Conformal transformations and the beginning of the Universe. Part II.

Pawel Nurowski
Centrum Fizyki Teoretycznej
Polska Akademia Nauk

GRIEG running seminar nr. 3, 15.12.2020

Null geodesics as conformal objects

- Two spacetimes ${ }^{1}(M, g)$ and ($\left.\hat{M}, \hat{g}\right)$ are conformally related iff there exists a diffeomorphism $\phi: M \rightarrow \hat{M}$ such that $g=\mathrm{e}^{2 \Upsilon} \cdot \phi^{*}(\hat{g})$, with Υ a differentiable function on M.
- In the index notation:
- the metric is $\hat{g}_{\mu \nu}=e^{-2 \gamma} g_{\mu \nu}$, the inverse metric is $\hat{g}^{\mu \nu}=\mathrm{e}^{2 \gamma} \mathrm{~g}^{\mu \mu \nu}$, and the Levi-Civita connection coefficients are related by $\Gamma \mu_{\nu \rho}=\Gamma \mu_{\nu \rho}-\delta_{\mu} \gamma_{\rho}-\delta_{\mu} \rho_{\nu}+g_{\nu \rho} \Upsilon^{\prime} \mu$, where $\Upsilon_{\mu}=\Upsilon_{, \mu}$ and $\Upsilon^{\mu}=g^{\mu \nu} \Upsilon_{\nu}$.
- In this way the geodesic equation for a curve $x /=x(t)$ is:

$\frac{\mathrm{d} \dot{x}^{\mu}}{\mathrm{dt}}+\Gamma^{\mu} \nu_{\rho} \dot{x}^{\prime} \dot{x}^{\rho}=\lambda \dot{x}^{\mu}$
$\frac{\mathrm{d} \dot{x}^{\mu}}{\mathrm{d} t}+\hat{\Gamma}^{\mu}{ }_{\nu \rho} \dot{x}^{\prime} \dot{x}^{\rho}=\left(\lambda-2 \Upsilon_{\rho} \dot{x}^{\rho}\right) \dot{x}^{\mu}+g(\dot{x}, \dot{x}) \Upsilon^{\mu}$.

- This shows that a null, i.e. satisfying $g(\dot{x}, \dot{x})=0$, geodesic in metric g is also a null geodesic in the metric \hat{g}.

[^0]
Null geodesics as conformal objects

- Two spacetimes (M.g) and (M.g) are conformally related iff
there exists a diffeomorphism $\phi: M \rightarrow \hat{M}$ such that $g=\mathrm{e}^{2 \Upsilon} \cdot \phi^{*}(\hat{g})$, with \uparrow a differentiable function on M.
- In the index notation:
- the metric is $\hat{g}_{u \nu}=e^{2 r} g_{\mu \nu}$, the inverse metric is

- In this way the geodesic equation for a curve $x^{\mu}=x^{\mu}(t)$ is:
\qquad ".....n \quad …

$$
\text { or if we replace - by } \hat{F} \text {, is: }
$$

- This shows that a null, i.e. satisfying $q^{\prime(\dot{x}, \dot{x})-0, \text { geodesic in }}$ metric g is also a null geodesic in the metric \hat{g}.

Null geodesics as conformal objects

- Two spacetimes ${ }^{1}$ (M.g) and (M.g) are conformally related iff there exists a diffeomorphism $\phi: M \rightarrow \hat{M}$ such that $g=\mathrm{e}^{2 \Upsilon} \cdot \phi^{*}(\hat{g})$, with Υ a differentiable function on M.
- In the index notation:
- the metric is $\hat{g}_{\mu \nu}=\mathrm{e}^{2 r} g_{\mu}$, the inverse metric is $\hat{g}^{\prime \mu}=\mathrm{e}^{26} g^{\prime \prime \mu}$, and the Levi-Civita connection coefficients are related by $\hat{\Gamma}^{\mu}{ }_{\nu \rho}=\Gamma^{\mu}{ }_{\nu \rho}-\delta^{\mu}{ }_{\nu} \Upsilon_{\rho}-\delta^{\mu}{ }_{\rho} \Upsilon_{\nu}+g_{\nu \rho} \Upsilon^{\mu}$,
- In this way the geodesic equation for a curve $x^{\mu}=x^{\mu}(t)$ is:
\qquad or if we replace Γ by \hat{F}, is:
- This shows that a null, i.e. satisfying $g(\dot{x}, \dot{x})=0$, geodesic in metric g is also a null geodesic in the metric \hat{g}.
${ }^{1}$ Recall: spacetime is a 4-dimensional manifold M equipped with a metric g of Lorentzian signature $(-,+,+,+) \equiv$

Null geodesics as conformal objects

- Two spacetimes ${ }^{1}(M, g)$ and (\hat{M}, \hat{g}) are conformally related there exists a diffeomorphism $g=\mathrm{e}^{2 \Upsilon} \cdot \phi^{*}(\hat{g})$, with Υ a differentiable function on M.
- In the index notation:
- the metric is $\hat{g}_{\mu \nu}=\mathrm{e}{ }^{2 r} g_{\mu \nu}$, the inverse metric is $\hat{g}^{\prime \mu}=\mathrm{e}^{29} g^{\prime \prime \prime}$, and the Levi-Civita connection coefficients are related by where $\Upsilon_{\mu}=\Upsilon_{, \mu}$ and
- In this way the geodesic equation for a curve $x^{\mu}=x^{\mu}(t)$ is:
- This shows that a null, i.e. satisfying $g(\dot{x}, \dot{x})=0$, geodesic in metric g is also a null geodesic in the metric \hat{g}.
${ }^{1}$ Recall: spacetime is a 4-dimensional manifold M equipped with a metric g of Lorentzian signature $(-,+,+,+) \equiv$

Null geodesics as conformal objects

- Two spacetimes ${ }^{1}(M, g)$ and (\hat{M}, \hat{g}) are conformally related iff there exists a diffeomorphism $\phi: M \rightarrow \hat{M}$ such that
- In the index notation:
- the metric is $\hat{g}_{\mu \nu}=\mathrm{e} \quad{ }^{2} g_{\mu \nu}$, the inverse metric is $g^{\prime \prime \prime}=\mathrm{e}^{2 r} g^{\prime \prime \prime}$, and the Levi-Civita connection coefficients are related by where $\Upsilon_{\mu}=\Upsilon_{, \mu}$ and
- In this way the geodesic equation for a curve $x^{\mu}=x^{\mu}(t)$ is: or if we replace \lceil by $\hat{\Gamma}$, is:
- This shows that a null, i.e. satisfying $g(\dot{x}, \dot{x})=0$, geodesic in metric g is also a null geodesic in the metric \hat{g}.
${ }^{1}$ Recall: spacetime is a 4-dimensional manifold M equipped with a metric g of Lorentzian signature $(-,+,+,+) \equiv$

Null geodesics as conformal objects

- Two spacetimes ${ }^{1}(M, g)$ and (\hat{M}, \hat{g}) are conformally related iff there exists a diffeomorphism $\phi: M \rightarrow \hat{M}$ such that $g=\mathrm{e}^{2 \Upsilon} \cdot \phi^{*}(\hat{g})$, a differentiable function on
- In the index notation:
- the metric is $\hat{g}_{\mu \nu}=\mathrm{e}^{-2 \gamma} g_{\mu \nu}$, the inverse metric is $\hat{g}^{\mu \nu}=\mathrm{e}^{2 \Upsilon} g^{\mu \nu \nu}$, and the Levi-Civita connection coefficients are related by where $\Upsilon_{\mu}=\Upsilon_{, \mu}$ and
- In this wav the geodesic equation for a curve $x^{\prime \prime}=x^{\prime \prime}(t)$ is: or if we replace \lceil by $\hat{\Gamma}$, is:
- This shows that a null, i.e. satisfying $g(\dot{x}, \dot{x})=0$, geodesic in metric g is also a null geodesic in the metric \hat{g}.

[^1]
Null geodesics as conformal objects

- Two spacetimes ${ }^{1}(M, g)$ and (\hat{M}, \hat{g}) are conformally related iff there exists a diffeomorphism $\phi: M \rightarrow \hat{M}$ such that $g=\mathrm{e}^{2 \Upsilon} \cdot \phi^{*}(\hat{g})$, with Υ a differentiable function on M.
- In the index notation:
- the metric is $\hat{g}_{\mu \nu}=\mathrm{e}^{-2 \gamma} g_{\mu \nu}$, the inverse metric is $\hat{g}^{\mu \nu}=\mathrm{e}^{2 \uparrow} g^{\mu \nu}$, and the Levi-Civita connection coeffic ents
are related by
where $\Upsilon_{\mu}=\Upsilon_{, \mu}$ and
- In this wav the geodesic equation for a curve $x=x(t)$ is: or if we replace \lceil by $\hat{\Gamma}$, is:
- This shows that a null, i.e. satisfying $g(\dot{x}, \dot{x})=0$, geodesic in metric g is also a null geodesic in the metric \hat{g}.

[^2]
Null geodesics as conformal objects

- Two spacetimes ${ }^{1}(M, g)$ and (\hat{M}, \hat{g}) are conformally related iff there exists a diffeomorphism $\phi: M \rightarrow \hat{M}$ such that $g=\mathrm{e}^{2 \Upsilon} \cdot \phi^{*}(\hat{g})$, with Υ a differentiable function on M.
- In the index notation:
- the metric is $\hat{g}_{\mu \nu}=\mathrm{e}^{-2 \gamma} g_{\mu \nu}$, the inverse metric is
$\hat{g}^{\mu \nu}=\mathrm{e}^{2 \gamma} \mathrm{~g}^{\mu \nu}$, and the Levi-Civita connection coefficients
are related by
where $\Upsilon_{\mu}=\Upsilon_{, \mu}$ and
- In this way the geodesic equation for a curve or if we replace Γ by $\hat{\Gamma}$, is:
\square metric g is also a null geodesic in the metric \hat{g}.

[^3]- Two spacetimes ${ }^{1}(M, g)$ and (\hat{M}, \hat{g}) are conformally related iff there exists a diffeomorphism $\phi: M \rightarrow \hat{M}$ such that $g=\mathrm{e}^{2 \Upsilon} \cdot \phi^{*}(\hat{g})$, with Υ a differentiable function on M.
- In the index notation:
- the metric is $\hat{g}_{\mu \nu}=\mathrm{e}^{-2 \Upsilon} g_{\mu \nu}$, the inverse metric is and the Levi-Civita connection coefficients
are related by
where $\Upsilon_{\mu}=\Upsilon_{, \mu}$ and
- In this way the geodesic equation for a curve
or if we replace Γ by $\hat{\Gamma}$, is:
- This shows that a null, i.e. satisfying $g(\dot{x}, \dot{x})=0$, geodesic in metric g is also a null geodesic in the metric \hat{g}.

[^4]- Two spacetimes ${ }^{1}(M, g)$ and (\hat{M}, \hat{g}) are conformally related iff there exists a diffeomorphism $\phi: M \rightarrow \hat{M}$ such that $g=\mathrm{e}^{2 \Upsilon} \cdot \phi^{*}(\hat{g})$, with Υ a differentiable function on M.
- In the index notation:
- the metric is $\hat{g}_{\mu \nu}=\mathrm{e}^{-2 \gamma} g_{\mu \nu}$, the inverse metric is $\hat{g}^{\mu \nu}=\mathrm{e}^{2 \Upsilon} g^{\mu \nu}$, and the Levi-Civita connection coefficients are related by where $\Upsilon_{\mu}=\Upsilon_{, \mu}$ and
- In this way the deodesic equation for a curve
or if we replace \ulcorner by $\hat{\Gamma}$, is:
- This shows that a null, i.e. satisfying $g(\dot{x}, \dot{x})=0$, geodesic in
metric g is also a null geodesic in the metric \hat{g}.

[^5]- Two spacetimes ${ }^{1}(M, g)$ and (\hat{M}, \hat{g}) are conformally related iff there exists a diffeomorphism $\phi: M \rightarrow \hat{M}$ such that $g=\mathrm{e}^{2 \Upsilon} \cdot \phi^{*}(\hat{g})$, with Υ a differentiable function on M.
- In the index notation:
- the metric is $\hat{g}_{\mu \nu}=\mathrm{e}^{-2 \Upsilon} g_{\mu \nu}$, the inverse metric is $\hat{g}^{\mu \nu}=\mathrm{e}^{2 \Upsilon} \mathrm{~g}^{\mu \nu}$, and the Levi-Civita connection coefficients are related by $\hat{\Gamma}^{\mu}{ }_{\nu \rho}=\Gamma^{\mu}{ }_{\nu \rho}-\delta^{\mu}{ }_{\nu} \Upsilon_{\rho}-\delta^{\mu}{ }_{\rho} \Upsilon_{\nu}+g_{\nu \rho} \Upsilon^{\mu}$, where
and
- In this way the geodesic equation for a curve
or if we replace r by \hat{r}, is:
- This shows that a null, i.e. satisfying $g(\dot{x}, \dot{x})=0$, geodesic in metric g is also a null geodesic in the metric \hat{g}

[^6]- Two spacetimes ${ }^{1}(M, g)$ and (\hat{M}, \hat{g}) are conformally related iff there exists a diffeomorphism $\phi: M \rightarrow \hat{M}$ such that $g=\mathrm{e}^{2 \Upsilon} \cdot \phi^{*}(\hat{g})$, with Υ a differentiable function on M.
- In the index notation:
- the metric is $\hat{g}_{\mu \nu}=\mathrm{e}^{-2 \Upsilon} g_{\mu \nu}$, the inverse metric is $\hat{g}^{\mu \nu}=\mathrm{e}^{2 \Upsilon} \mathrm{~g}^{\mu \nu}$, and the Levi-Civita connection coefficients are related by $\hat{\Gamma}^{\mu}{ }_{\nu \rho}=\Gamma^{\mu}{ }_{\nu \rho}-\delta^{\mu}{ }_{\nu} \Upsilon_{\rho}-\delta^{\mu}{ }_{\rho} \Upsilon_{\nu}+g_{\nu \rho} \Upsilon^{\mu}$, where $\Upsilon_{\mu}=\Upsilon_{, \mu}$ and $\Upsilon^{\mu}=g^{\mu \nu} \Upsilon_{\nu}$.
- In this way the geodesic equation for a curve
or if we replace Γ by $\hat{\Gamma}$, is:
- This shows that a null, i.e. satisfying $g(\dot{x}, \dot{x})=0$, geodesic in metric g is also a null geodesic in the metric \hat{g}

[^7]- Two spacetimes ${ }^{1}(M, g)$ and (\hat{M}, \hat{g}) are conformally related iff there exists a diffeomorphism $\phi: M \rightarrow \hat{M}$ such that $g=\mathrm{e}^{2 \Upsilon} \cdot \phi^{*}(\hat{g})$, with Υ a differentiable function on M.
- In the index notation:
- the metric is $\hat{g}_{\mu \nu}=\mathrm{e}^{-2 \Upsilon} g_{\mu \nu}$, the inverse metric is $\hat{g}^{\mu \nu}=\mathrm{e}^{2 \Upsilon} \mathrm{~g}^{\mu \nu}$, and the Levi-Civita connection coefficients are related by $\hat{\Gamma}^{\mu}{ }_{\nu \rho}=\Gamma^{\mu}{ }_{\nu \rho}-\delta^{\mu}{ }_{\nu} \Upsilon_{\rho}-\delta^{\mu}{ }_{\rho} \Upsilon_{\nu}+g_{\nu \rho} \Upsilon^{\mu}$, where $\Upsilon_{\mu}=\Upsilon_{, \mu}$ and $\Upsilon^{\mu}=g^{\mu \nu} \Upsilon_{\nu}$.
- In this way the geodesic equation for a curve $x^{\mu}=x^{\mu}(t)$ is:

$$
\frac{\mathrm{d} \dot{x}^{\mu}}{\mathrm{d} t}+\Gamma^{\mu}{ }_{\nu \rho} \dot{x}^{\nu} \dot{x}^{\rho}=\lambda \dot{x}^{\mu},
$$

$$
\text { or if we replace } \Gamma \text { by } \hat{\Gamma} \text {, is: }
$$

\square metric g is also a null geodesic in the metric

[^8]- Two spacetimes ${ }^{1}(M, g)$ and (\hat{M}, \hat{g}) are conformally related iff there exists a diffeomorphism $\phi: M \rightarrow \hat{M}$ such that $g=\mathrm{e}^{2 \Upsilon} \cdot \phi^{*}(\hat{g})$, with Υ a differentiable function on M.
- In the index notation:
- the metric is $\hat{g}_{\mu \nu}=\mathrm{e}^{-2 \Upsilon} g_{\mu \nu}$, the inverse metric is $\hat{g}^{\mu \nu}=\mathrm{e}^{2 \Upsilon} \mathrm{~g}^{\mu \nu}$, and the Levi-Civita connection coefficients are related by $\hat{\Gamma}^{\mu}{ }_{\nu \rho}=\Gamma^{\mu}{ }_{\nu \rho}-\delta^{\mu}{ }_{\nu} \Upsilon_{\rho}-\delta^{\mu}{ }_{\rho} \Upsilon_{\nu}+g_{\nu \rho} \Upsilon^{\mu}$, where $\Upsilon_{\mu}=\Upsilon_{, \mu}$ and $\Upsilon^{\mu}=g^{\mu \nu} \Upsilon_{\nu}$.
- In this way the geodesic equation for a curve $x^{\mu}=x^{\mu}(t)$ is:

$$
\frac{\frac{\mathrm{d} \dot{x}^{\mu}}{\mathrm{d} t}+\Gamma^{\mu}{ }_{\nu \rho} \dot{x}^{\nu} \dot{x}^{\rho}=\lambda \dot{x}^{\mu}}{} \text {, or if we replace } \Gamma \text { by } \hat{\Gamma} \text {, is: }
$$

- This shows that a null, i.e. satisfying $g(\dot{x}, \dot{x})=0$, geodesic in metric g is also a null geodesic in the metric \hat{g}.

[^9]- Two spacetimes ${ }^{1}(M, g)$ and (\hat{M}, \hat{g}) are conformally related iff there exists a diffeomorphism $\phi: M \rightarrow \hat{M}$ such that $g=\mathrm{e}^{2 \Upsilon} \cdot \phi^{*}(\hat{g})$, with Υ a differentiable function on M.
- In the index notation:
- the metric is $\hat{g}_{\mu \nu}=\mathrm{e}^{-2 \gamma} g_{\mu \nu}$, the inverse metric is $\hat{g}^{\mu \nu}=\mathrm{e}^{2 \Upsilon} \mathrm{~g}^{\mu \nu}$, and the Levi-Civita connection coefficients are related by $\hat{\Gamma}^{\mu}{ }_{\nu \rho}=\Gamma^{\mu}{ }_{\nu \rho}-\delta^{\mu}{ }_{\nu} \Upsilon_{\rho}-\delta^{\mu}{ }_{\rho} \Upsilon_{\nu}+g_{\nu \rho} \Upsilon^{\mu}$, where $\Upsilon_{\mu}=\Upsilon_{, \mu}$ and $\Upsilon^{\mu}=g^{\mu \nu} \Upsilon_{\nu}$.
- In this way the geodesic equation for a curve $x^{\mu}=x^{\mu}(t)$ is:

$$
\begin{array}{|l}
\hline \frac{\mathrm{d} \dot{x}^{\mu}}{\mathrm{d} t}+\Gamma^{\mu}{ }_{\nu \rho} \dot{x}^{\nu} \dot{x}^{\rho}=\lambda \dot{x}^{\mu} \\
\hline \hline \frac{\mathrm{d} \dot{x}^{\mu}}{\mathrm{d} t}+\hat{\Gamma}^{\mu}{ }_{\nu \rho} \dot{x}^{\nu} \dot{x}^{\rho}=\left(\lambda-2 \Upsilon_{\rho} \dot{x}^{\rho}\right) \dot{x}^{\mu} \\
\end{array}+g(\dot{x}, \dot{x}) \Upsilon^{\mu} \text {. }
$$

- This shows that a null, i.e. satisfying $g(\dot{x}, \dot{x})=0$, geodesic in metric g is also a null geodesic in the metric \hat{g}.

[^10]
Conformal compactification

The conformal compactifications of spacetimes were introduced by Roger Penrose in the process of making mathematically correct theory of gravitational radiation.

- It was motivated by Trautman-Bondi way of associating energy to gravitational waves. In the Einstein's theory gravitational field is described in terms of the Riemann tensor, Riemann, which decomposes on its trace, Ricci, known as the Ricci tensor, and its totally traceless part, Weyl, known as the Weyl tensor. Schematically Riemann $=$ Weyl + Ricci. It is Ricci which is totally determined by the Einstein's equations, schematically Ricci $=T$. The rest of the curvature, namely the Weyl tensor, is totally undetermined by the energy momentum tensor T; one may think about Weyl as the free gravitational part of the curvature. It is remarkable that this 'free part of the curvature' is conformally invariant.

The conformal compactifications of spacetimes were introduced by Roger Penrose in the process of making mathematically correct theory of gravitational radiation.
> - It was motivated by Trautman-Bondi way of associating energy to gravitational waves. In the Einstein's theory gravitational field is described in terms of the Riemann tensor, Riemann, which decomposes on its trace, Ricci, known as the Ricci tensor, and its totally traceless part, known as the Weyl tensor. Schematically Riemann $=$ Weyl + Ricci. It is Ricci which is totally determined by the Einstein's equations, schematically Ricci $=T$. The rest of the curvature, namely the Weyl tensor, is totally undetermined by the energy momentum tensor T; one may think about Weyl as the free gravitational part of the curvature. It is remarkable that this 'free part of the curvature' is conformally invariant.

The conformal compactifications of spacetimes were introduced by Roger Penrose in the process of making mathematically correct theory of gravitational radiation.

- It was motivated by Trautman-Bondi way of associating energy to gravitational waves.

The conformal compactifications of spacetimes were introduced by Roger Penrose in the process of making mathematically correct theory of gravitational radiation.

- It was motivated by Trautman-Bondi way of associating energy to gravitational waves. In the Einstein's theory gravitational field is described in terms of the Riemann tensor, Riemann, which decomposes on its trace, Ricci, known as the Ricci tensor, and its totally traceless part, Weyl, known as the Weyl tensor.

The conformal compactifications of spacetimes were introduced by Roger Penrose in the process of making mathematically correct theory of gravitational radiation.

- It was motivated by Trautman-Bondi way of associating energy to gravitational waves. In the Einstein's theory gravitational field is described in terms of the Riemann tensor, Riemann, which decomposes on its trace, Ricci, known as the Ricci tensor, and its totally traceless part, Weyl, known as the Weyl tensor. Schematically Riemann $=$ Weyl + Ricci.
determined by the Einstein's equations, schematically
tensor, is totally undetermined by the energy momentum tensor T; one may think about Weyl as the free
gravitational part of the curvature. It is remarkable that this 'free part of the curvature' is conformally invariant.

The conformal compactifications of spacetimes were introduced by Roger Penrose in the process of making mathematically correct theory of gravitational radiation.

- It was motivated by Trautman-Bondi way of associating energy to gravitational waves. In the Einstein's theory gravitational field is described in terms of the Riemann tensor, Riemann, which decomposes on its trace, Ricci, known as the Ricci tensor, and its totally traceless part, Weyl, known as the Weyl tensor. Schematically Riemann $=$ Weyl + Ricci. It is Ricci which is totally determined by the Einstein's equations, schematically Ricci $=T$.
tensor, is totally undetermined by the energy momentum tensor T; one may think about Weyl as the free
gravitational part of the curvature. It is remarkable that this 'free part of the curvature' is conformally invariant.

The conformal compactifications of spacetimes were introduced by Roger Penrose in the process of making mathematically correct theory of gravitational radiation.

- It was motivated by Trautman-Bondi way of associating energy to gravitational waves. In the Einstein's theory gravitational field is described in terms of the Riemann tensor, Riemann, which decomposes on its trace, Ricci, known as the Ricci tensor, and its totally traceless part, Weyl, known as the Weyl tensor. Schematically Riemann $=$ Weyl + Ricci. It is Ricci which is totally determined by the Einstein's equations, schematically Ricci $=T$. The rest of the curvature, namely the Weyl tensor, is totally undetermined by the energy momentum tensor T;
gravitational part of the curvature. It is remarkable that this 'free part of the curvature' is conformally invariant.

Conformal compactification

The conformal compactifications of spacetimes were introduced by Roger Penrose in the process of making mathematically correct theory of gravitational radiation.

- It was motivated by Trautman-Bondi way of associating energy to gravitational waves. In the Einstein's theory gravitational field is described in terms of the Riemann tensor, Riemann, which decomposes on its trace, Ricci, known as the Ricci tensor, and its totally traceless part, Weyl, known as the Weyl tensor. Schematically Riemann $=$ Weyl + Ricci. It is Ricci which is totally determined by the Einstein's equations, schematically Ricci $=T$. The rest of the curvature, namely the Weyl tensor, is totally undetermined by the energy momentum tensor T; one may think about Weyl as the free gravitational part of the curvature. It is remarkable that this 'free part of the curvature' is conformally invariant.

The conformal compactifications of spacetimes were introduced by Roger Penrose in the process of making mathematically correct theory of gravitational radiation.

- It was motivated by Trautman-Bondi way of associating energy to gravitational waves. In the Einstein's theory gravitational field is described in terms of the Riemann tensor, Riemann, which decomposes on its trace, Ricci, known as the Ricci tensor, and its totally traceless part, Weyl, known as the Weyl tensor. Schematically Riemann $=$ Weyl + Ricci. It is Ricci which is totally determined by the Einstein's equations, schematically Ricci $=T$. The rest of the curvature, namely the Weyl tensor, is totally undetermined by the energy momentum tensor T; one may think about Weyl as the free gravitational part of the curvature. It is remarkable that this 'free part of the curvature' is conformally invariant.

Need for null infinity

- To define an amount of energy radiated, one may try to associate energy m_{1} to a spacelike hypersurface S_{1}, and then energy m_{2} to a later spacelike hypersurface S2. Simply integrate some expression of mass density
- The difference $m_{1}-m_{2}$ could be then the amount of energy radiated. But S_{2} as going to infinity intercepts all the waves emitted from S_{1}; Therefore $m_{2}=m_{1}$.
- It is why one should associate 'mass' to null or asymptotically null hypersurfaces N_{1} and N_{2}. The difference of these masses would be the energy carried by waves. For waves, what is important, is this what they carry along null geodesics to infinity, to the place in spacetime where null geodesics end.
- Penrose's idea then, is to introduce boundary to spavetime M, whose points constitute future and pasr end-points to each null geodesic in M. It follws that only conformal properttes matter here. over S_{1} and then S_{2}.

FIGURE 14 To mesarte mass lons throag
appropriane than f, and

- To define an amount of energy radiated, one may try to associate energy m_{1} to a spacelike hypersurface S_{1}, and then energy m_{2} to a later spacelike hypersurface S_{2}. Simply integrate some expression of mass density
- The difference $m_{1}-m_{2}$ could be then the amount of energy radiated. But S_{2} as going to infinity intercepts all the waves emitted from S_{1}; Therefore m_{2}
- It is why one should associate 'mass' to null or asymptotically null hypersurfaces N_{1} and N_{2}. The difference of these masses would be the energy carried by waves. For waves, what is important, is this what they carry along null geodesics to infinity, to the place in spacetime where null geodesics end.
- Penrose's idea then, is to introduce boundary to spavetime M, whose points constitute future and pasr end-points to each null geodesic in M. It follws that only conformal properties matter here.

FIGURE 14. To meware mass loss throagh

- To define an amount of energy radiated, one may try to associate energy m_{1} to a spacelike hypersurface S_{1}, and then energy m_{2} to a later spacelike hypersurface S_{2}. Simply integrate some expression of mass density over S_{1} and then S_{2}.
- The difference $m_{1}-m_{2}$ could be then the amount of energy radiated. But S_{2} as going to infinity intercepts all the waves emitted from S_{1}; Therefore m_{2}
- It is why one should associate 'mass' to null or asymptotically null hypersurfaces N_{1} and N_{2}. The difference of these masses would be the energy carried by waves. For waves, what is important, is this what they carry along null geodesics to infinity, to the place in spacetime where null geodesics end.
- Penrose's idea then, is to introduce boundary to spavetime M, whose points constitute future and pasr end-points to each null geodesic in M. It follws that only conformal properties matter here.

- To define an amount of energy radiated, one may try to associate energy m_{1} to a spacelike hypersurface S_{1}, and then energy m_{2} to a later spacelike hypersurface S_{2}. Simply integrate some expression of mass density over S_{1} and then S_{2}.
- The difference $m_{1}-m_{2}$ could be then the amount of energy radiated.
to infinity intercepts all the waves emitted from S_{1}; Therefore
- It is why one should associate 'mass' to null or asymptotically null hypersurfaces N_{1} and N_{2}. The difference of these masses would be the energy carried by waves. For waves, what is important, is this what they carry along nuli geodesics to infinity, to the place in spacetime where null geodesics end.
Penrose's idea then, is to introduce boundary to spavetime M, whose points constitute future and pasr end-points to each null geodesic in M. It follws that only conformal properties matter here.

- To define an amount of energy radiated, one may try to associate energy m_{1} to a spacelike hypersurface S_{1}, and then energy m_{2} to a later spacelike hypersurface S_{2}. Simply integrate some expression of mass density over S_{1} and then S_{2}.
- The difference $m_{1}-m_{2}$ could be then the amount of energy radiated. But S_{2} as going to infinity intercepts all the waves emitted from S_{1}; Therefore
- It is why one should associate 'mass' to null or asymptotically null hypersurfaces N_{1} and N_{2}. The difference of these masses would be the energy carried by waves. For waves, what is important, is this what they carry along null geodesics to infinity, to the place in spacetime where null geodesics end.

Penrose's idea then, is to introduce
boundary to spavetime M, whose points constitute future and pasr end-points to each null geodesic in M. It follws that only conformal properties matter here.

- To define an amount of energy radiated, one may try to associate energy m_{1} to a spacelike hypersurface S_{1}, and then energy m_{2} to a later spacelike hypersurface S_{2}. Simply integrate some expression of mass density over S_{1} and then S_{2}.
- The difference $m_{1}-m_{2}$ could be then the amount of energy radiated. But S_{2} as going to infinity intercepts all the waves emitted from S_{1}; Therefore $m_{2}=m_{1}$.
- It is why one should associate 'mass' to null or asymptotically null hypersurfaces N_{1} and N_{2}. The difference of these masses would be the energy carried by waves. For waves, what is important, is this what they carry along null geodesics to infinity, to the place in spacetime where null geodesics end.

Penrose's idea then, is to introduce
boundary to spavetime M, whose points constitute future and pasr end-points to each null geodesic in M. It follws that only conformal properties matter here.

- To define an amount of energy radiated, one may try to associate energy m_{1} to a spacelike hypersurface S_{1}, and then energy m_{2} to a later spacelike hypersurface S_{2}. Simply integrate some expression of mass density over S_{1} and then S_{2}.
- The difference $m_{1}-m_{2}$ could be then the amount of energy radiated. But S_{2} as going to infinity intercepts all the waves emitted from S_{1}; Therefore $m_{2}=m_{1}$.
- It is why one should associate 'mass' to null or asymptotically null hypersurfaces N_{1} and N_{2}.
would be the energy carried by waves. For waves, what is important, is this what they carry along null geodesics to infinity, to the place in spacetime where null geodesics end.

Penrose's idea then, is to introduce

boundary to spavetime M, whose points constitute future and pasr end-points to each null geodesic in M. It follws that only conformal properties matter here.

- To define an amount of energy radiated, one may try to associate energy m_{1} to a spacelike hypersurface S_{1}, and then energy m_{2} to a later spacelike hypersurface S_{2}. Simply integrate some expression of mass density over S_{1} and then S_{2}.
- The difference $m_{1}-m_{2}$ could be then the amount of energy radiated. But S_{2} as going to infinity intercepts all the waves emitted from S_{1}; Therefore $m_{2}=m_{1}$.
- It is why one should associate 'mass' to null or asymptotically null hypersurfaces N_{1} and N_{2}. The difference of these masses would be the energy carried by waves.
waves, what is important, is this what they carry along null geodesics to infinity, to the place in spacetime where null geodesics end.

Penrose's idea then, is to introduce

boundary to spavetime M, whose points constitute future and pasr end-points to each null geodesic in M. It follws that only conformal properties matter here.

- To define an amount of energy radiated, one may try to associate energy m_{1} to a spacelike hypersurface S_{1}, and then energy m_{2} to a later spacelike hypersurface S_{2}. Simply integrate some expression of mass density over S_{1} and then S_{2}.
- The difference $m_{1}-m_{2}$ could be then the amount of energy radiated. But S_{2} as going to infinity intercepts all the waves emitted from S_{1}; Therefore $m_{2}=m_{1}$.
- It is why one should associate 'mass' to null or asymptotically null hypersurfaces N_{1} and N_{2}. The difference of these masses would be the energy carried by waves. For waves, what is important, is this what they carry along null geodesics to infinity,
the place in spacetime where null geodesics end.

Penrose's idea then, is to introduce
boundary to spavetime M, whose points
constitute future and pasr end-points to
each null aeodesic in M. It follws that only conformal properties matter here.

- To define an amount of energy radiated, one may try to associate energy m_{1} to a spacelike hypersurface S_{1}, and then energy m_{2} to a later spacelike hypersurface S_{2}. Simply integrate some expression of mass density over S_{1} and then S_{2}.
- The difference $m_{1}-m_{2}$ could be then the amount of energy radiated. But S_{2} as going to infinity intercepts all the waves emitted from S_{1}; Therefore $m_{2}=m_{1}$.
- It is why one should associate 'mass' to null or asymptotically null hypersurfaces N_{1} and N_{2}. The difference of these masses would be the energy carried by waves. For waves, what is important, is this what they carry along null geodesics to infinity, to the place in spacetime where null geodesics end.

Penrose's idea then, is to introduce
boundary to spavetime M, whose points constitute future and pasr end-points to each null geodesic in M. It follws that only conformal properties matter here.

- To define an amount of energy radiated, one may try to associate energy m_{1} to a spacelike hypersurface S_{1}, and then energy m_{2} to a later spacelike hypersurface S_{2}. Simply integrate some expression of mass density over S_{1} and then S_{2}.
- The difference $m_{1}-m_{2}$ could be then the amount of energy radiated. But S_{2} as going to infinity intercepts all the waves emitted from S_{1}; Therefore $m_{2}=m_{1}$.
- It is why one should associate 'mass' to null or asymptotically null hypersurfaces N_{1} and N_{2}. The difference of these masses would be the energy carried by waves. For waves, what is important, is this what they carry along null geodesics to infinity, to the place in spacetime where null geodesics end.
- Penrose's idea then, is to introduce boundary to spavetime M, whose points constitute future and pasr end-points to each null geodesic in M.
conformal properties matter here.

- To define an amount of energy radiated, one may try to associate energy m_{1} to a spacelike hypersurface S_{1}, and then energy m_{2} to a later spacelike hypersurface S_{2}. Simply integrate some expression of mass density over S_{1} and then S_{2}.
- The difference $m_{1}-m_{2}$ could be then the amount of energy radiated. But S_{2} as going to infinity intercepts all the waves emitted from S_{1}; Therefore $m_{2}=m_{1}$.
- It is why one should associate 'mass' to null or asymptotically null hypersurfaces N_{1} and N_{2}. The difference of these masses would be the energy carried by waves. For waves, what is important, is this what they carry along null geodesics to infinity, to the place in spacetime where null geodesics end.
- Penrose's idea then, is to introduce boundary to spavetime M, whose points constitute future and pasr end-points to each null geodesic in M. It follws that only conformal properties matter here.

Conformal compactification

> Definition
> We say that a 4-dimensional Lorentzian manifold (\hat{M}, \hat{g}) with
> boundary $\partial \hat{M}$ is a conformal compactification of a
> spacetime (M, g) iff there exists a diffeomorphism
> $M \rightarrow \operatorname{Int} \hat{M}$
> and a function Ω on \hat{M}, such that (i) $\hat{g}=\Omega^{2} \phi_{*}(g)$, and (ii) $\Omega=0$
> on $\partial \hat{M}$, and (iii) $\mathrm{d} \Omega \neq 0$ at $\partial \hat{M}$.

Conformal compactification

Definition

We say that a 4-dimensional Lorentzian manifold ($\hat{M}, \hat{g})$ with boundary $\partial \hat{M}$ is a conformal compactification of a spacetime (M, g) iff there exists a diffeomorphism $M \rightarrow \operatorname{Int} \hat{M}$
and a function Ω on \hat{M}, such that (i) $\hat{g}=\Omega^{2} \phi_{*}(g)$, and (ii) $\Omega=0$ on $\partial \hat{M}$, and (iii) $\mathrm{d} \Omega \neq 0$ at $\partial \hat{M}$.

Conformal compactification

Definition

We say that a 4-dimensional Lorentzian manifold (\hat{M}, \hat{g}) with boundary $\partial \hat{M}$ is a conformal compactification of a spacetime (M, g) iff there exists a diffeomorphism
and a function Ω on \hat{M}, such that (i) $\hat{g}=\Omega^{2} \phi_{*}(g)$, and (ii) $\Omega=0$
on $\partial \hat{M}$, and (iii) $d \Omega \neq 0$ at $\partial \hat{M}$.

Conformal compactification

Definition

We say that a 4-dimensional Lorentzian manifold (\hat{M}, \hat{g}) with boundary $\partial \hat{M}$ is a conformal compactification of a spacetime (M, g) iff there exists a diffeomorphism
$\phi: M \rightarrow \operatorname{Int} \hat{M}$
and a function Ω on \hat{M}, such that (i) $\hat{g}=$
on $\partial \hat{M}$, and (iii) $\mathrm{d} \Omega \neq 0$ at $\partial \hat{M}$.

Conformal compactification

Definition
We say that a 4-dimensional Lorentzian manifold (\hat{M}, \hat{g}) with boundary $\partial \hat{M}$ is a conformal compactification of a spacetime (M, g) iff there exists a diffeomorphism
$\phi: M \rightarrow \operatorname{Int} \hat{M}$
and a function Ω on \hat{M}, such that
on
and (iii) $\mathrm{d} \Omega \neq 0$ at ∂M.

Conformal compactification

Definition

We say that a 4-dimensional Lorentzian manifold (\hat{M}, \hat{g}) with boundary $\partial \hat{M}$ is a conformal compactification of a spacetime (M, g) iff there exists a diffeomorphism
$\phi: M \rightarrow \operatorname{Int} \hat{M}$
and a function Ω on \hat{M}, such that (i) $\hat{g}=\Omega^{2} \phi_{*}(g)$,
on ∂M, and (iii) $\mathrm{d} \Omega \neq 0$ at ∂M.

Conformal compactification

Definition

We say that a 4-dimensional Lorentzian manifold (\hat{M}, \hat{g}) with boundary $\partial \hat{M}$ is a conformal compactification of a spacetime (M, g) iff there exists a diffeomorphism
$\phi: M \rightarrow \operatorname{Int} \hat{M}$
and a function Ω on \hat{M}, such that (i) $\hat{g}=\Omega^{2} \phi_{*}(g)$, and (ii) $\Omega=0$ on $\partial \hat{M}$, and (iii)

Definition

We say that a 4-dimensional Lorentzian manifold (\hat{M}, \hat{g}) with boundary $\partial \hat{M}$ is a conformal compactification of a spacetime (M, g) iff there exists a diffeomorphism

$\phi: M \rightarrow \operatorname{Int} \hat{M}$

and a function Ω on \hat{M}, such that (i) $\hat{g}=\Omega^{2} \phi_{*}(g)$, and (ii) $\Omega=0$ on $\partial \hat{M}$, and (iii) $\mathrm{d} \Omega \neq 0$ at $\partial \hat{M}$.

Definition

We say that a 4-dimensional Lorentzian manifold (\hat{M}, \hat{g}) with boundary $\partial \hat{M}$ is a conformal compactification of a spacetime (M, g) iff there exists a diffeomorphism

$\phi: M \rightarrow \operatorname{Int} \hat{M}$

and a function Ω on \hat{M}, such that (i) $\hat{g}=\Omega^{2} \phi_{*}(g)$, and (ii) $\Omega=0$ on $\partial \hat{M}$, and (iii) $\mathrm{d} \Omega \neq 0$ at $\partial \hat{M}$.

2-dimensional Minkowski space

- In $M=\mathbb{R}^{2}$ with the Minkowski metric $g=\mathrm{d} t^{2}-\mathrm{d} x^{2}$, change coordinates to $\tilde{u}=(t-x) / \sqrt{2}$ and $\tilde{v}=(t+x), \sqrt{2}$. This parametrizes M by $-\infty<\tilde{u}, \tilde{v}<+\infty$, and the Minkwski metric is $g=2 \mathrm{~d} \tilde{u} \mathrm{~d} \tilde{v}$.
- Change coordinates in M from (\tilde{u} v) to (u.v) such that $\tilde{u}=\operatorname{tg} u$ and $\tilde{v}=\operatorname{tg} v$. This transforms the entire $M=\mathbb{R}^{2}$, in a one-to-one fashion, onto the interior of a diamond Int $\hat{M}=\left\{(u, v) \in \mathbb{R}^{2}:-\pi / 2<u, v<\pi / 2\right\}$.

- In $M=\mathbb{R}^{2}$ with the Minkowski metric $g=\mathrm{d} t^{2}-\mathrm{d} x^{2}$, change coordinates to $\tilde{u}=(t-x) / \sqrt{2}$ and $\tilde{v}=(t+x) / \sqrt{2}$.
This parametrizes M by $-\infty<\tilde{u}, \tilde{v}<+\infty$, and the
Minkwski metric is $g=2 \mathrm{~d} \tilde{u} \mathrm{~d} \tilde{v}$.
- Change coordinates in M from ($\tilde{u}, \tilde{v})$ to (u,v) such that
$\tilde{u}=\operatorname{tg} u$ and $\tilde{v}=\operatorname{tg} v$. This transforms the entire $M=\mathbb{R}^{2}$; in a one-to-one fashion, onto the interior of a diamond $\operatorname{Int} \hat{M}=\left\{(u, v) \in \mathbb{R}^{2}:-\pi / 2\right.$

- In $M=\mathbb{R}^{2}$ with the Minkowski metric $g=\mathrm{d} t^{2}-\mathrm{d} x^{2}$, change coordinates to $\tilde{u}=(t-x) / \sqrt{2}$ and $\tilde{v}=(t+x) / \sqrt{2}$. This parametrizes M by $-\infty<\tilde{u}, \tilde{v}<+\infty$, and the Minkwski metric is
- Change coordinates in M from ($\tilde{u}, \tilde{v})$ to (u, v) such that $\tilde{u}=\operatorname{tg} u$ and $\tilde{v}=\operatorname{tg} v$. This transforms the entire $M=\mathbb{R}^{2}$, $\operatorname{Int} \hat{M}=\left\{(u, v) \in \mathbb{R}^{2}:-\pi / 2<u, v<\pi / 2\right\}$

- In $M=\mathbb{R}^{2}$ with the Minkowski metric $g=\mathrm{d} t^{2}-\mathrm{d} x^{2}$, change coordinates to $\tilde{u}=(t-x) / \sqrt{2}$ and $\tilde{v}=(t+x) / \sqrt{2}$. This parametrizes M by $-\infty<\tilde{u}, \tilde{v}<+\infty$, and the Minkwski metric is $g=2 \mathrm{~d} \tilde{d} \mathrm{~d} \tilde{v}$.
- Change coordinates in M from ($\tilde{u}, \tilde{v})$ to (u,v) such that $\tilde{u}=\operatorname{tg} u$ and $\tilde{v}=\operatorname{tg} v$. This transforms the entire M in a one-to-one fashion, onto the interior of a diamond

- In $M=\mathbb{R}^{2}$ with the Minkowski metric $g=\mathrm{d} t^{2}-\mathrm{d} x^{2}$, change coordinates to $\tilde{u}=(t-x) / \sqrt{2}$ and $\tilde{v}=(t+x) / \sqrt{2}$. This parametrizes M by $-\infty<\tilde{u}, \tilde{v}<+\infty$, and the Minkwski metric is $g=2 \mathrm{~d} \tilde{d} \mathrm{~d} \tilde{v}$.
- Change coordinates in M from (\tilde{u}, \tilde{v}) to (u, v) such that $\tilde{u}=\operatorname{tg} u$ and $\tilde{v}=\operatorname{tg} v$.
in a one-to-one fashion, onto the interior of a diamond

- In $M=\mathbb{R}^{2}$ with the Minkowski metric $g=\mathrm{d} t^{2}-\mathrm{d} x^{2}$, change coordinates to $\tilde{u}=(t-x) / \sqrt{2}$ and $\tilde{v}=(t+x) / \sqrt{2}$. This parametrizes M by $-\infty<\tilde{u}, \tilde{v}<+\infty$, and the Minkwski metric is $g=2 \mathrm{~d} \tilde{\mathrm{u}} \mathrm{d} \tilde{v}$.
- Change coordinates in M from (\tilde{u}, \tilde{v}) to (u, v) such that $\tilde{u}=\operatorname{tg} u$ and $\tilde{v}=\operatorname{tg} v$. This transforms the entire $M=\mathbb{R}^{2}$, in a one-to-one fashion, onto the interior of a diamond Int $\hat{M}=\left\{(u, v) \in \mathbb{R}^{2}:-\pi / 2<u, v<\pi / 2\right\}$.

- In $M=\mathbb{R}^{2}$ with the Minkowski metric $g=\mathrm{d} t^{2}-\mathrm{d} x^{2}$, change coordinates to $\tilde{u}=(t-x) / \sqrt{2}$ and $\tilde{v}=(t+x) / \sqrt{2}$. This parametrizes M by $-\infty<\tilde{u}, \tilde{v}<+\infty$, and the Minkwski metric is $g=2 \mathrm{~d} \tilde{\mathrm{u}} \mathrm{d} \tilde{v}$.
- Change coordinates in M from (\tilde{u}, \tilde{v}) to (u, v) such that $\tilde{u}=\operatorname{tg} u$ and $\tilde{v}=\operatorname{tg} v$. This transforms the entire $M=\mathbb{R}^{2}$, in a one-to-one fashion, onto the interior of a diamond Int $\hat{M}=\left\{(u, v) \in \mathbb{R}^{2}:-\pi / 2<u, v<\pi / 2\right\}$.

- In $M=\mathbb{R}^{2}$ with the Minkowski metric $g=\mathrm{d} t^{2}-\mathrm{d} x^{2}$, change coordinates to $\tilde{u}=(t-x) / \sqrt{2}$ and $\tilde{v}=(t+x) / \sqrt{2}$. This parametrizes M by $-\infty<\tilde{u}, \tilde{v}<+\infty$, and the Minkwski metric is $g=2 \mathrm{~d} \tilde{d} \mathrm{~d} \tilde{v}$.
- Change coordinates in M from (\tilde{u}, \tilde{v}) to (u, v) such that $\tilde{u}=\operatorname{tg} u$ and $\tilde{v}=\operatorname{tg} v$. This transforms the entire $M=\mathbb{R}^{2}$, in a one-to-one fashion, onto the interior of a diamond $\hat{M}=\left\{(u, v) \in \mathbb{R}^{2}:-\pi / 2 \leq u, v \leq \pi / 2\right\}$.

2-dimensional Minkowski space

2-dimensional Minkowski space

2-dimensional Minkowski space

2-dimensional Minkowski space

Parts of a boundary

- The compactified 2D Minkowski space $\hat{M}=\left\{(u, v):-\frac{\pi}{2} \leq u, v \leq \frac{\pi}{2}\right\}$ has a boundary ∂M with the following componenis:
- $\mathscr{I}+=\{(u, v)$

$$
\left.u=\frac{\pi}{2},-\frac{\pi}{2}<v<\frac{\pi}{2}\right\} \text { or }
$$ infinity in the future;

$\cdot \mathscr{I}^{-}=\{(U, V)\}$ $\left.u=-\frac{\pi}{2},-\frac{\pi}{2}<v<\frac{\pi}{2}\right\}$ or
$\left.-\frac{\pi}{2}<u<\frac{\pi}{2}, v=-\frac{\pi}{2},\right\}-$ null infinity in the past;

- $i^{0}=\{(u, v)$ $i=\left\{(U, V): U=-\frac{\pi}{2}, V=\frac{\pi}{2},\right\}$-spacelike infinity;
- $i^{-}=\{(u, v)$ $i=\{(u, v)$
infinity in the past or in the future.

In particular i^{0} is a point in which every spacelike hypersurfcae ends, similarly i^{-}is a point where every initially timelike curve starts, and i^{+}is a point where every finally timelike curve ends.

Parts of a boundary

- The compactified 2D Minkowski space $\hat{M}=\left\{(u, v):-\frac{\pi}{2} \leq u, v \leq \frac{\pi}{2}\right\}$ has a boundary $\partial \hat{M}$ with the following components:
infinity in the future;
infinity in the past;

In particular i^{0} is a point in which every spacelike hypersurfcae ends,
similarly i^{-}is a point where
every initially timelike curve starts, and i^{+}is a point where every finally timelike curve ends.

Parts of a boundary

- The compactified 2D Minkowski space $\hat{M}=\left\{(u, v):-\frac{\pi}{2} \leq u, v \leq \frac{\pi}{2}\right\}$ has a boundary $\partial \hat{M}$ with the following components:
- $\begin{aligned} \mathscr{I}^{+} & =\left\{(u, v): u=\frac{\pi}{2},-\frac{\pi}{2}<v<\frac{\pi}{2}\right\} \text { or } \\ \mathscr{I}^{+} & =\left\{(u, v):-\frac{\pi}{2}<u<\frac{\pi}{2}, v=\frac{\pi}{2},\right\}-\text { null }\end{aligned}$ infinity in the future;

In particular is a point in
which every spacelike
hypersurfcae ends,
similarly is a point where
every initially timelike
curve starts, and i^{+}is a point where every finally timelike curve ends.

Parts of a boundary

- The compactified 2D Minkowski space $\hat{M}=\left\{(u, v):-\frac{\pi}{2} \leq u, v \leq \frac{\pi}{2}\right\}$ has a boundary $\partial \hat{M}$ with the following components:
- $\mathscr{I}^{+}=\left\{(u, v): u=\frac{\pi}{2},-\frac{\pi}{2}<v<\frac{\pi}{2}\right\}$ or $\mathscr{I}^{+}=\left\{(u, v):-\frac{\pi}{2}<u<\frac{\pi}{2}, v=\frac{\pi}{2},\right\}-$ null infinity in the future;
infinity in the past;
or
spacelike infinity;

In particular i^{0} is a point in
which every spacelike
hypersurfcae ends,
similarly i^{-}is a point where
every initially timelike
curve starts, and i^{+}is a
point where every finally timelike curve ends.

Parts of a boundary

- The compactified 2D Minkowski space $\hat{M}=\left\{(u, v):-\frac{\pi}{2} \leq u, v \leq \frac{\pi}{2}\right\}$ has a boundary $\partial \hat{M}$ with the following components:
- $\mathscr{I}^{+}=\left\{(u, v): u=\frac{\pi}{2},-\frac{\pi}{2}<v<\frac{\pi}{2}\right\}$ or $\mathscr{I}^{+}=\left\{(u, v):-\frac{\pi}{2}<u<\frac{\pi}{2}, v=\frac{\pi}{2},\right\}-$ null infinity in the future;
- $\mathscr{I}^{-}=\left\{(u, v): u=-\frac{\pi}{2},-\frac{\pi}{2}<v<\frac{\pi}{2}\right\}$ or $\mathscr{I}^{-}=\left\{(u, v):-\frac{\pi}{2}<u<\frac{\pi}{2}, v=-\frac{\pi}{2},\right\}-$ null infinity in the past;
or
spacelike infinity;

In particular i^{0} is a point in
which every spacelike
hypersurfcae ends,
similarly i^{-}is a point wher
every initially timelike
curve starts, and i^{+}is a point where every finally timelike curve ends.

Parts of a boundary

- The compactified 2D Minkowski space $\hat{M}=\left\{(u, v):-\frac{\pi}{2} \leq u, v \leq \frac{\pi}{2}\right\}$ has a boundary $\partial \hat{M}$ with the following components:
- $\mathscr{I}^{+}=\left\{(u, v): u=\frac{\pi}{2},-\frac{\pi}{2}<v<\frac{\pi}{2}\right\}$ or $\mathscr{I}^{+}=\left\{(u, v):-\frac{\pi}{2}<u<\frac{\pi}{2}, v=\frac{\pi}{2},\right\}-$ null infinity in the future;
- $\mathscr{I}^{-}=\left\{(u, v): u=-\frac{\pi}{2},-\frac{\pi}{2}<v<\frac{\pi}{2}\right\}$ or $\mathscr{I}^{-}=\left\{(u, v):-\frac{\pi}{2}<u<\frac{\pi}{2}, v=-\frac{\pi}{2},\right\}-$ null infinity in the past;
spacelike infinity;

In particular i^{0} is a point in
which every spacelike
hypersurfcae ends,
similarly i^{-}is a point wher
every initially timelike

Parts of a boundary

- The compactified 2D Minkowski space $\hat{M}=\left\{(u, v):-\frac{\pi}{2} \leq u, v \leq \frac{\pi}{2}\right\}$ has a boundary $\partial \hat{M}$ with the following components:
$\begin{aligned}-\mathscr{I}^{+} & =\left\{(u, v): u=\frac{\pi}{2},-\frac{\pi}{2}<v<\frac{\pi}{2}\right\} \text { or } \\ \mathscr{I}^{+} & =\left\{(u, v):-\frac{\pi}{2}<u<\frac{\pi}{2}, v=\frac{\pi}{2},\right\}-\text { null }\end{aligned}$ infinity in the future;
- $\mathscr{I}^{-}=\left\{(u, v): u=-\frac{\pi}{2},-\frac{\pi}{2}<v<\frac{\pi}{2}\right\}$ or $\mathscr{I}^{-}=\left\{(u, v):-\frac{\pi}{2}<u<\frac{\pi}{2}, v=-\frac{\pi}{2},\right\}-$ null infinity in the past;
- $i^{0}=\left\{(u, v): u=\frac{\pi}{2}, v=-\frac{\pi}{2}\right\}$ or
$i^{0}=\left\{(u, v): u=-\frac{\pi}{2}, v=\frac{\pi}{2},\right\}$ - spacelike infinity

In particular i^{0} is a point in
which every spacelike
hypersurfcae ends,
similarly i^{-}is a point where

Parts of a boundary

- The compactified 2D Minkowski space $\hat{M}=\left\{(u, v):-\frac{\pi}{2} \leq u, v \leq \frac{\pi}{2}\right\}$ has a boundary $\partial \hat{M}$ with the following components:

$$
\begin{aligned}
-\mathscr{I}^{+} & =\left\{(u, v): u=\frac{\pi}{2},-\frac{\pi}{2}<v<\frac{\pi}{2}\right\} \text { or } \\
\mathscr{I}^{+} & =\left\{(u, v):-\frac{\pi}{2}<u<\frac{\pi}{2}, v=\frac{\pi}{2},\right\}-\text { null }
\end{aligned}
$$ infinity in the future;

- $\mathscr{I}^{-}=\left\{(u, v): u=-\frac{\pi}{2},-\frac{\pi}{2}<v<\frac{\pi}{2}\right\}$ or $\mathscr{I}^{-}=\left\{(u, v):-\frac{\pi}{2}<u<\frac{\pi}{2}, v=-\frac{\pi}{2},\right\}-$ null infinity in the past;

$$
\begin{aligned}
& \cdot i^{0}=\{(u, v): \\
& i^{0}=\left\{(u, v): u=\frac{\pi}{2}, v=-\frac{\pi}{2}\right\} \text { or } \\
&
\end{aligned}
$$ infinity;

Or
 similarly

timelike
infinity in the past or in the future.

In particular i^{0} is a point in
which every spacelike
nypersuricae ends,
is a point where
every initiz lly timelike
curve starts, and i^{+}is a
point where every finally timelike curve ends.

Parts of a boundary

- The compactified 2D Minkowski space $\hat{M}=\left\{(u, v):-\frac{\pi}{2} \leq u, v \leq \frac{\pi}{2}\right\}$ has a boundary $\partial \hat{M}$ with the following components:
- $\begin{aligned} \mathscr{I}^{+} & =\left\{(u, v): u=\frac{\pi}{2},-\frac{\pi}{2}<v<\frac{\pi}{2}\right\} \text { or } \\ \mathscr{I}^{+} & =\left\{(u, v):-\frac{\pi}{2}<u<\frac{\pi}{2}, v=\frac{\pi}{2},\right\} \text { - null }\end{aligned}$ infinity in the future;
- $\mathscr{I}^{-}=\left\{(u, v): u=-\frac{\pi}{2},-\frac{\pi}{2}<v<\frac{\pi}{2}\right\}$ or
$\mathscr{I}^{-}=\left\{(u, v):-\frac{\pi}{2}<u<\frac{\pi}{2}, v=-\frac{\pi}{2},\right\}-$ null
infinity in the past;
- $i^{0}=\left\{(u, v): u=\frac{\pi}{2}, v=-\frac{\pi}{2}\right\}$ or
$i^{0}=\left\{(u, v): u=-\frac{\pi}{2}, v=\frac{\pi}{2},\right\}$ - spacelike infinity;
- $i^{-}=\left\{(u, v): u=-\frac{\pi}{2}, v=-\frac{\pi}{2}\right\}$ or
$i^{+}=\left\{(u, v): u=\frac{\pi}{2}, v=\frac{\pi}{2},\right\}-$ timelike
infinity in the past or in the future.

In particular i^{0} is a point in
which every spacelike
hypersurfcae ends,
similarly i^{-}is a point wher
every initially timelike
curve starts, and i^{+}is a
point where every finally timelike curve ends.

Parts of a boundary

- The compactified 2D Minkowski space $\hat{M}=\left\{(u, v):-\frac{\pi}{2} \leq u, v \leq \frac{\pi}{2}\right\}$ has a boundary $\partial \hat{M}$ with the following components:
- $\begin{aligned} \mathscr{I}^{+} & =\left\{(u, v): u=\frac{\pi}{2},-\frac{\pi}{2}<v<\frac{\pi}{2}\right\} \text { or } \\ \mathscr{I}^{+} & =\left\{(u, v):-\frac{\pi}{2}<u<\frac{\pi}{2}, v=\frac{\pi}{2},\right\}-\text { null }\end{aligned}$ infinity in the future;
- $\mathscr{I}^{-}=\left\{(u, v): u=-\frac{\pi}{2},-\frac{\pi}{2}<v<\frac{\pi}{2}\right\}$ or
$\mathscr{I}^{-}=\left\{(u, v):-\frac{\pi}{2}<u<\frac{\pi}{2}, v=-\frac{\pi}{2},\right\}-$ null
infinity in the past;
- $i^{0}=\left\{(u, v): u=\frac{\pi}{2}, v=-\frac{\pi}{2}\right\}$ or
$i^{0}=\left\{(u, v): u=-\frac{\pi}{2}, v=\frac{\pi}{2},\right\}$ - spacelike infinity;
- $i^{-}=\left\{(u, v): u=-\frac{\pi}{2}, v=-\frac{\pi}{2}\right\}$ or $i^{+}=\left\{(u, v): u=\frac{\pi}{2}, v=\frac{\pi}{2},\right\}$ - timelike infinity in the past or in the future.

In particular i^{0} is a point in
which every spacelike
hypersurfcae ends,
similarly i^{-}is a point where
every initially timelike
curve starts, and i^{+}is a
point where every finally
timelike curve ends

Parts of a boundary

- The compactified 2D Minkowski space $\hat{M}=\left\{(u, v):-\frac{\pi}{2} \leq u, v \leq \frac{\pi}{2}\right\}$ has a boundary $\partial \hat{M}$ with the following components:
- $\begin{aligned} \mathscr{I}^{+} & =\left\{(u, v): u=\frac{\pi}{2},-\frac{\pi}{2}<v<\frac{\pi}{2}\right\} \text { or } \\ \mathscr{I}^{+} & =\left\{(u, v):-\frac{\pi}{2}<u<\frac{\pi}{2}, v=\frac{\pi}{2},\right\}-\text { null }\end{aligned}$ infinity in the future;
- $\mathscr{I}^{-}=\left\{(u, v): u=-\frac{\pi}{2},-\frac{\pi}{2}<v<\frac{\pi}{2}\right\}$ or
$\mathscr{I}^{-}=\left\{(u, v):-\frac{\pi}{2}<u<\frac{\pi}{2}, v=-\frac{\pi}{2},\right\}-$ null
infinity in the past;
- $i^{0}=\left\{(u, v): u=\frac{\pi}{2}, v=-\frac{\pi}{2}\right\}$ or
$i^{0}=\left\{(u, v): u=-\frac{\pi}{2}, v=\frac{\pi}{2},\right\}$ - spacelike infinity;
- $i^{-}=\left\{(u, v): u=-\frac{\pi}{2}, v=-\frac{\pi}{2}\right\}$ or $i^{+}=\left\{(u, v): u=\frac{\pi}{2}, v=\frac{\pi}{2},\right\}$ - timelike infinity in the past or in the future.

In particular i^{0} is a point in
which every spacelike
hypersurfcae ends,
similarly i^{-}is a point where
every initially timelike
curve starts, and i^{+}is a
point where every finally
timelike curve ends

Parts of a boundary

- The compactified 2D Minkowski space $\hat{M}=\left\{(u, v):-\frac{\pi}{2} \leq u, v \leq \frac{\pi}{2}\right\}$ has a boundary $\partial \hat{M}$ with the following components:
$\begin{aligned}-\mathscr{I}^{+} & =\left\{(u, v): u=\frac{\pi}{2},-\frac{\pi}{2}<v<\frac{\pi}{2}\right\} \text { or } \\ \mathscr{I}^{+} & =\left\{(u, v):-\frac{\pi}{2}<u<\frac{\pi}{2}, v=\frac{\pi}{2},\right\}-\text { null }\end{aligned}$ infinity in the future;
- $\mathscr{I}^{-}=\left\{(u, v): u=-\frac{\pi}{2},-\frac{\pi}{2}<v<\frac{\pi}{2}\right\}$ or
$\mathscr{I}^{-}=\left\{(u, v):-\frac{\pi}{2}<u<\frac{\pi}{2}, v=-\frac{\pi}{2},\right\}-$ null infinity in the past;
- $i^{0}=\left\{(u, v): u=\frac{\pi}{2}, v=-\frac{\pi}{2}\right\}$ or
$i^{0}=\left\{(u, v): u=-\frac{\pi}{2}, v=\frac{\pi}{2},\right\}$ - spacelike infinity;
- $i^{-}=\left\{(u, v): u=-\frac{\pi}{2}, v=-\frac{\pi}{2}\right\}$ or $i^{+}=\left\{(u, v): u=\frac{\pi}{2}, v=\frac{\pi}{2},\right\}$ - timelike infinity in the past or in the future.

In particular i^{0} is a point in which every spacelike hypersurfcae ends,
similarly i^{-}is a point where
every initially timelike
curve starts, and i^{+}is a
point where every finally
timelike curve ends.

Parts of a boundary

- The compactified 2D Minkowski space $\hat{M}=\left\{(u, v):-\frac{\pi}{2} \leq u, v \leq \frac{\pi}{2}\right\}$ has a boundary $\partial \hat{M}$ with the following components:
- $\begin{aligned} \mathscr{I}^{+} & =\left\{(u, v): u=\frac{\pi}{2},-\frac{\pi}{2}<v<\frac{\pi}{2}\right\} \text { or } \\ \mathscr{I}^{+} & =\left\{(u, v):-\frac{\pi}{2}<u<\frac{\pi}{2}, v=\frac{\pi}{2},\right\}-\text { null }\end{aligned}$ infinity in the future;
- $\mathscr{I}^{-}=\left\{(u, v): u=-\frac{\pi}{2},-\frac{\pi}{2}<v<\frac{\pi}{2}\right\}$ or
$\mathscr{I}^{-}=\left\{(u, v):-\frac{\pi}{2}<u<\frac{\pi}{2}, v=-\frac{\pi}{2},\right\}-$ null infinity in the past;
- $i^{0}=\left\{(u, v): u=\frac{\pi}{2}, v=-\frac{\pi}{2}\right\}$ or
$i^{0}=\left\{(u, v): u=-\frac{\pi}{2}, v=\frac{\pi}{2},\right\}$ - spacelike infinity;
- $i^{-}=\left\{(u, v): u=-\frac{\pi}{2}, v=-\frac{\pi}{2}\right\}$ or $i^{+}=\left\{(u, v): u=\frac{\pi}{2}, v=\frac{\pi}{2},\right\}$ - timelike infinity in the past or in the future.

In particular i^{0} is a point in which every spacelike hypersurfcae ends, similarly i^{-}is a point wher every initially timelike curve starts, and is a

Parts of a boundary

- The compactified 2D Minkowski space $\hat{M}=\left\{(u, v):-\frac{\pi}{2} \leq u, v \leq \frac{\pi}{2}\right\}$ has a boundary $\partial \hat{M}$ with the following components:

$$
\begin{aligned}
-\mathscr{I}^{+} & =\left\{(u, v): u=\frac{\pi}{2},-\frac{\pi}{2}<v<\frac{\pi}{2}\right\} \text { or } \\
\mathscr{I}^{+} & =\left\{(u, v):-\frac{\pi}{2}<u<\frac{\pi}{2}, v=\frac{\pi}{2},\right\}-\text { null }
\end{aligned}
$$ infinity in the future;

$\begin{aligned}-\mathscr{I}^{-} & =\left\{(u, v): u=-\frac{\pi}{2},-\frac{\pi}{2}<v<\frac{\pi}{2}\right\} \text { or } \\ \mathscr{I}^{-} & =\left\{(u, v):-\frac{\pi}{2}<u<\frac{\pi}{2}, v=-\frac{\pi}{2},\right\} \text { null }\end{aligned}$ infinity in the past;

- $i^{0}=\left\{(u, v): u=\frac{\pi}{2}, v=-\frac{\pi}{2}\right\}$ or
$i^{0}=\left\{(u, v): u=-\frac{\pi}{2}, v=\frac{\pi}{2},\right\}$ - spacelike infinity;
- $i^{-}=\left\{(u, v): u=-\frac{\pi}{2}, v=-\frac{\pi}{2}\right\}$ or $i^{+}=\left\{(u, v): u=\frac{\pi}{2}, v=\frac{\pi}{2},\right\}$ - timelike infinity in the past or in the future.

In particular i^{0} is a point in which every spacelike hypersurfcae ends, similarly i^{-}is a point wher every initially timelike curve starts, and i^{+}is a point where every finally timelike curve ends.

4-dimensional Minkowski space

We start with Minkowski spacetime (M, g) with
$g=\mathrm{d} t^{2}-\mathrm{d} r^{2}-r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \chi^{2}\right)=\mathrm{d} t^{2}-\mathrm{d} r^{2}-r^{2} \mathrm{~d} s^{2}$, where $\mathrm{d} s^{2}$ is the standard metric on a round sphere \mathbb{S}^{2} of radius 1. Here $-\infty<t<\infty, r \geq 0$, and (θ, ϕ) are the usual
latitude-longitude coordinates on \mathbb{S}^{2}.

- Now the change of coordinates $t-r=\sqrt{2} \operatorname{tg} u$, $t+r=\sqrt{2} \operatorname{tg} v$ brings the Minkowski metric to $\Omega^{2} g=2 \mathrm{~d} u \mathrm{~d} v-\frac{1}{2} \sin ^{2}(v-u) \mathrm{ds}{ }^{2}$, where $\Omega=\cos u \cos v$.
- Now the range of coordinates (v, u) is $-\pi / 2 \leq v, u \leq \pi / 2$ and $v-u \geq 0$, so that the resulting picture of the conformally compactified Minkowski space with the regular metric $\hat{g}=2 \mathrm{dud} v-\frac{1}{2} \sin ^{2}(v-u) \mathrm{ds}^{2}$ is as follows:

We start with Minkowski spacetime (M, g) with $g=\mathrm{d} t^{2}-\mathrm{d} r^{2}-r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \chi^{2}\right)=\mathrm{d} t^{2}-\mathrm{d} r^{2}-r^{2} \mathrm{~d} s^{2}$, where $\mathrm{d} s^{2}$ is the standard metric on a round sphere \mathbb{S}^{2} of radius 1.
Here
are the usual
latitude-longitude coordinates on

- Now the change of coordinates $\sqrt{2} \operatorname{tg} v$ brings the Minkowski metric to
- Now the range of coordinates (v, u) is $-\pi / 2 \leq v, u \leq \pi / 2$ and $v-u \geq 0$, so that the resulting picture of the conformally compactified Minkowski space with the regular metric $\hat{g}=2 \mathrm{~d} u \mathrm{~d} v-\frac{1}{2} \sin ^{2}(v-u) \mathrm{d} s^{2}$ is as follows:

We start with Minkowski spacetime (M, g) with
$g=\mathrm{d} t^{2}-\mathrm{d} r^{2}-r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \chi^{2}\right)=\mathrm{d} t^{2}-\mathrm{d} r^{2}-r^{2} \mathrm{~d} s^{2}$, where $\mathrm{d} s^{2}$ is the standard metric on a round sphere \mathbb{S}^{2} of radius 1. Here $-\infty<t<\infty, r \geq 0$, and (θ, ϕ) are the usual latitude-longitude coordinates on \mathbb{S}^{2}.

- Now the change of coordinates $t-r=\sqrt{2} \operatorname{tg} u$, $t+r=\sqrt{2} \operatorname{tg} v$ brings the Minkowski metric to
$\Omega^{2} g=2 \mathrm{~d} u \mathrm{~d} v-\frac{1}{2} \sin ^{2}(v-u) \mathrm{d} s^{2}$, where $\Omega=\cos u \cos v$.
and $v-u \geq 0$, so that the resulting picture of the
conformally compactified Minkowski space with the regular metric $\hat{g}=2 d u d v-\frac{1}{2} \sin ^{2}(v-u) d s^{2}$ is as follows:

We start with Minkowski spacetime (M, g) with $g=\mathrm{d} t^{2}-\mathrm{d} r^{2}-r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \chi^{2}\right)=\mathrm{d} t^{2}-\mathrm{d} r^{2}-r^{2} \mathrm{~d} s^{2}$, where $\mathrm{d} s^{2}$ is the standard metric on a round sphere \mathbb{S}^{2} of radius 1. Here $-\infty<t<\infty, r \geq 0$, and (θ, ϕ) are the usual latitude-longitude coordinates on \mathbb{S}^{2}.

- Now the change of coordinates $t-r=\sqrt{2} \operatorname{tg} u$, $t+r=\sqrt{2} \operatorname{tg} v$ brings the Minkowski metric to $\Omega^{2} g=2 \mathrm{~d} u \mathrm{~d} v-\frac{1}{2} \sin ^{2}(v-u) \mathrm{d} s^{2}$, where $\Omega=\cos u \cos v$.
- Now the range of coordinates (v, u) is $-\pi / 2 \leq v, u \leq \pi / 2$ and $v-u \geq 0$, so that the resulting picture of the conformally compactified Minkowski space with the regular metric $\hat{g}=2 \mathrm{~d} u \mathrm{~d} v-\frac{1}{2} \sin ^{2}(v-u) \mathrm{d} s^{2}$ is as follows:

Penrose diagram for 4d Minkowski

Note that both $\mathscr{I}^{ \pm}$are null hypersurfaces.
Note also that Minkowski spacetime is a solution of vacuum Einstein equations with vanishing cosmological constant
$\Lambda=0$.

Penrose diagram for 4d Minkowski

Note that both $\mathscr{I}^{ \pm}$are null hypersurfaces.
Note also that Minkowski spacetime is a solution of vacuum Einstein equations with vanishing cosmological constant
$\Lambda=0$.

Penrose diagram for 4d Minkowski

Note that both $\mathscr{I}^{ \pm}$are null hypersurfaces.
Note also that Minkowski spacetime is a solution of vacuum Einstein equations with vanishing cosmological constant
$\Lambda=0$.

Note that both $\mathscr{I}^{ \pm}$are null hypersurfaces.
Note also that Minkowski spacetime is a solution of vacuum Einstein equations with vanishing cosmological constant $\Lambda=0$.

Penrose diagram for Schwarzschild

Note that scris are null hypersurfaces.
Note also that Schwarzschild spacetime is a solution of
vacuum Einstein equations with vanishing cosmological
constant $\wedge=0$.

Penrose diagram for Schwarzschild

Note that scris are null hypersurfaces.
Note also that Schwarzschild spacetime is a solution of
vacuum Einstein equations with vanishing cosmological
constant $\wedge=0$.

Penrose diagram for Schwarzschild

Note that scris are null hypersurfaces.
Note also that Schwarzschild spacetime is a solution of vacuum Einstein equations with vanishing cosmological constant $\Lambda=0$.

Note that scris are null hypersurfaces.
Note also that Schwarzschild spacetime is a solution of vacuum Einstein equations with vanishing cosmological constant $\Lambda=0$.

Penrose diagram for Schwarzschild black hole

Note that scri's are null hypersurfaces.

Penrose diagram for Schwarzschild black hole

Note that scri's are null hypersurfaces.

Note that scri's are null hypersurfaces.

Note that scri's are null hypersurfaces.

Penrose diagram for Kerr

Note that scri's are null hypersurfaces.
Note also that Kerr spacetime is a solution of vacuum Einstein equations with vanishing cosmological constant $\Lambda=0$.

Penrose diagram for Kerr

Note that scri's are null hypersurfaces.
Note also that Kerr spacetime is a solution of vacuum Einstein equations with vanishing cosmological constant $\Lambda=0$.

Penrose diagram for Kerr

Note that scri's are null hypersurfaces.
Note also that Kerr spacetime is a solution of vacuum Einstein equations with vanishing cosmological constant $\Lambda=0$.

Note that scri's are null hypersurfaces.
Note also that Kerr spacetime is a solution of vacuum Einstein equations with vanishing cosmological constant $\Lambda=0$.

Compactify deSitter space

- The deSitter space as a global manifold can be identified with a quadric Q in \mathbb{R}^{5} given by the equation

$$
-T^{2}+X^{2}+Y^{2}+Z^{2}+W^{2}=H^{2}=\text { const. }
$$

- It acquires a Lorentzian metric from the 5D Minkowski metric $g=-\mathrm{d} T^{2}+\mathrm{d} X^{2}+\mathrm{d} Y^{2}+\mathrm{d} Z^{2}+\mathrm{d} W^{2}$ in \mathbb{R}^{5}.
- Parametrizing Q by $T=\frac{\sinh H t}{H}, X=\frac{\cosh H t}{H} \sin r \sin \theta \cos \phi$, $Y=\frac{\cosh H t}{H} \sin r \sin \theta \sin \phi, Z=\frac{\cosh H t}{H} \sin r \cos \theta$, $W=\frac{\cosh H t}{H} \cos r$, one shows that the metric g on Q is $g=-\mathrm{d} t^{2}+\left(\frac{\cosh H t}{H}\right)^{2}\left(\mathrm{~d} r^{2}+\sin ^{2} r\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)$.
Note that the spacial part is conformal to the standard metric on a 3 -sphere \mathbb{S}^{3}.
- Introduce new coordinate τ such that $\mathrm{d} \tau=\frac{H \mathrm{Ht}}{\cosh H t}$, then
- The deSitter space as a global manifold can be identified with a quadric Q in \mathbb{R}^{5} given by the equation
- It acquires a Lorentzian metric from the 5D Minkowski metric g
- Parametrizing Q by $W=\frac{\cosh H t}{H} \cos r$, one shows that the metric g on Q is

Note that the spacial part is conformal to the standard metric on a 3-sphere

- Introduce new coordinate such that d
- The deSitter space as a global manifold can be identified with a quadric Q in \mathbb{R}^{5} given by the equation

$$
-T^{2}+X^{2}+Y^{2}+Z^{2}+W^{2}=\frac{1}{H}^{2}=\text { const. }
$$

- It acquires a Lorentzian metric from the 5D Minkowski metric g
- Parametrizirg Q by $W=\frac{\cosh H t}{H} \cos r$, one shows that the metric g on Q is

Note that the spacial part is conformal to the standard metric on a 3-sphere

- Introduce new coordinate such that d
- The deSitter space as a global manifold can be identified with a quadric Q in \mathbb{R}^{5} given by the equation

$$
-T^{2}+X^{2}+Y^{2}+Z^{2}+W^{2}=\frac{1}{H}^{2}=\text { const. }
$$

- It acquires a Lorentzian metric from the 5D Minkowski metric $g=-\mathrm{d} T^{2}+\mathrm{d} X^{2}+\mathrm{d} Y^{2}+\mathrm{d} Z^{2}+\mathrm{d} W^{2}$ in \mathbb{R}^{5}.
- Parametrizing Q by $W=\frac{\cosh H t}{H} \cos r$, one shows that the metric g on Q is

Note that the spacial part is conformal to the standard metric on a 3-sphere

- Introduce new coordinate + such that $\mathrm{d} \tau=\frac{H d t}{\cosh H}$, then
- The deSitter space as a global manifold can be identified with a quadric Q in \mathbb{R}^{5} given by the equation

$$
-T^{2}+X^{2}+Y^{2}+Z^{2}+W^{2}=\frac{1}{H}^{2}=\text { const. }
$$

- It acquires a Lorentzian metric from the 5D Minkowski metric $g=-\mathrm{d} T^{2}+\mathrm{d} X^{2}+\mathrm{d} Y^{2}+\mathrm{d} Z^{2}+\mathrm{d} W^{2}$ in \mathbb{R}^{5}.
- Parametrizing Q by $T=\frac{\sinh H t}{H}, X=\frac{\cosh H t}{H} \sin r \sin \theta \cos \phi$, $Y=\frac{\cosh H t}{H} \sin r \sin \theta \sin \phi, Z=\frac{\cosh H t}{H} \sin r \cos \theta$, $W=\frac{\cosh H t}{H} \cos r$, one shows that the metric g on Q is

Note that the spacial part is conformal to the standard metric on a 3-sphere

- Introduce new coordinate τ such that $\mathrm{d} \tau=\frac{H \mathrm{dt}}{\cosh H t}$, then
- The deSitter space as a global manifold can be identified with a quadric Q in \mathbb{R}^{5} given by the equation

$$
-T^{2}+X^{2}+Y^{2}+Z^{2}+W^{2}=\frac{1}{H}^{2}=\text { const. }
$$

- It acquires a Lorentzian metric from the 5D Minkowski metric $g=-\mathrm{d} T^{2}+\mathrm{d} X^{2}+\mathrm{d} Y^{2}+\mathrm{d} Z^{2}+\mathrm{d} W^{2}$ in \mathbb{R}^{5}.
- Parametrizing Q by $T=\frac{\sinh H t}{H}, X=\frac{\cosh H t}{H} \sin r \sin \theta \cos \phi$, $Y=\frac{\cosh H t}{H} \sin r \sin \theta \sin \phi, Z=\frac{\cosh H t}{H} \sin r \cos \theta$, $W=\frac{\cosh H t}{H} \cos r$, one shows that the metric g on Q is

$$
g=-\mathrm{d} t^{2}+\left(\frac{\cosh H t}{H}\right)^{2}\left(\mathrm{~d} r^{2}+\sin ^{2} r\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

Note that the spacial part is conformal to the standard metric on a 3-sphere

- Introduce new coordinate τ such that $\mathrm{d} \tau=\frac{H \mathrm{dt} t}{\cosh H t}$, then
- The deSitter space as a global manifold can be identified with a quadric Q in \mathbb{R}^{5} given by the equation

$$
-T^{2}+X^{2}+Y^{2}+Z^{2}+W^{2}=\frac{1}{H}^{2}=\text { const. }
$$

- It acquires a Lorentzian metric from the 5D Minkowski metric $g=-\mathrm{d} T^{2}+\mathrm{d} X^{2}+\mathrm{d} Y^{2}+\mathrm{d} Z^{2}+\mathrm{d} W^{2}$ in \mathbb{R}^{5}.
- Parametrizing Q by $T=\frac{\sinh H t}{H}, X=\frac{\cosh H t}{H} \sin r \sin \theta \cos \phi$, $Y=\frac{\cosh H t}{H} \sin r \sin \theta \sin \phi, Z=\frac{\cosh H t}{H} \sin r \cos \theta$, $W=\frac{\cosh H t}{H} \cos r$, one shows that the metric g on Q is

$$
g=-\mathrm{d} t^{2}+\left(\frac{\cosh H t}{H}\right)^{2}\left(\mathrm{~d} r^{2}+\sin ^{2} r\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

Note that the spacial part is conformal to the standard metric on a 3-sphere \mathbb{S}^{3}.

- Introduce new coordinate τ such that $\mathrm{d} \tau=\frac{H \mathrm{dt}}{\cosh H t}$, then
- The deSitter space as a global manifold can be identified with a quadric Q in \mathbb{R}^{5} given by the equation

$$
-T^{2}+X^{2}+Y^{2}+Z^{2}+W^{2}=\frac{1}{H}^{2}=\text { const. }
$$

- It acquires a Lorentzian metric from the 5D Minkowski metric $g=-\mathrm{d} T^{2}+\mathrm{d} X^{2}+\mathrm{d} Y^{2}+\mathrm{d} Z^{2}+\mathrm{d} W^{2}$ in \mathbb{R}^{5}.
- Parametrizing Q by $T=\frac{\sinh H t}{H}, X=\frac{\cosh H t}{H} \sin r \sin \theta \cos \phi$, $Y=\frac{\cosh H t}{H} \sin r \sin \theta \sin \phi, Z=\frac{\cosh H t}{H} \sin r \cos \theta$, $W=\frac{\cosh H t}{H} \cos r$, one shows that the metric g on Q is

$$
g=-\mathrm{d} t^{2}+\left(\frac{\cosh H t}{H}\right)^{2}\left(\mathrm{~d} r^{2}+\sin ^{2} r\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

Note that the spacial part is conformal to the standard metric on a 3 -sphere \mathbb{S}^{3}.

- Introduce new coordinate τ such that $\mathrm{d} \tau=\frac{H \mathrm{~d} t}{\cosh H t}$, then
- The deSitter space as a global manifold can be identified with a quadric Q in \mathbb{R}^{5} given by the equation

$$
-T^{2}+X^{2}+Y^{2}+Z^{2}+W^{2}=\frac{1}{H}^{2}=\text { const. }
$$

- It acquires a Lorentzian metric from the 5D Minkowski metric $g=-\mathrm{d} T^{2}+\mathrm{d} X^{2}+\mathrm{d} Y^{2}+\mathrm{d} Z^{2}+\mathrm{d} W^{2}$ in \mathbb{R}^{5}.
- Parametrizing Q by $T=\frac{\sinh H t}{H}, X=\frac{\cosh H t}{H} \sin r \sin \theta \cos \phi$, $Y=\frac{\cosh H t}{H} \sin r \sin \theta \sin \phi, Z=\frac{\cosh H t}{H} \sin r \cos \theta$, $W=\frac{\cosh H t}{H} \cos r$, one shows that the metric g on Q is

$$
g=-\mathrm{d} t^{2}+\left(\frac{\cosh H t}{H}\right)^{2}\left(\mathrm{~d} r^{2}+\sin ^{2} r\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

Note that the spacial part is conformal to the standard metric on a 3 -sphere \mathbb{S}^{3}.

- Introduce new coordinate τ such that $\mathrm{d} \tau=\frac{H \mathrm{~d} t}{\cosh H t}$, then

Compactified deSitter space

$g=\left(\frac{\cosh H t}{H}\right)^{2}\left(-\mathrm{d} \tau^{2}+\left(\mathrm{d} r^{2}+\sin ^{2} r\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)\right)=\left(\frac{\cosh H t}{H}\right)^{2} \hat{g}$,

- where

$$
\hat{g}=-d^{2}+\left(a-2+\sin ^{2}+\left(a n^{2}+\sin ^{2} n a \theta^{2}\right)\right)
$$

is the Minkowski metric.

- Now, $\tau=2 \operatorname{arctg}\left(\operatorname{tgh} \frac{\mathrm{Ht}}{2}\right)$, so since $\operatorname{tgh} \frac{\mathrm{Ht}}{2} \rightarrow \pm 1$ as $t \rightarrow \pm \infty$, then if $t \rightarrow \pm \infty$ the new time variable $\tau \rightarrow \pm \pi$.
- Introducing $\Omega=\frac{H}{\cosh H t}$, we see that $\Omega \rightarrow 0$ when $\tau \rightarrow \pm \pi$.
- We thus have a compactification of the deSitter spacetime Q to $\hat{Q}=[-\pi, \pi] \times \mathbb{S}^{3}$, but now the boundary $\partial \hat{Q}$ corresponding to $\tau= \pm \pi$ is spacelike!

Compactified deSitter space

$$
g=\left(\frac{\cosh H t}{H}\right)^{2}\left(-\mathrm{d} \tau^{2}+\left(\mathrm{d} r^{2}+\sin ^{2} r\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)\right)=\left(\frac{\cosh H t}{H}\right)^{2} \hat{g},
$$

- where

$$
\hat{g}=-\mathrm{d} \tau^{2}+\left(\mathrm{d} r^{2}+\sin ^{2} r\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

is the Minkowski metric.

- Now, $\tau=2 \operatorname{arctg}\left(\operatorname{tgh} \frac{\mathrm{Ht}}{2}\right)$, so since $\operatorname{tgh} \frac{\mathrm{Ht}}{2} \rightarrow \pm 1$ as $t \rightarrow \pm \infty$, then if $t \rightarrow \pm \infty$ the new time variable - Introducing $\Omega=\frac{H}{}$, we see that $\Omega \rightarrow 0$ when $\tau \rightarrow+\pi$.
- We thus have a compactification of the deSitter spacetime Q to $\hat{Q}=[-\pi, \pi] \times \mathbb{S}^{3}$, but now the boundary $\partial \hat{Q}$
corresponding to $\tau= \pm \pi$ is spacelike!

$$
g=\left(\frac{\cosh H t}{H}\right)^{2}\left(-\mathrm{d} \tau^{2}+\left(\mathrm{d} r^{2}+\sin ^{2} r\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)\right)=\left(\frac{\cosh H t}{H}\right)^{2} \hat{g},
$$

- where

$$
\hat{g}=-\mathrm{d} \tau^{2}+\left(\mathrm{d} r^{2}+\sin ^{2} r\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

is the Minkowski metric.

- Now, $\tau=2 \operatorname{arctg}\left(\operatorname{tgh} \frac{\mathrm{Ht}}{2}\right)$, so since $\operatorname{tgh} \frac{\mathrm{Ht}}{2} \rightarrow \pm 1$ as $t \rightarrow \pm \infty$, then if $t \rightarrow \pm \infty$ the new time variable $\tau \rightarrow \pm \pi$.
- Introducing we see that $\Omega \rightarrow 0$ when
- We thus have a compactification of the deSitter spacetime Q to $\hat{Q}=[-\pi, \pi] \times \mathbb{S}^{3}$, but now the boundary $\partial \hat{Q}$
corresponding to $\tau= \pm \pi$ is spacelike!

Compactified deSitter space

$$
g=\left(\frac{\cosh H t}{H}\right)^{2}\left(-\mathrm{d} \tau^{2}+\left(\mathrm{d} r^{2}+\sin ^{2} r\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)\right)=\left(\frac{\cosh H t}{H}\right)^{2} \hat{g},
$$

- where

$$
\hat{g}=-\mathrm{d} \tau^{2}+\left(\mathrm{d} r^{2}+\sin ^{2} r\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

is the Minkowski metric.

- Now, $\tau=2 \operatorname{arctg}\left(\operatorname{tgh} \frac{\mathrm{Ht}}{2}\right)$, so since $\operatorname{tgh} \frac{\mathrm{Ht}}{2} \rightarrow \pm 1$ as $t \rightarrow \pm \infty$, then if $t \rightarrow \pm \infty$ the new time variable $\tau \rightarrow \pm \pi$.
- Introducing $\Omega=\frac{H}{\cosh H t}$, we see that $\Omega \rightarrow 0$ when $\tau \rightarrow \pm \pi$.
- We thus have a compactification of the deSitter spacetime Q to $\hat{Q}=[-\pi, \pi] \times \mathbb{S}^{3}$, but now the boundary $\partial \hat{Q}$
corresponding to $\tau= \pm \pi$ is spacelike!

Compactified deSitter space

$$
g=\left(\frac{\cosh H t}{H}\right)^{2}\left(-\mathrm{d} \tau^{2}+\left(\mathrm{d} r^{2}+\sin ^{2} r\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)\right)=\left(\frac{\cosh H t}{H}\right)^{2} \hat{g},
$$

- where

$$
\hat{g}=-\mathrm{d} \tau^{2}+\left(\mathrm{d} r^{2}+\sin ^{2} r\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

is the Minkowski metric.

- Now, $\tau=2 \operatorname{arctg}\left(\operatorname{tgh} \frac{\mathrm{Ht}}{2}\right)$, so since $\operatorname{tgh} \frac{\mathrm{Ht}}{2} \rightarrow \pm 1$ as $t \rightarrow \pm \infty$, then if $t \rightarrow \pm \infty$ the new time variable $\tau \rightarrow \pm \pi$.
- Introducing $\Omega=\frac{H}{\cosh H t}$, we see that $\Omega \rightarrow 0$ when $\tau \rightarrow \pm \pi$.
- We thus have a compactification of the deSitter spacetime Q to $\hat{Q}=[-\pi, \pi] \times \mathbb{S}^{3}$, but now the boundary $\partial \hat{Q}$ corresponding to $\tau= \pm \pi$ is spacelike!

Compactified deSitter space

Compactified de Sitter spactine

Compactified deSitter space

Compactified de Sitter spactine

Why scri of Minkowski is null and scri of deSitter is spacelike?

One can check that the conformally flat deSitter spacetime satisfies vacuum Einstein's equations with positive cosmological constant \wedge. Actually the deSitter metric

satisfies

To formulate the answer to frame's title question as a theorem we have to make some assumptions (to guarantee existence of scri):

One can check that the conformally flat deSitter spacetime satisfies vacuum Einstein's equations with positive cosmological constant \wedge.
satisfies

To formulate the answer to frame's title question as a theorem we have to make some assumptions (to guarantee existence of scri):

One can check that the conformally flat deSitter spacetime satisfies vacuum Einstein's equations with positive cosmological constant \wedge. Actually the deSitter metric

$$
g=-\mathrm{d} t^{2}+\left(\frac{\cosh H t}{H}\right)^{2}\left(\mathrm{~d} r^{2}+\sin ^{2} r\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

satisfies

To formulate the answer to frame's title question as a theorem we have to make some assumptions (to guarantee existence of scri):

One can check that the conformally flat deSitter spacetime satisfies vacuum Einstein's equations with positive cosmological constant \wedge. Actually the deSitter metric

$$
g=-\mathrm{d} t^{2}+\left(\frac{\cosh H t}{H}\right)^{2}\left(\mathrm{~d} r^{2}+\sin ^{2} r\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

satisfies

$$
\operatorname{Ric}(g)=3 H^{2} g, \text { so } \Lambda=3 H^{2}>0
$$

To formulate the answer to frame's title question as a theorem we have to make some assumptions (to guarantee existence of scri):

One can check that the conformally flat deSitter spacetime satisfies vacuum Einstein's equations with positive cosmological constant \wedge. Actually the deSitter metric

$$
g=-\mathrm{d} t^{2}+\left(\frac{\cosh H t}{H}\right)^{2}\left(\mathrm{~d} r^{2}+\sin ^{2} r\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

satisfies

$$
\operatorname{Ric}(g)=3 H^{2} g, \text { so } \Lambda=3 H^{2}>0
$$

To formulate the answer to frame's title question as a theorem we have to make some assumptions

One can check that the conformally flat deSitter spacetime satisfies vacuum Einstein's equations with positive cosmological constant Λ. Actually the deSitter metric

$$
g=-\mathrm{d} t^{2}+\left(\frac{\cosh H t}{H}\right)^{2}\left(\mathrm{~d} r^{2}+\sin ^{2} r\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

satisfies

$$
\operatorname{Ric}(g)=3 H^{2} g, \text { so } \Lambda=3 H^{2}>0
$$

To formulate the answer to frame's title question as a theorem we have to make some assumptions (to guarantee existence of scri):

One can check that the conformally flat deSitter spacetime satisfies vacuum Einstein's equations with positive cosmological constant Λ. Actually the deSitter metric

$$
g=-\mathrm{d} t^{2}+\left(\frac{\cosh H t}{H}\right)^{2}\left(\mathrm{~d} r^{2}+\sin ^{2} r\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)\right)
$$

satisfies

$$
\operatorname{Ric}(g)=3 H^{2} g, \text { so } \Lambda=3 H^{2}>0
$$

To formulate the answer to frame's title question as a theorem we have to make some assumptions (to guarantee existence of scri):

Assymptotic simplicity

Definition

A smooth spacetime M with metric g is asymptotically simple if there is a smooth manifold \hat{M} with boundary \mathscr{I} and a metric \hat{g} and a smooth scalar function Ω such that

- $M=\operatorname{Int} \hat{M}$,
- $\hat{g}=\Omega^{2} g$,
- $\Omega>0$ in $M ; \Omega=0$ and $\mathrm{d} \Omega \neq 0$ on \mathscr{I},
- every null geodesic in M has a future and a past endpoint on \mathscr{I}.
The last condition is too strong to include spacetimes with black holes. One releases it introducing a notion of a weakly assymptotically simple spacetime (WAS). We will not consider it here, but of course assymptotically simple spacetime is WAS. We have

Assymptotic simplicity

Definition

A smooth spacetime M with metric g is asymptotically simple if there is a smooth manifold \hat{M} with boundary \mathscr{I} and a metric \hat{g} and a smooth scalar function Ω such that

- $M=\operatorname{Int} \hat{M}$,
- $\hat{g}=\Omega^{2} g$,
- $\Omega>0$ in M; $\Omega=0$ and $d \Omega \neq 0$ on,
- every null geodesic in M has a future and a past endpoint on \mathscr{I}.

The last condition is too strong to include spacetimes with black holes. One releases it introducing a notion of a weakly assymptotically simple spacetime (WAS). We will not consider it here, but of course assymptotically simple spacetime is WAS. We have

Definition

A smooth spacetime M with metric g is asymptotically simple if there is a smooth manifold \hat{M} with boundary \mathscr{I} and a metric \hat{g} and a smooth scalar function Ω such that

- every null geodesic in M has a future and a past endpoint

The last condition is too strong to include spacetimes with
black holes. One releases it introducing a notion of a weakly assymptotically simple spacetime (WAS). We will not
consider it here, but of course assymptotically simple
spacetime is WAS. We have

Definition

A smooth spacetime M with metric g is asymptotically simple if there is a smooth manifold \hat{M} with boundary \mathscr{I} and a metric \hat{g} and a smooth scalar function Ω such that

- $M=\operatorname{Int} \hat{M}$,
- every null geodesic in M has a future and a past endpoint

The last condition is too strong to include spacetimes with
black holes. One releases it introducing a notion of a weakly assymptotically simple spacetime (WAS). We will not
consider it here, but of course assymptotically simple
spacetime is WAS. We have

Definition

A smooth spacetime M with metric g is asymptotically simple if there is a smooth manifold \hat{M} with boundary \mathscr{I} and a metric \hat{g} and a smooth scalar function Ω such that

- $M=\operatorname{Int} \hat{M}$,
- $\hat{g}=\Omega^{2} g$,
- every null geodesic in M has a future and a past endpoint

The last condition is too strong to include spacetimes with
black holes. One releases it introducing a notion of a weakly assymptotically simple spacetime (WAS). We will not
consider it here, but of course assymptotically simple
spacetime is WAS. We have

Definition

A smooth spacetime M with metric g is asymptotically simple if there is a smooth manifold \hat{M} with boundary \mathscr{I} and a metric \hat{g} and a smooth scalar function Ω such that

- $M=\operatorname{Int} \hat{M}$,
- $\hat{g}=\Omega^{2} g$,
- $\Omega>0$ in $M ; \Omega=0$ and $\mathrm{d} \Omega \neq 0$ on \mathscr{I},
- every null geodesic in M has a future and a past endpoint

The last condition is too strong to include spacetimes with
black holes. One releases it introducing a notion of a weakly assymptotically simple spacetime (WAS). We will not
consider it here, but of course assymptotically simple
spacetime is WAS. We have

Definition

A smooth spacetime M with metric g is asymptotically simple if there is a smooth manifold \hat{M} with boundary \mathscr{I} and a metric \hat{g} and a smooth scalar function Ω such that

- $M=\operatorname{Int} \hat{M}$,
- $\hat{g}=\Omega^{2} g$,
- $\Omega>0$ in $M ; \Omega=0$ and $\mathrm{d} \Omega \neq 0$ on \mathscr{I},
- every null geodesic in M has a future and a past endpoint on \mathscr{I}.

> The last condition is too strong to include spacetimes with black holes. One releases it introducing a notion of a weakly assymptotically simple spacetime (WAS). We will not
> consider it here, but of course assymptotically simple
> spacetime is WAS. We have

Definition

A smooth spacetime M with metric g is asymptotically simple if there is a smooth manifold \hat{M} with boundary \mathscr{I} and a metric \hat{g} and a smooth scalar function Ω such that

- $M=\operatorname{Int} \hat{M}$,
- $\hat{g}=\Omega^{2} g$,
- $\Omega>0$ in $M ; \Omega=0$ and $\mathrm{d} \Omega \neq 0$ on \mathscr{I},
- every null geodesic in M has a future and a past endpoint on \mathscr{I}.
The last condition is too strong to include spacetimes with black holes. One releases it introducing a notion of a weakly
assymptotically simple spacetime (WAS). We will not
consider it here, but of course assymptotically simple
spacetime is WAS. We have

Definition

A smooth spacetime M with metric g is asymptotically simple if there is a smooth manifold \hat{M} with boundary \mathscr{I} and a metric \hat{g} and a smooth scalar function Ω such that

- $M=\operatorname{Int} \hat{M}$,
- $\hat{g}=\Omega^{2} g$,
- $\Omega>0$ in $M ; \Omega=0$ and $\mathrm{d} \Omega \neq 0$ on \mathscr{I},
- every null geodesic in M has a future and a past endpoint on \mathscr{I}.
The last condition is too strong to include spacetimes with black holes. One releases it introducing a notion of a weakly assymptotically simple spacetime (WAS).
consider it here, but of course assymptotically simple
spacetime is WAS. We have

Definition

A smooth spacetime M with metric g is asymptotically simple if there is a smooth manifold \hat{M} with boundary \mathscr{I} and a metric \hat{g} and a smooth scalar function Ω such that

- $M=\operatorname{Int} \hat{M}$,
- $\hat{g}=\Omega^{2} g$,
- $\Omega>0$ in $M ; \Omega=0$ and $\mathrm{d} \Omega \neq 0$ on \mathscr{I},
- every null geodesic in M has a future and a past endpoint on \mathscr{I}.
The last condition is too strong to include spacetimes with black holes. One releases it introducing a notion of a weakly assymptotically simple spacetime (WAS). We will not consider it here, but of course assymptotically simple spacetime is WAS.

Definition

A smooth spacetime M with metric g is asymptotically simple if there is a smooth manifold \hat{M} with boundary \mathscr{I} and a metric \hat{g} and a smooth scalar function Ω such that

- $M=\operatorname{Int} \hat{M}$,
- $\hat{g}=\Omega^{2} g$,
- $\Omega>0$ in $M ; \Omega=0$ and $\mathrm{d} \Omega \neq 0$ on \mathscr{I},
- every null geodesic in M has a future and a past endpoint on \mathscr{I}.
The last condition is too strong to include spacetimes with black holes. One releases it introducing a notion of a weakly assymptotically simple spacetime (WAS). We will not consider it here, but of course assymptotically simple spacetime is WAS. We have

Assymptotic simplicity

```
Theorem
The boundary of a (weakly) assymptotically simple
spacetimesatisfying Einstein's equations
                                    R
with TH}\mu=0\mathrm{ in the vicinity of }\mathscr{I}\mathrm{ , is
- spacelike if }\Lambda>0\mathrm{ ,
- null if }\Lambda=0\mathrm{ ,
0 and timelike if }\<0\mathrm{ .
```


Theorem

The boundary \mathscr{I} of a (weakly) assymptotically simple spacetimesatisfying Einstein's equations
with $T^{\mu}{ }_{\mu}=0$ in the vicinity of \mathscr{A}, is

- spacelike if $\wedge>0$,
- null if $\Lambda=0$,
- and timelike if $\Lambda<0$.

Theorem
The boundary \mathscr{I} of a (weakly) assymptotically simple spacetimesatisfying Einstein's equations

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}+\Lambda g_{\mu \nu}=\kappa T_{\mu \nu},
$$

with $T^{\mu}{ }_{\mu}=0$ in the vicinity of \mathscr{I}, is

- spacelike if $\Lambda>0$,
- null if $\wedge=0$,
- and timelike if \wedge

Theorem
The boundary \mathscr{I} of a (weakly) assymptotically simple spacetimesatisfying Einstein's equations

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}+\Lambda g_{\mu \nu}=\kappa T_{\mu \nu},
$$

with $T^{\mu}{ }_{\mu}=0$ in the vicinity of \mathscr{I}, is

- spacelike if /
- null if $\wedge=0$,
- and timelike if $/$

Theorem
The boundary \mathscr{I} of a (weakly) assymptotically simple spacetimesatisfying Einstein's equations

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}+\Lambda g_{\mu \nu}=\kappa T_{\mu \nu},
$$

with $T^{\mu}{ }_{\mu}=0$ in the vicinity of \mathscr{I}, is

- spacelike if $\Lambda>0$,
- null if $\Lambda=0$,
- and timelike if \wedge

Theorem
The boundary \mathscr{I} of a (weakly) assymptotically simple spacetimesatisfying Einstein's equations

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}+\Lambda g_{\mu \nu}=\kappa T_{\mu \nu},
$$

with $T^{\mu}{ }_{\mu}=0$ in the vicinity of \mathscr{I}, is

- spacelike if $\Lambda>0$,
- null if $\Lambda=0$,
- and timelike if Λ

Theorem
The boundary \mathscr{I} of a (weakly) assymptotically simple spacetimesatisfying Einstein's equations

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}+\Lambda g_{\mu \nu}=\kappa T_{\mu \nu},
$$

with $T^{\mu}{ }_{\mu}=0$ in the vicinity of \mathscr{I}, is

- spacelike if $\Lambda>0$,
- null if $\Lambda=0$,
- and timelike if $\Lambda<0$.
- Using the transformation for the Levi-Civita connection coefficients for the metric \hat{g} and g of a WAS spacetime, one gets the following relation between the Ricci scalars \hat{R} and R :

$$
R=\Omega^{2} \hat{R}-6 \Omega \hat{\square} \Omega+12 \hat{g}^{\mu \nu} \Omega_{\mu} \Omega_{\nu},
$$

where $\bar{\square}$ is the D'Alambertian operator in the metric \hat{g}.
(Perhaps this formula has some sign errors, because I screwed up the signature conventions; but I believe that it is right.)

- On the other hand, using the Einstein's equastions, we can relate the Ricci sclar curvature R to the trace of the energy momentum tensor $T=T_{\mu}^{\mu}$ and the cosmological constant \wedge. This gives

$$
R=4 \Lambda-\kappa T
$$

- Inserting this into the relation between R and \hat{R} above, and taking into account that Ω vanishes at \mathscr{I}, we see that on \mathscr{I} we have

$$
4 \Lambda-\kappa T=12 \hat{g}^{\mu \nu} \Omega_{\mu} \Omega_{\nu}
$$

- Since $\Omega_{\mu}=\Omega_{, \mu}$ is the gradient of the function Ω, whose 0 defines \mathscr{I}, one immediately gets the conclusions of the Theorem.
- Using the transformation for the Levi-Civita connection coefficients for the metric \hat{g} and g of a WAS spacetime, one gets the following relation between the Ricci scalars \hat{R} and R :
where $\hat{\square}$ is the D'Alambertian operator in the metric \hat{g}. (Perhaps this formula has some sign errors, because I screwed up the signature conventions; but I believe that it is right.)
- On the other hand, using the Einstein's equastions, we can relate the Ricci sclar curvature R to the trace of the energy momentum tensor T - T and the cosmological constant This gives
- Inserting this into the relation between R and \hat{R} above, and taking into account that Ω vanishes at \mathscr{I}, we see that on \mathscr{I} we have
- Since is the gradient of the function Ω, whose 0 defines one irmediately gets the conclusions of the Theorem.
- Using the transformation for the Levi-Civita connection coefficients for the metric \hat{g} and g of a WAS spacetime, one gets the following relation between the Ricci scalars \hat{R} and R :

$$
R=\Omega^{2} \hat{R}-6 \Omega \hat{\square} \Omega+12 \hat{g}^{\mu \nu} \Omega_{\mu} \Omega_{\nu},
$$

where $\hat{\square}$ is the D'Alambertian operator in the metric \hat{g}. (Perhaps this formula has some sign errors, because I screwed up the signature conventions; but I believe that it is right.)

- On the other hand, using the Einstein's equastions, we can relate the Ricci sclar curvature R to the trace of the energy momentum tensor $T=T^{\mu}{ }_{\mu}$ and the cosmological constant This gives
- Inserting this into the relation between R and \hat{R} above, and taking into account that Ω vanishes at \mathscr{I}, we see that on \mathscr{I} we have
- Since is the gradient of the function Ω, whose 0 defines one immediately gets the conclusions of the Theorem.
- Using the transformation for the Levi-Civita connection coefficients for the metric \hat{g} and g of a WAS spacetime, one gets the following relation between the Ricci scalars \hat{R} and R :

$$
R=\Omega^{2} \hat{R}-6 \Omega \hat{\square} \Omega+12 \hat{g}^{\mu \nu} \Omega_{\mu} \Omega_{\nu},
$$

where $\hat{\square}$ is the D'Alambertian operator in the metric \hat{g}.
(Perhaps this formula has some sign errors, because I screwed
up the signature conventions; but I believe that it is right.)

- On the other hand, using the Einstein's equastions, we can relate the Ricci sclar curvature R to the trace of the energy momentum tensor $T=T$ and the cosmological constant This gives
- Inserting this into the relation between R and \hat{R} above, and taking into account that Ω vanishes at \mathscr{I}, we see that on \mathscr{I} we have
- Since is the gradient of the function Ω, whose 0 defines one irnmediately gets the conclusions of the Theorem.
- Using the transformation for the Levi-Civita connection coefficients for the metric \hat{g} and g of a WAS spacetime, one gets the following relation between the Ricci scalars \hat{R} and R :

$$
R=\Omega^{2} \hat{R}-6 \Omega \hat{\square} \Omega+12 \hat{g}^{\mu \nu} \Omega_{\mu} \Omega_{\nu},
$$

where $\hat{\square}$ is the D'Alambertian operator in the metric \hat{g}. (Perhaps this formula has some sign errors, because I screwed up the signature conventions; but I believe that it is right.)

- On the other hand, using the Einstein's equastions, we can relate the Ricci sclar curvature R to the trace of the energy momentum tensor $T=T^{\mu}{ }_{\mu}$ and the cosmological constant This gives
- Inserting this into the relation between R and \hat{R} above, and taking into account that Ω vanishes at \mathscr{I}, we see that on \mathscr{I} we have
- Since is the gradient of the function
- Using the transformation for the Levi-Civita connection coefficients for the metric \hat{g} and g of a WAS spacetime, one gets the following relation between the Ricci scalars \hat{R} and R :

$$
R=\Omega^{2} \hat{R}-6 \Omega \hat{\square} \Omega+12 \hat{g}^{\mu \nu} \Omega_{\mu} \Omega_{\nu},
$$

where $\hat{\square}$ is the D'Alambertian operator in the metric \hat{g}.
(Perhaps this formula has some sign errors, because I screwed up the signature conventions; but I believe that it is right.)

- On the other hand, using the Einstein's equastions, we can relate the Ricci sclar curvature R to the trace of the energy momentum tensor $T=T^{\mu}{ }_{\mu}$ and the cosmological constant Λ.
This gives
- Inserting this into the relation between R and \hat{R} above, and taking into account that Ω vanishes at we see that on

We have

- Since is the gradient of the function
- Using the transformation for the Levi-Civita connection coefficients for the metric \hat{g} and g of a WAS spacetime, one gets the following relation between the Ricci scalars \hat{R} and R :

$$
R=\Omega^{2} \hat{R}-6 \Omega \hat{\square} \Omega+12 \hat{g}^{\mu \nu} \Omega_{\mu} \Omega_{\nu},
$$

where $\hat{\square}$ is the D'Alambertian operator in the metric \hat{g}.
(Perhaps this formula has some sign errors, because I screwed up the signature conventions; but I believe that it is right.)

- On the other hand, using the Einstein's equastions, we can relate the Ricci sclar curvature R to the trace of the energy momentum tensor $T=T^{\mu}{ }_{\mu}$ and the cosmological constant Λ.
This gives

$$
R=4 \wedge-\kappa T .
$$

- Inserting this into the relation between R and R above, and taking into account that Ω vanishes at we see that on have
- Using the transformation for the Levi-Civita connection coefficients for the metric \hat{g} and g of a WAS spacetime, one gets the following relation between the Ricci scalars \hat{R} and R :

$$
R=\Omega^{2} \hat{R}-6 \Omega \hat{\square} \Omega+12 \hat{g}^{\mu \nu} \Omega_{\mu} \Omega_{\nu},
$$

where $\hat{\square}$ is the D'Alambertian operator in the metric \hat{g}.
(Perhaps this formula has some sign errors, because I screwed up the signature conventions; but I believe that it is right.)

- On the other hand, using the Einstein's equastions, we can relate the Ricci sclar curvature R to the trace of the energy momentum tensor $T=T^{\mu}{ }_{\mu}$ and the cosmological constant Λ.
This gives

$$
R=4 \Lambda-\kappa T .
$$

- Inserting this into the relation between R and \hat{R} above, and taking into account that Ω vanishes at \mathscr{I}, we see that on \mathscr{I} we have
- Using the transformation for the Levi-Civita connection coefficients for the metric \hat{g} and g of a WAS spacetime, one gets the following relation between the Ricci scalars \hat{R} and R :

$$
R=\Omega^{2} \hat{R}-6 \Omega \hat{\square} \Omega+12 \hat{g}^{\mu \nu} \Omega_{\mu} \Omega_{\nu},
$$

where $\hat{\square}$ is the D'Alambertian operator in the metric \hat{g}.
(Perhaps this formula has some sign errors, because I screwed up the signature conventions; but I believe that it is right.)

- On the other hand, using the Einstein's equastions, we can relate the Ricci sclar curvature R to the trace of the energy momentum tensor $T=T^{\mu}{ }_{\mu}$ and the cosmological constant Λ.
This gives

$$
R=4 \wedge-\kappa T .
$$

- Inserting this into the relation between R and \hat{R} above, and taking into account that Ω vanishes at \mathscr{I}, we see that on \mathscr{I} we have

$$
4 \wedge-\kappa T=12 \hat{g}^{\mu \nu} \Omega_{\mu} \Omega_{\nu}
$$

- Since
is the gradient of the function Ω, whose 0 defines

- Using the transformation for the Levi-Civita connection coefficients for the metric \hat{g} and g of a WAS spacetime, one gets the following relation between the Ricci scalars \hat{R} and R :

$$
R=\Omega^{2} \hat{R}-6 \Omega \hat{\square} \Omega+12 \hat{g}^{\mu \nu} \Omega_{\mu} \Omega_{\nu},
$$

where $\hat{\square}$ is the D'Alambertian operator in the metric \hat{g}.
(Perhaps this formula has some sign errors, because I screwed up the signature conventions; but I believe that it is right.)

- On the other hand, using the Einstein's equastions, we can relate the Ricci sclar curvature R to the trace of the energy momentum tensor $T=T^{\mu}{ }_{\mu}$ and the cosmological constant Λ.
This gives

$$
R=4 \wedge-\kappa T .
$$

- Inserting this into the relation between R and \hat{R} above, and taking into account that Ω vanishes at \mathscr{I}, we see that on \mathscr{I} we have

$$
4 \wedge-\kappa T=12 \hat{g}^{\mu \nu} \Omega_{\mu} \Omega_{\nu}
$$

- Since $\Omega_{\mu}=\Omega_{, \mu}$ is the gradient of the function Ω, whose 0 defines \mathscr{I}, one immediately gets the conclusions of the Theorem.

Literature

Penrose R, (1968) Structure of Space-Time, in Battelle Rencontres - 1967 Lectures in Mathematics and Physics, eds. DeWitt C M, Wheeler J. A, Princeton University Press

Tod P, (2018) Conformal methods in General Relativity with application to Conformal Cyclic Cosmology: A minicourse at IX IMLG; These are notes by Paul Tod spread among participants of the 9th International Meeting on Lorentz Geometry, held at IMPAN in Warsaw, 18th-22nd June 2018.

Penrose R, (1968) Structure of Space-Time, in Battelle Rencontres - 1967 Lectures in Mathematics and Physics, eds. DeWitt C M, Wheeler J. A, Princeton University Press

> Tod P, (2018) Conformal methods in General Relativity with application to Conformal Cyclic Cosmology: A minicourse at IX IMLG; These are notes by Paul Tod spread among participants of the 9th International Meeting on Lorentz Geometry, held at IMPAN in Warsaw, 18th-22nd June 2018.

Penrose R, (1968) Structure of Space-Time, in Battelle Rencontres - 1967 Lectures in Mathematics and Physics, eds. DeWitt C M, Wheeler J. A, Princeton University Press

Tod P, (2018) Conformal methods in General Relativity with application to Conformal Cyclic Cosmology: A minicourse at IX IMLG; These are notes by Paul Tod spread among participants of the 9th International Meeting on Lorentz Geometry, held at IMPAN in Warsaw, 18th-22nd June 2018.

[^0]: ${ }^{1}$ Recall: spacetime is a 4-dimensional manifold M equipped with a metric go of Lorenterian sigfature (三-1+,+) 引

[^1]: ${ }^{1}$ Recall: spacetime is a 4-dimensional manifold M equipped with a metric g of Lorentzian signature $(-,+,+,+) \equiv$

[^2]: ${ }^{1}$ Recall: spacetime is a 4-dimensional manifold M equipped with a metric g of Lorentzian signature $(-,+,+,+) \equiv$

[^3]: ${ }^{1}$ Recall: spacetime is a 4-dimensional manifold M equipped with a metric g of Lorentzian signature $(-,+,+,+) \equiv$

[^4]: ${ }^{1}$ Recall: spacetime is a 4-dimensional manifold M equipped with a metric g of Lorentzian signature $(-,+,+,+) \equiv$

[^5]: ${ }^{1}$ Recall: spacetime is a 4-dimensional manifold M equipped with a metric g of Lorentzian signature $(-,+,+,+) \equiv$

[^6]: ${ }^{1}$ Recall: spacetime is a 4-dimensional manifold M equipped with a metric g of Lorentzian signature $(-,+,+,+) \equiv$

[^7]: ${ }^{1}$ Recall: spacetime is a 4-dimensional manifold M equipped with a metric g of Lorentzian signature $(-,+,+,+) \equiv$

[^8]: ${ }^{1}$ Recall: spacetime is a 4-dimensional manifold M equipped with a metric g of Lorentzian signature $(-,+,+,+) \equiv$

[^9]: ${ }^{1}$ Recall: spacetime is a 4-dimensional manifold M equipped with a metric g of Lorentzian signature $(-,+,+,+) \equiv$

[^10]: ${ }^{1}$ Recall: spacetime is a 4-dimensional manifold M equipped with a metric g of Lorentzian signature $(-,+,+,+) \equiv$

