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Null geodesics as conformal objects

Two spacetimes1 (M, g) and (M̂, ĝ) are conformally related iff

there exists a diffeomorphism φ : M → M̂ such that

g = e
2Υ · φ∗(ĝ), with Υ a differentiable function on M.

In the index notation:

the metric is ĝµν = e
−2Υgµν , the inverse metric is

ĝµν = e
2Υgµν , and the Levi-Civita connection coefficients

are related by Γ̂µνρ = Γµνρ − δµνΥρ − δµρΥν + gνρΥ
µ ,

where Υµ = Υ,µ and Υµ = gµνΥν .

In this way the geodesic equation for a curve xµ = xµ(t) is:

dẋµ

dt
+ Γµνρẋν ẋρ = λẋµ , or if we replace Γ by Γ̂, is:

dẋµ

dt
+ Γ̂µνρẋν ẋρ = (λ− 2Υρẋρ)ẋµ + g(ẋ , ẋ)Υµ.

This shows that a null, i.e. satisfying g(ẋ , ẋ) = 0, geodesic in

metric g is also a null geodesic in the metric ĝ.

1
Recall: spacetime is a 4-dimensional manifold M equipped with a metric g of Lorentzian signature (-,+,+,+)
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dẋµ

dt
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metric g is also a null geodesic in the metric ĝ.
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dẋµ

dt
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1
Recall: spacetime is a 4-dimensional manifold M equipped with a metric g of Lorentzian signature (-,+,+,+)

2/24



Null geodesics as conformal objects

Two spacetimes1 (M, g) and (M̂, ĝ) are conformally related iff
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ĝµν = e
2Υgµν , and the Levi-Civita connection coefficients

are related by Γ̂µνρ = Γµνρ − δµνΥρ − δµρΥν + gνρΥ
µ ,

where Υµ = Υ,µ and Υµ = gµνΥν .

In this way the geodesic equation for a curve xµ = xµ(t) is:

dẋµ
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−2Υgµν , the inverse metric is
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dẋµ

dt
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+ Γ̂µνρẋν ẋρ = (λ− 2Υρẋρ)ẋµ + g(ẋ , ẋ)Υµ.
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there exists a diffeomorphism φ : M → M̂ such that

g = e
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there exists a diffeomorphism φ : M → M̂ such that

g = e
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2Υ · φ∗(ĝ), with Υ a differentiable function on M.

In the index notation:

the metric is ĝµν = e
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ĝµν = e
2Υgµν , and the Levi-Civita connection coefficients

are related by Γ̂µνρ = Γµνρ − δµνΥρ − δµρΥν + gνρΥ
µ ,

where Υµ = Υ,µ and Υµ = gµνΥν .

In this way the geodesic equation for a curve xµ = xµ(t) is:

dẋµ
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+ Γµνρẋν ẋρ = λẋµ , or if we replace Γ by Γ̂, is:

dẋµ
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Conformal compactification

The conformal compactifications of spacetimes were

introduced by Roger Penrose in the process of making

mathematically correct theory of gravitational radiation.

It was motivated by Trautman-Bondi way of associating

energy to gravitational waves. In the Einstein’s theory

gravitational field is described in terms of the Riemann

tensor, Riemann, which decomposes on its trace, Ricci ,

known as the Ricci tensor, and its totally traceless part,

Weyl , known as the Weyl tensor. Schematically

Riemann = Weyl + Ricci . It is Ricci which is totally

determined by the Einstein’s equations, schematically

Ricci = T . The rest of the curvature, namely the Weyl

tensor, is totally undetermined by the energy momentum

tensor T ; one may think about Weyl as the free

gravitational part of the curvature. It is remarkable that

this ‘free part of the curvature’ is conformally invariant.
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Need for null infinity

To define an amount of

energy radiated, one may

try to associate energy m1

to a spacelike hypersurface

S1, and then energy m2 to a

later spacelike hypersurface

S2. Simply integrate some

expression of mass density

over S1 and then S2.

The difference m1 − m2 could be then the

amount of energy radiated. But S2 as going

to infinity intercepts all the waves emitted

from S1; Therefore m2 = m1.

It is why one should associate ‘mass’ to

null or asymptotically null hypersurfaces

N1 and N2. The difference of these masses

would be the energy carried by waves. For

waves, what is important, is this what they

carry along null geodesics to infinity, to

the place in spacetime where null

geodesics end.

Penrose’s idea then, is to introduce

boundary to spavetime M, whose points

constitute future and pasr end-points to

each null geodesic in M. It follws that only

conformal properties matter here.
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Conformal compactification

Definition

We say that a 4-dimensional Lorentzian manifold (M̂, ĝ) with

boundary ∂M̂ is a conformal compactification of a

spacetime (M, g) iff there exists a diffeomorphism

φ : M → IntM̂

and a function Ω on M̂, such that (i) ĝ = Ω2φ∗(g), and (ii) Ω = 0

on ∂M̂, and (iii) dΩ 6= 0 at ∂M̂.

6/24



Conformal compactification

Definition

We say that a 4-dimensional Lorentzian manifold (M̂, ĝ) with
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boundary ∂M̂ is a conformal compactification of a

spacetime (M, g) iff there exists a diffeomorphism

φ : M → IntM̂

and a function Ω on M̂, such that (i) ĝ = Ω2φ∗(g), and (ii) Ω = 0
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2-dimensional Minkowski space

In M = R
2 with the Minkowski metric g = dt2 − dx2,

change coordinates to ũ = (t − x)/
√

2 and ṽ = (t + x)/
√

2.

This parametrizes M by −∞ < ũ, ṽ < +∞, and the

Minkwski metric is g = 2dũdṽ .

Change coordinates in M from (ũ, ṽ) to (u, v) such that

ũ = tg u and ṽ = tg v . This transforms the entire M = R
2,

in a one-to-one fashion, onto the interior of a diamond

IntM̂ = {(u, v) ∈ R
2 : −π/2 < u, v < π/2}.
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Parts of a boundary

The compactified 2D Minkowski space

M̂ = {(u, v) : −π

2
≤ u, v ≤ π

2
} has a boundary ∂M̂

with the following components:

I + = {(u, v) : u = π

2
,−π

2
< v < π

2
} or

I + = {(u, v) : −π

2
< u < π

2
, v = π

2
, }- null

infinity in the future;

I − = {(u, v) : u = −π

2
,−π

2
< v < π

2
} or

I − = {(u, v) : −π

2
< u < π

2
, v = −π

2
, }- null

infinity in the past;
i0 = {(u, v) : u = π

2
, v = −π

2
} or

i0 = {(u, v) : u = −π

2
, v = π

2
, }- spacelike

infinity;

i− = {(u, v) : u = −π

2
, v = −π

2
} or

i+ = {(u, v) : u = π

2
, v = π

2
, }- timelike

infinity in the past or in the future.

In particular i0 is a point in

which every spacelike

hypersurfcae ends,

similarly i− is a point where

every initially timelike

curve starts, and i+ is a

point where every finally

timelike curve ends.
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4-dimensional Minkowski space

We start with Minkowski spacetime (M, g) with

g = dt2 − dr2 − r2(dθ2 + sin2 θdχ2) = dt2 − dr2 − r2
ds2, where

ds2 is the standard metric on a round sphere S
2 of radius 1.

Here −∞ < t < ∞, r ≥ 0, and (θ, φ) are the usual

latitude-longitude coordinates on S
2.

Now the change of coordinates t − r =
√

2 tg u,

t + r =
√

2 tg v brings the Minkowski metric to

Ω2 g = 2dudv − 1
2 sin2(v − u)ds2, where Ω = cosu cos v .

Now the range of coordinates (v , u) is −π/2 ≤ v , u ≤ π/2

and v − u ≥ 0, so that the resulting picture of the

conformally compactified Minkowski space with the regular

metric ĝ = 2dudv − 1
2 sin2(v − u)ds2 is as follows:
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Penrose diagram for 4d Minkowski

Note that both I ± are null hypersurfaces.

Note also that Minkowski spacetime is a solution of vacuum

Einstein equations with vanishing cosmological constant

Λ = 0.
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Penrose diagram for Schwarzschild

Note that scris are null hypersurfaces.

Note also that Schwarzschild spacetime is a solution of

vacuum Einstein equations with vanishing cosmological

constant Λ = 0.
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Penrose diagram for Schwarzschild black hole

Note that scri’s are null hypersurfaces.
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Penrose diagram for Kerr

Note that scri’s are null hypersurfaces.

Note also that Kerr spacetime is a solution of vacuum Einstein

equations with vanishing cosmological constant Λ = 0.
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Compactify deSitter space

The deSitter space as a global manifold can be identified

with a quadric Q in R
5 given by the equation

−T 2 + X 2 + Y 2 + Z 2 + W 2 = 1
H

2
= const.

It acquires a Lorentzian metric from the 5D Minkowski

metric g = −dT 2 + dX 2 + dY 2 + dZ 2 + dW 2 in R
5.

Parametrizing Q by T = sinhHt
H , X = coshHt

H sin r sin θ cosφ,

Y = coshHt
H sin r sin θ sinφ, Z = coshHt

H sin r cos θ,

W = coshHt
H cos r , one shows that the metric g on Q is

g = −dt2 +
(

coshHt
H

)2
(

dr2 + sin2 r(dθ2 + sin2 θdφ2)
)

.

Note that the spacial part is conformal to the standard

metric on a 3-sphere S
3.

Introduce new coordinate τ such that dτ = Hdt
coshHt , then
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Compactified deSitter space

g =
(

coshHt
H

)2(

− dτ2 +
(

dr2 + sin2 r(dθ2 + sin2 θdφ2)
)

)

=
(

coshHt
H

)2
ĝ,

where

ĝ = −dτ2 +
(

dr2 + sin2 r(dθ2 + sin2 θdφ2)
)

is the Minkowski metric.

Now, τ = 2 arc tg(tgh Ht
2 ), so since tgh Ht

2 → ±1 as

t → ±∞, then if t → ±∞ the new time variable τ → ±π.

Introducing Ω = H
coshHt , we see that Ω → 0 when τ → ±π.

We thus have a compactification of the deSitter spacetime

Q to Q̂ = [−π, π]× S
3, but now the boundary ∂Q̂

corresponding to τ = ±π is spacelike!
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Why scri of Minkowski is null and scri of deSitter is spacelike?

One can check that the conformally flat deSitter spacetime

satisfies vacuum Einstein’s equations with positive

cosmological constant Λ. Actually the deSitter metric

g = −dt2 +
(

coshHt
H

)2
(

dr2 + sin2 r(dθ2 + sin2 θdφ2)
)

satisfies

Ric(g) = 3H2g, so Λ = 3H2 > 0.

To formulate the answer to frame’s title question as a theorem

we have to make some assumptions (to guarantee existence of

scri):
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Assymptotic simplicity

Definition

A smooth spacetime M with metric g is asymptotically simple

if there is a smooth manifold M̂ with boundary I and a metric ĝ

and a smooth scalar function Ω such that

M = IntM̂,

ĝ = Ω2g,

Ω > 0 in M; Ω = 0 and dΩ 6= 0 on I ,

every null geodesic in M has a future and a past endpoint

on I .

The last condition is too strong to include spacetimes with

black holes. One releases it introducing a notion of a weakly

assymptotically simple spacetime (WAS). We will not

consider it here, but of course assymptotically simple

spacetime is WAS. We have
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ĝ = Ω2g,

Ω > 0 in M; Ω = 0 and dΩ 6= 0 on I ,

every null geodesic in M has a future and a past endpoint

on I .

The last condition is too strong to include spacetimes with

black holes. One releases it introducing a notion of a weakly

assymptotically simple spacetime (WAS). We will not

consider it here, but of course assymptotically simple

spacetime is WAS. We have

21/24



Assymptotic simplicity

Definition

A smooth spacetime M with metric g is asymptotically simple

if there is a smooth manifold M̂ with boundary I and a metric ĝ

and a smooth scalar function Ω such that

M = IntM̂,
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ĝ = Ω2g,

Ω > 0 in M; Ω = 0 and dΩ 6= 0 on I ,

every null geodesic in M has a future and a past endpoint

on I .

The last condition is too strong to include spacetimes with

black holes. One releases it introducing a notion of a weakly

assymptotically simple spacetime (WAS). We will not

consider it here, but of course assymptotically simple

spacetime is WAS. We have

21/24



Assymptotic simplicity

Theorem

The boundary I of a (weakly) assymptotically simple

spacetimesatisfying Einstein’s equations

Rµν − 1
2Rgµν + Λgµν = κTµν ,

with Tµ
µ = 0 in the vicinity of I , is

spacelike if Λ > 0,

null if Λ = 0,

and timelike if Λ < 0.
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Two words about the proof of the Theorem

Using the transformation for the Levi-Civita connection

coefficients for the metric ĝ and g of a WAS spacetime, one gets

the following relation between the Ricci scalars R̂ and R:

R = Ω2R̂ − 6Ω�̂Ω+ 12ĝµνΩµΩν ,

where �̂ is the D’Alambertian operator in the metric ĝ.

(Perhaps this formula has some sign errors, because I screwed

up the signature conventions; but I believe that it is right.)

On the other hand, using the Einstein’s equastions, we can

relate the Ricci sclar curvature R to the trace of the energy

momentum tensor T = Tµ
µ and the cosmological constant Λ.

This gives
R = 4Λ− κT .

Inserting this into the relation between R and R̂ above, and

taking into account that Ω vanishes at I , we see that on I we

have

4Λ− κT = 12ĝµνΩµΩν .

Since Ωµ = Ω,µ is the gradient of the function Ω, whose 0 defines

I , one immediately gets the conclusions of the Theorem.
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coefficients for the metric ĝ and g of a WAS spacetime, one gets

the following relation between the Ricci scalars R̂ and R:

R = Ω2R̂ − 6Ω�̂Ω+ 12ĝµνΩµΩν ,
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4Λ− κT = 12ĝµνΩµΩν .

Since Ωµ = Ω,µ is the gradient of the function Ω, whose 0 defines

I , one immediately gets the conclusions of the Theorem.
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