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@ This shows that a null, i.e. satisfying g(x, x) = 0, geodesic in
metric g is also a null geodesic in the metric g.
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The conformal compactifications of spacetimes were
introduced by Roger Penrose in the process of making
mathematically correct theory of gravitational radiation.

@ It was motivated by Trautman-Bondi way of associating

energy to gravitational waves. In the Einstein’s theory
gravitational field is described in terms of the Riemann
tensor, Riemann, which decomposes on its trace, Ricci,
known as the Ricci tensor, and its totally traceless part,
Weyl, known as the Weyl tensor. Schematically
Riemann = Weyl + Ricci. It is Ricci which is totally
determined by the Einstein’s equations, schematically
Ricci = T. The rest of the curvature, namely the Weyl
tensor, is totally undetermined by the energy momentum
tensor T; one may think about Wey!/ as the free
gravitational part of the curvature. It is remarkable that
this ‘free part of the curvature’ is conformally invariant.
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@ It is why one should associate ‘mass’ to
null or asymptotically null hypersurfaces
N; and N». The difference of these masses
E: would be the energy carried by waves. For
i e waves, what is important, is this what they
carry along null geodesics to infinity, to
@ To define an amount of the place in spacetime where null
energy radiated, one may geodesics end.
try to associate energy m
to a spacelike hypersurface
S1, and then energy m- to a
later spacelike hypersurface
S,. Simply integrate some
expression of mass density
o Over S; and then Ss.

@ Penrose’s idea then, is to introduce
boundary to spavetime M, whose points
constitute future and pasr end-points to
each null geodesic in /. It follws that only
conformal properties matter here.
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@ The compactified 2D Minkowski space -
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We start with Minkowski spacetime (M. g) with

g = dt? —dr? — r?(d6? + sin® fdx?) = dt? — dr? — r?ds?, where
ds? is the standard metric on a round sphere <° of radius 1.
Here —co < f < oo, r > 0,and (0, ¢) are the usual
latitude-longitude coordinates on S2.

@ Now the change of coordinates t — r = /2 tg u,
t 4+ r = /2tg v brings the Minkowski metric to
Q2% g =2dudv — % sin?(v — u)ds?, where Q = cos U cos v.

@ Now the range of coordinates (v, u)is —7/2 < v.u < 7/2
and v — u > 0, so that the resulting picture of the
conformally compactified Minkowski space with the regular
metric § = 2dudv — } sin?(v — u)ds? is as follows:



Penrose diagram for 4d Minkowski

13/24



Penrose diagram for 4d Minkowski

13/24



Penrose diagram for 4d Minkowski

Note that both .#* are null hypersurfaces.

13/24



Penrose diagram for 4d Minkowski

M-=0 < = r
|

Note that both .7 * are null hypersurfaces.

Note also that Minkowski spacetime is a solution of vacuum
Einstein equations with vanishing cosmological constant
A= 0.
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i e R L

Note that scris are null hypersurfaces.

Note also that Schwarzschild spacetime is a solution of
vacuum Einstein equations with vanishing cosmological
constant A = 0.
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Note that scri’s are null hypersurfaces.
Note also that Kerr spacetime is a solution of vacuum Einstein
equations with vanishing cosmological constant A = 0.
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Compactified deSitter space

2 2
g = (SHH)" (= dr® + (dr? + sin? r(d6? + sin? 6d0%)) ) = (<=pt )",
@ where
g = —dr2 + (dr? + sin? r(d6? + sin® 0d¢?))

is the Minkowski metric.
@ Now, 7 = 2arctg(tgh &), so since tgh & — +1 as

t — +o0, thenif t —+ -£oo the new time variable = — £.
@ Introducing © = ', we see that © — 0 when 7 — .

@ We thus have a compactification of the deSitter spacetime
Qto Q = [, 7] x S%, but now the boundary 9Q
corresponding to 7 = £ is spacelike!
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if there is a smooth manifold // with boundary .# and a metric g
and a smooth scalar function 2 such that

@ M = IntM,

° §=0%,

@ Q>0inM;Q=0andd2 #0on .7,

@ every null geodesic in M has a future and a past endpoint

on 7.

The last condition is too strong to include spacetimes with
black holes. One releases it introducing a notion of a weakly
assymptotically simple spacetime (WAS). We will not
consider it here, but of course assymptotically simple
spacetime is WAS. We have
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Theorem
The boundary .7 of a (weakly) assymptotically simple
spacetimesatisfying Einstein’s equations
R;w - %Rg;uz + /\gm/ =K 7_,U,l/a

with 7, = 0 in the vicinity of .7, is

@ spacelike if A > 0,

@ nullif A =0,

@ and timelike if A < 0.
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momentum tensor 7 = 7, and the cosmological constant A.
This gives

R=4A —kT.

@ Inserting this into the relation between R and A above, and
taking into account that ©2 vanishes at .7, we see that on .7 we
have

4N — kT =120""Q,Q,.
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taking into account that ©2 vanishes at .7, we see that on .7 we
have
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@ Since Q, = Q , is the gradient of the function €2, whose 0 defines
7, one immediately gets the conclusions of the Theorem.
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