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@ A conformal transformation: g — g = ng results in the following
transformation of the respective Ricci tensors:
R. = Q®R,, +2QV,Q, + g, (Q0Q —3g(VQ, VQ))

@ Contracting we get the following transformation of the Ricci
scalars: .

R = Q2R+ 6Q0Q — 12g9(VQ, VQ).

@ Interpreting g as the physical metric of spacetime, whose
conformal compactified metric g has .# where Q2 — 0, we see
that the causal properties of .7 are governed by the formula:

R=-129(VQ,VQ).

@ Recall that the signature is (—, +, +, +), so .7 is spacelike if
VQ is timelike, i.e. if the Ricci scalar 7 of the physical metric is
positive, 7 > 0.
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Conformal transformations of spacetimes and Ricci

@ Using the Einstein equatlons satisfied by the metric g,
RM,, - ng, 4= /\gﬂ,, = T#,,
or
R,“, = T,”, +(A- T)g/“,,
one can express this also in terms of the cosmological constant
A of the physical spacetime and the trace of its energy
momentum tensor 7: .
—T>0.
@ This, in particular means that if close to .7 the trace of the
energy momentum 7 vanishes, a positive cosmological
constant A makes .7 spacelike.
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A General Relativity model of such Universe is due to
Einstein (1917):
M =R x S3, and gginst = —dt? + Q2ges,
with g.: is the standard metric on S° of radius 1, and
Q2 = const. This is the Einstein’s static Universe model.

The Ricci tensor for this spacetime is Ricci = %ggg .This
satisfies Einstein’s equations
Ricci — 5Rg + Ag = pu ® u,
with v = —df, and A = # = é
Thus it is a solution to Einstein’s field equations for

homogeneous dust with cosmological constant.

In particular the Ricci scalar R = % is positive. This
means that Einstein’s model has spacelike .~ .
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@ Universe spacetime: S — M — R, with g = —d® + Q?(1)gs.

@ For example, there exists local coordinates (x, y, z) on S such

2 1,2 2
that g — (Hd;&;'% and > = —1,0, 1 corresponds to H°,
R3 and S°, respectively.

@ Special solutions:

o Q(f) = const and » = 1: Einstein’s static Universe;
homogeneous dust with positive A.

o Q(t) = acosh(L)and » = 1: deSitter Universe; vacuum
solution with A = ”% spacetime of constant curvature.

o Q(t) satisfies Q(Q'2 + ) = £ + LAQ®, with M = const > 0,
A = const; Friedman-Lemaitre Universe with A of
arbitrary sign, filled with dust of energy density ;1 — %
comoving with 4-velocity v = —dt. For the Ricci scalar
being positive one needs A > — /4.

@ Note that all FLRW metrics are conformally flat!
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The scheme of Penrose’s CCC is as follows:!

'See: P. Tod (2015), ‘The equations of Conformal Cyclic Cosmology’,

Gen. Rel. Grav. 47 ,https://doi.org/10.1007/s10714-015-1859-7, for details.
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@ The Universe consists of eons, each being a time oriented
spacetime, whose conformal compactifications have
spacelike .#. The Weyl tensor of the metric on each .7 is zero.

@ Eons are ordered, and the conformal compactifications of
consecutive eons, say #i and #(i + 1), are glued together
along .7 of the eon #i/, and .7~ of the eon #(i + 1).

@ The vicinity of the matching surface (the wound) of eons #/
and #(/ + 1), this region Penrose calls bandaged region for the
two eons, is equipped with the following three metrics, which
are conformally flat at the wound:
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are conformally flat at the wound:

o a Lorentzian metric g which is regular everywhere,

o a Lorentzian metric g, which represents the physical metric
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conformally related.

@ How to make this relation specific is debatable, but
Penrose proposes that

g =9%g,and g = 2,9, with © — 0 on the wound.

@ The metric g in eon #(/ + 1) is a physical metric there.
Likewise, the metric g in eon #/ is a physical metric
there.

o Of course, the metric g in eon #(/ + 1), and the metric g in
eon #i, as physical spacetime metrics, should satisfy
Einstein’s equations in #(/ + 1) and #/, respectively.
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One needs a function 2, vanishing on some spacelike
hypersurface, such that if § = 0°¢g satisfies Einstein
equations with some physically reasonable energy
momentum tensor, then § — # g also satisfies Einstein
equations with possibly different, but still physically
reasonable energy momentum tensor.

Similar, but seems to me simpler, than a problem of
Brinkman, who in 1925 asked a question ‘when in a
conformal class of metrics can be two different
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Why not to start with conformally flat situation
(reasonable, because compatible with the cosmological
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Suspiscious points: w = —1,1/3 (cosmological constant -
radiation), since the scalar curvature A = 0, when w = 1/3;
and w = —1/3 (gas of strings), when Q2 -4 0 on .7.
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