Conformal transformations and the beginning of the Universe. Part I.

Pawel Nurowski

Centrum Fizyki Teoretycznej Polska Akademia Nauk

GRIEG running seminar nr. 2, 1.12.2020

- the arena for all physical events is a spacetime a FOUR-dimensional manifold *M* equipped with a *metric g* of *Lorentzian signature* (-,+,+,+),
- points of *M* are physical events; curves in *M* are histories of events,
- because of the Lorentzian signature, there are three categories of curves:
 - **timelike** curves: whose tangent vectors u always satisfy g(u, u) < 0,
 - **spacelike** curves: whose tangent vectors satisfy g(u, u) > 0,
 - null, or using Elie Cartan's name, optical curves: whose tangent *nonzero* vectors satisfy g(u, u) = 0;

- the arena for all physical events is a spacetime a FOUR-dimensional manifold *M* equipped with a *metric g* of *Lorentzian signature* (-,+,+,+),
- points of *M* are physical events; curves in *M* are histories of events,
- because of the Lorentzian signature, there are three categories of curves:
 - **timelike** curves: whose tangent vectors u always satisfy g(u, u) < 0,
 - **spacelike** curves: whose tangent vectors satisfy g(u, u) > 0,
 - null, or using Elie Cartan's name, optical curves: whose tangent *nonzero* vectors satisfy g(u, u) = 0;

- the arena for all physical events is a spacetime a FOUR-dimensional manifold *M* equipped with a *metric g* of *Lorentzian signature* (-,+,+,+),
- points of *M* are physical events; curves in *M* are histories of events,
- because of the Lorentzian signature, there are three categories of curves:
 - **timelike** curves: whose tangent vectors u always satisfy g(u, u) < 0,
 - **spacelike** curves: whose tangent vectors satisfy g(u, u) > 0,
 - null, or using Elie Cartan's name, optical curves: whose tangent *nonzero* vectors satisfy g(u, u) = 0;

- the arena for all physical events is a spacetime a FOUR-dimensional manifold *M* equipped with a *metric g* of *Lorentzian signature* (-,+,+,+),
- points of *M* are physical events; curves in *M* are histories of events,
- because of the Lorentzian signature, there are three categories of curves:
 - **timelike** curves: whose tangent vectors u always satisfy g(u, u) < 0,
 - **spacelike** curves: whose tangent vectors satisfy g(u, u) > 0,
 - null, or using Elie Cartan's name, optical curves: whose tangent *nonzero* vectors satisfy g(u, u) = 0;

- the arena for all physical events is a spacetime a FOUR-dimensional manifold *M* equipped with a *metric g* of *Lorentzian signature* (-,+,+,+),
- points of *M* are physical events; curves in *M* are histories of events,
- because of the Lorentzian signature, there are three categories of curves:
 - **timelike** curves: whose tangent vectors u always satisfy g(u, u) < 0,
 - **spacelike** curves: whose tangent vectors satisfy g(u, u) > 0,
 - null, or using Elie Cartan's name, optical curves: whose tangent *nonzero* vectors satisfy g(u, u) = 0;

- the arena for all physical events is a spacetime a FOUR-dimensional manifold *M* equipped with a *metric g* of *Lorentzian signature* (-,+,+,+),
- points of *M* are physical events; curves in *M* are histories of events,
- because of the Lorentzian signature, there are three categories of curves:
 - **timelike** curves: whose tangent vectors u always satisfy g(u, u) < 0,
 - **spacelike** curves: whose tangent vectors satisfy g(u, u) > 0,
 - null, or using Elie Cartan's name, optical curves: whose tangent *nonzero* vectors satisfy g(u, u) = 0;

- the arena for all physical events is a spacetime a FOUR-dimensional manifold *M* equipped with a *metric g* of *Lorentzian signature* (-,+,+,+),
- points of *M* are physical events; curves in *M* are histories of events,
- because of the Lorentzian signature, there are three categories of curves:
 - **timelike** curves: whose tangent vectors u always satisfy g(u, u) < 0,
 - **spacelike** curves: whose tangent vectors satisfy g(u, u) > 0,
 - null, or using Elie Cartan's name, optical curves: whose tangent *nonzero* vectors satisfy g(u, u) = 0;

- the arena for all physical events is a spacetime a FOUR-dimensional manifold *M* equipped with a *metric g* of *Lorentzian signature* (-,+,+,+),
- points of *M* are physical events; curves in *M* are histories of events,
- because of the Lorentzian signature, there are three categories of curves:
 - **timelike** curves: whose tangent vectors u always satisfy g(u, u) < 0,
 - spacelike curves: whose tangent vectors satisfy g(u, u) > 0,
 - null, or using Elie Cartan's name, optical curves: whose tangent *nonzero* vectors satisfy g(u, u) = 0;

- the arena for all physical events is a spacetime a FOUR-dimensional manifold *M* equipped with a *metric g* of *Lorentzian signature* (-,+,+,+),
- points of *M* are physical events; curves in *M* are histories of events,
- because of the Lorentzian signature, there are three categories of curves:
 - **timelike** curves: whose tangent vectors u always satisfy g(u, u) < 0,
 - **spacelike** curves: whose tangent vectors satisfy g(u, u) > 0,
 - null, or using Elie Cartan's name, optical curves: whose tangent *nonzero* vectors satisfy g(u, u) = 0;

- the arena for all physical events is a spacetime a FOUR-dimensional manifold *M* equipped with a *metric g* of *Lorentzian signature* (-,+,+,+),
- points of *M* are physical events; curves in *M* are histories of events,
- because of the Lorentzian signature, there are three categories of curves:
 - **timelike** curves: whose tangent vectors u always satisfy g(u, u) < 0,
 - **spacelike** curves: whose tangent vectors satisfy g(u, u) > 0,
 - null, or using Elie Cartan's name, optical curves: whose tangent *nonzero* vectors satisfy g(u, u) = 0;

- **Curves** representing movement of particles in spacetime **are** particles' **worldlines**; physically **realistic particles** have worldlines which are:
 - either everywhere timelike, if they have mass, or
 - optical, if they are massless (they represent e.g. photons~ particles of light);
 - curves whose tangent vectors are never spacelike are called causal; causal curves correspond to worldlines of physically acceptable particles;
- Paricles in free fall have worldlines, which are affinely parametrized causal geodesics. Their normalized tangent vectors u satisfy

$$\nabla_u u = 0;$$

- **Curves** representing movement of particles in spacetime **are** particles' **worldlines**; physically **realistic particles** have worldlines which are:
 - either everywhere timelike, if they have mass, or
 - optical, if they are massless (they represent e.g. photons~ particles of light);
 - curves whose tangent vectors are never spacelike are called causal; causal curves correspond to worldlines of physically acceptable particles;
- Paricles in free fall have worldlines, which are affinely parametrized causal geodesics. Their normalized tangent vectors u satisfy

$$\nabla_u u = 0;$$

- Curves representing movement of particles in spacetime are particles' worldlines; physically realistic particles have worldlines which are:
 - either everywhere timelike, if they have mass, or
 - optical, if they are massless (they represent e.g. photons~ particles of light);
 - curves whose tangent vectors are never spacelike are called causal; causal curves correspond to worldlines of physically acceptable particles;
- Paricles in free fall have worldlines, which are affinely parametrized causal geodesics. Their normalized tangent vectors u satisfy

$$\nabla_u u = 0;$$

- Curves representing movement of particles in spacetime are particles' worldlines; physically realistic particles have worldlines which are:
 - either everywhere timelike, if they have mass, or
 - optical, if they are massless (they represent e.g. photons~ particles of light);
 - curves whose tangent vectors are never spacelike are called causal; causal curves correspond to worldlines of physically acceptable particles;
- Paricles in free fall have worldlines, which are affinely parametrized causal geodesics. Their normalized tangent vectors u satisfy

$$\nabla_u u = 0;$$

- Curves representing movement of particles in spacetime are particles' worldlines; physically realistic particles have worldlines which are:
 - either everywhere timelike, if they have mass, or
 - optical, if they are massless (they represent e.g. photons~ particles of light);
 - curves whose tangent vectors are never spacelike are called causal; causal curves correspond to worldlines of physically acceptable particles;
- Paricles in free fall have worldlines, which are affinely parametrized causal geodesics. Their normalized tangent vectors u satisfy

$$\nabla_u u = 0;$$

- Curves representing movement of particles in spacetime are particles' worldlines; physically realistic particles have worldlines which are:
 - either everywhere timelike, if they have mass, or
 - optical, if they are massless (they represent e.g. photons~ particles of light);
 - curves whose tangent vectors are never spacelike are called causal; causal curves correspond to worldlines of physically acceptable particles;
- Paricles in free fall have worldlines, which are affinely parametrized causal geodesics. Their normalized tangent vectors u satisfy

$$\nabla_u u = 0;$$

- Curves representing movement of particles in spacetime are particles' worldlines; physically realistic particles have worldlines which are:
 - either everywhere timelike, if they have mass, or
 - optical, if they are massless (they represent e.g. photons~ particles of light);
 - curves whose tangent vectors are never spacelike are called causal; causal curves correspond to worldlines of physically acceptable particles;
- Paricles in **free fall** have worldlines, which are **affinely** parametrized **causal geodesics**. Their **normalized** tangent vectors *u* satisfy

$$\nabla_u u = 0;$$

- **Curves** representing movement of particles in spacetime **are** particles' **worldlines**; physically **realistic particles** have worldlines which are:
 - either everywhere timelike, if they have mass, or
 - optical, if they are massless (they represent e.g. photons~ particles of light);
 - curves whose tangent vectors are never spacelike are called causal; causal curves correspond to worldlines of physically acceptable particles;
- Paricles in free fall have worldlines, which are affinely parametrized causal geodesics. Their normalized tangent vectors u satisfy

 $\nabla_u u = 0;$

- **Curves** representing movement of particles in spacetime **are** particles' **worldlines**; physically **realistic particles** have worldlines which are:
 - either everywhere timelike, if they have mass, or
 - optical, if they are massless (they represent e.g. photons~ particles of light);
 - curves whose tangent vectors are never spacelike are called causal; causal curves correspond to worldlines of physically acceptable particles;
- Paricles in free fall have worldlines, which are affinely parametrized causal geodesics. Their normalized tangent vectors u satisfy

$$\nabla_u u = 0;$$

- **Curves** representing movement of particles in spacetime **are** particles' **worldlines**; physically **realistic particles** have worldlines which are:
 - either everywhere timelike, if they have mass, or
 - optical, if they are massless (they represent e.g. photons~ particles of light);
 - curves whose tangent vectors are never spacelike are called causal; causal curves correspond to worldlines of physically acceptable particles;
- Paricles in free fall have worldlines, which are affinely parametrized causal geodesics. Their normalized tangent vectors u satisfy

$$\nabla_u u = 0;$$

- In GR every spacetime satisfies Einstein's field equiations

 $\mathsf{Ric} - \frac{1}{2}\mathsf{Rg} + \Lambda g = \kappa \mathsf{T},$

- where Λ is a (cosmological) constant, κ is a universal constant (we choose units that it is equal to 1), *Ric* is the Ricci tensor of *g*, *R* is its Ricci scalar, and *T* is the **energy momentum tensor**, which represents the matter content of spacetime;
- Once *g* satisfying Einstein's equations is given in *M*, the dynamics of **free** particles's movement is goverened by a simple rule: knowing a position *p* and velocity *u* of a particle at *p*, follow a geodesic passing through *p* and tangent to *u*; this is the worldline of the considered particle.

- In GR every spacetime satisfies Einstein's field equiations

 $\mathsf{Ric} - \frac{1}{2}\mathsf{Rg} + \Lambda g = \kappa \mathsf{T},$

where Λ is a (cosmological) constant, κ is a universal constant (we choose units that it is equal to 1), *Ric* is the Ricci tensor of *g*, *R* is its Ricci scalar, and *T* is the **energy momentum tensor**, which represents the matter content of spacetime;

• Once *g* satisfying Einstein's equations is given in *M*, the dynamics of **free** particles's movement is goverened by a simple rule: knowing a position *p* and velocity *u* of a particle at *p*, follow a geodesic passing through *p* and tangent to *u*; this is the worldline of the considered particle.

- In GR every spacetime satisfies Einstein's field equiations

 $Ric - \frac{1}{2}Rg + \Lambda g = \kappa T,$

- where Λ is a (cosmological) constant, κ is a universal constant (we choose units that it is equal to 1), *Ric* is the Ricci tensor of *g*, *R* is its Ricci scalar, and *T* is the **energy momentum tensor**, which represents the matter content of spacetime;
- Once *g* satisfying Einstein's equations is given in *M*, the dynamics of **free** particles's movement is goverened by a simple rule: knowing a position *p* and velocity *u* of a particle at *p*, follow a geodesic passing through *p* and tangent to *u*; this is the worldline of the considered particle.

- In GR every spacetime satisfies Einstein's field equiations

 $Ric - \frac{1}{2}Rg + \Lambda g = \kappa T,$

where Λ is a (cosmological) constant, κ is a universal constant (we choose units that it is equal to 1), *Ric* is the Ricci tensor of *g*, *R* is its Ricci scalar, and *T* is the **energy momentum tensor**, which represents the matter content of spacetime;

• Once *g* satisfying Einstein's equations is given in *M*, the dynamics of **free** particles's movement is goverened by a simple rule: knowing a position *p* and velocity *u* of a particle at *p*, follow a geodesic passing through *p* and tangent to *u*; this is the worldline of the considered particle.

- In GR every spacetime satisfies Einstein's field equiations

 $Ric - \frac{1}{2}Rg + \Lambda g = \kappa T,$

where Λ is a (cosmological) constant, κ is a universal constant (we choose units that it is equal to 1), *Ric* is the Ricci tensor of *g*, *R* is its Ricci scalar, and *T* is the **energy momentum tensor**, which represents the matter content of spacetime;

• Once *g* satisfying Einstein's equations is given in *M*, the dynamics of **free** particles's movement is goverened by a simple rule: knowing a position *p* and velocity *u* of a particle at *p*, follow a geodesic passing through *p* and tangent to *u*; this is the worldline of the considered particle.

- In GR every spacetime satisfies Einstein's field equiations

 $Ric - \frac{1}{2}Rg + \Lambda g = \kappa T,$

where Λ is a (cosmological) constant, κ is a universal constant (we choose units that it is equal to 1), *Ric* is the Ricci tensor of *g*, *R* is its Ricci scalar, and *T* is the **energy momentum tensor**, which represents the matter content of spacetime;

Once g satisfying Einstein's equations is given in M, the dynamics of free particles's movement is goverened by a simple rule: knowing a position p and velocity u of a particle at p, follow a geodesic passing through p and tangent to u; this is the worldline of the considered particle.

- In GR every spacetime satisfies Einstein's field equiations

 $Ric - \frac{1}{2}Rg + \Lambda g = \kappa T,$

where Λ is a (cosmological) constant, κ is a universal constant (we choose units that it is equal to 1), *Ric* is the Ricci tensor of *g*, *R* is its Ricci scalar, and *T* is the **energy momentum tensor**, which represents the matter content of spacetime;

Once g satisfying Einstein's equations is given in M, the dynamics of free particles's movement is goverened by a simple rule: knowing a position p and velocity u of a particle at p, follow a geodesic passing through p and tangent to u; this is the worldline of the considered particle.

- Einstein's equations: $R_{\mu\nu} \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = T_{\mu\nu}$, $R = R_{\mu\nu}g^{\mu\nu}$, and $g^{\mu\nu}g_{\nu\rho} = \delta^{\mu}{}_{\rho}$.
- Here $T_{\mu\nu} = T_{\nu\mu}$ is symmetric. Although $T_{\mu\nu}$ is symmetric, the *endomorphism* tensor $T^{\mu}{}_{\nu} = g^{\mu\rho}T_{\rho\nu}$, due to the Lorentzian signature of the metric *g*, is *not*. Many algebraic types of *T*!
- Since $T^{\mu}{}_{\nu} = R^{\mu}{}_{\nu} + (\Lambda \frac{1}{2}R)\delta^{\mu}{}_{\nu}$ the eigenvalues λ_{T} of the endomorphism *T* **differ merely by a shift** $\lambda_{T} = \lambda_{R} + \Lambda \frac{1}{2}R$ from the eigenvalues λ_{R} of *Ric*. Therefore, due to the Einstein's equations we may speak about algebraic classification of the energy momentum tensor, or Ricci tensor, and use for it the usual Jordan classification of endomorphisms in \mathbb{R}^{4} .
- Note however, that because of signature of the metric g one can atribute a causality to the eigenspaces, telling if the eigenspace is timelike, spacelike or optical (Plebański!).

- Einstein's equations: $R_{\mu\nu} \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = T_{\mu\nu}$, $R = R_{\mu\nu}g^{\mu\nu}$, and $g^{\mu\nu}g_{\nu\rho} = \delta^{\mu}{}_{\rho}$.
- Here $T_{\mu\nu} = T_{\nu\mu}$ is symmetric. Although $T_{\mu\nu}$ is symmetric, the *endomorphism* tensor $T^{\mu}{}_{\nu} = g^{\mu\rho}T_{\rho\nu}$, due to the Lorentzian signature of the metric *g*, is *not*. Many algebraic types of *T*!
- Since $T^{\mu}{}_{\nu} = R^{\mu}{}_{\nu} + (\Lambda \frac{1}{2}R)\delta^{\mu}{}_{\nu}$ the eigenvalues λ_{T} of the endomorphism *T* **differ merely by a shift** $\lambda_{T} = \lambda_{R} + \Lambda \frac{1}{2}R$ from the eigenvalues λ_{R} of *Ric*. Therefore, due to the Einstein's equations we may speak about algebraic classification of the energy momentum tensor, or Ricci tensor, and use for it the usual Jordan classification of endomorphisms in \mathbb{R}^{4} .
- Note however, that because of signature of the metric g one can atribute a causality to the eigenspaces, telling if the eigenspace is timelike, spacelike or optical (Plebański!).

- Einstein's equations: $R_{\mu\nu} \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = T_{\mu\nu}$, $R = R_{\mu\nu}g^{\mu\nu}$, and $g^{\mu\nu}g_{\nu\rho} = \delta^{\mu}{}_{\rho}$.
- Here $T_{\mu\nu} = T_{\nu\mu}$ is *symmetric*. Although $T_{\mu\nu}$ is symmetric, the *endomorphism* tensor $T^{\mu}{}_{\nu} = g^{\mu\rho}T_{\rho\nu}$, due to the Lorentzian signature of the metric *g*, is *not*. Many algebraic types of *T*!
- Since $T^{\mu}{}_{\nu} = R^{\mu}{}_{\nu} + (\Lambda \frac{1}{2}R)\delta^{\mu}{}_{\nu}$ the eigenvalues λ_{T} of the endomorphism *T* **differ merely by a shift** $\lambda_{T} = \lambda_{R} + \Lambda \frac{1}{2}R$ from the eigenvalues λ_{R} of *Ric*. Therefore, due to the Einstein's equations we may speak about algebraic classification of the energy momentum tensor, or Ricci tensor, and use for it the usual Jordan classification of endomorphisms in \mathbb{R}^{4} .
- Note however, that because of signature of the metric g one can atribute a causality to the eigenspaces, telling if the eigenspace is timelike, spacelike or optical (Plebański!).

- Einstein's equations: $R_{\mu\nu} \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = T_{\mu\nu}$, $R = R_{\mu\nu}g^{\mu\nu}$, and $g^{\mu\nu}g_{\nu\rho} = \delta^{\mu}{}_{\rho}$.
- Here $T_{\mu\nu} = T_{\nu\mu}$ is *symmetric*. Although $T_{\mu\nu}$ is symmetric, the *endomorphism* tensor $T^{\mu}{}_{\nu} = g^{\mu\rho}T_{\rho\nu}$, due to the Lorentzian signature of the metric *g*, is *not*. Many algebraic types of *T*!
- Since $T^{\mu}{}_{\nu} = R^{\mu}{}_{\nu} + (\Lambda \frac{1}{2}R)\delta^{\mu}{}_{\nu}$ the eigenvalues λ_{T} of the endomorphism *T* **differ merely by a shift** $\lambda_{T} = \lambda_{R} + \Lambda \frac{1}{2}R$ from the eigenvalues λ_{R} of *Ric*. Therefore, due to the Einstein's equations we may speak about algebraic classification of the energy momentum tensor, or Ricci tensor, and use for it the usual Jordan classification of endomorphisms in \mathbb{R}^{4} .
- Note however, that because of signature of the metric g one can atribute a causality to the eigenspaces, telling if the eigenspace is timelike, spacelike or optical (Plebański!).

- Einstein's equations: $R_{\mu\nu} \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = T_{\mu\nu}$, $R = R_{\mu\nu}g^{\mu\nu}$, and $g^{\mu\nu}g_{\nu\rho} = \delta^{\mu}{}_{\rho}$.
- Here $T_{\mu\nu} = T_{\nu\mu}$ is *symmetric*. Although $T_{\mu\nu}$ is symmetric, the *endomorphism* tensor $T^{\mu}{}_{\nu} = g^{\mu\rho}T_{\rho\nu}$, due to the Lorentzian signature of the metric *g*, is *not*. Many algebraic types of *T*!
- Since T^μ_ν = R^μ_ν + (Λ ½R)δ^μ_ν the eigenvalues λ_T of the endomorphism T differ merely by a shift λ_T = λ_R + Λ ½R from the eigenvalues λ_R of *Ric*. Therefore, due to the Einstein's equations we may speak about algebraic classification of the energy momentum tensor, or Ricci tensor, and use for it the usual Jordan
 - classification of endomorphisms in \mathbb{R}^4 .
- Note however, that because of signature of the metric g one can atribute a causality to the eigenspaces, telling if the eigenspace is timelike, spacelike or optical (Plebański!).

- Einstein's equations: $R_{\mu\nu} \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = T_{\mu\nu}$, $R = R_{\mu\nu}g^{\mu\nu}$, and $g^{\mu\nu}g_{\nu\rho} = \delta^{\mu}{}_{\rho}$.
- Here $T_{\mu\nu} = T_{\nu\mu}$ is *symmetric*. Although $T_{\mu\nu}$ is symmetric, the *endomorphism* tensor $T^{\mu}{}_{\nu} = g^{\mu\rho}T_{\rho\nu}$, due to the Lorentzian signature of the metric *g*, is *not*. Many algebraic types of *T*!
- Since $T^{\mu}{}_{\nu} = R^{\mu}{}_{\nu} + (\Lambda \frac{1}{2}R)\delta^{\mu}{}_{\nu}$ the eigenvalues λ_{T} of the endomorphism *T* **differ merely by a shift** $\lambda_{T} = \lambda_{R} + \Lambda \frac{1}{2}R$ from the eigenvalues λ_{R} of *Ric*. Therefore, due to the Einstein's equations we may speak about algebraic classification of the energy momentum tensor, or Ricci tensor, and use for it the usual Jordan classification of endomorphisms in \mathbb{R}^{4} .
- Note however, that because of signature of the metric g one can atribute a causality to the eigenspaces, telling if the eigenspace is timelike, spacelike or optical (Plebański!).

- Einstein's equations: $R_{\mu\nu} \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = T_{\mu\nu}$, $R = R_{\mu\nu}g^{\mu\nu}$, and $g^{\mu\nu}g_{\nu\rho} = \delta^{\mu}{}_{\rho}$.
- Here $T_{\mu\nu} = T_{\nu\mu}$ is *symmetric*. Although $T_{\mu\nu}$ is symmetric, the *endomorphism* tensor $T^{\mu}{}_{\nu} = g^{\mu\rho}T_{\rho\nu}$, due to the Lorentzian signature of the metric *g*, is *not*. Many algebraic types of *T*!
- Since $T^{\mu}{}_{\nu} = R^{\mu}{}_{\nu} + (\Lambda \frac{1}{2}R)\delta^{\mu}{}_{\nu}$ the eigenvalues λ_{T} of the endomorphism T differ merely by a shift
 - $\lambda_T = \lambda_R + \Lambda \frac{1}{2}R$ from the eigenvalues λ_R of *Ric*.
 - Therefore, due to the Einstein's equations we may speak about algebraic classification of the energy momentum tensor, or Ricci tensor, and use for it the usual Jordan classification of endomorphisms in \mathbb{R}^4 .
- Note however, that because of signature of the metric g one can atribute a causality to the eigenspaces, telling if the eigenspace is timelike, spacelike or optical (Plebański!).

- Einstein's equations: $R_{\mu\nu} \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = T_{\mu\nu}$, $R = R_{\mu\nu}g^{\mu\nu}$, and $g^{\mu\nu}g_{\nu\rho} = \delta^{\mu}{}_{\rho}$.
- Here $T_{\mu\nu} = T_{\nu\mu}$ is *symmetric*. Although $T_{\mu\nu}$ is symmetric, the *endomorphism* tensor $T^{\mu}{}_{\nu} = g^{\mu\rho}T_{\rho\nu}$, due to the Lorentzian signature of the metric *g*, is *not*. Many algebraic types of *T*!
- Since T^μ_ν = R^μ_ν + (Λ ¹/₂R)δ^μ_ν the eigenvalues λ_T of the endomorphism *T* differ merely by a shift λ_T = λ_R + Λ ¹/₂R from the eigenvalues λ_R of *Ric*. Therefore, due to the Einstein's equations we may speak about algebraic classification of the energy momentum tensor, or Ricci tensor, and use for it the usual Jordan classification of endomorphisms in ℝ⁴.
- Note however, that because of signature of the metric g one can atribute a causality to the eigenspaces, telling if the eigenspace is timelike, spacelike or optical (Plebański!).
- Einstein's equations: $R_{\mu\nu} \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = T_{\mu\nu}$, $R = R_{\mu\nu}g^{\mu\nu}$, and $g^{\mu\nu}g_{\nu\rho} = \delta^{\mu}{}_{\rho}$.
- Here $T_{\mu\nu} = T_{\nu\mu}$ is *symmetric*. Although $T_{\mu\nu}$ is symmetric, the *endomorphism* tensor $T^{\mu}{}_{\nu} = g^{\mu\rho}T_{\rho\nu}$, due to the Lorentzian signature of the metric *g*, is *not*. Many algebraic types of *T*!
- Since T^μ_ν = R^μ_ν + (Λ ¹/₂R)δ^μ_ν the eigenvalues λ_T of the endomorphism *T* differ merely by a shift λ_T = λ_R + Λ ¹/₂R from the eigenvalues λ_R of *Ric*. Therefore, due to the Einstein's equations we may speak about algebraic classification of the energy momentum tensor, or Ricci tensor, and use for it the usual Jordan classification of endomorphisms in ℝ⁴.
- Note however, that because of signature of the metric g one can atribute a causality to the eigenspaces, telling if the eigenspace is timelike, spacelike or optical (Plebańskil).

- Einstein's equations: $R_{\mu\nu} \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = T_{\mu\nu}$, $R = R_{\mu\nu}g^{\mu\nu}$, and $g^{\mu\nu}g_{\nu\rho} = \delta^{\mu}{}_{\rho}$.
- Here $T_{\mu\nu} = T_{\nu\mu}$ is *symmetric*. Although $T_{\mu\nu}$ is symmetric, the *endomorphism* tensor $T^{\mu}{}_{\nu} = g^{\mu\rho}T_{\rho\nu}$, due to the Lorentzian signature of the metric *g*, is *not*. Many algebraic types of *T*!
- Since T^μ_ν = R^μ_ν + (Λ ¹/₂R)δ^μ_ν the eigenvalues λ_T of the endomorphism T differ merely by a shift λ_T = λ_R + Λ ¹/₂R from the eigenvalues λ_R of *Ric*. Therefore, due to the Einstein's equations we may speak about algebraic classification of the energy momentum tensor, or Ricci tensor, and use for it the usual Jordan classification of endomorphisms in ℝ⁴.
- Note however, that because of signature of the metric g one can atribute a causality to the eigenspaces, telling if the eigenspace is timelike, spacelike or optical (Plebański!).

- The simplest energy momentum tensor, is the energy momentum tensor of cosmological constant type: the Ricci tensor has one real eigenvalue Λ = ¹/₄ R of multiplicity four. We have Ric = Λg. The metric g satisfies mathematicans' Einstein's equations.
- A special case is if the quadruple eigenvalue is equal to zero; in such case we have the Ricci flat spacetimes, Ric = 0.
- Spacetimes with Ricci tensor of cosmological type physicsts call vaccuum solutions; with (∧ ≠ 0) or without (∧ = 0) cosmological constant.

- The simplest energy momentum tensor, is the energy momentum tensor of cosmological constant type: the Ricci tensor has one real eigenvalue Λ = ¹/₄ R of multiplicity four. We have Ric = Λg. The metric g satisfies mathematicans' Einstein's equations.
- A special case is if the quadruple eigenvalue is equal to zero; in such case we have the Ricci flat spacetimes, Ric = 0.
- Spacetimes with Ricci tensor of cosmological type physicsts call vaccuum solutions; with ($\Lambda \neq 0$) or without ($\Lambda = 0$) cosmological constant.

- The simplest energy momentum tensor, is the energy momentum tensor of cosmological constant type: the Ricci tensor has one real eigenvalue Λ = ¹/₄ R of multiplicity four. We have Ric = Λg. The metric g satisfies mathematicans' Einstein's equations.
- A special case is if the quadruple eigenvalue is equal to zero; in such case we have the Ricci flat spacetimes, Ric = 0.
- Spacetimes with Ricci tensor of cosmological type physicsts call vaccuum solutions; with (∧ ≠ 0) or without (∧ = 0) cosmological constant.

- The simplest energy momentum tensor, is the energy momentum tensor of cosmological constant type: the Ricci tensor has one real eigenvalue Λ = ¹/₄ R of multiplicity four. We have Ric = Λg. The metric g satisfies mathematicans' Einstein's equations.
- A special case is if the **quadruple eigenvalue is equal to zero**; in such case we have the **Ricci flat spacetimes**, *Ric* = 0.
- Spacetimes with Ricci tensor of cosmological type physicsts call vaccuum solutions; with (∧ ≠ 0) or without (∧ = 0) cosmological constant.

- The simplest energy momentum tensor, is the energy momentum tensor of cosmological constant type: the Ricci tensor has one real eigenvalue ∧ = ¼ R of multiplicity four. We have Ric = ∧g. The metric g satisfies mathematicans' Einstein's equations.
- A special case is if the quadruple eigenvalue is equal to zero; in such case we have the Ricci flat spacetimes, Ric = 0.
- Spacetimes with Ricci tensor of cosmological type physicsts call vaccuum solutions; with (∧ ≠ 0) or without (∧ = 0) cosmological constant.

- The simplest energy momentum tensor, is the energy momentum tensor of cosmological constant type: the Ricci tensor has one real eigenvalue Λ = ¹/₄ R of multiplicity four. We have Ric = Λg. The metric g satisfies mathematicans' Einstein's equations.
- A special case is if the **quadruple eigenvalue is equal to zero**; in such case we have the **Ricci flat spacetimes**, *Ric* = 0.
- Spacetimes with Ricci tensor of cosmological type physicsts call vaccuum solutions; with (∧ ≠ 0) or without (∧ = 0) cosmological constant.

- The simplest energy momentum tensor, is the energy momentum tensor of **cosmological constant type**: the Ricci tensor has **one real eigenvalue** $\Lambda = \frac{1}{4}R$ of **multiplicity four**. We have $Ric = \Lambda g$. The metric g satisfies **mathematicans**' **Einstein's equations**.
- A special case is if the quadruple eigenvalue is equal to zero; in such case we have the Ricci flat spacetimes, Ric = 0.
- Spacetimes with Ricci tensor of cosmological type physicsts call vaccuum solutions; with (∧ ≠ 0) or without (∧ = 0) cosmological constant.

- The simplest energy momentum tensor, is the energy momentum tensor of cosmological constant type: the Ricci tensor has one real eigenvalue Λ = ¹/₄ R of multiplicity four. We have *Ric* = Λg. The metric g satisfies mathematicans' Einstein's equations.
- A special case is if the quadruple eigenvalue is equal to zero; in such case we have the Ricci flat spacetimes, Ric = 0.
- Spacetimes with Ricci tensor of cosmological type physicsts call vaccuum solutions; with (∧ ≠ 0) or without (∧ = 0) cosmological constant.

- The simplest energy momentum tensor, is the energy momentum tensor of **cosmological constant type**: the Ricci tensor has **one real eigenvalue** $\Lambda = \frac{1}{4}R$ of **multiplicity four**. We have $Ric = \Lambda g$. The metric g satisfies **mathematicans' Einstein's equations**.
- A special case is if the quadruple eigenvalue is equal to zero; in such case we have the Ricci flat spacetimes, Ric = 0.
- Spacetimes with Ricci tensor of cosmological type physicsts call vaccuum solutions; with (∧ ≠ 0) or without (∧ = 0) cosmological constant.

- The simplest energy momentum tensor, is the energy momentum tensor of **cosmological constant type**: the Ricci tensor has **one real eigenvalue** $\Lambda = \frac{1}{4}R$ of **multiplicity four**. We have $Ric = \Lambda g$. The metric g satisfies **mathematicans' Einstein's equations**.
- A special case is if the quadruple eigenvalue is equal to zero; in such case we have the Ricci flat spacetimes, Ric = 0.
- Spacetimes with Ricci tensor of cosmological type physicsts call vaccuum solutions; with (∧ ≠ 0) or without (∧ = 0) cosmological constant.

- The simplest energy momentum tensor, is the energy momentum tensor of **cosmological constant type**: the Ricci tensor has **one real eigenvalue** $\Lambda = \frac{1}{4}R$ of **multiplicity four**. We have $Ric = \Lambda g$. The metric g satisfies **mathematicans' Einstein's equations**.
- A special case is if the quadruple eigenvalue is equal to zero; in such case we have the Ricci flat spacetimes, Ric = 0.
- Spacetimes with Ricci tensor of cosmological type physicsts call vaccuum solutions; with (∧ ≠ 0) or without (∧ = 0) cosmological constant.

- The simplest energy momentum tensor, is the energy momentum tensor of **cosmological constant type**: the Ricci tensor has **one real eigenvalue** $\Lambda = \frac{1}{4}R$ of **multiplicity four**. We have $Ric = \Lambda g$. The metric g satisfies **mathematicans' Einstein's equations**.
- A special case is if the quadruple eigenvalue is equal to zero; in such case we have the Ricci flat spacetimes, Ric = 0.
- Spacetimes with Ricci tensor of cosmological type physicsts call vaccuum solutions; with (∧ ≠ 0) or without (∧ = 0) cosmological constant.

- The simplest energy momentum tensor, is the energy momentum tensor of **cosmological constant type**: the Ricci tensor has **one real eigenvalue** $\Lambda = \frac{1}{4}R$ of **multiplicity four**. We have $Ric = \Lambda g$. The metric g satisfies **mathematicans' Einstein's equations**.
- A special case is if the quadruple eigenvalue is equal to zero; in such case we have the Ricci flat spacetimes, Ric = 0.
- Spacetimes with Ricci tensor of cosmological type physicsts call vaccuum solutions; with (Λ ≠ 0) or without (Λ = 0) cosmological constant.

with $u^{\mu} = g^{\mu\nu} u_{\nu}$ a **unit timelike** vector $u^{\mu} u_{\nu} = -1$. Here μ is a scalar function describing the **energy density** of the fluid, and p is a scalar function describing its **preasure**. The timelike unit vector u^{μ} is the 4-velocity of particles of the fluid. In the frame **comoving with the fluid** we have $u^{\mu} = (1, 0, 0, 0)$ and $a_{\mu\nu} = \text{diag}(-1, 1, 1, 1)$. In this frame we have

 $T_{\mu\nu} = \begin{pmatrix} \mu & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{pmatrix} \text{ or } T^{\mu}{}_{\nu} = \begin{pmatrix} -\mu & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{pmatrix}$

The energy momentum of an incompressible fluid is given by

 $T_{\mu\nu} = (\mu + p)u_{\mu}u_{\nu} + pg_{\mu\nu}$

with $u^{\mu} = g^{\mu\nu} u_{\nu}$ a **unit timelike** vector $u^{\mu} u_{\nu} = -1$. Here μ is a scalar function describing the **energy density** of the fluid, and p is a scalar function describing its **preasure**. The timelike unit vector u^{μ} is the 4-velocity of particles of the fluid. In the frame **comoving with the fluid** we have $u^{\mu} = (1, 0, 0, 0)$ and $g_{\mu\nu} = \text{diag}(-1, 1, 1, 1)$. In this frame we have $\tau_{\mu\nu} = \begin{pmatrix} \mu & 0 & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & p & 0 \end{pmatrix} \text{ or } \tau^{\mu}{}_{\nu} = \begin{pmatrix} -\mu & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \end{pmatrix}$.

with $u^{\mu} = g^{\mu\nu} u_{\nu}$ a **unit timelike** vector $u^{\mu} u_{\nu} = -1$. Here μ is a scalar function describing the **energy density** of the fluid, and p is a scalar function describing its **preasure**. The timelike unit vector u^{μ} is the 4-velocity of particles of the fluid. In the frame **comoving with the fluid** we have $u^{\mu} = (1,0,0,0)$ and $g_{\mu\nu} = \text{diag}(-1,1,1,1)$. In this frame we have $\tau_{\mu\nu} = \begin{pmatrix} a & 0 & 0 & 0 \\ 0 & 0 & 0 & p \end{pmatrix} \text{ or } \tau^{\mu}{}_{\nu} = \begin{pmatrix} a^{\mu} & 0 & 0 & 0 \\ 0 & 0 & 0 & p \end{pmatrix}$.

with $u^{\mu} = g^{\mu\nu}u_{\nu}$ a **unit timelike** vector $u^{\mu}u_{\nu} = -1$. Here μ is a scalar function describing the **energy density** of the fluid, and p is a scalar function describing its **preasure**. The timelike unit vector u^{μ} is the 4-velocity of particles of the fluid.

with $u^{\mu} = g^{\mu\nu}u_{\nu}$ a **unit timelike** vector $u^{\mu}u_{\nu} = -1$. Here μ is a scalar function describing the **energy density** of the fluid, and p is a scalar function describing its **preasure**. The timelike unit vector u^{μ} is the 4-velocity of particles of the fluid. In the frame **comoving with the fluid** we have $u^{\mu} = (1, 0, 0, 0)$ and $g_{\mu\nu} = \text{diag}(-1, 1, 1, 1)$. In this frame we have $\tau_{\mu\nu} = \begin{pmatrix} \mu & 0 & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & p & 0 \end{pmatrix} \text{ or } \tau^{\mu}{}_{\nu} = \begin{pmatrix} -\mu & 0 & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & p & 0 \end{pmatrix}$.

with $u^{\mu} = g^{\mu\nu}u_{\nu}$ a **unit timelike** vector $u^{\mu}u_{\nu} = -1$. Here μ is a scalar function describing the energy density of the fluid, and p is a scalar function describing its **preasure**. The timelike unit vector u^{μ} is the 4-velocity of particles of the fluid. In the frame comoving with the fluid we have $u^{\mu} = (1, 0, 0, 0)$ and $g_{\mu\nu} = \text{diag}(-1, 1, 1, 1)$. In this frame we have $T_{\mu\nu} = \begin{pmatrix} \mu & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{pmatrix} \text{ or } T^{\mu}{}_{\nu} = \begin{pmatrix} -\mu & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{pmatrix}.$ Thus, the perfect fluid energy momentum tensor, is the next simple after Einstein's: we have two real eigenvalues, one

with multiplicity one (μ), and one with multiplicity three (p).

with **multiplicity one** (μ), and one **with multiplicity three** (p).

with $u^{\mu} = g^{\mu\nu} u_{\nu}$ a **unit timelike** vector $u^{\mu} u_{\nu} = -1$. Here μ is a scalar function describing the **energy density** of the fluid, and p is a scalar function describing its **preasure**. The timelike unit vector u^{μ} is the 4-velocity of particles of the fluid. In the frame **comoving with the fluid** we have $u^{\mu} = (1, 0, 0, 0)$ and $g_{\mu\nu} = \text{diag}(-1, 1, 1, 1)$. In this frame we have $T_{\mu\nu} = \begin{pmatrix} \mu & 0 & 0 & 0 \\ 0 & \rho & 0 & 0 \\ 0 & 0 & \rho & 0 \end{pmatrix} \text{ or } T^{\mu}{}_{\nu} = \begin{pmatrix} -\mu & 0 & 0 & 0 \\ 0 & \rho & 0 & 0 \\ 0 & 0 & \rho & 0 \end{pmatrix}$.

with $u^{\mu} = g^{\mu\nu} u_{\nu}$ a **unit timelike** vector $u^{\mu} u_{\nu} = -1$. Here μ is a scalar function describing the **energy density** of the fluid, and p is a scalar function describing its **preasure**. The timelike unit vector u^{μ} is the 4-velocity of particles of the fluid. In the frame **comoving with the fluid** we have $u^{\mu} = (1, 0, 0, 0)$ and $g_{\mu\nu} = \text{diag}(-1, 1, 1, 1)$. In this frame we have $\tau_{\mu\nu} = \begin{pmatrix} \mu & 0 & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{pmatrix} \text{ or } \tau^{\mu}{}_{\nu} = \begin{pmatrix} -\mu & 0 & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{pmatrix}$.

- The system of Einstein's equations $R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = T_{\mu\nu}$ with energy momentum tensor of a perfect fluid is **underdetermined**.
- Even under very strong symmetry assumptions about g one needs additional equation to solve it.
- The neccessary equation to make the Einstein's system determined is a phenomenological equation called the **equation of state**.
- In its simplest form it gives an implicit relation between μ and p; in GR it is usually given in the form p = p(μ).

• The system of Einstein's equations

- Even under very strong symmetry assumptions about g one needs additional equation to solve it.
- The neccessary equation to make the Einstein's system determined is a phenomenological equation called the equation of state.
- In its simplest form it gives an implicit relation between μ and p; in GR it is usually given in the form p = p(μ).

• The system of Einstein's equations

- Even under very strong symmetry assumptions about g one needs additional equation to solve it.
- The neccessary equation to make the Einstein's system determined is a phenomenological equation called the equation of state.
- In its simplest form it gives an implicit relation between μ and p; in GR it is usually given in the form p = p(μ).

• The system of Einstein's equations

- Even under very strong symmetry assumptions about g one needs additional equation to solve it.
- The neccessary equation to make the Einstein's system determined is a phenomenological equation called the equation of state.
- In its simplest form it gives an implicit relation between μ and ρ; in GR it is usually given in the form p = p(μ).

• The system of Einstein's equations

- Even under very strong symmetry assumptions about g one needs additional equation to solve it.
- The neccessary equation to make the Einstein's system determined is a phenomenological equation called the equation of state.
- In its simplest form it gives an implicit relation between μ and p; in GR it is usually given in the form p = p(μ).

• The system of Einstein's equations

- Even under very strong symmetry assumptions about g one needs additional equation to solve it.
- The neccessary equation to make the Einstein's system determined is a phenomenological equation called the equation of state.
- In its simplest form it gives an implicit relation between μ and p; in GR it is usually given in the form p = p(μ).

- if w = -1, p + μ = 0, and we recover the cosmological constant case with one eigenvalue μ; T_{ρν} = pg_{ρν};
- if w = 0, p = 0 **no preasure**; such fluid is called **dust**; $T_{\rho\nu} = \mu u_{\rho} u_{\nu}$.
- if $w = \frac{1}{3}$, $p = \frac{1}{3}\mu$ and this is a relation known from statistical physics characterizing preasure of **light** carying energy density μ .
- Note that in the **standard cosmology** they believe that the **Universe at the beginning** was **radiation dominated** $(p = \frac{1}{3}\mu)$, that **now** it is **matter dominated** (p = 0), and **at the end** of its evolution it will be of **cosmological constant type** $(p = -\mu)$.
- Other cases discussed in (more fancy) cosmology is $w = -\frac{1}{3}$ it corresponds to a gas of strings, and $w = -\frac{2}{3}$ it corresponds to a gas of domain walls.

- if w = -1, p + μ = 0, and we recover the cosmological constant case with one eigenvalue μ; T_{ρν} = pg_{ρν};
- if w = 0, p = 0 **no preasure**; such fluid is called **dust**; $T_{\rho\nu} = \mu u_{\rho} u_{\nu}$.
- if $w = \frac{1}{3}$, $p = \frac{1}{3}\mu$ and this is a relation known from statistical physics characterizing preasure of **light** carying energy density μ .
- Note that in the **standard cosmology** they believe that the **Universe at the beginning** was **radiation dominated** $(p = \frac{1}{3}\mu)$, that **now** it is **matter dominated** (p = 0), and **at the end** of its evolution it will be of **cosmological constant type** $(p = -\mu)$.
- Other cases discussed in (more fancy) cosmology is $w = -\frac{1}{3}$ it corresponds to a gas of strings, and $w = -\frac{2}{3}$ it corresponds to a gas of domain walls.

- if *w* = −1, *p* + μ = 0, and we recover the cosmological constant case with one eigenvalue μ; *T*_{ρν} = ρg_{ρν};
- if w = 0, p = 0 **no preasure**; such fluid is called **dust**; $T_{\rho\nu} = \mu u_{\rho} u_{\nu}$.
- if $w = \frac{1}{3}$, $p = \frac{1}{3}\mu$ and this is a relation known from statistical physics characterizing preasure of **light** carying energy density μ .
- Note that in the standard cosmology they believe that the Universe at the beginning was radiation dominated (p = 1/3 μ), that now it is matter dominated (p = 0), and at the end of its evolution it will be of cosmological constant type (p = -μ).
- Other cases discussed in (more fancy) cosmology is $w = -\frac{1}{3}$ it corresponds to a gas of strings, and $w = -\frac{2}{3}$ it corresponds to a gas of domain walls.

- if *w* = −1, *p* + μ = 0, and we recover the cosmological constant case with one eigenvalue μ; *T*_{ρν} = *pg*_{ρν};
- if w = 0, p = 0 **no preasure**; such fluid is called **dust**; $T_{\rho\nu} = \mu u_{\rho} u_{\nu}$.
- if $w = \frac{1}{3}$, $p = \frac{1}{3}\mu$ and this is a relation known from statistical physics characterizing preasure of **light** carying energy density μ .
- Note that in the **standard cosmology** they believe that the **Universe at the beginning** was **radiation dominated** $(p = \frac{1}{3}\mu)$, that **now** it is **matter dominated** (p = 0), and **at the end** of its evolution it will be of **cosmological constant type** $(p = -\mu)$.
- Other cases discussed in (more fancy) cosmology is $w = -\frac{1}{3}$ it corresponds to a gas of strings, and $w = -\frac{2}{3}$ it corresponds to a gas of domain walls.
- if *w* = −1, *p* + μ = 0, and we recover the cosmological constant case with one eigenvalue μ; *T*_{ρν} = *pg*_{ρν};
- if w = 0, p = 0 no preasure; such fluid is called dust; $T_{\rho\nu} = \mu u_{\rho} u_{\nu}$.
- if $w = \frac{1}{3}$, $p = \frac{1}{3}\mu$ and this is a relation known from statistical physics characterizing preasure of **light** carying energy density μ .
- Note that in the **standard cosmology** they believe that the **Universe at the beginning** was **radiation dominated** $(p = \frac{1}{3}\mu)$, that **now** it is **matter dominated** (p = 0), and **at the end** of its evolution it will be of **cosmological constant type** $(p = -\mu)$.
- Other cases discussed in (more fancy) cosmology is $w = -\frac{1}{3}$ it corresponds to a gas of strings, and $w = -\frac{2}{3}$ it corresponds to a gas of domain walls.

- if *w* = −1, *p* + μ = 0, and we recover the cosmological constant case with one eigenvalue μ; *T*_{ρν} = *pg*_{ρν};
- if w = 0, p = 0 no preasure; such fluid is called dust; $T_{\rho\nu} = \mu u_{\rho} u_{\nu}$.
- if $w = \frac{1}{3}$, $p = \frac{1}{3}\mu$ and this is a relation known from statistical physics characterizing preasure of **light** carying energy density μ .
- Note that in the **standard cosmology** they believe that the **Universe at the beginning** was **radiation dominated** $(p = \frac{1}{3}\mu)$, that **now** it is **matter dominated** (p = 0), and **at the end** of its evolution it will be of **cosmological constant type** $(p = -\mu)$.
- Other cases discussed in (more fancy) cosmology is $w = -\frac{1}{3}$ it corresponds to a gas of strings, and $w = -\frac{2}{3}$ it corresponds to a gas of domain walls.

- if *w* = −1, *p* + μ = 0, and we recover the cosmological constant case with one eigenvalue μ; *T*_{ρν} = *pg*_{ρν};
- if w = 0, p = 0 no preasure; such fluid is called **dust**; $T_{\rho\nu} = \mu u_{\rho} u_{\nu}$.
- if $w = \frac{1}{3}$, $p = \frac{1}{3}\mu$ and this is a relation known from statistical physics characterizing preasure of **light** carying energy density μ .
- Note that in the **standard cosmology** they believe that the **Universe at the beginning** was **radiation dominated** $(p = \frac{1}{3}\mu)$, that **now** it is **matter dominated** (p = 0), and **at the end** of its evolution it will be of **cosmological constant type** $(p = -\mu)$.
- Other cases discussed in (more fancy) cosmology is $w = -\frac{1}{3}$ it corresponds to a gas of strings, and $w = -\frac{2}{3}$ it corresponds to a gas of domain walls.

- if *w* = −1, *p* + μ = 0, and we recover the cosmological constant case with one eigenvalue μ; *T*_{ρν} = *pg*_{ρν};
- if w = 0, p = 0 **no preasure**; such fluid is called **dust**; $T_{\rho\nu} = \mu u_{\rho} u_{\nu}$.
- if $w = \frac{1}{3}$, $p = \frac{1}{3}\mu$ and this is a relation known from statistical physics characterizing preasure of **light** carying energy density μ .
- Note that in the **standard cosmology** they believe that the **Universe at the beginning** was **radiation dominated** $(p = \frac{1}{3}\mu)$, that **now** it is **matter dominated** (p = 0), and **at the end** of its evolution it will be of **cosmological constant type** $(p = -\mu)$.
- Other cases discussed in (more fancy) cosmology is $w = -\frac{1}{3}$ it corresponds to a gas of strings, and $w = -\frac{2}{3}$ it corresponds to a gas of domain walls.

- if *w* = −1, *p* + μ = 0, and we recover the cosmological constant case with one eigenvalue μ; *T*_{ρν} = *pg*_{ρν};
- if w = 0, p = 0 **no preasure**; such fluid is called **dust**; $T_{\rho\nu} = \mu u_{\rho} u_{\nu}$.
- if $w = \frac{1}{3}$, $p = \frac{1}{3}\mu$ and this is a relation known from statistical physics characterizing preasure of **light** carying energy density μ .
- Note that in the **standard cosmology** they believe that the **Universe at the beginning** was **radiation dominated** $(p = \frac{1}{3}\mu)$, that **now** it is **matter dominated** (p = 0), and **at the end** of its evolution it will be of **cosmological constant type** $(p = -\mu)$.
- Other cases discussed in (more fancy) cosmology is $w = -\frac{1}{3}$ it corresponds to a gas of strings, and $w = -\frac{2}{3}$ it corresponds to a gas of domain walls.

- if *w* = −1, *p* + μ = 0, and we recover the cosmological constant case with one eigenvalue μ; *T*_{ρν} = *pg*_{ρν};
- if w = 0, p = 0 **no preasure**; such fluid is called **dust**; $T_{\rho\nu} = \mu u_{\rho} u_{\nu}$.
- if $w = \frac{1}{3}$, $p = \frac{1}{3}\mu$ and this is a relation known from statistical physics characterizing preasure of **light** carying energy density μ .
- Note that in the **standard cosmology** they believe that the **Universe at the beginning** was **radiation dominated** $(p = \frac{1}{3}\mu)$, that **now** it is **matter dominated** (p = 0), and **at the end** of its evolution it will be of **cosmological constant type** $(p = -\mu)$.
- Other cases discussed in (more fancy) cosmology is $w = -\frac{1}{3}$ it corresponds to a gas of strings, and $w = -\frac{2}{3}$ it corresponds to a gas of domain walls.

- if *w* = −1, *p* + μ = 0, and we recover the cosmological constant case with one eigenvalue μ; *T*_{ρν} = *pg*_{ρν};
- if w = 0, p = 0 **no preasure**; such fluid is called **dust**; $T_{\rho\nu} = \mu u_{\rho} u_{\nu}$.
- if $w = \frac{1}{3}$, $p = \frac{1}{3}\mu$ and this is a relation known from statistical physics characterizing preasure of **light** carying energy density μ .
- Note that in the **standard cosmology** they believe that the **Universe at the beginning** was **radiation dominated** $(p = \frac{1}{3}\mu)$, that **now** it is **matter dominated** (p = 0), and **at the end** of its evolution it will be of **cosmological constant type** $(p = -\mu)$.
- Other cases discussed in (more fancy) cosmology is $w = -\frac{1}{3}$ it corresponds to a gas of strings, and $w = -\frac{2}{3}$ it corresponds to a gas of domain walls.

- if *w* = −1, *p* + μ = 0, and we recover the cosmological constant case with one eigenvalue μ; *T*_{ρν} = *pg*_{ρν};
- if w = 0, p = 0 **no preasure**; such fluid is called **dust**; $T_{\rho\nu} = \mu u_{\rho} u_{\nu}$.
- if $w = \frac{1}{3}$, $p = \frac{1}{3}\mu$ and this is a relation known from statistical physics characterizing preasure of **light** carying energy density μ .
- Note that in the **standard cosmology** they believe that the **Universe at the beginning** was **radiation dominated** $(p = \frac{1}{3}\mu)$, that **now** it is **matter dominated** (p = 0), and **at the end** of its evolution it will be of **cosmological constant type** $(p = -\mu)$.
- Other cases discussed in (more fancy) cosmology is $w = -\frac{1}{3}$ it corresponds to a gas of strings, and $w = -\frac{2}{3}$ it corresponds to a gas of domain walls.

- if *w* = −1, *p* + μ = 0, and we recover the cosmological constant case with one eigenvalue μ; *T*_{ρν} = *pg*_{ρν};
- if w = 0, p = 0 **no preasure**; such fluid is called **dust**; $T_{\rho\nu} = \mu u_{\rho} u_{\nu}$.
- if $w = \frac{1}{3}$, $p = \frac{1}{3}\mu$ and this is a relation known from statistical physics characterizing preasure of **light** carying energy density μ .
- Note that in the **standard cosmology** they believe that the **Universe at the beginning** was **radiation dominated** $(p = \frac{1}{3}\mu)$, that **now** it is **matter dominated** (p = 0), and **at the end** of its evolution it will be of **cosmological constant type** $(p = -\mu)$.
- Other cases discussed in (more fancy) cosmology is $w = -\frac{1}{3}$ it corresponds to a gas of strings, and $w = -\frac{2}{3}$ it corresponds to a gas of domain walls.

- if *w* = −1, *p* + μ = 0, and we recover the cosmological constant case with one eigenvalue μ; *T*_{ρν} = *pg*_{ρν};
- if w = 0, p = 0 **no preasure**; such fluid is called **dust**; $T_{\rho\nu} = \mu u_{\rho} u_{\nu}$.
- if $w = \frac{1}{3}$, $p = \frac{1}{3}\mu$ and this is a relation known from statistical physics characterizing preasure of **light** carying energy density μ .
- Note that in the **standard cosmology** they believe that the **Universe at the beginning** was **radiation dominated** $(p = \frac{1}{3}\mu)$, that **now** it is **matter dominated** (p = 0), and **at the end** of its evolution it will be of **cosmological constant type** $(p = -\mu)$.
- Other cases discussed in (more fancy) cosmology is $w = -\frac{1}{3}$ - it corresponds to a gas of strings, and $w = -\frac{2}{3}$ it corresponds to a gas of domain walls.

- if *w* = −1, *p* + μ = 0, and we recover the cosmological constant case with one eigenvalue μ; *T*_{ρν} = *pg*_{ρν};
- if w = 0, p = 0 **no preasure**; such fluid is called **dust**; $T_{\rho\nu} = \mu u_{\rho} u_{\nu}$.
- if $w = \frac{1}{3}$, $p = \frac{1}{3}\mu$ and this is a relation known from statistical physics characterizing preasure of **light** carying energy density μ .
- Note that in the **standard cosmology** they believe that the **Universe at the beginning** was **radiation dominated** $(p = \frac{1}{3}\mu)$, that **now** it is **matter dominated** (p = 0), and **at the end** of its evolution it will be of **cosmological constant type** $(p = -\mu)$.
- Other cases discussed in (more fancy) cosmology is $w = -\frac{1}{3}$ it corresponds to a gas of strings, and $w = -\frac{2}{3}$ it corresponds to a gas of domain walls.

- if *w* = −1, *p* + μ = 0, and we recover the cosmological constant case with one eigenvalue μ; *T*_{ρν} = *pg*_{ρν};
- if w = 0, p = 0 **no preasure**; such fluid is called **dust**; $T_{\rho\nu} = \mu u_{\rho} u_{\nu}$.
- if $w = \frac{1}{3}$, $p = \frac{1}{3}\mu$ and this is a relation known from statistical physics characterizing preasure of **light** carying energy density μ .
- Note that in the **standard cosmology** they believe that the **Universe at the beginning** was **radiation dominated** $(p = \frac{1}{3}\mu)$, that **now** it is **matter dominated** (p = 0), and **at the end** of its evolution it will be of **cosmological constant type** $(p = -\mu)$.
- Other cases discussed in (more fancy) cosmology is $w = -\frac{1}{3}$ it corresponds to a gas of strings, and $w = -\frac{2}{3}$ it corresponds to a gas of domain walls.

- if *w* = −1, *p* + μ = 0, and we recover the cosmological constant case with one eigenvalue μ; *T*_{ρν} = *pg*_{ρν};
- if w = 0, p = 0 **no preasure**; such fluid is called **dust**; $T_{\rho\nu} = \mu u_{\rho} u_{\nu}$.
- if $w = \frac{1}{3}$, $p = \frac{1}{3}\mu$ and this is a relation known from statistical physics characterizing preasure of **light** carying energy density μ .
- Note that in the **standard cosmology** they believe that the **Universe at the beginning** was **radiation dominated** $(p = \frac{1}{3}\mu)$, that **now** it is **matter dominated** (p = 0), and **at the end** of its evolution it will be of **cosmological constant type** $(p = -\mu)$.
- Other cases discussed in (more fancy) cosmology is $w = -\frac{1}{3}$ it corresponds to a gas of strings, and $w = -\frac{2}{3}$ it corresponds to a gas of domain walls.

 $\mathrm{d} F = \mathrm{d} \ast F = 0$

$$T_{\mu
u} = F_{\mu
ho}F_{
u}^{
ho} - rac{1}{4}g_{\mu
u}F_{
ho\sigma}F^{
ho\sigma}.$$

- From the algebraic point of view there are two kinds of energy momentum tensors of the electromagnetic field. they depend on the fact if the complex 2-form *F* = *F* − *i* * *F* is simple, *F* ∧ *F* = 0, or not.
- If *F* is not simple, the corresponding energy momentum tensor *T^μ_ν* has two real eigenvalues, each with multiplicity two.

Electromagnetic field

• The electromagnetic field in vacuum is described in General Relativity by a field of a 2-form $F = \frac{1}{2}F_{\mu\nu}\theta^{\mu} \wedge \theta^{\nu}$, satisfying Maxwell's equations

$$\mathrm{d}F=\mathrm{d}*F=0$$

$$T_{\mu
u} = F_{\mu
ho}F_{
u}^{
ho} - rac{1}{4}g_{\mu
u}F_{
ho\sigma}F^{
ho\sigma}.$$

- From the algebraic point of view there are two kinds of energy momentum tensors of the electromagnetic field. they depend on the fact if the complex 2-form *F* = *F* − *i* * *F* is simple, *F* ∧ *F* = 0, or not.
- If *F* is not simple, the corresponding energy momentum tensor *T^μ_ν* has two real eigenvalues, each with multiplicity two.

Electromagnetic field

• The electromagnetic field in vacuum is described in General Relativity by a field of a 2-form $F = \frac{1}{2}F_{\mu\nu}\theta^{\mu} \wedge \theta^{\nu}$, satisfying **Maxwell's equations**

 $\mathrm{d} F = \mathrm{d} \ast F = 0$

$$T_{\mu
u} = F_{\mu
ho}F_{
u}^{
ho} - rac{1}{4}g_{\mu
u}F_{
ho\sigma}F^{
ho\sigma}.$$

- From the algebraic point of view there are two kinds of energy momentum tensors of the electromagnetic field. they depend on the fact if the complex 2-form *F* = *F* − *i* * *F* is simple, *F* ∧ *F* = 0, or not.
- If *F* is not simple, the corresponding energy momentum tensor *T^μ_ν* has two real eigenvalues, each with multiplicity two.

 $\mathrm{d}F=\mathrm{d}\ast F=0$

coupled to the Einstein's equations

 $R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = T_{\mu\nu}$, with Maxwell's energy momentum tensor:

$$\mathcal{T}_{\mu
u}=\mathcal{F}_{\mu
ho}\mathcal{F}_{
u}{}^{
ho}-rac{1}{4}g_{\mu
u}\mathcal{F}_{
ho\sigma}\mathcal{F}^{
ho\sigma}.$$

- From the algebraic point of view there are two kinds of energy momentum tensors of the electromagnetic field. they depend on the fact if the complex 2-form *F* = *F* − *i* * *F* is simple, *F* ∧ *F* = 0, or not.
- If *F* is not simple, the corresponding energy momentum tensor *T^μ_ν* has two real eigenvalues, each with multiplicity two.

 $\mathrm{d}F=\mathrm{d}\ast F=0$

$$T_{\mu
u} = F_{\mu
ho}F_{
u}^{
ho} - rac{1}{4}g_{\mu
u}F_{
ho\sigma}F^{
ho\sigma}.$$

- From the algebraic point of view there are two kinds of energy momentum tensors of the electromagnetic field. they depend on the fact if the complex 2-form *F̃* = *F* − *i* * *F* is simple, *F̃* ∧ *F̃* = 0, or not.
- If *F̃* is not simple, the corresponding energy momentum tensor *T^μ_ν* has two real eigenvalues, each with multiplicity two.

 $\mathrm{d}F=\mathrm{d}\ast F=0$

$$T_{\mu
u} = F_{\mu
ho}F_{
u}^{
ho} - rac{1}{4}g_{\mu
u}F_{
ho\sigma}F^{
ho\sigma}.$$

- From the algebraic point of view there are two kinds of energy momentum tensors of the electromagnetic field. they depend on the fact if the complex 2-form F = F − i × F is simple, F ∧ F = 0, or not.
- If *F* is not simple, the corresponding energy momentum tensor *T^μ_ν* has two real eigenvalues, each with multiplicity two.

 $\mathrm{d}F=\mathrm{d}\ast F=0$

$$\mathcal{T}_{\mu
u} = \mathcal{F}_{\mu
ho} \mathcal{F}_{
u}{}^{
ho} - rac{1}{4} g_{\mu
u} \mathcal{F}_{
ho\sigma} \mathcal{F}^{
ho\sigma}.$$

- From the algebraic point of view there are **two kinds of** energy momentum tensors of the electromagnetic field. they depend on the fact if the complex 2-form $\tilde{F} = F - i * F$ is simple, $\tilde{F} \wedge \tilde{F} = 0$, or not.
- If *F* is not simple, the corresponding energy momentum tensor *T^μ_ν* has two real eigenvalues, each with multiplicity two.

 $\mathrm{d}F=\mathrm{d}\ast F=0$

$$\mathcal{T}_{\mu
u} = \mathcal{F}_{\mu
ho} \mathcal{F}_{
u}{}^{
ho} - rac{1}{4} g_{\mu
u} \mathcal{F}_{
ho\sigma} \mathcal{F}^{
ho\sigma}.$$

- From the algebraic point of view there are **two kinds of** energy momentum tensors of the electromagnetic field. they depend on the fact if the complex 2-form $\tilde{F} = F - i * F$ is simple, $\tilde{F} \wedge \tilde{F} = 0$, or not.
- If *F̃* is not simple, the corresponding energy momentum tensor *T^μ_ν* has two real eigenvalues, each with multiplicity two.

- If \tilde{F} is simple, then there exists a **nonzero real vector field** *k* on *M* which is **null**, g(k, k) = 0, and such that $\tilde{F}(k, \cdot) = 0$. In such case, the energy momentum tensor $T_{\mu\nu}$ of the corresponding Maxwell form *F* is $T_{\mu\nu} = \Phi k_{\mu}k_{\nu}$, with Φ nonegative real function on *M*.
- The electromagnetic field corresponding to a **simple** \tilde{F} is called **null**. Null electromagnetic fields correspond to **pure radiation**. They behave as **plane electromagnetic waves** in Minkowski spacetime.
- One can consider energy momentum tensors of the form $T_{\mu\nu} = \Phi k_{\mu}k_{\nu}$ with null k_{μ} without reference to any electromagnetic field. Such energy momentum tensors are interpreted as being produced by incoherent radiation of massless particles propagating with speed of light along the rays of k_{μ} . Due to the similarity of $T_{\rho\nu} = \Phi k_{\rho}k_{\nu}$ to $T_{\rho\nu} = \mu u_{\rho}u_{\nu}$ the energy momentum of a dust, the pure radiation is also called null dust.

Null electromagnetic field and pure radiation

If *F* is simple, then there exists a nonzero real vector field k on M which is null, g(k, k) = 0, and such that

 $F(k, \cdot) = 0$. In such case, the energy momentum tensor $T_{\mu\nu}$ of the corresponding Maxwell form *F* is $T_{\mu\nu} = \Phi k_{\mu}k_{\nu}$, with Φ nonegative real function on *M*.

- The electromagnetic field corresponding to a simple F is called null. Null electromagnetic fields correspond to pure radiation. They behave as plane electromagnetic waves in Minkowski spacetime.
- One can consider energy momentum tensors of the form $T_{\mu\nu} = \Phi k_{\mu}k_{\nu}$ with **null** k_{μ} without reference to any electromagnetic field. Such energy momentum tensors are interpreted as being produced by **incoherent** radiation of massless particles propagating with speed of light along the rays of k_{μ} . Due to the similarity of $T_{\rho\nu} = \Phi k_{\rho}k_{\nu}$ to $T_{\rho\nu} = \mu u_{\rho}u_{\nu}$ the energy momentum of a dust, the pure radiation is also called **null dust**.

Null electromagnetic field and pure radiation

- If \tilde{F} is simple, then there exists a **nonzero real vector field** *k* on *M* which is **null**, g(k, k) = 0, and such that $\tilde{F}(k, \cdot) = 0$. In such case, the energy momentum tensor $T_{\mu\nu}$ of the corresponding Maxwell form *F* is $T_{\mu\nu} = \Phi k_{\mu}k_{\nu}$, with Φ nonegative real function on *M*.
- The electromagnetic field corresponding to a **simple** *F* is called **null**. Null electromagnetic fields correspond to **pure radiation**. They behave as **plane electromagnetic waves** in Minkowski spacetime.
- One can consider energy momentum tensors of the form $T_{\mu\nu} = \Phi k_{\mu}k_{\nu}$ with **null** k_{μ} without reference to any electromagnetic field. Such energy momentum tensors are interpreted as being produced by **incoherent** radiation of massless particles propagating with speed of light along the rays of k_{μ} . Due to the similarity of $T_{\rho\nu} = \Phi k_{\rho}k_{\nu}$ to $T_{\rho\nu} = \mu u_{\rho}u_{\nu}$ the energy momentum of a dust, the pure radiation is also called **null dust**.

Null electromagnetic field and pure radiation

- If \tilde{F} is simple, then there exists a **nonzero real vector field** *k* on *M* which is **null**, g(k, k) = 0, and such that $\tilde{F}(k, \cdot) = 0$. In such case, the energy momentum tensor $T_{\mu\nu}$ of the corresponding Maxwell form *F* is $T_{\mu\nu} = \Phi k_{\mu}k_{\nu}$, with Φ nonegative real function on *M*.
- The electromagnetic field corresponding to a **simple** \overline{F} is called **null**. Null electromagnetic fields correspond to **pure radiation**. They behave as **plane electromagnetic waves** in Minkowski spacetime.
- One can consider energy momentum tensors of the form $T_{\mu\nu} = \Phi k_{\mu}k_{\nu}$ with **null** k_{μ} without reference to any electromagnetic field. Such energy momentum tensors are interpreted as being produced by **incoherent** radiation of massless particles propagating with speed of light along the rays of k_{μ} . Due to the similarity of $T_{\rho\nu} = \Phi k_{\rho}k_{\nu}$ to $T_{\rho\nu} = \mu u_{\rho}u_{\nu}$ the energy momentum of a dust, the pure radiation is also called **null dust**.

- If \tilde{F} is simple, then there exists a **nonzero real vector field** *k* on *M* which is **null**, g(k, k) = 0, and such that $\tilde{F}(k, \cdot) = 0$. In such case, the energy momentum tensor $T_{\mu\nu}$ of the corresponding Maxwell form *F* is $T_{\mu\nu} = \Phi k_{\mu}k_{\nu}$, with Φ nonegative real function on *M*.
- The electromagnetic field corresponding to a simple F is called null. Null electromagnetic fields correspond to pure radiation. They behave as plane electromagnetic waves in Minkowski spacetime.
- One can consider energy momentum tensors of the form $T_{\mu\nu} = \Phi k_{\mu}k_{\nu}$ with null k_{μ} without reference to any electromagnetic field. Such energy momentum tensors are interpreted as being produced by incoherent radiation of massless particles propagating with speed of light along the rays of k_{μ} . Due to the similarity of $T_{\rho\nu} = \Phi k_{\rho}k_{\nu}$ to $T_{\rho\nu} = \mu u_{\rho}u_{\nu}$ the energy momentum of a dust, the pure radiation is also called null dust.

- If \tilde{F} is simple, then there exists a **nonzero real vector field** *k* on *M* which is **null**, g(k, k) = 0, and such that $\tilde{F}(k, \cdot) = 0$. In such case, the energy momentum tensor $T_{\mu\nu}$ of the corresponding Maxwell form *F* is $T_{\mu\nu} = \Phi k_{\mu}k_{\nu}$, with Φ nonegative real function on *M*.
- The electromagnetic field corresponding to a simple F is called null. Null electromagnetic fields correspond to pure radiation. They behave as plane electromagnetic waves in Minkowski spacetime.
- One can consider energy momentum tensors of the form $T_{\mu\nu} = \Phi k_{\mu}k_{\nu}$ with null k_{μ} without reference to any electromagnetic field. Such energy momentum tensors are interpreted as being produced by incoherent radiation of massless particles propagating with speed of light along the rays of k_{μ} . Due to the similarity of $T_{\rho\nu} = \Phi k_{\rho}k_{\nu}$ to $T_{\rho\nu} = \mu u_{\rho}u_{\nu}$ the energy momentum of a dust, the pure radiation is also called null dust.

- If \tilde{F} is simple, then there exists a **nonzero real vector field** *k* on *M* which is **null**, g(k, k) = 0, and such that $\tilde{F}(k, \cdot) = 0$. In such case, the energy momentum tensor $T_{\mu\nu}$ of the corresponding Maxwell form *F* is $T_{\mu\nu} = \Phi k_{\mu}k_{\nu}$, with Φ nonegative real function on *M*.
- The electromagnetic field corresponding to a simple F is called null. Null electromagnetic fields correspond to pure radiation. They behave as plane electromagnetic waves in Minkowski spacetime.
- One can consider energy momentum tensors of the form $T_{\mu\nu} = \Phi k_{\mu}k_{\nu}$ with null k_{μ} without reference to any electromagnetic field. Such energy momentum tensors are interpreted as being produced by incoherent radiation of massless particles propagating with speed of light along the rays of k_{μ} . Due to the similarity of $T_{\rho\nu} = \Phi k_{\rho}k_{\nu}$ to $T_{\rho\nu} = \mu u_{\rho}u_{\nu}$ the energy momentum of a dust, the pure radiation is also called null dust.

- If \tilde{F} is simple, then there exists a **nonzero real vector field** *k* on *M* which is **null**, g(k, k) = 0, and such that $\tilde{F}(k, \cdot) = 0$. In such case, the energy momentum tensor $T_{\mu\nu}$ of the corresponding Maxwell form *F* is $T_{\mu\nu} = \Phi k_{\mu}k_{\nu}$, with Φ nonegative real function on *M*.
- The electromagnetic field corresponding to a simple F is called null. Null electromagnetic fields correspond to pure radiation. They behave as plane electromagnetic waves in Minkowski spacetime.
- One can consider energy momentum tensors of the form $T_{\mu\nu} = \Phi k_{\mu}k_{\nu}$ with null k_{μ} without reference to any electromagnetic field. Such energy momentum tensors are interpreted as being produced by incoherent radiation of massless particles propagating with speed of light along the rays of k_{μ} . Due to the similarity of $T_{\rho\nu} = \Phi k_{\rho}k_{\nu}$ to $T_{\rho\nu} = \mu u_{\rho}u_{\nu}$ the energy momentum of a dust, the pure radiation is also called null dust.

- If \tilde{F} is simple, then there exists a **nonzero real vector field** *k* on *M* which is **null**, g(k, k) = 0, and such that $\tilde{F}(k, \cdot) = 0$. In such case, the energy momentum tensor $T_{\mu\nu}$ of the corresponding Maxwell form *F* is $T_{\mu\nu} = \Phi k_{\mu}k_{\nu}$, with Φ nonegative real function on *M*.
- The electromagnetic field corresponding to a simple F is called null. Null electromagnetic fields correspond to pure radiation. They behave as plane electromagnetic waves in Minkowski spacetime.
- One can consider energy momentum tensors of the form $T_{\mu\nu} = \Phi k_{\mu}k_{\nu}$ with **null** k_{μ} without reference to any electromagnetic field. Such energy momentum tensors are interpreted as being produced by incoherent radiation of massless particles propagating with speed of light along the rays of k_{μ} . Due to the similarity of $T_{\mu\nu} = \Phi k_{\mu}k_{\nu}$ to $T_{\mu\nu} = \mu u_{\mu}u_{\nu}$ the energy momentum of a dust the pure radiation produced pull dust.

- If \tilde{F} is simple, then there exists a **nonzero real vector field** *k* on *M* which is **null**, g(k, k) = 0, and such that $\tilde{F}(k, \cdot) = 0$. In such case, the energy momentum tensor $T_{\mu\nu}$ of the corresponding Maxwell form *F* is $T_{\mu\nu} = \Phi k_{\mu}k_{\nu}$, with Φ nonegative real function on *M*.
- The electromagnetic field corresponding to a simple F is called null. Null electromagnetic fields correspond to pure radiation. They behave as plane electromagnetic waves in Minkowski spacetime.
- One can consider energy momentum tensors of the form $T_{\mu\nu} = \Phi k_{\mu}k_{\nu}$ with **null** k_{μ} without reference to any electromagnetic field. Such energy momentum tensors are interpreted as being produced by **incoherent** radiation of massless particles propagating with speed of light along the rays of k_{μ} . Due to the similarity of $T_{\rho\nu} = \Phi k_{\rho}k_{\nu}$ to $T_{\rho\nu} = \mu u_{\rho}u_{\nu}$ the energy momentum of a dust, the pure radiation is also called **null dust**.

dominant energy condition:

the local energy density $\rho = T_{\mu\nu}u^{\mu}u^{\nu}$ as measured by any observer with 4-velocity u_{μ} is non-negative and the local energy flow $q^{\mu} = T^{\mu}{}_{\nu}u^{\nu}$ is causal

 $T_{\mu\nu}u^{\mu}u^{\nu} \ge 0$ and $q^{\mu}q_{\mu} \le 0$. In particular, for the politrope perfect fluid with $p = w\mu$ this gives $\mu \ge 0$, $|w| \le 1$.

dominant energy condition:

the local energy density $\rho = T_{\mu\nu}u^{\mu}u^{\nu}$ as measured by any observer with 4-velocity u_{μ} is non-negative and the local energy flow $q^{\mu} = T^{\mu}{}_{\nu}u^{\nu}$ is causal

In particular, for the politrope perfect fluid with $p = w\mu$ this gives $\mu \ge 0$, $|w| \le 1$.

dominant energy condition:

the local energy density $\rho = T_{\mu\nu}u^{\mu}u^{\nu}$ as measured by any observer with 4-velocity u_{μ} is non-negative and the local energy flow $q^{\mu} = T^{\mu}{}_{\nu}u^{\nu}$ is causal $T_{\mu\nu}u^{\mu}u^{\nu} \ge 0$ and $q^{\mu}q_{\mu} \le 0$. In particular, for the politrope perfect fluid with $p = w\mu$ this gives $\mu \ge 0$, $|w| \le 1$.

dominant energy condition:

the local energy density $\rho = T_{\mu\nu}u^{\mu}u^{\nu}$ as measured by any observer with 4-velocity u_{μ} is non-negative and the local energy flow $q^{\mu} = T^{\mu}{}_{\nu}u^{\nu}$ is causal

 $T_{\mu\nu}u^{\mu}u^{\nu} \ge 0$ and $q^{\mu}q_{\mu} \le 0$. In particular, for the politrope perfect fluid with $p = w_{\mu}$ this gives $\mu \ge 0$, $|w| \le 1$.

dominant energy condition:

the local energy density $\rho = T_{\mu\nu}u^{\mu}u^{\nu}$ as measured by any observer with 4-velocity u_{μ} is non-negative and the local energy flow $q^{\mu} = T^{\mu}{}_{\nu}u^{\nu}$ is causal

 $T_{\mu\nu}u^{\mu}u^{\nu} \ge 0$ and $q^{\mu}q_{\mu} \le 0$. In particular, for the politrope perfect fluid with $p = w\mu$ this gives $\mu \ge 0$, $|w| \le 1$.
A physically resonable energy momentum tensor has to satisfy the

dominant energy condition:

the local energy density $\rho = T_{\mu\nu}u^{\mu}u^{\nu}$ as measured by any observer with 4-velocity u_{μ} is non-negative and the local energy flow $q^{\mu} = T^{\mu}{}_{\nu}u^{\nu}$ is causal

 $T_{\mu\nu}u^{\mu}u^{\nu} \ge 0$ and $q^{\mu}q_{\mu} \le 0$. In particular, for the politrope perfect fluid with $p = w\mu$ this gives $\mu \ge 0$, $|w| \le 1$.

- A spacetime *M* with a conformal class of metrics [g] i.e. with Lorentzian metrics such that any two g_1 and g_2 are related to each other via $g_2 = e^{2\phi}g_1$ is called a **conformal spacetime** (*M*, [g]).
- Problem:

- The answer is known for Einstein metrics and pure radiation.
- I would like to have an answer for **perfect fluids (???)**, and in particular for **various politropes (???)**.

- A spacetime *M* with a conformal class of metrics [g] i.e. with Lorentzian metrics such that any two g_1 and g_2 are related to each other via $g_2 = e^{2\phi}g_1$ is called a **conformal spacetime** (*M*, [g]).
- Problem:

- The answer is known for Einstein metrics and pure radiation.
- I would like to have an answer for **perfect fluids (???)**, and in particular for **various politropes (???)**.

Conformal spacetimes

- A spacetime *M* with a conformal class of metrics [g] i.e. with Lorentzian metrics such that any two g_1 and g_2 are related to each other via $g_2 = e^{2\phi}g_1$ is called a **conformal spacetime** (*M*, [g]).
- Problem:

- The answer is known for Einstein metrics and pure radiation.
- I would like to have an answer for **perfect fluids (???)**, and in particular for **various politropes (???)**.

- A spacetime *M* with a conformal class of metrics [g] i.e. with Lorentzian metrics such that any two g_1 and g_2 are related to each other via $g_2 = e^{2\phi}g_1$ is called a **conformal spacetime** (*M*, [g]).
- Problem:

- The answer is known for Einstein metrics and pure radiation.
- I would like to have an answer for **perfect fluids (???)**, and in particular for **various politropes (???)**.

- A spacetime *M* with a conformal class of metrics [g] i.e. with Lorentzian metrics such that any two g_1 and g_2 are related to each other via $g_2 = e^{2\phi}g_1$ is called a **conformal spacetime** (*M*, [g]).
- Problem:

- The answer is known for Einstein metrics and pure radiation.
- I would like to have an answer for **perfect fluids (???)**, and in particular for **various politropes (???)**.

- A spacetime *M* with a conformal class of metrics [g] i.e. with Lorentzian metrics such that any two g_1 and g_2 are related to each other via $g_2 = e^{2\phi}g_1$ is called a **conformal spacetime** (*M*, [g]).
- Problem:

- The answer is known for Einstein metrics and pure radiation.
- I would like to have an answer for **perfect fluids (???)**, and in particular for **various politropes (???)**.

- A spacetime *M* with a conformal class of metrics [g] i.e. with Lorentzian metrics such that any two g_1 and g_2 are related to each other via $g_2 = e^{2\phi}g_1$ is called a **conformal spacetime** (*M*, [g]).
- Problem:

- The answer is known for Einstein metrics and pure radiation.
- I would like to have an answer for **perfect fluids (???)**, and in particular for **various politropes (???)**.

- A spacetime *M* with a conformal class of metrics [g] i.e. with Lorentzian metrics such that any two g_1 and g_2 are related to each other via $g_2 = e^{2\phi}g_1$ is called a **conformal spacetime** (*M*, [g]).
- Problem:

- The answer is known for Einstein metrics and pure radiation.
- I would like to have an answer for **perfect fluids (???)**, and in particular for **various politropes (???)**.

- Classification of energy momentum tensors in spacetime:
 Plebański J (1964) The algebraic structure of the tensor of
 - *matter*, Acta Phys. Polon. **26**, 963-...
- Conformal characterizations of spacetimes with a given $T_{\mu\nu}$:
 - Kozameh C N, Newman E T and Tod K P (1985) *Conformal Einstein spaces* Gen. Rel. Grav. **17** 343–352
 - Kozameh C N, Newman E T and Nurowski P (2003) Conformal Einstein equations and Cartan conformal connection Class. Q. Grav. 20 3029 – 3035
 - Gover A R and Nurowski P (2006) Obstructions to conformally Einstein metrics in n dimensions Journ. Geom. Phys. 56 450 – 484
 - Leistner Th and Nurowski P (2012) Conformal pure radiation with parallel rays, Class. Q. Grav. 29, 055007 (15pp), doi:10.1088/0264-9381/29/5/055007

• Classification of energy momentum tensors in spacetime:

 Plebański J (1964) The algebraic structure of the tensor of matter, Acta Phys. Polon. 26, 963-...

• Conformal characterizations of spacetimes with a given $T_{\mu\nu}$:

- Kozameh C N, Newman E T and Tod K P (1985) *Conformal Einstein spaces* Gen. Rel. Grav. **17** 343–352
- Kozameh C N, Newman E T and Nurowski P (2003) Conformal Einstein equations and Cartan conformal connection Class. Q. Grav. 20 3029 – 3035
- Gover A R and Nurowski P (2006) Obstructions to conformally Einstein metrics in n dimensions Journ. Geom. Phys. 56 450 – 484
- Leistner Th and Nurowski P (2012) Conformal pure radiation with parallel rays, Class. Q. Grav. 29, 055007 (15pp), doi:10.1088/0264-9381/29/5/055007

• Classification of energy momentum tensors in spacetime:

- Plebański J (1964) The algebraic structure of the tensor of matter, Acta Phys. Polon. 26, 963-...
- Conformal characterizations of spacetimes with a given $T_{\mu\nu}$:
 - Kozameh C N, Newman E T and Tod K P (1985) *Conformal Einstein spaces* Gen. Rel. Grav. **17** 343–352
 - Kozameh C N, Newman E T and Nurowski P (2003) Conformal Einstein equations and Cartan conformal connection Class. Q. Grav. 20 3029 – 3035
 - Gover A R and Nurowski P (2006) Obstructions to conformally Einstein metrics in n dimensions Journ. Geom. Phys. 56 450 – 484
 - Leistner Th and Nurowski P (2012) Conformal pure radiation with parallel rays, Class. Q. Grav. 29, 055007 (15pp), doi:10.1088/0264-9381/29/5/055007

- Classification of energy momentum tensors in spacetime:
 - Plebański J (1964) The algebraic structure of the tensor of matter, Acta Phys. Polon. 26, 963-...
- Conformal characterizations of spacetimes with a given $T_{\mu\nu}$:
 - Kozameh C N, Newman E T and Tod K P (1985) *Conformal Einstein spaces* Gen. Rel. Grav. **17** 343–352
 - Kozameh C N, Newman E T and Nurowski P (2003) Conformal Einstein equations and Cartan conformal connection Class. Q. Grav. 20 3029 – 3035
 - Gover A R and Nurowski P (2006) Obstructions to conformally Einstein metrics in n dimensions Journ. Geom. Phys. 56 450 – 484
 - Leistner Th and Nurowski P (2012) Conformal pure radiation with parallel rays, Class. Q. Grav. 29, 055007 (15pp), doi:10.1088/0264-9381/29/5/055007

- Classification of energy momentum tensors in spacetime:
 - Plebański J (1964) The algebraic structure of the tensor of matter, Acta Phys. Polon. 26, 963-...
- Conformal characterizations of spacetimes with a given $T_{\mu\nu}$:
 - Kozameh C N, Newman E T and Tod K P (1985) *Conformal Einstein spaces* Gen. Rel. Grav. **17** 343–352
 - Kozameh C N, Newman E T and Nurowski P (2003) Conformal Einstein equations and Cartan conformal connection Class. Q. Grav. 20 3029 – 3035
 - Gover A R and Nurowski P (2006) Obstructions to conformally Einstein metrics in n dimensions Journ. Geom. Phys. 56 450 – 484
 - Leistner Th and Nurowski P (2012) Conformal pure radiation with parallel rays, Class. Q. Grav. 29, 055007 (15pp), doi:10.1088/0264-9381/29/5/055007

- Classification of energy momentum tensors in spacetime:
 - Plebański J (1964) The algebraic structure of the tensor of matter, Acta Phys. Polon. 26, 963-...
- Conformal characterizations of spacetimes with a given $T_{\mu\nu}$:
 - Kozameh C N, Newman E T and Tod K P (1985) *Conformal Einstein spaces* Gen. Rel. Grav. **17** 343–352
 - Kozameh C N, Newman E T and Nurowski P (2003) Conformal Einstein equations and Cartan conformal connection Class. Q. Grav. 20 3029 – 3035
 - Gover A R and Nurowski P (2006) Obstructions to conformally Einstein metrics in n dimensions Journ. Geom. Phys. 56 450 – 484
 - Leistner Th and Nurowski P (2012) Conformal pure radiation with parallel rays, Class. Q. Grav. 29, 055007 (15pp), doi:10.1088/0264-9381/29/5/055007

- Classification of energy momentum tensors in spacetime:
 - Plebański J (1964) The algebraic structure of the tensor of matter, Acta Phys. Polon. 26, 963-...
- Conformal characterizations of spacetimes with a given $T_{\mu\nu}$:
 - Kozameh C N, Newman E T and Tod K P (1985) *Conformal Einstein spaces* Gen. Rel. Grav. **17** 343–352
 - Kozameh C N, Newman E T and Nurowski P (2003) Conformal Einstein equations and Cartan conformal connection Class. Q. Grav. 20 3029 – 3035
 - Gover A R and Nurowski P (2006) Obstructions to conformally Einstein metrics in n dimensions Journ. Geom. Phys. 56 450 – 484
 - Leistner Th and Nurowski P (2012) Conformal pure radiation with parallel rays, Class. Q. Grav. 29, 055007 (15pp), doi:10.1088/0264-9381/29/5/055007

- Classification of energy momentum tensors in spacetime:
 - Plebański J (1964) The algebraic structure of the tensor of matter, Acta Phys. Polon. 26, 963-...
- Conformal characterizations of spacetimes with a given $T_{\mu\nu}$:
 - Kozameh C N, Newman E T and Tod K P (1985) *Conformal Einstein spaces* Gen. Rel. Grav. **17** 343–352
 - Kozameh C N, Newman E T and Nurowski P (2003) Conformal Einstein equations and Cartan conformal connection Class. Q. Grav. 20 3029 – 3035
 - Gover A R and Nurowski P (2006) Obstructions to conformally Einstein metrics in n dimensions Journ. Geom. Phys. 56 450 – 484
 - Leistner Th and Nurowski P (2012) Conformal pure radiation with parallel rays, Class. Q. Grav. 29, 055007 (15pp), doi:10.1088/0264-9381/29/5/055007