's field equations for homogeneous dust with cosmological constant.
- In particular the Ricci scalar $R=\frac{6}{\Omega^{2}}$ is positive. This
means that Einstein's model has spacelike
- Perfect cosmological principle (Copernicus ?): The Universe is the same everywhere, in every direction, and at every moment of time.
- A General Relativity model of such Universe is due to Einstein (1917):

$$
M=\mathbb{R} \times \mathbb{S}^{3}
$$

with $g_{\mathbb{S}^{3}}$ is the standard metric on \mathbb{S}^{3} of radius 1 , and $\Omega=$ const. This is the Einstein's static Universe model.

- The Ricci tensor for this spacetime is Ricci $=\frac{2}{n^{2}} g_{c_{3}}$. This satisfies Einstein's equations
with $u=-\mathrm{d} t$, and
- Thus it is a solution to Einstein's field equations for homogeneous dust with cosmological constant.
- In particular the Ricci scalar $R=\frac{6}{\Omega^{2}}$ is positive. This
means that Einstein's model has spacelike
- Perfect cosmological principle (Copernicus ?): The Universe is the same everywhere, in every direction, and at every moment of time.
- A General Relativity model of such Universe is due to Einstein (1917):

$$
M=\mathbb{R} \times \mathbb{S}^{3}, \text { and } g_{\text {Einst }}=-\mathrm{d} t^{2}+\Omega^{2} g_{\mathbb{S}^{3}},
$$

with $g_{s^{3}}$ is the standard metric on \mathbb{S}^{3} of radius 1 , and $\Omega=$ const. This is the Einstein's static Universe model.

- The Ricci tensor for this spacetime is Ricci $=\frac{2}{\rho^{2}} g_{\mathbb{s}_{3}}$. This satisfies Einstein's equations
with $u=-\mathrm{d} t$, and
- Thus it is a solution to Einstein's field equations for homogeneous dust with cosmological constant.
- In particular the Ricci scalar $R=\frac{6}{\Omega^{2}}$ is positive. This
means that Einstein's model has spacelike
- Perfect cosmological principle (Copernicus ?): The Universe is the same everywhere, in every direction, and at every moment of time.
- A General Relativity model of such Universe is due to Einstein (1917):

$$
M=\mathbb{R} \times \mathbb{S}^{3}, \text { and } g_{\text {Einst }}=-\mathrm{d} t^{2}+\Omega^{2} g_{\mathbb{S}^{3}},
$$

with $g_{\mathbb{S}^{3}}$ is the standard metric on \mathbb{S}^{3} of radius 1 , and $\Omega=$ const. This is the Einstein's static Universe model.
The Ricci tensor for this spacetime is Ricci
satisfies Einstein's equations
with $u=-\mathrm{d} t$, and

- Thus it is a solution to Einstein's field equations for homogeneous dust with cosmological constant. In particular the Ricci scalar $R=\frac{6}{\Omega^{2}}$ is positive. This means that Einstein's model has spacelike
- Perfect cosmological principle (Copernicus ?): The Universe is the same everywhere, in every direction, and at every moment of time.
- A General Relativity model of such Universe is due to Einstein (1917):

$$
M=\mathbb{R} \times \mathbb{S}^{3}, \text { and } g_{\text {Einst }}=-\mathrm{d} t^{2}+\Omega^{2} g_{\mathbb{S}^{3}}
$$

with $g_{\mathbb{S}^{3}}$ is the standard metric on \mathbb{S}^{3} of radius 1 , and $\Omega=$ const. This is the Einstein's static Universe model.
The Ricci tensor for this spacetime is satisfies Einstein's equations
with $u=-\mathrm{d} t$, and

- Thus it is a solution to Einstein's field equations for homogeneous dust with cosmological constant. In particular the Ricci scalar $R=\frac{6}{\Omega^{2}}$ is positive. This means that Einstein's model has spacelike
- Perfect cosmological principle (Copernicus ?): The Universe is the same everywhere, in every direction, and at every moment of time.
- A General Relativity model of such Universe is due to Einstein (1917):

$$
M=\mathbb{R} \times \mathbb{S}^{3}, \text { and } g_{\text {Einst }}=-\mathrm{d} t^{2}+\Omega^{2} g_{\mathbb{S}^{3}},
$$

with $g_{\mathbb{S}^{3}}$ is the standard metric on \mathbb{S}^{3} of radius 1 , and $\Omega=$ const. This is the Einstein's static Universe model.

- The Ricci tensor for this spacetime is Ricci $=\frac{2}{\Omega^{2}} g_{\mathbb{S}^{3}}$. satisfies Einstein's equations
with $u=-\mathrm{d} t$, and
- Thus it is a solution to Einstein's field equations for homogeneous dust with cosmological constant. In particular the Ricci scalar $R=\frac{6}{\Omega^{2}}$ is positive. This means that Einstein's model has spacelike
- Perfect cosmological principle (Copernicus ?): The Universe is the same everywhere, in every direction, and at every moment of time.
- A General Relativity model of such Universe is due to Einstein (1917):

$$
M=\mathbb{R} \times \mathbb{S}^{3}, \text { and } g_{\text {Einst }}=-\mathrm{d} t^{2}+\Omega^{2} g_{\mathbb{S}^{3}},
$$

with $g_{\mathbb{S}^{3}}$ is the standard metric on \mathbb{S}^{3} of radius 1 , and $\Omega=$ const. This is the Einstein's static Universe model.

- The Ricci tensor for this spacetime is Ricci $=\frac{2}{\Omega^{2}} g_{\mathbb{S}^{3}}$. This satisfies Einstein's equations

$$
R i c c i-\frac{1}{2} R g+\Lambda g=\mu u \otimes u
$$

with
Thus it is a solution to Einstein's field equations for homogeneous dust with cosmological constant. In particular the Ricci scalar $R=\frac{6}{\Omega^{2}}$ is positive. This means that Einstein's model has spacelike

- Perfect cosmological principle (Copernicus ?): The Universe is the same everywhere, in every direction, and at every moment of time.
- A General Relativity model of such Universe is due to Einstein (1917):

$$
M=\mathbb{R} \times \mathbb{S}^{3}, \text { and } g_{\text {Einst }}=-\mathrm{d} t^{2}+\Omega^{2} g_{\mathbb{S}^{3}},
$$

with $g_{\mathbb{S}^{3}}$ is the standard metric on \mathbb{S}^{3} of radius 1 , and $\Omega=$ const. This is the Einstein's static Universe model.

- The Ricci tensor for this spacetime is Ricci $=\frac{2}{\Omega^{2}} g_{\mathbb{S}^{3}}$. This satisfies Einstein's equations

$$
R i c c i-\frac{1}{2} R g+\Lambda g=\mu u \otimes u
$$

with $u=-\mathrm{d} t$, and $\Lambda=\frac{1}{\Omega^{2}}, \mu=\frac{2}{\Omega^{2}}$.
Thus it is a solution to Einstein's field equations for
homogeneous dust with cosmological constant.
In particular the Ricci scalar $R=\frac{6}{n^{2}}$ is positive. This
means that Einstein's model has spacelike

- Perfect cosmological principle (Copernicus ?): The Universe is the same everywhere, in every direction, and at every moment of time.
- A General Relativity model of such Universe is due to Einstein (1917):

$$
M=\mathbb{R} \times \mathbb{S}^{3}, \text { and } g_{\text {Einst }}=-\mathrm{d} t^{2}+\Omega^{2} g_{\mathbb{S}^{3}}
$$

with $g_{\mathbb{S}^{3}}$ is the standard metric on \mathbb{S}^{3} of radius 1 , and $\Omega=$ const. This is the Einstein's static Universe model.

- The Ricci tensor for this spacetime is Ricci $=\frac{2}{\Omega^{2}} g_{\mathbb{S}_{3}}$. This satisfies Einstein's equations

$$
R i c c i-\frac{1}{2} R g+\Lambda g=\mu u \otimes u
$$

with $u=-\mathrm{d} t$, and $\Lambda=\frac{1}{\Omega^{2}}, \mu=\frac{2}{\Omega^{2}}$.

- Thus it is a solution to Einstein's field equations for homogeneous dust with cosmological constant.

- Perfect cosmological principle (Copernicus ?): The Universe is the same everywhere, in every direction, and at every moment of time.
- A General Relativity model of such Universe is due to Einstein (1917):

$$
M=\mathbb{R} \times \mathbb{S}^{3}, \text { and } g_{\text {Einst }}=-\mathrm{d} t^{2}+\Omega^{2} g_{\mathbb{S}^{3}}
$$

with $g_{\mathbb{S}^{3}}$ is the standard metric on \mathbb{S}^{3} of radius 1 , and $\Omega=$ const. This is the Einstein's static Universe model.

- The Ricci tensor for this spacetime is Ricci $=\frac{2}{\Omega^{2}} g_{\mathbb{S}_{3}}$. This satisfies Einstein's equations

$$
R i c c i-\frac{1}{2} R g+\Lambda g=\mu u \otimes u
$$

with $u=-\mathrm{d} t$, and $\Lambda=\frac{1}{\Omega^{2}}, \mu=\frac{2}{\Omega^{2}}$.

- Thus it is a solution to Einstein's field equations for homogeneous dust with cosmological constant.
- In particular the Ricci scalar $R=\frac{6}{\Omega^{2}}$ is positive.
- Perfect cosmological principle (Copernicus ?): The Universe is the same everywhere, in every direction, and at every moment of time.
- A General Relativity model of such Universe is due to Einstein (1917):

$$
M=\mathbb{R} \times \mathbb{S}^{3}, \text { and } g_{\text {Einst }}=-\mathrm{d} t^{2}+\Omega^{2} g_{\mathbb{S}^{3}}
$$

with $g_{\mathbb{S}^{3}}$ is the standard metric on \mathbb{S}^{3} of radius 1 , and $\Omega=$ const. This is the Einstein's static Universe model.

- The Ricci tensor for this spacetime is Ricci $=\frac{2}{\Omega^{2}} g_{\mathbb{S}^{3}}$. This satisfies Einstein's equations

$$
R i c c i-\frac{1}{2} R g+\Lambda g=\mu u \otimes u
$$

with $u=-\mathrm{d} t$, and $\Lambda=\frac{1}{\Omega^{2}}, \mu=\frac{2}{\Omega^{2}}$.

- Thus it is a solution to Einstein's field equations for homogeneous dust with cosmological constant.
- In particular the Ricci scalar $R=\frac{6}{\Omega^{2}}$ is positive. This means that Einstein's model has spacelike

Brief history of theoretical cosmology

- After Lemaître-Hubble's discovery of expansion of Galaxies in 1927-29, it became clear that the perfect cosmological principle is not correct, and it got changed into: The Universe is the same everywhere and in every direction.
- The models of the Universe compatible with this principle, due to Friedman, Lemaître, Robertson and Walker (FLRW) are such that the spacetime manifold M is a bundle $S \rightarrow M \rightarrow \mathbb{R}$, with $S=\mathbb{H}^{3}$, or \mathbb{R}^{3}, or \mathbb{S}^{3} - the spaces of constant curvature, with the spacetime metric $g=-\mathrm{d} t^{2}+\Omega^{2}(t) g_{s}$, in which g_{s} is either the standard metric on the hyperbolic space \mathbb{H}^{3}, or the flat metric on \mathbb{R}^{3}, or the standard metric on the unit sphere \mathbb{S}^{3}.
- After Lemaître-Hubble's discovery of expansion of Galaxies in 1927-29, it became clear that the perfect cosmological principle is not correct, and it got changed into:

direction

- The models of the Universe compatible with this principle, due to Friedman, Lemaître, Robertson and Walker (FLRW) are such that the spacetime manifold M is a bundle $S \rightarrow M \rightarrow \mathbb{R}$, with $S=\mathbb{H}^{3}$, or \mathbb{R}^{3}, or \mathbb{S}^{3} - the spaces of constant curvature, with the spacetime metric in which g_{s} is either the standard metric on the hyperbolic space \mathbb{H}^{3}, or the flat metric on or the standard metric on the unit sphere
- After Lemaître-Hubble's discovery of expansion of Galaxies in 1927-29, it became clear that the perfect cosmological principle is not correct, and it got changed into: The Universe is the same everywhere and in every direction.

- After Lemaître-Hubble's discovery of expansion of Galaxies in 1927-29, it became clear that the perfect cosmological principle is not correct, and it got changed into: The Universe is the same everywhere and in every direction.
- The models of the Universe compatible with this principle, due to Friedman,

spaces of constant curvature, with the spacetime metric in which g_{s} is either the standard
metric on the hyperbolic space \mathbb{H}^{3}, or the flat metric on or the standard metric on the unit sphere
- After Lemaître-Hubble's discovery of expansion of Galaxies in 1927-29, it became clear that the perfect cosmological principle is not correct, and it got changed into: The Universe is the same everywhere and in every direction.
- The models of the Universe compatible with this principle, due to Friedman, Lemaître,

spaces of constant curvature, with the spacetime metric in which g_{s} is either the standard
metric on the hyperbolic space \mathbb{H}^{3}, or the flat metric on or the standard metric on the unit sphere
- After Lemaître-Hubble's discovery of expansion of Galaxies in 1927-29, it became clear that the perfect cosmological principle is not correct, and it got changed into: The Universe is the same everywhere and in every direction.
- The models of the Universe compatible with this principle, due to Friedman, Lemaître, Robertson

- After Lemaître-Hubble's discovery of expansion of Galaxies in 1927-29, it became clear that the perfect cosmological principle is not correct, and it got changed into: The Universe is the same everywhere and in every direction.
- The models of the Universe compatible with this principle, due to Friedman, Lemaître, Robertson and Walker

- After Lemaître-Hubble's discovery of expansion of Galaxies in 1927-29, it became clear that the perfect cosmological principle is not correct, and it got changed into: The Universe is the same everywhere and in every direction.
- The models of the Universe compatible with this principle, due to Friedman, Lemaître, Robertson and Walker (FLRW)
- After Lemaître-Hubble's discovery of expansion of Galaxies in 1927-29, it became clear that the perfect cosmological principle is not correct, and it got changed into: The Universe is the same everywhere and in every direction.
- The models of the Universe compatible with this principle, due to Friedman, Lemaître, Robertson and Walker (FLRW) are such that the spacetime manifold M is a bundle $S \rightarrow M \rightarrow \mathbb{R}$, with $S=H^{3}$, or \mathbb{R}^{3}, or S^{3} - the
spaces of constant curvature, with the spacetime metric is either the standard
metric on the hyperbolic space \mathbb{H}^{3}, or the flat metric on or the standard metric on the unit sphere
- After Lemaître-Hubble's discovery of expansion of Galaxies in 1927-29, it became clear that the perfect cosmological principle is not correct, and it got changed into: The Universe is the same everywhere and in every direction.
- The models of the Universe compatible with this principle, due to Friedman, Lemaître, Robertson and Walker (FLRW) are such that the spacetime manifold M is a bundle $S \rightarrow M \rightarrow \mathbb{R}$, with $S=\mathbb{H}^{3}$,
spaces of constant curvature, with the spacetime metric
is either the standard
metric on the hyperbolic space \mathbb{H}^{3}, or the flat metric on or the standard metric on the unit sphere
- After Lemaître-Hubble's discovery of expansion of Galaxies in 1927-29, it became clear that the perfect cosmological principle is not correct, and it got changed into: The Universe is the same everywhere and in every direction.
- The models of the Universe compatible with this principle, due to Friedman, Lemaître, Robertson and Walker (FLRW) are such that the spacetime manifold M is a bundle $S \rightarrow M \rightarrow \mathbb{R}$, with $S=\mathbb{H}^{3}$, or
spaces of constant curvature, with the spacetime metric
is either the standard
metric on the hyperbolic space \mathbb{H}^{3}, or the flat metric on or the standard metric on the unit sphere
- After Lemaître-Hubble's discovery of expansion of Galaxies in 1927-29, it became clear that the perfect cosmological principle is not correct, and it got changed into: The Universe is the same everywhere and in every direction.
- The models of the Universe compatible with this principle, due to Friedman, Lemaître, Robertson and Walker (FLRW) are such that the spacetime manifold M is a bundle $S \rightarrow M \rightarrow \mathbb{R}$, with $S=\mathbb{H}^{3}$, or \mathbb{R}^{3},
spaces of constant curvature, with the spacetime metric
is either the standard
metric on the hyperbolic space or the flat metric on or the standard metric on the unit sphere
- After Lemaître-Hubble's discovery of expansion of Galaxies in 1927-29, it became clear that the perfect cosmological principle is not correct, and it got changed into: The Universe is the same everywhere and in every direction.
- The models of the Universe compatible with this principle, due to Friedman, Lemaître, Robertson and Walker (FLRW) are such that the spacetime manifold M is a bundle $S \rightarrow M \rightarrow \mathbb{R}$, with $S=\mathbb{H}^{3}$, or \mathbb{R}^{3}, or \mathbb{S}^{3} - the
spaces of constant curvature, with the spacetime metric
is either the standard
metric on the hyperbolic space or the flat metric on or the standard metric on the unit sphere
- After Lemaître-Hubble's discovery of expansion of Galaxies in 1927-29, it became clear that the perfect cosmological principle is not correct, and it got changed into: The Universe is the same everywhere and in every direction.
- The models of the Universe compatible with this principle, due to Friedman, Lemaître, Robertson and Walker (FLRW) are such that the spacetime manifold M is a bundle $S \rightarrow M \rightarrow \mathbb{R}$, with $S=\mathbb{H}^{3}$, or \mathbb{R}^{3}, or \mathbb{S}^{3} - the spaces of constant curvature,
metric on the hyperbolic space \mathbb{H}^{3}, or the flat metric on or the standard metric on the unit sphere
- After Lemaître-Hubble's discovery of expansion of Galaxies in 1927-29, it became clear that the perfect cosmological principle is not correct, and it got changed into: The Universe is the same everywhere and in every direction.
- The models of the Universe compatible with this principle, due to Friedman, Lemaître, Robertson and Walker (FLRW) are such that the spacetime manifold M is a bundle $S \rightarrow M \rightarrow \mathbb{R}$, with $S=\mathbb{H}^{3}$, or \mathbb{R}^{3}, or \mathbb{S}^{3} - the spaces of constant curvature, with the spacetime metric $g=-\mathrm{d} t^{2}+\Omega^{2}(t) g_{S}$,
metric on the hyperbolic space
- After Lemaître-Hubble's discovery of expansion of Galaxies in 1927-29, it became clear that the perfect cosmological principle is not correct, and it got changed into: The Universe is the same everywhere and in every direction.
- The models of the Universe compatible with this principle, due to Friedman, Lemaître, Robertson and Walker (FLRW) are such that the spacetime manifold M is a bundle $S \rightarrow M \rightarrow \mathbb{R}$, with $S=\mathbb{H}^{3}$, or \mathbb{R}^{3}, or \mathbb{S}^{3} - the spaces of constant curvature, with the spacetime metric $g=-\mathrm{d} t^{2}+\Omega^{2}(t) g_{s}$, in which g_{s} is either the standard metric on the hyperbolic space \mathbb{H}^{3},
or the standard metric on the unit sphere
- After Lemaître-Hubble's discovery of expansion of Galaxies in 1927-29, it became clear that the perfect cosmological principle is not correct, and it got changed into: The Universe is the same everywhere and in every direction.
- The models of the Universe compatible with this principle, due to Friedman, Lemaître, Robertson and Walker (FLRW) are such that the spacetime manifold M is a bundle $S \rightarrow M \rightarrow \mathbb{R}$, with $S=\mathbb{H}^{3}$, or \mathbb{R}^{3}, or \mathbb{S}^{3} - the spaces of constant curvature, with the spacetime metric $g=-\mathrm{d} t^{2}+\Omega^{2}(t) g_{s}$, in which g_{s} is either the standard metric on the hyperbolic space \mathbb{H}^{3}, or the flat metric on \mathbb{R}^{3}, or the standard metric on the unit sphere
- After Lemaître-Hubble's discovery of expansion of Galaxies in 1927-29, it became clear that the perfect cosmological principle is not correct, and it got changed into: The Universe is the same everywhere and in every direction.
- The models of the Universe compatible with this principle, due to Friedman, Lemaître, Robertson and Walker (FLRW) are such that the spacetime manifold M is a bundle $S \rightarrow M \rightarrow \mathbb{R}$, with $S=\mathbb{H}^{3}$, or \mathbb{R}^{3}, or \mathbb{S}^{3} - the spaces of constant curvature, with the spacetime metric $g=-\mathrm{d} t^{2}+\Omega^{2}(t) g_{s}$, in which g_{s} is either the standard metric on the hyperbolic space \mathbb{H}^{3}, or the flat metric on \mathbb{R}^{3}, or the standard metric on the unit sphere \mathbb{S}^{3}.
- Universe spacetime: $S \rightarrow M \rightarrow \mathbb{R}$, with $g=-d t^{2}+\Omega^{2}(t) g_{s}$.
- For examole, there exists local coordinates (x, v, z) on S such that $g_{s}=\frac{d x^{2}+y^{2}+\mathrm{d} z^{2}}{\left(1+\frac{x}{4}\left(x^{2}+y^{2}+z^{2}\right)\right)^{2}}$, and $\varkappa=-1,0,1$ corresponds to \mathbb{H}^{3}, \mathbb{R}^{3} and \mathbb{S}^{3}, respectively.
- Special solutions:
- $\Omega(t)=$ const and $\varkappa=1$: Einstein's static Universe; homogeneous dust with positive \wedge.
- $\Omega(t)=\alpha \cosh \left(\frac{t}{\alpha}\right)$ and $\varkappa=1$: deSitter Universe; vacuum solution with $\Lambda=\frac{3}{a^{2}}$; spacetime of constant curvature.
- $\Omega(t)$ satisfies $\Omega\left(\Omega^{\prime 2}+x\right)=\frac{M}{4 \pi}+\frac{1}{3} \wedge \Omega^{3}$, with $M=$ const >0, $\Lambda=$ const; Friedman-Lemaître Universe with \wedge of arbitrary sign, filled with dust of energy density $\mu=\frac{N}{\frac{2}{2} \pi n}$, comoving with 4 -velocity $u=-\mathrm{d} t$. For the Ricci scalar being positive one needs $\Lambda>-\mu / 4$.
- Note that all FLRW metrics are conformally flat!

Brief history of theoretical cosmology: simple FLRW models

- Universe spacetime: $S \rightarrow M \rightarrow \mathbb{R}$, with $g=-\mathrm{d} t^{2}+\Omega^{2}(t) g_{S}$.
- For example, there exists local coordinates (x, y, z) on S such that $g_{s}=\frac{\left.d x^{2}+d y^{2}+d z^{2}\right)}{\left(1+\frac{x}{4}\left(x^{2}+y^{2}-z^{2}\right)\right)^{2}}$, and $\varkappa=-1,0,1$ corresponds to \mathbb{H}^{3}, \mathbb{R}^{3} and \mathbb{S}^{3}, respectively.
- Special solutions:
- $\Omega(t)=$ const and $\varkappa=1$: Einstein's static Universe; homogeneous dust with positive \wedge.
- $\Omega(t)=$ acosin(${ }^{+}$) and . i: deSitter Universe; vacuum solution with $\Lambda=\frac{3}{\alpha^{2}}$; spacetime of constant curvature. - $\Omega(t)$ satisfies $\Omega\left(\Omega^{\prime 2}+x\right)=\frac{M}{4 \pi}+\frac{1}{3} \wedge \Omega^{3}$, with $M=$ const >0, $\Lambda=$ const; Friedman-Lemaître Universe with \wedge of arbitrary sign, fifled with dust of energy density comoving with 4 -velocity $u=-\mathrm{d} t$. For the Ricci scalar being positive one needs $\Lambda>-\mu / 4$.
- Note that all FLRW metrics are conformally flat!

Brief history of theoretical cosmology: simple FLRW models

- Universe spacetime: $S \rightarrow M \rightarrow \mathbb{R}$, with $g=-\mathrm{d} t^{2}+\Omega^{2}(t) g_{S}$.
- For example, there exists local coordinates (x, y, z) on S such that $g_{s}=\frac{\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}}{\left(1+\frac{\pi}{4}\left(x^{2}+y^{2}+z^{2}\right)\right)^{2}}$,
corresponds to

$$
\text { and } S^{3} \text {, respectively. }
$$

- Special solutions:

solution with $\Lambda=\frac{3}{\alpha^{2}}$; spacetime of constant curvature. - $\Omega(t)$ satisfies $\Omega\left(\Omega^{\prime 2}+\chi\right)=\frac{M}{4 \pi}+\frac{1}{3} \wedge \Omega^{3}$, with $M=$ const $\Lambda=$ const; Friedman-Lemaître Universe with \wedge of arbitrary sign, filled with dust of energy density comoving with 4 -velocity $u=-\mathrm{d} t$. For the Ricci scalar being positive one needs

- Note that all FLRW metrics are conformally flat!

Brief history of theoretical cosmology: simple FLRW models

- Universe spacetime: $S \rightarrow M \rightarrow \mathbb{R}$, with $g=-\mathrm{d} t^{2}+\Omega^{2}(t) g_{S}$.
- For example, there exists local coordinates (x, y, z) on S such that $g_{s}=\frac{d x^{2}+y^{2}+\mathrm{d} z^{2}}{\left(1+\frac{x}{4}\left(x^{2}+y^{2}+z^{2}\right)\right)^{2}}$, and $\varkappa=-1,0,1$ corresponds to \mathbb{H}^{3}, \mathbb{R}^{3} and \mathbb{S}^{3}, respectively.
- Special solutions:

solution with $\Lambda=\frac{3}{\alpha^{2}}$; spacetime of constant curvature. - $\Omega(t)$ satisfies $\Omega\left(\Omega^{\prime 2}+\chi\right)=\frac{M}{4 \pi}+\frac{1}{3} \wedge \Omega^{3}$, with $M=$ const $\Lambda=$ const; Friedman-Lemaître Universe with \wedge of arbitrary sign, filled with dust of energy density comoving with 4 -velocity $u=-\mathrm{d} t$. For the Ricci scalar being positive one needs
- Note that all FLRW metrics are conformally flat!

Brief history of theoretical cosmology: simple FLRW models

- Universe spacetime: $S \rightarrow M \rightarrow \mathbb{R}$, with $g=-\mathrm{d} t^{2}+\Omega^{2}(t) g_{S}$.
- For example, there exists local coordinates (x, y, z) on S such that $g_{s}=\frac{d x^{2}+y^{2}+\mathrm{d} z^{2}}{\left(1+\frac{x}{4}\left(x^{2}+y^{2}+z^{2}\right)\right)^{2}}$, and $\varkappa=-1,0,1$ corresponds to \mathbb{H}^{3}, \mathbb{R}^{3} and \mathbb{S}^{3}, respectively.
- Special solutions:
- $\Omega(t)=$ const and $x=1$: Einstein's static Universe;
homogeneous dust with positive Λ.
$\Omega(t)=\alpha \cosh \left(\frac{t}{\alpha}\right)$ and $x=1$: deSitter Universe; vacuum
solution with $\Lambda=\frac{3}{a^{2}} ;$ spacetime of constant curvature.
$\Omega(t)$ satisfies $\Omega\left(\Omega^{\prime 2}+\varkappa\right)=\frac{M}{4 \pi}+\frac{1}{3} \Lambda \Omega^{3}$, with $M=$ const $>$
$\Lambda=$ const; Friedman-Lemaître Universe with Λ of
arbitrary sign, filled with dust of energy density $\mu=\frac{M}{\frac{4}{3} \pi \Omega^{3}}$,
comoving with 4 -velocity $u=-\mathrm{d} t$. For the Ricci scalar
being positive one needs $\Lambda>-\mu / 4$.
lote that all FLRW metrics are conformally flat!

Brief history of theoretical cosmology: simple FLRW models

- Universe spacetime: $S \rightarrow M \rightarrow \mathbb{R}$, with $g=-\mathrm{d} t^{2}+\Omega^{2}(t) g_{S}$.
- For example, there exists local coordinates (x, y, z) on S such that $g_{s}=\frac{\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{dz}}{}\left(1+\frac{x}{4}\left(x^{2}+y^{2}+z^{2}\right)\right)^{2}$, and $\varkappa=-1,0,1$ corresponds to \mathbb{H}^{3}, \mathbb{R}^{3} and \mathbb{S}^{3}, respectively.
- Special solutions:
- $\Omega(t)=$ const and $\varkappa=1$: Einstein's static Universe; homogeneous dust with positive \wedge.
- Universe spacetime: $S \rightarrow M \rightarrow \mathbb{R}$, with $g=-\mathrm{d} t^{2}+\Omega^{2}(t) g_{s}$.
- For example, there exists local coordinates (x, y, z) on S such that $g_{s}=\frac{d x^{2}+y^{2}+\mathrm{d} z^{2}}{\left(1+\frac{x}{4}\left(x^{2}+y^{2}+z^{2}\right)\right)^{2}}$, and $\varkappa=-1,0,1$ corresponds to \mathbb{H}^{3}, \mathbb{R}^{3} and \mathbb{S}^{3}, respectively.
- Special solutions:
- $\Omega(t)=$ const and $\varkappa=1$: Einstein's static Universe; homogeneous dust with positive \wedge.
- $\Omega(t)=\alpha \cosh \left(\frac{t}{\alpha}\right)$ and $\varkappa=1$: deSitter Universe; vacuum solution with $\Lambda=\frac{3}{\alpha^{2}}$; spacetime of constant curvature.

- Note that all FLRW metrics are conformally flat!
- Universe spacetime: $S \rightarrow M \rightarrow \mathbb{R}$, with $g=-\mathrm{d} t^{2}+\Omega^{2}(t) g_{s}$.
- For example, there exists local coordinates (x, y, z) on S such that $g_{s}=\frac{d x^{2}+y^{2}+\mathrm{d} z^{2}}{\left(1+\frac{x}{4}\left(x^{2}+y^{2}+z^{2}\right)\right)^{2}}$, and $\varkappa=-1,0,1$ corresponds to \mathbb{H}^{3}, \mathbb{R}^{3} and \mathbb{S}^{3}, respectively.
- Special solutions:
- $\Omega(t)=$ const and $\varkappa=1$: Einstein's static Universe; homogeneous dust with positive \wedge.
- $\Omega(t)=\alpha \cosh \left(\frac{t}{\alpha}\right)$ and $\varkappa=1$: deSitter Universe; vacuum solution with $\Lambda=\frac{3}{\alpha^{2}}$; spacetime of constant curvature.

- Note that all FLRW metrics are conformally flat!
- Universe spacetime: $S \rightarrow M \rightarrow \mathbb{R}$, with $g=-\mathrm{d} t^{2}+\Omega^{2}(t) g_{s}$.
- For example, there exists local coordinates (x, y, z) on S such that $g_{s}=\frac{d x^{2}+y^{2}+\mathrm{d} z^{2}}{\left(1+\frac{x}{4}\left(x^{2}+y^{2}+z^{2}\right)\right)^{2}}$, and $\varkappa=-1,0,1$ corresponds to \mathbb{H}^{3}, \mathbb{R}^{3} and \mathbb{S}^{3}, respectively.
- Special solutions:
- $\Omega(t)=$ const and $\varkappa=1$: Einstein's static Universe; homogeneous dust with positive \wedge.
- $\Omega(t)=\alpha \cosh \left(\frac{t}{\alpha}\right)$ and $\varkappa=1$: deSitter Universe; vacuum solution with $\Lambda=\frac{3}{\alpha^{2}}$; spacetime of constant curvature.
- $\Omega(t)$ satisfies $\Omega\left(\Omega^{\prime 2}+\varkappa\right)=\frac{M}{4 \pi}+\frac{1}{3} \wedge \Omega^{3}$, with $M=$ const >0, $\Lambda=$ const; Friedman-Lemaître Universe with
arbitrary sign, filled with dust of energy density
comoving with 4 -velocity
For the Ricci scalar
being positive one needs
- Note that all FLRW metrics are conformally flat!
- Universe spacetime: $S \rightarrow M \rightarrow \mathbb{R}$, with $g=-\mathrm{d} t^{2}+\Omega^{2}(t) g_{s}$.
- For example, there exists local coordinates (x, y, z) on S such that $g_{s}=\frac{d x^{2}+d y^{2}+d z^{2}}{\left(1+\frac{x}{4}\left(x^{2}+y^{2}+z^{2}\right)\right)^{2}}$, and $\varkappa=-1,0,1$ corresponds to \mathbb{H}^{3}, \mathbb{R}^{3} and \mathbb{S}^{3}, respectively.
- Special solutions:
- $\Omega(t)=$ const and $\varkappa=1$: Einstein's static Universe; homogeneous dust with positive \wedge.
- $\Omega(t)=\alpha \cosh \left(\frac{t}{\alpha}\right)$ and $\varkappa=1$: deSitter Universe; vacuum solution with $\Lambda=\frac{3}{\alpha^{2}}$; spacetime of constant curvature.
- $\Omega(t)$ satisfies $\Omega\left(\Omega^{\prime 2}+\varkappa\right)=\frac{M}{4 \pi}+\frac{1}{3} \wedge \Omega^{3}$, with $M=$ const >0, $\Lambda=$ const; Friedman-Lemaître Universe with \wedge of arbitrary sign, filled with dust of energy density $\mu=\frac{M}{\frac{4}{3} \pi \Omega^{3}}$, comoving with 4 -velocity $u=-\mathrm{d} t$. For the Ricci scalar
- Note that all FLRW metrics are conformally flat!
- Universe spacetime: $S \rightarrow M \rightarrow \mathbb{R}$, with $g=-\mathrm{d} t^{2}+\Omega^{2}(t) g_{s}$.
- For example, there exists local coordinates (x, y, z) on S such that $g_{s}=\frac{d x^{2}+d y^{2}+d z^{2}}{\left(1+\frac{x}{4}\left(x^{2}+y^{2}+z^{2}\right)\right)^{2}}$, and $\varkappa=-1,0,1$ corresponds to \mathbb{H}^{3}, \mathbb{R}^{3} and \mathbb{S}^{3}, respectively.
- Special solutions:
- $\Omega(t)=$ const and $\varkappa=1$: Einstein's static Universe; homogeneous dust with positive \wedge.
- $\Omega(t)=\alpha \cosh \left(\frac{t}{\alpha}\right)$ and $\varkappa=1$: deSitter Universe; vacuum solution with $\Lambda=\frac{3}{\alpha^{2}}$; spacetime of constant curvature.
- $\Omega(t)$ satisfies $\Omega\left(\Omega^{\prime 2}+\varkappa\right)=\frac{M}{4 \pi}+\frac{1}{3} \wedge \Omega^{3}$, with $M=$ const >0, $\Lambda=$ const; Friedman-Lemaître Universe with \wedge of arbitrary sign, filled with dust of energy density $\mu=\frac{M}{\frac{4}{3} \pi \Omega^{3}}$, comoving with 4 -velocity $u=-\mathrm{d} t$. For the Ricci scalar being positive one needs $\Lambda>-\mu / 4$.
- Note that all FLRW metrics are conformally flat!
- Universe spacetime: $S \rightarrow M \rightarrow \mathbb{R}$, with $g=-\mathrm{d} t^{2}+\Omega^{2}(t) g_{s}$.
- For example, there exists local coordinates (x, y, z) on S such that $g_{s}=\frac{d x^{2}+d y^{2}+d z^{2}}{\left(1+\frac{x}{4}\left(x^{2}+y^{2}+z^{2}\right)\right)^{2}}$, and $\varkappa=-1,0,1$ corresponds to \mathbb{H}^{3}, \mathbb{R}^{3} and \mathbb{S}^{3}, respectively.
- Special solutions:
- $\Omega(t)=$ const and $\varkappa=1$: Einstein's static Universe; homogeneous dust with positive \wedge.
- $\Omega(t)=\alpha \cosh \left(\frac{t}{\alpha}\right)$ and $\varkappa=1$: deSitter Universe; vacuum solution with $\Lambda=\frac{3}{\alpha^{2}}$; spacetime of constant curvature.
- $\Omega(t)$ satisfies $\Omega\left(\Omega^{\prime 2}+\varkappa\right)=\frac{M}{4 \pi}+\frac{1}{3} \wedge \Omega^{3}$, with $M=$ const >0, $\Lambda=$ const; Friedman-Lemaître Universe with \wedge of arbitrary sign, filled with dust of energy density $\mu=\frac{M}{\frac{4}{3} \pi \Omega^{3}}$, comoving with 4 -velocity $u=-\mathrm{d} t$. For the Ricci scalar being positive one needs $\Lambda>-\mu / 4$.
- Note that all FLRW metrics are conformally flat!

The scheme of Penrose's CCC is as follows: ${ }^{1}$

```
Penrose's Conformal yclic osmology
```

The scheme of Penrose's CCC is as follows:
> ${ }^{1}$ See: P. Tod (2015), 'The equations of Conformal Cyclic Cosmology', Gen. Rel. Grav. 47,https://doi.org/10.1007/s10714-01,5-1,859-7, for details.

The scheme of Penrose's CCC is as follows: ${ }^{1}$

[^0]
Penrose's Conformal yclic osmology

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the metric on each \mathscr{I} is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say $\# i$ and $\#(i+1)$, are glued together along \mathscr{I} of the eon $\# i$, and \mathscr{I} of the eon $\#(i+1)$.
- The vicinity of the matching surface (the wound) of eons \#i and $\#(i+1)$, this region Penrose calls bandaged region for the two eons, is equipped with the following three metrics, which are conformally flat at the wound:
- a I orentzian metric a which is regular everywhere,
- a Lorentzian metric $̆$ g which represents the physical metric of the eon \#(i+1), and which is singular at the wound,
- a Lorentzian metric \hat{g}, which represents the physical metric of the eon \#i, and which expands at the wound.
- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the metric on each
- Eons are ordered, and the conformal compactifications of consecutive eons, say $\# i$ and $\#(i+1)$, are glued together along \mathscr{I}^{+}of the eon $\# i$, and \mathscr{I}^{-}of the eon
- The vicinity of the matching surface (the wound) of eons and \#(i+1), this region Penrose calls bandaged region for the two eons, is equipped with the following three metrics, which are conformally flat at the wound
- a Lorentzian metric g which is regular everywhere,
- a Lorentzian metric $̆$ g which represents the physical metric of the eon ($(1-4)$, and which is singular at the wound,
- a Lorentzian metric \hat{g}, which represents the physical metric of the eon \#i, and which expands at the wound.
- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the metric on each \mathscr{I} is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say $\# i$ and $\#(i+1)$, are glued together along \mathscr{I}^{+}of the eon $\# i$, and \mathscr{I}^{-}of the eon
- The vicinity of the matching surface (the wound) of eons and $\#(i+1)$, this region Penrose calls bandaged region for the two eons, is equipped with the following three metrics, which are conformally flat at the wound:
- a Lorentzian metric g which is regular everywhere,
- a Lorentzian metric \breve{g}, which represents the physical metric of the eon \#($i+1)$, and which is singular at the wound,
- a Lorentzian metric \hat{g}, which represents the physical metric of the eon $\# i$, and which expands at the wound.
- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the metric on each \mathscr{I} is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons,
along
of the eon
and
of the eon
- The vicinity of the matching surface (the wound) of eons and $\#(i+1)$, this region Penrose calls bandaged region for the two eons, is equipped with the following three metrics, which are conformally flat at the wound:

$$
\begin{aligned}
& \text { a Lorentzian metric } g \text { which is regular everywhere, } \\
& \text { a Lorentzian metric } g \text {, which represents the physical metric } \\
& \text { of the eon } \#(i+1) \text {, and which is singular at the wound, } \\
& \text { a Lorentzian metric } \hat{g} \text {, which represents the physical metric } \\
& \text { of eon } \# i \text {, and which expands at the wound. }
\end{aligned}
$$

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the metric on each \mathscr{I} is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say $\# i$ and $\#(i+1)$, along \mathscr{I}^{+}of the eon $\# i$, and \mathscr{I}^{-}of the eon
- The vicinity of the matching surface (the wound) of eons and \#(i+1), this region Penrose calls bandaged region for the two eons, is equipped with the following three metrics, which are conformally flat at the wound:

$$
\begin{aligned}
& \text { a Lorentzian metric } g \text { which is regular everywhere, } \\
& \text { a Lorentzian metric } g \text {, which represents the physical metric } \\
& \text { a Lorentzian metric } \hat{g} \text {, which represents the physical metric } \\
& \text { of the eon } \# i \text {, and which expands at the wound. }
\end{aligned}
$$

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the metric on each \mathscr{I} is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say $\# i$ and $\#(i+1)$, are glued together along \mathscr{I}^{+}of the eon $\# i$, and \mathscr{I}^{-}of the eon $\#(i+1)$.

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the metric on each \mathscr{I} is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say $\# i$ and $\#(i+1)$, are glued together along \mathscr{I}^{+}of the eon $\# i$, and \mathscr{I}^{-}of the eon $\#(i+1)$.
- The vicinity of the matching surface (the wound) of eons $\# i$ and $\#(i+1)$, this region Penrose calls bandaged region for the two eons, is equipped with the following three metrics, which are conformally flat at the wound:

$$
\begin{aligned}
& \text { a Lorentzian metric } g \text { which is regular everywhere, } \\
& \text { a Lorentzian metric } g \text {, which represents the physical metric } \\
& \text { of the eon } \#(i+1) \text {, and which is singular at the wound, } \\
& \text { a Lorentzian metric } \hat{g} \text {, which represents the physical metric } \\
& \text { of the eon } \# i \text {, and which expands at the wound. }
\end{aligned}
$$

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the metric on each \mathscr{I} is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say $\# i$ and $\#(i+1)$, are glued together along \mathscr{I}^{+}of the eon $\# i$, and \mathscr{I}^{-}of the eon $\#(i+1)$.
- The vicinity of the matching surface (the wound) of eons $\# i$ and \#(i+1), this region Penrose calls bandaged region for the two eons,
are conformally flat at the wound:

> a Lorentzian metric g which is regular everywhere,
> a Lorentzian metric g, which represents the physical metric
> of the eon $\#(i+1)$, and which is singular at the wound,
> a Lorentzian metric \hat{g}, which represents the physical metric
> of the eon $\# i$, and which expands at the wound.

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the metric on each \mathscr{I} is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say $\# i$ and $\#(i+1)$, are glued together along \mathscr{I}^{+}of the eon $\# i$, and \mathscr{I}^{-}of the eon $\#(i+1)$.
- The vicinity of the matching surface (the wound) of eons $\# i$ and \#(i+1), this region Penrose calls bandaged region for the two eons, is equipped with the following three metrics, which are conformally flat at the wound:

- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the metric on each \mathscr{I} is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say $\# i$ and $\#(i+1)$, are glued together along \mathscr{I}^{+}of the eon $\# i$, and \mathscr{I}^{-}of the eon $\#(i+1)$.
- The vicinity of the matching surface (the wound) of eons $\# i$ and \#(i+1), this region Penrose calls bandaged region for the two eons, is equipped with the following three metrics, which are conformally flat at the wound:
- a Lorentzian metric g which is regular everywhere,

of the eon $\#(i+1)$, and which is singular at the wound,
a Lorentzian metric \hat{q}, which represents the physical metric
of the eon $\# i$, and which expands at the wound.
- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the metric on each \mathscr{I} is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say $\# i$ and $\#(i+1)$, are glued together along \mathscr{I}^{+}of the eon $\# i$, and \mathscr{I}^{-}of the eon $\#(i+1)$.
- The vicinity of the matching surface (the wound) of eons $\# i$ and \#(i+1), this region Penrose calls bandaged region for the two eons, is equipped with the following three metrics, which are conformally flat at the wound:
- a Lorentzian metric g which is regular everywhere,
- a Lorentzian metric ğ, which represents the physical metric of the eon $\#(i+1)$, and which is singular at the wound,
a Lorentzian metric g, which represents the physical metric
of the eon $\# i$, and which expands at the wound
- The Universe consists of eons, each being a time oriented spacetime, whose conformal compactifications have spacelike \mathscr{I}. The Weyl tensor of the metric on each \mathscr{I} is zero.
- Eons are ordered, and the conformal compactifications of consecutive eons, say $\# i$ and $\#(i+1)$, are glued together along \mathscr{I}^{+}of the eon $\# i$, and \mathscr{I}^{-}of the eon $\#(i+1)$.
- The vicinity of the matching surface (the wound) of eons $\# i$ and \#(i+1), this region Penrose calls bandaged region for the two eons, is equipped with the following three metrics, which are conformally flat at the wound:
- a Lorentzian metric g which is regular everywhere,
- a Lorentzian metric ğ, which represents the physical metric of the eon $\#(i+1)$, and which is singular at the wound,
- a Lorentzian metric \hat{g}, which represents the physical metric of the eon $\# i$, and which expands at the wound.
- In any bandaged region, the three metrics g, g and \hat{g}, are conformally related.
- How to make this relation specific is debatable, but Penrose proposes that
$\check{g}=\Omega^{2} g$, and $\hat{g}=\frac{1}{\Omega^{2}} g$, with $\Omega \rightarrow 0$ on the wound.
- The metric g in eon $\#(i+1)$ is a physical metric there. Likewise, the metric \hat{g} in eon $\# i$ is a physical metric there.
- Of course, the metric g g in eon \#(i+1), and the metric \hat{g} in eon \#i, as physical spacetime metrics, should satisfy Einstein's equations in \#(i+1) and \#i, respectively.
- In any bandaged region, the three metrics g, \check{g} and \hat{g}, are conformally related.
- How to make this relation specific is debatable, but

Penrose proposes that

- The metric g in eon $\#(i+1)$ is a physical metric there. Likewise, the metric \hat{g} in eon $\# i$ is a physical metric there.
- Of course, the metric g g in eon $\#(i+1)$, and the metric \hat{g} in eon \#i, as physical spacetime metrics, should satisfy Einstein's equations in \#(i+1) and \#i, respectively.
- In any bandaged region, the three metrics g, \check{g} and \hat{g}, are conformally related.
- How to make this relation specific is debatable,

Penrose proposes that

- The metric g gin eon $\#(i+1)$ is a physical metric there. Likewise, the metric \hat{g} in eon $\# i$ is a physical metric there.
- Of course, the metric \check{g} in eon $\#(i+1)$, and the metric \hat{g} in eon $\# i$, as physical spacetime metrics, should satisfy Einstein's equations in $\#(i+1)$ and $\# i$, respectively.
- In any bandaged region, the three metrics g, \check{g} and \hat{g}, are conformally related.
- How to make this relation specific is debatable, but Penrose proposes that
- The metric \check{g} in eon $\#(i+1)$ is a physical metric there. Likewise, the metric \hat{g} in eon $\# i$ is a physical metric there.
- Of course, the metric g g in eon \#(i+1), and the metric \hat{g} in eon $\# i$, as physical spacetime metrics, should satisfy Einstein's equations in $\#(i+1)$ and $\# i$, respectively.
- In any bandaged region, the three metrics g, \check{g} and \hat{g}, are conformally related.
- How to make this relation specific is debatable, but Penrose proposes that

$$
\check{g}=\Omega^{2} g, \text { and } \hat{g}=\frac{1}{\Omega^{2}} g, \text { with } \Omega \rightarrow 0 \text { on the wound. }
$$

- The metric g in eon $\#(i+1)$ is a physical metric there. Likewise, the metric \hat{g} in eon $\# i$ is a physical metric there.
- Of course, the metric g g in eon $\#(i+1)$, and the metric \hat{g} in eon $\# i$, as physical spacetime metrics, should satisfy Einstein's equations in $\#(i+1)$ and $\# i$, respectively.
- In any bandaged region, the three metrics g, \check{g} and \hat{g}, are conformally related.
- How to make this relation specific is debatable, but Penrose proposes that

$$
\check{g}=\Omega^{2} g, \text { and } \hat{g}=\frac{1}{\Omega^{2}} g, \text { with } \Omega \rightarrow 0 \text { on the wound. }
$$

- The metric \check{g} in eon $\#(i+1)$ is a physical metric there.

Likewise, the metric \hat{g} in eon $\# i$ is a physical metric there.

- Of course, the metric g in eon $7(i-1)$, and the metric g in
eon \#i, as physical spacetime metrics, should satisfy
Einstein's equations in $\#(i+1)$ and $\# i$, respectively.
- In any bandaged region, the three metrics g, \check{g} and \hat{g}, are conformally related.
- How to make this relation specific is debatable, but Penrose proposes that
$\check{g}=\Omega^{2} g$, and $\hat{g}=\frac{1}{\Omega^{2}} g$, with $\Omega \rightarrow 0$ on the wound.
- The metric \check{g} in eon $\#(i+1)$ is a physical metric there. Likewise, the metric \hat{g} in eon $\# i$ is a physical metric there.

- In any bandaged region, the three metrics g, \check{g} and \hat{g}, are conformally related.
- How to make this relation specific is debatable, but Penrose proposes that
$\check{g}=\Omega^{2} g$, and $\hat{g}=\frac{1}{\Omega^{2}} g$, with $\Omega \rightarrow 0$ on the wound.
- The metric \check{g} in eon $\#(i+1)$ is a physical metric there. Likewise, the metric \hat{g} in eon $\# i$ is a physical metric there.
- Of course, the metric \check{g} in eon $\#(i+1)$, and the metric g in eon as physical spacetime metrics, should satisfy Einstein's equations in
- In any bandaged region, the three metrics g, \check{g} and \hat{g}, are conformally related.
- How to make this relation specific is debatable, but Penrose proposes that
$\check{g}=\Omega^{2} g$, and $\hat{g}=\frac{1}{\Omega^{2}} g$, with $\Omega \rightarrow 0$ on the wound.
- The metric \check{g} in eon $\#(i+1)$ is a physical metric there. Likewise, the metric \hat{g} in eon $\# i$ is a physical metric there.
- Of course, the metric \check{g} in eon $\#(i+1)$, and the metric \hat{g} in eon \#i,
- In any bandaged region, the three metrics g, \check{g} and \hat{g}, are conformally related.
- How to make this relation specific is debatable, but Penrose proposes that
$\check{g}=\Omega^{2} g$, and $\hat{g}=\frac{1}{\Omega^{2}} g$, with $\Omega \rightarrow 0$ on the wound.
- The metric \check{g} in eon $\#(i+1)$ is a physical metric there. Likewise, the metric \hat{g} in eon $\# i$ is a physical metric there.
- Of course, the metric \check{g} in eon $\#(i+1)$, and the metric \hat{g} in eon $\# i$, as physical spacetime metrics,
- In any bandaged region, the three metrics g, \check{g} and \hat{g}, are conformally related.
- How to make this relation specific is debatable, but Penrose proposes that
$\check{g}=\Omega^{2} g$, and $\hat{g}=\frac{1}{\Omega^{2}} g$, with $\Omega \rightarrow 0$ on the wound.
- The metric \check{g} in eon $\#(i+1)$ is a physical metric there. Likewise, the metric \hat{g} in eon $\# i$ is a physical metric there.
- Of course, the metric \check{g} in eon $\#(i+1)$, and the metric \hat{g} in eon $\# i$, as physical spacetime metrics, should satisfy Einstein's equations in $\#(i+1)$ and $\# i$, respectively.

Penrose's Conformal yclic osmology

Penrose's Conformal yclic osmology

Modelling Penrose's CCC scenario

- Question: How to make a model of Penrose's bandaged region?
- One needs a function Ω, vanishing on some spacelike hypersurface, such that if $g=\Omega^{2} g$ satisfies Einstein equations with some physically reasonable energy momentum tensor, then $g=\Omega$ also satisfies Einstein equations with possibly different, but still physically reasonable energy momentum tensor.
- Similar, but seems to me simpler, than a problem of Brinkman, who in 1925 asked a question 'when in a conformal class of metrics can be two different Einstein metrics?'. Brinkman found all such metrics.
- Why not to start with conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?
- Question: How to make a model of Penrose's bandaged region?
- One needs a function Ω, vanishing on some spacelike hypersurface, such that if $\breve{g}=\Omega^{2} g$ satisfies Einstein equations with some physically reasonable energy momentum tensor, then $\hat{g}=g$ also satisfies Einstein equations with possibly different, but still physically reasonable energy momentum tensor.
- Similar, but seems to me simpler, than a problem of Brinkman, who in 1925 asked a question 'when in a conformal class of metrics can be two different Einstein metrics?'. Brinkman found all such metrics.
- Why not to start with conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?
- Question: How to make a model of Penrose's bandaged region?
- One needs a function Ω, vanishing on some spacelike hypersurface, such that if $g=\Omega^{2} g$ satisfies Einstein
equations with some physically reasonable energy momentum tensor, then $\hat{g}=\frac{1}{\Omega^{2}} g$ also satisfies Einstein equations with possibly different, but still physically reasonable energy momentum tensor.
- Similar, but seems to me simpler, than a problem of Brinkman, who in 1925 asked a question 'when in a conformal class of metrics can be two different Einstein metrics?'. Brinkman found all such metrics.
- Why not to start with conformally flat situation (reasonable, because compatible with the cosmolo gical principle/FLRW paradigm), and (various) perfect fluids?
- Question: How to make a model of Penrose's bandaged region?
- One needs a function Ω, vanishing on some spacelike hypersurface, such that if $g=\Omega^{2} g$ satisfies Einstein
equations with some physically reasonable energy
momentum tensor, then $\hat{g}=\frac{1}{\Omega^{2}} g$ also satisfies Einstein equations with possibly different, but still physically reasonable energy momentum tensor.
- Similar, but seems to me simpler, than a problem of Brinkman, who in 1925 asked a question 'when in a conformal class of metrics can be two different Einstein metrics?'. Brinkman found all such metrics.
- Why not to start with conformally flat situation (reasonable, because compatible with the cosmolc gical principle/FLRW paradigm), and (various) perfect fluids?
- Question: How to make a model of Penrose's bandaged region?
- One needs a function Ω, vanishing on some spacelike hypersurface, such that if $\check{g}=\Omega^{2} g$ satisfies Einstein equations with some physically reasonable energy momentum tensor, then $g-g$ also satisfies Einstein
equations with possibly different, but still physically reasonable energy momentum tensor.
- Similar, but seems to me simpler, than a problem of

Brinkman, who in 1925 asked a question 'when in a
conformal class of metrics can be two different
Einstein metrics?'. Brinkman found all such metrics.
Why not to start with conformally flat situation
(reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?

- Question: How to make a model of Penrose's bandaged region?
- One needs a function Ω, vanishing on some spacelike hypersurface, such that if $\check{g}=\Omega^{2} g$ satisfies Einstein equations with some physically reasonable energy momentum tensor, then $\hat{g}=\frac{1}{\Omega^{2}} g$ also satisfies Einstein equations with possibly different, but still physically reasonable energy momentum tensor.

$$
\begin{aligned}
& \text { Similar, but seems to me simpler, than a problem of } \\
& \text { Brinkman, who in } 1925 \text { asked a question 'when in a } \\
& \text { conformal class of metrics can be two different } \\
& \text { Einstein metrics?'. Brinkman found all such metrics. } \\
& \text { Why not to start with conformally flat situation } \\
& \text { (reasonable, because compatible with the cosmological } \\
& \text { principle/FLRW paradigm), and (various) perfect fluids? }
\end{aligned}
$$

- Question: How to make a model of Penrose's bandaged region?
- One needs a function Ω, vanishing on some spacelike hypersurface, such that if $\check{g}=\Omega^{2} g$ satisfies Einstein equations with some physically reasonable energy momentum tensor, then $\hat{g}=\frac{1}{\Omega^{2}} g$ also satisfies Einstein equations with possibly different, but still physically reasonable energy momentum tensor.
- Similar, but seems to me simpler, than a problem of Brinkman, who in 1925 asked a question 'when in a conformal class of metrics can be two different Einstein metrics?'.

Why not to start with conformally flat situation
(reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?

- Question: How to make a model of Penrose's bandaged region?
- One needs a function Ω, vanishing on some spacelike hypersurface, such that if $\check{g}=\Omega^{2} g$ satisfies Einstein equations with some physically reasonable energy momentum tensor, then $\hat{g}=\frac{1}{\Omega^{2}} g$ also satisfies Einstein equations with possibly different, but still physically reasonable energy momentum tensor.
- Similar, but seems to me simpler, than a problem of Brinkman, who in 1925 asked a question 'when in a conformal class of metrics can be two different Einstein metrics?'. Brinkman found all such metrics.

> Why not to start with conformally flat situation
> (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?

- Question: How to make a model of Penrose's bandaged region?
- One needs a function Ω, vanishing on some spacelike hypersurface, such that if $\check{g}=\Omega^{2} g$ satisfies Einstein equations with some physically reasonable energy momentum tensor, then $\hat{g}=\frac{1}{\Omega^{2}} g$ also satisfies Einstein equations with possibly different, but still physically reasonable energy momentum tensor.
- Similar, but seems to me simpler, than a problem of Brinkman, who in 1925 asked a question 'when in a conformal class of metrics can be two different Einstein metrics?'. Brinkman found all such metrics.
- Why not to start with conformally flat situation
(reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?

Modelling Penrose's CCC scenario

- Question: How to make a model of Penrose's bandaged region?
- One needs a function Ω, vanishing on some spacelike hypersurface, such that if $\check{g}=\Omega^{2} g$ satisfies Einstein equations with some physically reasonable energy momentum tensor, then $\hat{g}=\frac{1}{\Omega^{2}} g$ also satisfies Einstein equations with possibly different, but still physically reasonable energy momentum tensor.
- Similar, but seems to me simpler, than a problem of Brinkman, who in 1925 asked a question 'when in a conformal class of metrics can be two different Einstein metrics?'. Brinkman found all such metrics.
- Why not to start with conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm),

Modelling Penrose's CCC scenario

- Question: How to make a model of Penrose's bandaged region?
- One needs a function Ω, vanishing on some spacelike hypersurface, such that if $\check{g}=\Omega^{2} g$ satisfies Einstein equations with some physically reasonable energy momentum tensor, then $\hat{g}=\frac{1}{\Omega^{2}} g$ also satisfies Einstein equations with possibly different, but still physically reasonable energy momentum tensor.
- Similar, but seems to me simpler, than a problem of Brinkman, who in 1925 asked a question 'when in a conformal class of metrics can be two different Einstein metrics?'. Brinkman found all such metrics.
- Why not to start with conformally flat situation (reasonable, because compatible with the cosmological principle/FLRW paradigm), and (various) perfect fluids?

Polytrope perfect fluids in FLRW models

- From now on I restrict myself to FLRW metrics with $\kappa=1$, $g=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)$.
- It is convenient to introduce a conformal time $n=\int \frac{\mathrm{d} t}{d(t)}$ so that the FLRW metric looks

$$
g=\Omega^{2}(\eta)\left(-\mathrm{d} \eta^{2}+r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)\right),
$$

i.e. $g=\Omega^{2}(\eta) g_{\text {Einst }}$.

- This parametrization is very convenient since taking $u=-\Omega(\eta) \mathrm{d} \eta$, the most general FLRW metric g satisfying Einstein's equations

$$
R i c-\frac{1}{2} R g=(\mu+p) u \otimes u+p g
$$

with polytropic equation of state $p=w \mu, w=$ const, is given by

$$
\Omega(\eta)=\Omega_{0}\left(\sin ^{2} \frac{(1+3 w) \eta}{2 r_{0}}\right)^{\frac{1}{1+3 w}} \text { if } w \neq-\frac{1}{3},
$$

and

$$
\Omega(\eta)=\Omega_{0} \exp (b \eta) \text { if } w=-\frac{1}{3} \text {. }
$$

Polytrope perfect fluids in FLRW models

- From now on I restrict myself to FLRW metrics with $\kappa=1$,
- It is convenient to introduce a conformal time so that the FLRW metric looks
i.e. $g=\Omega^{2}(\eta) g_{\text {Einst }}$.
- This parametrization is very convenient since taking $u=-\Omega(\eta) \mathrm{d} \eta$, the most general FLRW metric g satisfying
Einstein's equations
with polytropic equation of state $p=w \mu, w=$ const, is given by
and

Polytrope perfect fluids in FLRW models

- From now on I restrict myself to FLRW metrics with $\kappa=1$,

$$
g=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

- It is convenient to introduce a conformal time so that the FLRW metric looks
i.e. $g=\Omega^{2}(\eta) g_{\text {Einst }}$.
- This parametrization is very convenient since taking $u=-\Omega(\eta) \mathrm{d} \eta$, the most general FLRW metric g satisfying

Einstein's equations

with polytropic equation of state $p=w \mu, w=$ const, is given by
and

- From now on I restrict myself to FLRW metrics with $\kappa=1$,

$$
g=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

- It is convenient to introduce a conformal time $\eta=\int \frac{\mathrm{d} t}{\mathrm{a}(t)}$ so that the FLRW metric looks
- This parametrization is very convenient since taking $u=-\Omega(\eta) \mathrm{d} \eta$, the most general FLRW metric g satisfying
Einstein's equations
with polytropic equation of state $p=w \mu, w=$ const, is given by
and
- From now on I restrict myself to FLRW metrics with $\kappa=1$,

$$
g=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

- It is convenient to introduce a conformal time $\eta=\int \frac{\mathrm{d} t}{\mathrm{a}(t)}$ so that the FLRW metric looks

$$
g=\Omega^{2}(\eta)\left(-\mathrm{d} \eta^{2}+r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)\right)
$$

- This parametrization is very convenient since taking $u=-\Omega(\eta) \mathrm{d} \eta$, the most general FLRW metric g satisfying
Einstein's equations
with polytropic equation of state $p=w \mu, w=$ const, is given by
and
- From now on I restrict myself to FLRW metrics with $\kappa=1$,

$$
g=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

- It is convenient to introduce a conformal time $\eta=\int \frac{\mathrm{d} t}{a(t)}$ so that the FLRW metric looks

$$
g=\Omega^{2}(\eta)\left(-\mathrm{d} \eta^{2}+r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)\right)
$$

i.e. $g=\Omega^{2}(\eta) g_{\text {Einst }}$.

- This parametrization is very convenient since taking $u=-\Omega(\eta) \mathrm{d} \eta$, the most general FLRW metric g satisfying

Einstein's equations

with polytropic equation of state $p=w \mu, w=$ const, is given by
and

- From now on I restrict myself to FLRW metrics with $\kappa=1$,

$$
g=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

- It is convenient to introduce a conformal time $\eta=\int \frac{\mathrm{d} t}{\mathrm{a}(t)}$ so that the FLRW metric looks

$$
g=\Omega^{2}(\eta)\left(-\mathrm{d} \eta^{2}+r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)\right)
$$

i.e. $g=\Omega^{2}(\eta) g_{\text {Einst }}$.

- This parametrization is very convenient since taking $u=-\Omega(\eta) \mathrm{d} \eta$, the most general FLRW metric g satisfying Einstein's equations
with polytropic equation of state $p=w \mu, w=$ const, is given by
and
- From now on I restrict myself to FLRW metrics with $\kappa=1$,

$$
g=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

- It is convenient to introduce a conformal time $\eta=\int \frac{\mathrm{d} t}{\mathrm{a}(t)}$ so that the FLRW metric looks

$$
g=\Omega^{2}(\eta)\left(-\mathrm{d} \eta^{2}+r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)\right)
$$

i.e. $g=\Omega^{2}(\eta) g_{\text {Einst }}$.

- This parametrization is very convenient since taking $u=-\Omega(\eta) \mathrm{d} \eta$, the most general FLRW metric g satisfying Einstein's equations

$$
R \text { ic }-\frac{1}{2} R g=(\mu+p) u \otimes u+p g
$$

with polytropic equation of state $p=w \mu, w=$ const, is given by
and

- From now on I restrict myself to FLRW metrics with $\kappa=1$,

$$
g=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

- It is convenient to introduce a conformal time $\eta=\int \frac{\mathrm{d} t}{a(t)}$ so that the FLRW metric looks

$$
g=\Omega^{2}(\eta)\left(-\mathrm{d} \eta^{2}+r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)\right)
$$

i.e. $g=\Omega^{2}(\eta) g_{\text {Einst }}$.

- This parametrization is very convenient since taking $u=-\Omega(\eta) \mathrm{d} \eta$, the most general FLRW metric g satisfying Einstein's equations

$$
R \text { ic }-\frac{1}{2} R g=(\mu+p) u \otimes u+p g
$$

with polytropic equation of state $p=w \mu, w=$ const, is given by

$$
\Omega(\eta)=\Omega_{0}\left(\sin ^{2} \frac{(1+3 w) \eta}{2 r_{0}}\right)^{\frac{1}{1+3 w}} \text { if } w \neq-\frac{1}{3}
$$

and

- From now on I restrict myself to FLRW metrics with $\kappa=1$,

$$
g=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

- It is convenient to introduce a conformal time $\eta=\int \frac{\mathrm{d} t}{\mathrm{a}(t)}$ so that the FLRW metric looks

$$
g=\Omega^{2}(\eta)\left(-\mathrm{d} \eta^{2}+r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)\right)
$$

i.e. $g=\Omega^{2}(\eta) g_{\text {Einst }}$.

- This parametrization is very convenient since taking $u=-\Omega(\eta) \mathrm{d} \eta$, the most general FLRW metric g satisfying Einstein's equations

$$
R \text { ic }-\frac{1}{2} R g=(\mu+p) u \otimes u+p g
$$

with polytropic equation of state $p=w \mu, w=$ const, is given by

$$
\Omega(\eta)=\Omega_{0}\left(\sin ^{2} \frac{(1+3 w) \eta}{2 r_{0}}\right)^{\frac{1}{1+3 w}} \text { if } w \neq-\frac{1}{3}
$$

and

- From now on I restrict myself to FLRW metrics with $\kappa=1$,

$$
g=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

- It is convenient to introduce a conformal time $\eta=\int \frac{\mathrm{d} t}{a(t)}$ so that the FLRW metric looks

$$
g=\Omega^{2}(\eta)\left(-\mathrm{d} \eta^{2}+r_{0}^{2}\left(\mathrm{~d} \chi^{2}+\sin ^{2} \chi\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)\right)
$$

i.e. $g=\Omega^{2}(\eta) g_{\text {Einst }}$.

- This parametrization is very convenient since taking $u=-\Omega(\eta) \mathrm{d} \eta$, the most general FLRW metric g satisfying
Einstein's equations

$$
R \text { ic }-\frac{1}{2} R g=(\mu+p) u \otimes u+p g
$$

with polytropic equation of state $p=w \mu, w=$ const, is given by

$$
\Omega(\eta)=\Omega_{0}\left(\sin ^{2} \frac{(1+3 w) \eta}{2 r_{0}}\right)^{\frac{1}{1+3 w}} \text { if } w \neq-\frac{1}{3}
$$

and

$$
\Omega(\eta)=\Omega_{0} \exp (b \eta) \text { if } w=-\frac{1}{3} .
$$

Symmetry of solutions conformal to the Einstein Universe

Theorem

If $\Omega=\Omega(\eta)$ is such that $g ̆=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \bar{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w} \check{\mu}, \check{w}=$ const, then
$\hat{g}=\frac{1}{\Omega^{2}}$ gEinst satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p}=\hat{w} \hat{\mu}$ with

The Ricci sclar of the metric g is

so it is positive if $-1 \leq \check{w}<1 / 3$ (recall the energy conditions

Symmetry of solutions conformal to the Einstein Universe

Theorem

If $\Omega=\Omega(\eta)$ is such that $g ̆=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w} \check{\mu}, \check{w}=$ const, then
 with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p}=\hat{w} \hat{\mu}$ with

The Ricci sclar of the metric g is

so it is positive if $-1 \leq \check{w}<1 / 3$ (recall the energy conditions

Symmetry of solutions conformal to the Einstein Universe

Theorem
If $\Omega=\Omega(\eta)$ is such that $\check{g}=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \bar{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w} \check{\mu}, \check{w}=$ const, then
with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p}=$ wh with

The Ricci sclar of the metric g is

Symmetry of solutions conformal to the Einstein Universe

Theorem

If $\Omega=\Omega(\eta)$ is such that $\check{g}=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid,
> the energy density $\check{\mu}$, via $\check{p}=\check{w} \check{\mu}$, $\check{w}=$ const, then
> satisfies Einstein's equations, with $\Lambda=0$, and
> with the energy momentum tensor \mathcal{T} of a perfect flutd, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p}=\hat{w} \hat{\mu}$ with

The Ricci sclar of the metric g is
so it is positive if

Symmetry of solutions conformal to the Einstein Universe

Theorem

If $\Omega=\Omega(\eta)$ is such that $\check{g}=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$,

satisfies Einstein's equations, with $\Lambda=0$, and

with the energy momentum tensor T of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p}=\hat{w} \hat{\mu}$ with

The Ricci sclar of the metric g is

Symmetry of solutions conformal to the Einstein Universe

Theorem

If $\Omega=\Omega(\eta)$ is such that $\check{g}=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w} \check{\mu}, \check{w}=$ const,

satisfies Einstein's equations, with

with the energy momentum tensor T of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p}=\hat{w} \hat{\mu}$ with

The Ricci sclar of the metric g is

Symmetry of solutions conformal to the Einstein Universe

Theorem

If $\Omega=\Omega(\eta)$ is such that $\check{g}=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w} \check{\mu}$, $\check{w}=$ const, then

$$
\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}
$$

satisfies Einstein's equations, with
with the energy momentum tensor T of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by with

The Ricci sclar of the metric g is

Theorem

If $\Omega=\Omega(\eta)$ is such that $\check{g}=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w} \check{\mu}$, $\check{w}=$ const, then
$\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \hat{T} of a perfect fluid, whose presure p and the energy density 11 are related by with

The Ricci sclar of the metric g g is

so it is positive if

Theorem

If $\Omega=\Omega(\eta)$ is such that $\check{g}=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w} \check{\mu}$, $\check{w}=$ const, then
$\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and
with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by

$$
\text { The Ricci sclar of the metric } \stackrel{g}{g} \text { is }
$$

so it is positive if

Theorem

If $\Omega=\Omega(\eta)$ is such that $\check{g}=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w} \check{\mu}, \check{w}=$ const, then
$\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and
with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p}=\hat{w} \hat{\mu}$ with

The Ricci sclar of the metric $\stackrel{g}{6}$ is
so it is positive if

Theorem

If $\Omega=\Omega(\eta)$ is such that $\check{g}=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w} \check{\mu}$, $\check{w}=$ const, then
$\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and
with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p}=\hat{w} \hat{\mu}$ with

$$
\hat{w}=-\frac{1}{3}(2+3 \check{w})
$$

The Ricci sclar of the metric g is
and
so it is positive if

Theorem

If $\Omega=\Omega(\eta)$ is such that $\check{g}=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w} \check{\mu}$, $\check{w}=$ const, then
$\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and
with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p}=\hat{w} \hat{\mu}$ with
\square

$$
\hat{w}=-\frac{1}{3}(2+3 \check{w})
$$

The Ricci sclar of the metric g g is

Theorem

If $\Omega=\Omega(\eta)$ is such that $\check{g}=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w} \check{\mu}$, $\check{w}=$ const, then
$\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and
with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p}=\hat{w} \hat{\mu}$ with
$\hat{w}=-\frac{1}{3}(2+3 \check{w})$.
The Ricci sclar of the metric g is

$$
R=\frac{3(1-3 \check{W})}{\Omega_{0}^{2} r_{0}^{2}\left(\sin ^{6} \frac{(1+3 \check{W}) \eta}{2 r_{0}}\right)^{\frac{1+w}{1+3 \check{w}}}} \text { if } \check{W} \neq-1 / 3 \text { and }
$$

so it is positive if

Theorem

If $\Omega=\Omega(\eta)$ is such that $\check{g}=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w} \check{\mu}$, $\check{w}=$ const, then
$\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p}=\hat{w} \hat{\mu}$ with

$$
\hat{w}=-\frac{1}{3}(2+3 \check{w})
$$

The Ricci sclar of the metric g g is
$R=\frac{3(1-3 \check{w})}{\Omega_{0}^{2} r_{0}^{2}\left(\sin ^{6} \frac{(1+3 \check{\breve{w}}) \eta}{2 r_{0}}\right)^{\frac{1+w}{1+3 w}}}$ if $\check{w} \neq-1 / 3$ and $R=\frac{6\left(1+b^{2} r_{0}^{2}\right)}{\Omega_{0}^{2} r_{0}^{2} \exp (2 b \eta)}$ if $\check{w}=-1 / 3$,
so it is positive if

Theorem

If $\Omega=\Omega(\eta)$ is such that $\check{g}=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w} \check{\mu}$, $\check{w}=$ const, then
$\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p}=\hat{w} \hat{\mu}$ with

$$
\hat{w}=-\frac{1}{3}(2+3 \check{w}) .
$$

The Ricci sclar of the metric $g \check{g}$ is
$R=\frac{3(1-3 \check{w})}{\Omega_{0}^{2} r_{0}^{2}\left(\sin ^{6} \frac{(1+3 \check{w}) \eta}{2 r_{0}}\right)^{\frac{1+w}{1+3 w}}}$ if $\check{w} \neq-1 / 3$ and $R=\frac{6\left(1+b^{2} r_{0}^{2}\right)}{\Omega_{0}^{2} r_{0}^{2} \exp (2 b \eta)}$ if $\check{w}=-1 / 3$, so it is positive if $-1 \leq \check{w}<1 / 3$

Theorem

If $\Omega=\Omega(\eta)$ is such that $\check{g}=\Omega^{2} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \check{T} of a perfect fluid, whose presure \check{p} is proportional to the energy density $\check{\mu}$, via $\check{p}=\check{w} \check{\mu}$, $\check{w}=$ const, then
$\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies Einstein's equations, with $\Lambda=0$, and with the energy momentum tensor \hat{T} of a perfect fluid, whose presure \hat{p} and the energy density $\hat{\mu}$ are related by $\hat{p}=\hat{w} \hat{\mu}$ with

$$
\hat{w}=-\frac{1}{3}(2+3 \check{w}) .
$$

The Ricci sclar of the metric g is
$R=\frac{3(1-3 \check{w})}{\Omega_{0}^{2} r_{0}^{2}\left(\sin ^{6} \frac{(1+3 \check{w}) \eta}{2 r_{0}}\right)^{\frac{1+w}{1+3 w}}}$ if $\check{w} \neq-1 / 3$ and $R=\frac{6\left(1+b^{2} r_{0}^{2}\right)}{\Omega_{0}^{2} r_{0}^{2} \exp (2 b \eta)}$ if $\check{w}=-1 / 3$, so it is positive if $-1 \leq \check{W}<1 / 3$ (recall the energy conditions
$-1 \leq \check{w} \leq 1)$.

$$
\begin{aligned}
& \text { 1-radiation } \\
& (-1) \leftrightarrow \frac{1}{3} \\
& \text { matter - gas of } \\
& 0 \longmapsto-2 / 3 \\
& \text { less of strings. } \\
& -1 / 6 \text { s-7 }-1 / 3
\end{aligned}
$$

Suspiscious points: $\check{w}=-1,1 / 3$ (cosmological constant radiation), since the scalar curvature $R=0$, when $\check{w}=1 / 3$; and $\mathscr{w}=-1 / 3$ (gas of strings), when $\Omega \neq 0$ on \mathscr{I}.

$$
\begin{array}{r}
\Lambda \text {-radiation } \\
\therefore(-1) \leftrightarrow \frac{1}{3} \\
\text { matter - gas of } \\
\text { domain } \\
\therefore 0 \leftrightarrow-2 / 3
\end{array}
$$

Suspiscious points:

radiation), since the scalar curvature $R=0$, when $w=1 / 3$; and $\check{W}=-1 / 3$ (gas of strings), when $\Omega \neq 0$ on

Suspiscious points: $\check{w}=-1,1 / 3$ (cosmological constant radiation), since the scalar curvature $R=0$, when $w=1 / 3$; and $\mathscr{W}=-1 / 3$ (gas of strings), when $\Omega \neq 0$ on

Suspiscious points: $\check{w}=-1,1 / 3$ (cosmological constant radiation), since the scalar curvature $R=0$, when $\check{w}=1 / 3$; and $W=-1 / 3$ (gas of strings), when

Suspiscious points: $\check{w}=-1,1 / 3$ (cosmological constant radiation), since the scalar curvature $R=0$, when $\check{w}=1 / 3$; and $\check{w}=-1 / 3$ (gas of strings), when $\Omega \neq 0$ on \mathscr{I}.

- We come back to the FLRW metric $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2} g_{s^{3}}$.
- We write it as $\check{g}=\Omega^{2}(t)\left(-\frac{\mathrm{d}^{2}}{\Omega^{2}(t)}+r_{0}^{2} g_{s^{3}}\right)$, so that it is clear that $\breve{g}=\Omega^{2}(t) g_{\text {Einst }}$.
- Then the condition that g satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d} t, \check{p}=\check{w} \check{\mu}$, and the cosmological constant Λ, is equivalent to the following ODE for Ω :
$2 t^{2} \Omega \Omega^{\prime \prime}-\left(1+3 W_{1}\right)\left(1+t^{-2} \Omega^{\prime 2}\right)+\left(1+\psi_{1} x+2 \Omega^{2}\right.$.
- We want that $\check{W}=$ const and that $\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies perfect fluid Eisntein's equations with $\hat{u}=-\frac{\mathrm{dt}}{\Omega^{2}}, \hat{p}=\hat{w} \hat{\mu}$, the cosmological constant $\hat{\wedge}$, and $\hat{W}=$ const.
- From the Einstein's equations for \hat{g} we easilly calculate \hat{w}, and forcing it to be constant, because of the above ODE satisfied by Ω, we find that it is possible provided that:

$$
\check{X} \hat{\Lambda}(1+\mathscr{W})(1-3 \mathscr{W})=0 .
$$

- Thus, a neccessary condition for both Ω and Ω^{-1} to describe the polytropes, is that either one of the \wedge s is zero, or \check{w} is of the 'radiation- \wedge ' type.
- We come back to the FLRW metric $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2} g_{\mathbb{S}^{3}}$.
- We write it as $\check{g}=\Omega^{2}(t)\left(-\frac{d^{2}}{\Omega^{2}(t)}+r_{0}^{2} g_{s^{3}}\right)$, so that it is clear that
$\check{g}=\Omega^{2}(t) g_{\text {Einst }}$.
- Then the condition that gatisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d} t, \check{p}=\check{w} \check{\mu}$, and the cosmological constant Λ, is equivalent to the following ODE for Ω :
- We want that $\hat{i}=$ const and that $\hat{g}=1$ geinst satisfies perfect fluid Eisntein's equations with $\hat{u}=-\frac{d t}{\Omega^{2}}, \hat{p}=\hat{w} \hat{\mu}$, the cosmological constant $\hat{\wedge}$, and $\hat{W}=$ const.
- From the Einstein's equations for \hat{g} we easilly/ calculate w, and forcing it to be constant, because of the above ODE satisfied by Ω, we find that it is possible provided that:
- Thus, a neccessary condition for both Ω and Ω^{-1} to describe the polytropes, is that either one of the \wedge s is zero, or \check{W} is of the ‘radiation- ^’ type.
- We come back to the FLRW metric $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2} g_{\mathbb{S}^{3}}$.
- We write it as $\check{g}=\Omega^{2}(t)\left(-\frac{\mathrm{dt}}{}{ }^{2}(t)+r_{0}^{2} g_{\mathbb{S}^{3}}\right)$, so that it is clear that
- Then the condition that g satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d} t, \check{p}=\check{w} \check{\mu}$, and the cosmological constant x, is equivalent to the following ODE for Ω :
- We want that $\check{w}=$ const and that $\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies perfect fluid Eisntein's equations with $\hat{u}=-\frac{d t}{\Omega^{2}}, \hat{p}=\hat{w} \hat{\mu}$, the cosmological constant $\hat{\wedge}$, and $\hat{W}=$ const.
- From the Einstein's equations for \hat{g} we easilly calculate \hat{w}, and forcing it to be constant, because of the above ODE satisfied by Ω, we find that it is possible provided that:
- Thus, a neccessary condition for both Ω and Ω^{-1} to describe the polytropes, is that either one of the \wedge s is zero, or \check{W} is of the 'radiation- \uparrow ' type.
- We come back to the FLRW metric $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2} g_{\mathbb{S}^{3}}$.
- We write it as $\check{g}=\Omega^{2}(t)\left(-\frac{d t^{2}}{\Omega^{2}(t)}+r_{0}^{2} g_{\mathbb{S}^{3}}\right)$, so that it is clear that $\check{g}=\Omega^{2}(t) g_{\text {Einst }}$.
- Then the condition that g satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d} t, \check{p}=\check{w} \check{\mu}$, and the cosmological constant Λ, is equivalent to the following ODE for Ω :
- We want that $\check{w}=$ const and that $\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies perfect fluid Eisntein's equations with $\hat{u}=-\frac{\mathrm{d} t}{\Omega^{2}}, \hat{p}=\hat{w} \hat{\mu}$, the cosmological constant $\hat{\Lambda}$, and $\hat{W}=$ const.
- From the Einstein's equations for \hat{g} we easilly calculate \hat{w}, and forcing it to be constant, because of the above ODE satisfied by Ω, we find that it is possible provided that:
- Thus, a neccessary condition for both Ω and Ω^{-1} to describe the polytropes, is that either one of the $\wedge s$ is zero, or \check{W} is of the 'radiation- \wedge ' type.
- We come back to the FLRW metric $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2} g_{\mathbb{S}_{3}}$.
- We write it as $\check{g}=\Omega^{2}(t)\left(-\frac{d t^{2}}{\Omega^{2}(t)}+r_{0}^{2} g_{\mathbb{S}^{3}}\right)$, so that it is clear that $\breve{g}=\Omega^{2}(t) g_{\text {Einst }}$.
- Then the condition that g satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d} t, \check{p}=\check{w} \check{\mu}$, and the cosmological constant Λ, is equivalent to the following ODE for Ω :
- We want that $\check{w}=$ const and that $\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies perfect
fluid Eisntein's equations with \hat{u}
cosmological constant
- From the Einstein's equations for \hat{g} we easilly calculate \hat{w}, and forcing it to be constant, because of the above ODE satisfied by Ω, we find that it is possible provided that:
- Thus, a neccessary condition for both Ω and Ω^{-1} to describe the polytropes, is that either one of the \wedge s is zero, or w is of the 'radiation- \wedge ' type.
- We come back to the FLRW metric $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2} g_{\mathbb{S}^{3}}$.
- We write it as $\check{g}=\Omega^{2}(t)\left(-\frac{d t^{2}}{\Omega^{2}(t)}+r_{0}^{2} g_{\mathbb{S}^{3}}\right)$, so that it is clear that $\breve{g}=\Omega^{2}(t) g_{\text {Einst }}$.
- Then the condition that \check{g} satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d} t, \check{p}=\check{w} \check{\mu}$, and the cosmological constant Λ, is equivalent to the following ODE for Ω :

$$
2 r_{0}^{2} \Omega \Omega^{\prime \prime}=-(1+3 \check{W})\left(1+r_{0}^{2} \Omega^{\prime 2}\right)+(1+\check{w}) \check{\Lambda} r_{0}^{2} \Omega^{2} .
$$

- We want that $\check{W}=$ const and that $\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies perfect
fluid Eisntein's equations with \hat{u}
the
cosmological constant $\hat{\Lambda}$, and \hat{w}
- From the Einstein's equations for \hat{g} we easilly calculate \hat{w}, and forcing it to be constant, because of the above ODE satisfied by Ω, we find that it is possible provided that:
- We come back to the FLRW metric $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2} g_{\mathbb{S}_{3}}$.
- We write it as $\check{g}=\Omega^{2}(t)\left(-\frac{d t^{2}}{\Omega^{2}(t)}+r_{0}^{2} g_{\mathbb{S}^{3}}\right)$, so that it is clear that $\check{g}=\Omega^{2}(t) g_{\text {Einst }}$.
- Then the condition that g satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d} t, \check{p}=\check{w} \check{\mu}$, and the cosmological constant Λ, is equivalent to the following ODE for Ω :

$$
2 r_{0}^{2} \Omega \Omega^{\prime \prime}=-(1+3 \check{W})\left(1+r_{0}^{2} \Omega^{\prime 2}\right)+(1+\check{w}) \check{\wedge} r_{0}^{2} \Omega^{2} .
$$

- We want that $\check{W}=$ const and that $\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies perfect fluid Eisntein's equations with $\hat{u}=-\frac{d t}{\Omega^{2}}$,
cosmological constant
- From the Einstein's equations for \hat{g} we easilly calculate forcing it to be constant, because of the above ODE satisfied by we find that it is possible provided that:
- We come back to the FLRW metric $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2} g_{\mathbb{S}^{3}}$.
- We write it as $\check{g}=\Omega^{2}(t)\left(-\frac{d t^{2}}{\Omega^{2}(t)}+r_{0}^{2} g_{\mathbb{S}^{3}}\right)$, so that it is clear that $\check{g}=\Omega^{2}(t) g_{\text {Einst }}$.
- Then the condition that g satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d} t, \check{p}=\check{w} \check{\mu}$, and the cosmological constant Λ, is equivalent to the following ODE for Ω :

$$
2 r_{0}^{2} \Omega \Omega^{\prime \prime}=-(1+3 \check{W})\left(1+r_{0}^{2} \Omega^{\prime 2}\right)+(1+\check{w}) \check{\wedge} r_{0}^{2} \Omega^{2} .
$$

- We want that $\check{W}=$ const and that $\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies perfect fluid Eisntein's equations with $\hat{u}=-\frac{\mathrm{d} t}{\Omega^{2}}, \hat{p}=\hat{w} \hat{\mu}$,
cosmological constant
- From the Einstein's equations for \hat{g} we easilly calculate forcing it to be constant, because of the above ODE satisfied by we find that it is possible provided that:
- We come back to the FLRW metric $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2} g_{\mathbb{S}^{3}}$.
- We write it as $\check{g}=\Omega^{2}(t)\left(-\frac{\mathrm{dt}}{\Omega^{2}}(t)+r_{0}^{2} g_{\mathbb{S}^{3}}\right)$, so that it is clear that $\breve{g}=\Omega^{2}(t) g_{\text {Einst }}$.
- Then the condition that g satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d} t, \check{p}=\check{w} \check{\mu}$, and the cosmological constant Λ, is equivalent to the following ODE for Ω :

$$
2 r_{0}^{2} \Omega \Omega^{\prime \prime}=-(1+3 \check{W})\left(1+r_{0}^{2} \Omega^{\prime 2}\right)+(1+\check{w}) \check{\wedge} r_{0}^{2} \Omega^{2} .
$$

- We want that $\check{w}=$ const and that $\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies perfect fluid Eisntein's equations with $\hat{u}=-\frac{\mathrm{dt}}{\Omega^{2}}, \hat{p}=\hat{w} \hat{\mu}$, the cosmological constant $\hat{\wedge}$,
> - From the Einstein's equations for \hat{g} we easilly calculate \hat{w}, and forcing it to be constant, because of the above ODE satisfied by we find that it is possible provided that:
- We come back to the FLRW metric $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2} g_{\mathbb{S}^{3}}$.
- We write it as $\check{g}=\Omega^{2}(t)\left(-\frac{\mathrm{dt}}{\Omega^{2}}(t)+r_{0}^{2} g_{\mathbb{S}^{3}}\right)$, so that it is clear that $\breve{g}=\Omega^{2}(t) g_{\text {Einst }}$.
- Then the condition that g satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d} t, \check{p}=\check{w} \check{\mu}$, and the cosmological constant Λ, is equivalent to the following ODE for Ω :

$$
2 r_{0}^{2} \Omega \Omega^{\prime \prime}=-(1+3 \check{W})\left(1+r_{0}^{2} \Omega^{\prime 2}\right)+(1+\check{w}) \check{\wedge} r_{0}^{2} \Omega^{2} .
$$

- We want that $\check{w}=$ const and that $\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies perfect fluid Eisntein's equations with $\hat{u}=-\frac{\mathrm{d} t}{\Omega^{2}}, \hat{p}=\hat{w} \hat{\mu}$, the cosmological constant $\hat{\Lambda}$, and $\hat{w}=$ const.
- From the Einstein's equations for \hat{g} we easilly calculate \hat{W}, and
forcing it to be constant, because of the above ODE satisfied by
Ω, we find that it is possible provided that:
- Thus, a neccessary condition for both
and Ω^{-1} to describe the polytropes, is that either one of the \wedge s is zero, or w is of the 'radiation-- 'type.
- We come back to the FLRW metric $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2} g_{\mathbb{S}^{3}}$.
- We write it as $\check{g}=\Omega^{2}(t)\left(-\frac{\mathrm{dt}}{\Omega^{2}}(t)+r_{0}^{2} g_{\mathbb{S}^{3}}\right)$, so that it is clear that $\check{g}=\Omega^{2}(t) g_{\text {Einst }}$.
- Then the condition that \check{g} satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d} t, \check{p}=\check{w} \check{\mu}$, and the cosmological constant Λ, is equivalent to the following ODE for Ω :
$2 r_{0}^{2} \Omega \Omega^{\prime \prime}=-(1+3 \check{W})\left(1+r_{0}^{2} \Omega^{\prime 2}\right)+(1+\check{w}) \check{\Lambda} r_{0}^{2} \Omega^{2}$.
- We want that $\check{w}=$ const and that $\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies perfect fluid Eisntein's equations with $\hat{u}=-\frac{\mathrm{d} t}{\Omega^{2}}, \hat{p}=\hat{w} \hat{\mu}$, the cosmological constant $\hat{\Lambda}$, and $\hat{w}=$ const.
- From the Einstein's equations for \hat{g} we easilly calculate \hat{w}, and forcing it to be constant, because of the above ODE satisfied by Ω, we find that it is possible provided that:
- Thus, a neccessary condition for both the polytropes, is that either one of the 'radiation-^'type.
- We come back to the FLRW metric $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2} g_{\mathbb{S}^{3}}$.
- We write it as $\check{g}=\Omega^{2}(t)\left(-\frac{\mathrm{dt}}{\Omega^{2}}(t)+r_{0}^{2} g_{\mathbb{S}^{3}}\right)$, so that it is clear that $\check{g}=\Omega^{2}(t) g_{\text {Einst }}$.
- Then the condition that \check{g} satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d} t, \check{p}=\check{w} \check{\mu}$, and the cosmological constant Λ, is equivalent to the following ODE for Ω :
$2 r_{0}^{2} \Omega \Omega^{\prime \prime}=-(1+3 \check{W})\left(1+r_{0}^{2} \Omega^{\prime 2}\right)+(1+\check{w}) \check{\Lambda} r_{0}^{2} \Omega^{2}$.
- We want that $\check{W}=$ const and that $\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies perfect fluid Eisntein's equations with $\hat{u}=-\frac{\mathrm{d} t}{\Omega^{2}}, \hat{p}=\hat{w} \hat{\mu}$, the cosmological constant $\hat{\Lambda}$, and $\hat{w}=$ const.
- From the Einstein's equations for \hat{g} we easilly calculate \hat{w}, and forcing it to be constant, because of the above ODE satisfied by Ω, we find that it is possible provided that:

$$
\check{\wedge} \hat{\Lambda}(1+\check{w})(1-3 \check{w})=0 .
$$

- We come back to the FLRW metric $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) r_{0}^{2} g_{\mathbb{S}^{3}}$.
- We write it as $\check{g}=\Omega^{2}(t)\left(-\frac{\mathrm{dt}}{\Omega^{2}}(t)+r_{0}^{2} g_{\mathbb{S}^{3}}\right)$, so that it is clear that $\check{g}=\Omega^{2}(t) g_{\text {Einst }}$.
- Then the condition that \check{g} satisfies perfect fluid Eisntein's equations with $\check{u}=-\mathrm{d} t, \check{p}=\check{w} \check{\mu}$, and the cosmological constant Λ, is equivalent to the following ODE for Ω :
$2 r_{0}^{2} \Omega \Omega^{\prime \prime}=-(1+3 \check{W})\left(1+r_{0}^{2} \Omega^{\prime 2}\right)+(1+\check{w}) \check{\Lambda} r_{0}^{2} \Omega^{2}$.
- We want that $\check{W}=$ const and that $\hat{g}=\frac{1}{\Omega^{2}} g_{\text {Einst }}$ satisfies perfect fluid Eisntein's equations with $\hat{u}=-\frac{\mathrm{d} t}{\Omega^{2}}, \hat{p}=\hat{w} \hat{\mu}$, the cosmological constant $\hat{\Lambda}$, and $\hat{w}=$ const.
- From the Einstein's equations for \hat{g} we easilly calculate \hat{w}, and forcing it to be constant, because of the above ODE satisfied by Ω, we find that it is possible provided that:

$$
\check{\wedge} \hat{\Lambda}(1+\check{w})(1-3 \check{w})=0 .
$$

- Thus, a neccessary condition for both Ω and Ω^{-1} to describe the polytropes, is that either one of the $\wedge s$ is zero, or \check{w} is of the 'radiation- \wedge ' type.
- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:

has the property that both $\check{g}=\Omega^{2} g_{\text {Einst }}$ and $\hat{g}=\Omega^{-2} g_{\text {Einst }}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=W=1 / 3$ (radiation), and with the corresponding cosmological constants Λ and $\hat{\wedge}$. Here $g_{\text {Einst }}=-\Omega^{-2} \mathrm{~d} t^{2}+r_{0}^{2} g_{\mathbb{S}^{3}}$.
- Colloquially speaking incoherent radiation passes happily through the wound. However, cosmological constants can change from any positive value to any other one. Ha...
- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:
has the property that both $\breve{g}=\Omega^{2} g_{\text {Einst }}$ and $\hat{g}=\Omega^{-2} g_{\text {Einst }}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\tilde{W}=1 / 3$ (radiation), and with the corresponding cosmological constants \wedge and $\hat{\wedge}$. Here $g_{\text {Einst }}$
- Colloquially speaking incoherent radiation passes happily through the wound. However, cosmological constants can change from any positive value to any other one. Ha...
- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod).
- Theorem. The function $\Omega=\Omega(t)$ given by:
has the property that both $\check{g}=\Omega^{2} g_{\text {Einst }}$ and $\hat{g}=\Omega^{-2} g_{\text {Einst }}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\breve{w}=1 / 3$ (radiation), and with the corresponding cosmological constants Λ and $/$ Here
- Colloquially speaking incoherent radiation passes happily through the wound. However, cosmological constants can change from any positive value to any other one. Ha...
- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:
\square
satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1 / 3$ (radiation), and
with the corresponding cosmological constants Λ and Here
- Colloquially speaking incoherent radiation passes happily through the wound. However, cosmological constants can change from any positive value to any other one. Ha..
- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:

- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:

- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:

$$
\Omega^{2}=\frac{3-3 \cosh \left(2 \sqrt{\frac{\Lambda}{3}} t\right)-2 r_{0}^{2} \sqrt{\tilde{\Lambda} \hat{\Lambda}} \sinh \left(2 \sqrt{\frac{\Lambda}{3}} t\right)}{\hat{\Lambda} r_{0}^{2}}
$$

has the property that both $\breve{g}=\Omega^{2} g_{\text {Einst }}$ and \hat{g}
satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\breve{w}=1 / 3$ (radiation), and
with the corresponding cosmological constants Λ and Here

- Colloquially speaking incoherent radiation passes happily through the wound. However, cosmological constants can change from any positive value to any other one. Ha..
- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:

$$
\Omega^{2}=\frac{3-3 \cosh \left(2 \sqrt{\frac{\Lambda}{3}} t\right)-2 r_{0}^{2} \sqrt{\tilde{\Lambda} \hat{\Lambda}} \sinh \left(2 \sqrt{\frac{\lambda}{3}} t\right)}{\grave{\Lambda} r_{0}^{2}}
$$

has the property that both
satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1 / 3$ (radiation), and
with the corresponding cosmological constants Λ and Here

- Colloquially speaking incoherent radiation passes happily through the wound. However, cosmological constants can change from any positive value to any other one. Ha..
- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:

$$
\Omega^{2}=\frac{3-3 \cosh \left(2 \sqrt{\frac{\Lambda}{3}} t\right)-2 r_{0}^{2} \sqrt{\check{\Lambda} \hat{\Lambda}} \sinh \left(2 \sqrt{\frac{\Lambda}{3}} t\right)}{\grave{\Lambda} r_{0}^{2}}
$$

has the property that both $\check{g}=\Omega^{2} g_{\text {Einst }}$ and
satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1 / 3$ (radiation), and
with the corresponding cosmological constants Λ and Here

- Colloquially speaking incoherent radiation passes happily through the wound. However, cosmological constants can change from any positive value to any other one. Ha..
- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:

$$
\Omega^{2}=\frac{3-3 \cosh \left(2 \sqrt{\frac{\Lambda}{3}} t\right)-2 r_{0}^{2} \sqrt{\tilde{\Lambda} \hat{\Lambda}} \sinh \left(2 \sqrt{\frac{\Lambda}{3}} t\right)}{\Lambda r_{0}^{2}}
$$

has the property that both $\check{g}=\Omega^{2} g_{\text {Einst }}$ and $\hat{g}=\Omega^{-2} g_{\text {Einst }}$
satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1 / 3$ (radiation), and
with the corresponding cosmological constants Λ and Here

- Colloquially speaking incoherent radiation passes happily through the wound. However, cosmological constants can change from any positive value to any other one. Ha..
- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:

$$
\Omega^{2}=\frac{3-3 \cosh \left(2 \sqrt{\frac{\lambda}{3}} t\right)-2 r_{0}^{2} \sqrt{\tilde{\lambda} \hat{\Lambda}} \sinh \left(2 \sqrt{\frac{\lambda}{3}} t\right)}{\grave{\Lambda} r_{0}^{2}}
$$

has the property that both $\check{g}=\Omega^{2} g_{\text {Einst }}$ and $\hat{g}=\Omega^{-2} g_{\text {Einst }}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1 / 3$
with the corresponding cosmological constants \wedge and
Here

- Colloquially speaking incoherent radiation passes happily through the wound. However, cosmological constants can change from any positive value to any other one. Ha..
- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:

$$
\Omega^{2}=\frac{3-3 \cosh \left(2 \sqrt{\frac{\lambda}{3}} t\right)-2 r_{0}^{2} \sqrt{\tilde{\lambda} \hat{\Lambda}} \sinh \left(2 \sqrt{\frac{\lambda}{3}} t\right)}{\grave{\Lambda} r_{0}^{2}}
$$

has the property that both $\check{g}=\Omega^{2} g_{\text {Einst }}$ and $\hat{g}=\Omega^{-2} g_{\text {Einst }}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\widehat{w}=\check{w}=1 / 3$ (radiation),
with the corresponding cosmological constants \wedge and
Here

- Colloquially speaking incoherent radiation passes happily through the wound. However, cosmological constants can change from any positive value to any other one. Ha..
- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:

$$
\Omega^{2}=\frac{3-3 \cosh \left(2 \sqrt{\frac{\lambda}{3}} t\right)-2 r_{0}^{2} \sqrt{\tilde{\lambda} \hat{\Lambda}} \sinh \left(2 \sqrt{\frac{\lambda}{3}} t\right)}{\grave{\Lambda} r_{0}^{2}}
$$

has the property that both $\check{g}=\Omega^{2} g_{\text {Einst }}$ and $\hat{g}=\Omega^{-2} g_{\text {Einst }}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\widehat{w}=\check{w}=1 / 3$ (radiation), and with the corresponding cosmological constants Λ 元d $\hat{\Lambda}$.

Colloquially speaking incoherent radiation passes happily through the wound. However, cosmological constants can change from any positive value to any other one. Ha..

- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:

$$
\Omega^{2}=\frac{3-3 \cosh \left(2 \sqrt{\frac{\lambda}{3}} t\right)-2 r_{0}^{2} \sqrt{\tilde{\lambda} \hat{\Lambda}} \sinh \left(2 \sqrt{\frac{\lambda}{3}} t\right)}{\hat{\Lambda} r_{0}^{2}}
$$

has the property that both $\check{g}=\Omega^{2} g_{\text {Einst }}$ and $\hat{g}=\Omega^{-2} g_{\text {Einst }}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\widehat{w}=\check{w}=1 / 3$ (radiation), and with the corresponding cosmological constants Λ and $\hat{\Lambda}$. Here $g_{\text {Einst }}=-\Omega^{-2} \mathrm{~d} t^{2}+r_{0}^{2} g_{\mathbb{S}^{3}}$.
Colloquially speaking incoherent radiation passes happily through the wound. However, cosmological constants can change from any positive value to any other one. Ha..

- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:

$$
\Omega^{2}=\frac{3-3 \cosh \left(2 \sqrt{\frac{\lambda}{3}} t\right)-2 r_{0}^{2} \sqrt{\tilde{\lambda} \hat{\Lambda}} \sinh \left(2 \sqrt{\frac{\lambda}{3}} t\right)}{\hat{\Lambda} r_{0}^{2}}
$$

has the property that both $\check{g}=\Omega^{2} g_{\text {Einst }}$ and $\hat{g}=\Omega^{-2} g_{\text {Einst }}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1 / 3$ (radiation), and with the corresponding cosmological constants Λ 久 and $\hat{\Lambda}$. Here $g_{\text {Einst }}=-\Omega^{-2} \mathrm{~d} t^{2}+r_{0}^{2} g_{\mathbb{S}^{3}}$.

- Colloquially speaking incoherent radiation passes happily through the wound.
- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:

$$
\Omega^{2}=\frac{3-3 \cosh \left(2 \sqrt{\frac{\Lambda}{3}} t\right)-2 r_{0}^{2} \sqrt{\tilde{\lambda} \hat{\Lambda}} \sinh \left(2 \sqrt{\frac{\Lambda}{3}} t\right)}{\hat{\Lambda} r_{0}^{2}}
$$

has the property that both $\check{g}=\Omega^{2} g_{\text {Einst }}$ and $\hat{g}=\Omega^{-2} g_{\text {Einst }}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\widehat{w}=\check{w}=1 / 3$ (radiation), and with the corresponding cosmological constants Λ 久 and $\hat{\Lambda}$. Here $g_{\text {Einst }}=-\Omega^{-2} \mathrm{~d} t^{2}+r_{0}^{2} g_{\mathbb{S}^{3}}$.

- Colloquially speaking incoherent radiation passes happily through the wound. However, cosmological constants can change from any positive value to any other one.
- Considering the case $\check{w}=1 / 3$, one shows that remarkably $\hat{w}=1 / 3$ (generalization of the result of Paul Tod). More explicitly this case can be integrated to the very end.
- Theorem. The function $\Omega=\Omega(t)$ given by:

$$
\Omega^{2}=\frac{3-3 \cosh \left(2 \sqrt{\frac{\Lambda}{3}} t\right)-2 r_{0}^{2} \sqrt{\tilde{\lambda} \hat{\Lambda}} \sinh \left(2 \sqrt{\frac{\Lambda}{3}} t\right)}{\hat{\Lambda} r_{0}^{2}}
$$

has the property that both $\check{g}=\Omega^{2} g_{\text {Einst }}$ and $\hat{g}=\Omega^{-2} g_{\text {Einst }}$ satisfy Einstein's equations with polytropic perfect fluid equation of state, for which $\hat{w}=\check{w}=1 / 3$ (radiation), and with the corresponding cosmological constants Λ 久 and $\hat{\Lambda}$. Here $g_{\text {Einst }}=-\Omega^{-2} \mathrm{~d} t^{2}+r_{0}^{2} g_{\mathbb{S}^{3}}$.

- Colloquially speaking incoherent radiation passes happily through the wound. However, cosmological constants can change from any positive value to any other one. Ha...

Possible generalizations

- Consider (special) Bianchi models: $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) h_{i j} \sigma^{i} \sigma^{j}$, where $\sigma^{i}, i, j=1,2,3$, are left invariant forms on a 3-dimensiona Lie group G, and (h) is a symmetric positive definite matrix. Here the Universe manifold is $M=\mathbb{R} \times G$, and the time variable t is along the \mathbb{R} factor. For each Bianchi type of G, decide which metric should play the role of $g_{\text {Einst }}$. In other words: find a preferred basis of the left invariant forms on G, so that the counterpart of $g_{\text {Einst }}$ is $g_{E}=-\Omega^{-2}(t) d t^{2}+\left(\sigma^{1}\right)^{2}+\left(\sigma^{2}\right)^{2}+\left(\sigma^{3}\right)^{2}$; and then play the game with $\check{g}=\Omega^{2} g_{E}$ and $\hat{g}=\Omega^{-2} g_{E}$, similar to this I was describing in this talk. My game was Bianchi IX, i.e. I took $G=S U(Z)=\sim^{2}$.
- More generally, take as g_{E} the metric $g_{E}=-\Omega^{-2}(t) \mathrm{d} t^{2}+g_{S}$, where $M=R \times S$, and $\left(S, g_{s}\right)$ is a 3D Riemannian manifold (possibly satisiying some interesting equations, or as in the previous case symmetry conditions). Again play the game with polytropic perfect fluids for $\check{g}=\Omega^{2} g_{E}$ and $\hat{g}=\Omega^{-2} g_{E}$
- Consider (special) Bianchi models: $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) h_{i j} \sigma^{i} \sigma^{j}$, where $\sigma^{\prime}, i, j=1.2 .3$, are left invariant forms on a 3 -dimensional Lie group G, and $\left(h_{i j}\right)$ is a symmetric positive definite matrix. Here the Universe manifold is $M=\mathbb{R} \times G$, and the time variable t is along the \mathbb{R} factor. For each Bianchi type of G, decide which metric should play the role of GEnst. In other words: find a preferred basis σ^{i} of the left invariant forms on G, so that the counterpart of $g_{\text {Einst }}$ is $g_{E}=-\Omega^{-2}(t) \mathrm{d} t^{2}+\left(\sigma^{1}\right)^{2}+\left(\sigma^{2}\right)^{2}+\left(\sigma^{3}\right)^{2}$; and then play the game with $\check{g}=\Omega^{2} g_{E}$ and $\hat{g}=\Omega^{-2} g_{E}$, similar to this I was describing in this talk. My game was Bianchi IX, i.e. I took $G=S U(2)$
- More generally, take as g_{E} the metric $g_{E}=-\Omega^{-2}(t) \mathrm{d} t^{2}+g_{S}$, where $M=R \times S$, and $\left(S, g_{s}\right)$ is a 3D Riemannian manifold (possibily satisiying some interesting equations, or as in the previous case symmetry conditions). Again play the game with polytropic perfect fluids for $\check{g}=\Omega^{2} g_{E}$ and $\hat{g}=\Omega^{-2} g_{E}$
- Consider (special) Bianchi models: $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) h_{i j} \sigma^{i} \sigma^{j}$, where $\sigma^{i}, i, j=1,2,3$, are left invariant forms on a 3-dimensional Lie group G, and
is a symmetric positive definite matrix. Here the Universe manifold is $M=\mathbb{R} \times G$, and the time variable t is along the \mathbb{R} factor. For each Bianchi type of G, decide which metric should play the role of $g_{\text {Einst }}$. In other words: find a preferred basis σ^{i} of the left invariant forms on G, so that the counterpart of and then play the game with $\check{g}=\Omega^{2} g_{E}$ and $\hat{g}=\Omega^{-2} g_{E}$, similar to this I was describing in this talk. My game was Bianchi IX, i.e. I took $G=S U(2)$
- More generally, take as g_{E} the metric g_{E} where $M=R \times S$, and $\left(S, g_{s}\right)$ is a 3D Riemannian manifold (possibly satisfying some interesting equations, or as in the previous case symmetry conditions). Again play the game with polytropic perfect fluids for $\check{g}=\Omega^{2} g_{E}$ and $\hat{g}=\Omega^{-2} g_{E}$
- Consider (special) Bianchi models: $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) h_{i j} \sigma^{i} \sigma^{j}$, where $\sigma^{i}, i, j=1,2,3$, are left invariant forms on a 3 -dimensional Lie group G, and $\left(h_{i j}\right)$ is a symmetric positive definite matrix. Here the Universe manifold is $M=\mathbb{R} \times G$, and the time variable t is along the \mathbb{R} factor. For each Bianchi type of G, decide which metric should play the role of $g_{\text {Einst }}$. In other words: find a preferred basis σ^{i} of the left invariant forms on G, so that the counterpart of and then play the game with $\check{g}=\Omega^{2} g_{E}$ and $\hat{g}=\Omega^{-2} g_{E}$, similar to this I was describing in this talk. My game was Bianchi IX, i.e. I took $G=S U(2)$
- More generally, take as g_{E} the metric g_{E} where $M=R \times S$, and $\left(S, g_{s}\right)$ is a 3D Riemannian manifold (possibly satisfying some interesting equations, or as in the previous case symmetry condittions). Again play the game with polytropic perfect fluids for ǧ
- Consider (special) Bianchi models: $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) h_{i j} \sigma^{i} \sigma^{j}$, where $\sigma^{i}, i, j=1,2,3$, are left invariant forms on a 3 -dimensional Lie group G, and $\left(h_{i j}\right)$ is a symmetric positive definite matrix. Here the Universe manifold is $M=\mathbb{R} \times G$, and the time variable t is along the \mathbb{R} factor. For each Bianchi type of G, decide which metric should play the role of $g_{\text {Einst }}$. In other words: find a preferred basis σ^{i} of the left invariant forms on G, so that the counterpart of and then play the game with $g=\Omega^{2} g E^{2}$ and $\hat{g}=\Omega^{2} g$ ge, similar to this I was describing in this talk. My game was Bianchi IX, i.e. I took $G=S U(2)$
- More generally take as g_{E} the metric S^{2} where $M=R \times S$, and $\left(S, g_{s}\right)$ is a 3D Riemannian manifold (possibly satisfying some interesting equations, or as in the previous case symmetry conditions). Again play the game with polyitopic periect fiuid's for 9
- Consider (special) Bianchi models: $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) h_{i j} \sigma^{i} \sigma^{j}$, where $\sigma^{i}, i, j=1,2,3$, are left invariant forms on a 3 -dimensional Lie group G, and $\left(h_{i j}\right)$ is a symmetric positive definite matrix. Here the Universe manifold is $M=\mathbb{R} \times G$, and the time variable t is along the \mathbb{R} factor. For each Bianchi type of G, decide which
metric should play the role of $g_{\text {Einst }}$. In other words: find a preferred basis σ^{i} of the left invariant forms on G, so that the counterpart of and then play the game with $g=\Omega^{2} g E$ and $g=\Omega^{-2} g_{E}$, similar to this I was describing in this talk. My game was Bianchi IX, i.e. I took G
- More generally, take as g_{E} the metric g where $M=R \times S$, and $\left(S, g_{s}\right)$ is a 3D Rie mannian manifold (possibly satisfying some interesting equations, or as in the previous case symmetry conditions). Again play the game with polytropic perfect fluids for 9
- Consider (special) Bianchi models: $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) h_{i j} \sigma^{i} \sigma^{j}$, where $\sigma^{i}, i, j=1,2,3$, are left invariant forms on a 3 -dimensional Lie group G, and $\left(h_{i j}\right)$ is a symmetric positive definite matrix. Here the Universe manifold is $M=\mathbb{R} \times G$, and the time variable t is along the \mathbb{R} factor. For each Bianchi type of G, decide which metric should play the role of $g_{\text {Einst }}$.
preferred basis
of the left invariant forms on G, so that the
counterpart of
and then play the game with $\check{g}=\Omega^{2} g_{E}$ and $\hat{g}=\Omega^{-2} g_{E}$, similar to
this I was describing in this talk. My game was Bianchi IX, i.e. I iook G
- More generally, take as where $M=R \times S$, and $\left(S, g_{s}\right)$ is a 3D Riemannian manifold (possibly satisfying some interesting equations, or as in the previous case symmetry conditions). Again play the game with polytropic perfect fluids for \check{g}
and \hat{g}
- Consider (special) Bianchi models: $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) h_{i j} \sigma^{i} \sigma^{j}$, where $\sigma^{i}, i, j=1,2,3$, are left invariant forms on a 3-dimensional Lie group G, and $\left(h_{i j}\right)$ is a symmetric positive definite matrix. Here the Universe manifold is $M=\mathbb{R} \times G$, and the time variable t is along the \mathbb{R} factor. For each Bianchi type of G, decide which metric should play the role of $g_{\text {Einst }}$. In other words: find a preferred basis σ^{i} of the left invariant forms on G , so that the counterpart of $g_{\text {Einst }}$ is $g_{E}=-\Omega^{-2}(t) \mathrm{d} t^{2}+\left(\sigma^{1}\right)^{2}+\left(\sigma^{2}\right)^{2}+\left(\sigma^{3}\right)^{2}$;

- Consider (special) Bianchi models: $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) h_{i j} \sigma^{i} \sigma^{j}$, where $\sigma^{i}, i, j=1,2,3$, are left invariant forms on a 3-dimensional Lie group G, and $\left(h_{i j}\right)$ is a symmetric positive definite matrix. Here the Universe manifold is $M=\mathbb{R} \times G$, and the time variable t is along the \mathbb{R} factor. For each Bianchi type of G, decide which metric should play the role of $g_{\text {Einst }}$. In other words: find a preferred basis σ^{i} of the left invariant forms on G, so that the counterpart of $g_{\text {Einst }}$ is $g_{E}=-\Omega^{-2}(t) \mathrm{d} t^{2}+\left(\sigma^{1}\right)^{2}+\left(\sigma^{2}\right)^{2}+\left(\sigma^{3}\right)^{2}$; and then play the game with $\check{g}=\Omega^{2} g_{E}$ and $\hat{g}=\Omega^{-2} g_{E}$, similar to this I was describing in this talk.
- More generally, take as g_{E} the metric where $M=R \times S$, and $\left(S, g_{S}\right)$ is a 3D Riemannian manifold
(possibly satisfying some interesting equations, or as in the previous case symmetry conditions). Again play the game with polytropic perfect fluids for $̧$
and
- Consider (special) Bianchi models: $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) h_{i j} \sigma^{i} \sigma^{j}$, where $\sigma^{i}, i, j=1,2,3$, are left invariant forms on a 3-dimensional Lie group G, and $\left(h_{i j}\right)$ is a symmetric positive definite matrix. Here the Universe manifold is $M=\mathbb{R} \times G$, and the time variable t is along the \mathbb{R} factor. For each Bianchi type of G, decide which metric should play the role of $g_{\text {Einst }}$. In other words: find a preferred basis σ^{i} of the left invariant forms on G , so that the counterpart of $g_{\text {Einst }}$ is $g_{E}=-\Omega^{-2}(t) \mathrm{d} t^{2}+\left(\sigma^{1}\right)^{2}+\left(\sigma^{2}\right)^{2}+\left(\sigma^{3}\right)^{2}$; and then play the game with $\check{g}=\Omega^{2} g_{E}$ and $\hat{g}=\Omega^{-2} g_{E}$, similar to this I was describing in this talk. My game was Bianchi IX,
- More generally, take as g_{E} the metric where $M=R \times S$, and $\left(S, g_{S}\right)$ is a 3D Riemannian manifold
(possibly satisfying some interesting equations, or as in the previous case symmetry conditions). Again play the game with polytropic perfect fluids for and
- Consider (special) Bianchi models: $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) h_{i j} \sigma^{i} \sigma^{j}$, where $\sigma^{i}, i, j=1,2,3$, are left invariant forms on a 3-dimensional Lie group G, and $\left(h_{i j}\right)$ is a symmetric positive definite matrix. Here the Universe manifold is $M=\mathbb{R} \times G$, and the time variable t is along the \mathbb{R} factor. For each Bianchi type of G, decide which metric should play the role of $g_{\text {Einst }}$. In other words: find a preferred basis σ^{i} of the left invariant forms on \mathbf{G}, so that the counterpart of $g_{\text {Einst }}$ is $g_{E}=-\Omega^{-2}(t) \mathrm{d} t^{2}+\left(\sigma^{1}\right)^{2}+\left(\sigma^{2}\right)^{2}+\left(\sigma^{3}\right)^{2}$; and then play the game with $\check{g}=\Omega^{2} g_{E}$ and $\hat{g}=\Omega^{-2} g_{E}$, similar to this I was describing in this talk. My game was Bianchi IX, i.e. I took $G=S U(2)=\mathbb{S}^{3}$.
- More generally, take as the metric where $M=R \times S$, and is a 3D Riemannian manifold
(possibly satisfying some interesting equations, or as in the previous case symmetry conditions). Again play the game with polytropic perfect fluids for and
- Consider (special) Bianchi models: $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) h_{i j} \sigma^{i} \sigma^{j}$, where $\sigma^{i}, i, j=1,2,3$, are left invariant forms on a 3-dimensional Lie group G, and $\left(h_{i j}\right)$ is a symmetric positive definite matrix. Here the Universe manifold is $M=\mathbb{R} \times G$, and the time variable t is along the \mathbb{R} factor. For each Bianchi type of G, decide which metric should play the role of $g_{\text {Einst }}$. In other words: find a preferred basis σ^{i} of the left invariant forms on G , so that the counterpart of $g_{\text {Einst }}$ is $g_{E}=-\Omega^{-2}(t) \mathrm{d} t^{2}+\left(\sigma^{1}\right)^{2}+\left(\sigma^{2}\right)^{2}+\left(\sigma^{3}\right)^{2}$; and then play the game with $\check{g}=\Omega^{2} g_{E}$ and $\hat{g}=\Omega^{-2} g_{E}$, similar to this I was describing in this talk. My game was Bianchi IX, i.e. I took $G=S U(2)=\mathbb{S}^{3}$.
- More generally, take as g_{E} the metric $g_{E}=-\Omega^{-2}(t) \mathrm{d} t^{2}+g_{S}$, where
(possibly satisfying some interesting equations, or as in the previous case symmetry conditions). Again play the game with polytropic perfect fluids for
- Consider (special) Bianchi models: $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) h_{i j} \sigma^{i} \sigma^{j}$, where $\sigma^{i}, i, j=1,2,3$, are left invariant forms on a 3-dimensional Lie group G, and $\left(h_{i j}\right)$ is a symmetric positive definite matrix. Here the Universe manifold is $M=\mathbb{R} \times G$, and the time variable t is along the \mathbb{R} factor. For each Bianchi type of G, decide which metric should play the role of $g_{\text {Einst }}$. In other words: find a preferred basis σ^{i} of the left invariant forms on G , so that the counterpart of $g_{\text {Einst }}$ is $g_{E}=-\Omega^{-2}(t) \mathrm{d} t^{2}+\left(\sigma^{1}\right)^{2}+\left(\sigma^{2}\right)^{2}+\left(\sigma^{3}\right)^{2}$; and then play the game with $\check{g}=\Omega^{2} g_{E}$ and $\hat{g}=\Omega^{-2} g_{E}$, similar to this I was describing in this talk. My game was Bianchi IX, i.e. I took $G=S U(2)=\mathbb{S}^{3}$.
- More generally, take as g_{E} the metric $g_{E}=-\Omega^{-2}(t) \mathrm{d} t^{2}+g_{S}$, where $M=R \times S$, and
(possibly satisfying some interesting equations, or as in the previous case symmetry conditions). Again play the game with polytropic perfect fluids for
- Consider (special) Bianchi models: $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) h_{i j} \sigma^{i} \sigma^{j}$, where $\sigma^{i}, i, j=1,2,3$, are left invariant forms on a 3-dimensional Lie group G, and $\left(h_{i j}\right)$ is a symmetric positive definite matrix. Here the Universe manifold is $M=\mathbb{R} \times G$, and the time variable t is along the \mathbb{R} factor. For each Bianchi type of G, decide which metric should play the role of $g_{\text {Einst }}$. In other words: find a preferred basis σ^{i} of the left invariant forms on G , so that the counterpart of $g_{\text {Einst }}$ is $g_{E}=-\Omega^{-2}(t) \mathrm{d} t^{2}+\left(\sigma^{1}\right)^{2}+\left(\sigma^{2}\right)^{2}+\left(\sigma^{3}\right)^{2}$; and then play the game with $\check{g}=\Omega^{2} g_{E}$ and $\hat{g}=\Omega^{-2} g_{E}$, similar to this I was describing in this talk. My game was Bianchi IX, i.e. I took $G=S U(2)=\mathbb{S}^{3}$.
- More generally, take as g_{E} the metric $g_{E}=-\Omega^{-2}(t) \mathrm{d} t^{2}+g_{S}$, where $M=R \times S$, and $\left(S, g_{s}\right)$ is a 3D Riemannian manifold
- Consider (special) Bianchi models: $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) h_{i j} \sigma^{i} \sigma^{j}$, where $\sigma^{i}, i, j=1,2,3$, are left invariant forms on a 3-dimensional Lie group G, and $\left(h_{i j}\right)$ is a symmetric positive definite matrix. Here the Universe manifold is $M=\mathbb{R} \times G$, and the time variable t is along the \mathbb{R} factor. For each Bianchi type of G, decide which metric should play the role of $g_{\text {Einst }}$. In other words: find a preferred basis σ^{i} of the left invariant forms on G, so that the counterpart of $g_{\text {Einst }}$ is $g_{E}=-\Omega^{-2}(t) \mathrm{d} t^{2}+\left(\sigma^{1}\right)^{2}+\left(\sigma^{2}\right)^{2}+\left(\sigma^{3}\right)^{2}$; and then play the game with $\check{g}=\Omega^{2} g_{E}$ and $\hat{g}=\Omega^{-2} g_{E}$, similar to this I was describing in this talk. My game was Bianchi IX, i.e. I took $G=S U(2)=\mathbb{S}^{3}$.
- More generally, take as g_{E} the metric $g_{E}=-\Omega^{-2}(t) \mathrm{d} t^{2}+g_{S}$, where $M=R \times S$, and $\left(S, g_{s}\right)$ is a 3D Riemannian manifold (possibly satisfying some interesting equations, or as in the previous case symmetry conditions).
- Consider (special) Bianchi models: $\check{g}=-\mathrm{d} t^{2}+\Omega^{2}(t) h_{i j} \sigma^{i} \sigma^{j}$, where $\sigma^{i}, i, j=1,2,3$, are left invariant forms on a 3-dimensional Lie group G, and $\left(h_{i j}\right)$ is a symmetric positive definite matrix. Here the Universe manifold is $M=\mathbb{R} \times G$, and the time variable t is along the \mathbb{R} factor. For each Bianchi type of G, decide which metric should play the role of $g_{\text {Einst }}$. In other words: find a preferred basis σ^{i} of the left invariant forms on G, so that the counterpart of $g_{\text {Einst }}$ is $g_{E}=-\Omega^{-2}(t) \mathrm{d} t^{2}+\left(\sigma^{1}\right)^{2}+\left(\sigma^{2}\right)^{2}+\left(\sigma^{3}\right)^{2}$; and then play the game with $\check{g}=\Omega^{2} g_{E}$ and $\hat{g}=\Omega^{-2} g_{E}$, similar to this I was describing in this talk. My game was Bianchi IX, i.e. I took $G=S U(2)=\mathbb{S}^{3}$.
- More generally, take as g_{E} the metric $g_{E}=-\Omega^{-2}(t) \mathrm{d} t^{2}+g_{S}$, where $M=R \times S$, and $\left(S, g_{s}\right)$ is a 3D Riemannian manifold (possibly satisfying some interesting equations, or as in the previous case symmetry conditions). Again play the game with polytropic perfect fluids for $\check{g}=\Omega^{2} g_{E}$ and $\hat{g}=\Omega^{-2} g_{E}$

Literature

- H. W. Brinkman (1925), 'Einstein spaces which are mapped conformally on each other', Math. Ann. 94, 119-145
- P. Tod (2015), 'The equations of Conformal Cyclic Cosmology', Gen. Rel. Grav. 47,https://doi.org/10.1007/s10714-015-1859-7
- D Tod (2018), 'Conformal mothods in General Relativity writh application to Conformal Cyclic Cosmology: A minicourse at IX International Meeting on Lorentz Geometry held in Warsaw' (ask Paul Tod for a copy)
- K. Meissner, P. Nurowski (2017), 'Conformal transformations and the beginning of the Universe', Phys. Rev. D 95, Issue 8, 84016, 1-5.
- H. W. Brinkman (1925), 'Einstein spaces which are mapped conformally on each other', Math. Ann. 94, 119-145
- P. Tod (2015), 'The equations of Conformal Cyclic Cosmology’, Gen. Rel. Grav. 47,https://doi.org/10.1007/s10714-015-1859-7
- P. Tod (2018), 'Conformal methods in General Relativity with application to Conformal Cyclic Cosmology: A minicourse at IX International Meeting on Lorentz Geometry held in Warsaw' (ask Paul Tod for a copy)
- K. Meissner, P. Nurowski (2017), 'Conformal transformations and the beginning of the Universe', Phys. Rev. D 95, Issue 8, 84016, 1-5.
- H. W. Brinkman (1925), 'Einstein spaces which are mapped conformally on each other', Math. Ann. 94, 119-145
- P. Tod (2015), 'The equations of Conformal Cyclic Cosmology', Gen. Rel. Grav. 47,https://doi.org/10.1007/s10714-015-1859-7
- P. Tod (2018), 'Conformal methods in General Relativity with application to Conformal Cyclic Cosmology: A minicourse at IX International Meeting on Lorentz Geometry held in Warsaw' (ask Paul Tod for a copy)
- K. Meissner, P. Nurowski (2017), 'Conformal transformations and the beginning of the Universe', Phys. Rev. D 95, Issue 8, 84016, 1-5.
- H. W. Brinkman (1925), 'Einstein spaces which are mapped conformally on each other', Math. Ann. 94, 119-145
- P. Tod (2015), 'The equations of Conformal Cyclic Cosmology', Gen. Rel. Grav. 47,https://doi.org/10.1007/s10714-015-1859-7
- P. Tod (2018), 'Conformal methods in General Relativity with application to Conformal Cyclic Cosmology: A minicourse at IX International Meeting on Lorentz Geometry held in Warsaw'
- K. Meissner, P. Nurowski (2017), 'Conformal transformations and the beginning of the Universe', Phys. Rev. D 95, Issue 8, 84016, 1-5.
- H. W. Brinkman (1925), 'Einstein spaces which are mapped conformally on each other', Math. Ann. 94, 119-145
- P. Tod (2015), 'The equations of Conformal Cyclic Cosmology', Gen. Rel. Grav. 47,https://doi.org/10.1007/s10714-015-1859-7
- P. Tod (2018), 'Conformal methods in General Relativity with application to Conformal Cyclic Cosmology: A minicourse at IX International Meeting on Lorentz Geometry held in Warsaw' (ask Paul Tod for a copy)
- K. Meissner, P. Nurowski (2017), 'Conformal transformations and the beginning of the Universe', Phys. Rev. D 95, Issue 8, 84016, 1-5.
- H. W. Brinkman (1925), 'Einstein spaces which are mapped conformally on each other', Math. Ann. 94, 119-145
- P. Tod (2015), 'The equations of Conformal Cyclic Cosmology', Gen. Rel. Grav. 47,https://doi.org/10.1007/s10714-015-1859-7
- P. Tod (2018), 'Conformal methods in General Relativity with application to Conformal Cyclic Cosmology: A minicourse at IX International Meeting on Lorentz Geometry held in Warsaw' (ask Paul Tod for a copy)
- K. Meissner, P. Nurowski (2017), 'Conformal transformations and the beginning of the Universe', Phys. Rev. D 95, Issue 8, 84016, 1-5.

THANK YOU!

[^0]: ${ }^{1}$ See: P. Tod (2015), 'The equations of Conformal Cyclic Cosmology', Gen. Rel. Grav. 47,https://doi.org/10.1007/s10714-015-1859-7, for details.

