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General Relativity (GR) theory

Quick intro to General Relativity theory:

the arena for all physical events is a spacetime – a
FOUR-dimensional manifold M equipped with a metric g of
Lorentzian signature (−,+,+,+),

points of M – are physical events; curves in M – are histories of
events,

because of the Lorentzian signature, there are three categories
of curves:

timelike curves: whose tangent vectors u always satisfy
g(u,u) < 0,
spacelike curves: whose tangent vectors satisfy
g(u,u) > 0,
null, or using Elie Cartan’s name, optical curves: whose
tangent nonzero vectors satisfy g(u,u) = 0;
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General Relativity (GR) theory

Curves representing movement of particles in spacetime
are particles’ worldlines; physically realistic particles
have worldlines which are:

either everywhere timelike, if they have mass, or
optical, if they are massless (they represent e.g. photons∼
particles of light);
curves whose tangent vectors are never spacelike are
called causal; causal curves correspond to worldlines of
physically acceptable particles;

Paricles in free fall have worldlines, which are affinely
parametrized causal geodesics. Their normalized
tangent vectors u satisfy

∇uu = 0;
the word normalized means that g(u,u) = −1 (for
particles with mass) or 0 (for masless particles as e.g.
photons).
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General Relativity (GR) theory

The movement of test particles in free fall in gravitational
field is determined by the Levi-Civita connection ∇ of the
metric g, and the Newtonian gravitational force is
incorporated in the notion of this connection,
In GR every spacetime satisfies Einstein’s field
equiations

Ric − 1
2Rg + Λg = κT ,

where Λ is a (cosmological) constant, κ is a universal
constant (we choose units that it is equal to 1), Ric is the
Ricci tensor of g, R is its Ricci scalar, and T is the energy
momentum tensor, which represents the matter content
of spacetime;
Once g satisfying Einstein’s equations is given in M, the
dynamics of free particles’s movement is goverened by a
simple rule: knowing a position p and velocity u of a
particle at p, follow a geodesic passing through p and
tangent to u; this is the worldline of the considered particle.
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Energy momentum tensors

Einstein’s equations: Rµν − 1
2Rgµν + Λgµν = Tµν ,

R = Rµνgµν , and gµνgνρ = δµρ.
Here Tµν = Tνµ is symmetric. Although Tµν is symmetric,
the endomorphism tensor Tµ

ν = gµρTρν , due to the
Lorentzian signature of the metric g, is not. Many algebraic
types of T !
Since Tµ

ν = Rµ
ν + (Λ− 1

2R)δµν the eigenvalues λT of the
endomorphism T differ merely by a shift
λT = λR + Λ− 1

2R from the eigenvalues λR of Ric.
Therefore, due to the Einstein’s equations we may speak
about algebraic classification of the energy momentum
tensor, or Ricci tensor, and use for it the usual Jordan
classification of endomorphisms in R4.
Note however, that because of signature of the metric g
one can atribute a causality to the eigenspaces, telling if
the eigenspace is timelike, spacelike or optical
(Plebański!).
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Energy momentums in physics

The energy aspect of classical matter and/or fields is
described in terms of the symmetric energy momentum tensor
coming from an appropriate physical theory. Some of these
tensors are purely phenomelogical (perfect fluid), some of them
are deeper consequences of a theory (e.g. electromagnetic
field). I review few of them now.

The simplest energy momentum tensor, is the energy
momentum tensor of cosmological constant type: the
Ricci tensor has one real eigenvalue Λ = 1

4R of
multiplicity four. We have Ric = Λg. The metric g
satisfies mathematicans’ Einstein’s equations.
A special case is if the quadruple eigenvalue is equal to
zero; in such case we have the Ricci flat spacetimes,
Ric = 0.
Spacetimes with Ricci tensor of cosmological type
physicsts call vaccuum solutions; with (Λ 6= 0) or
without (Λ = 0) cosmological constant.
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Energy momentum of perfect fluid

The energy momentum of an incompressible fluid is given by
Tµν = (µ+ p)uµuν + pgµν

with uµ = gµνuν a unit timelike vector uµuν = −1. Here µ is a
scalar function describing the energy density of the fluid, and
p is a scalar function describing its preasure. The timelike unit
vector uµ is the 4-velocity of particles of the fluid.
In the frame comoving with the fluid we have uµ = (1,0,0,0)
and gµν = diag(−1,1,1,1). In this frame we have

Tµν =


µ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 or Tµ
ν =


−µ 0 0 0

0 p 0 0
0 0 p 0
0 0 0 p

.

Thus, the perfect fluid energy momentum tensor, is the next
simple after Einstein’s: we have two real eigenvalues, one
with multiplicity one (µ), and one with multiplicity three (p).
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Energy momentum of perfect fluid

The system of Einstein’s equations
Rµν − 1

2Rgµν + Λgµν = Tµν with energy momentum tensor
of a perfect fluid is underdetermined.
Even under very strong symmetry assumptions about g
one needs additional equation to solve it.
The neccessary equation to make the Einstein’s system
determined is a phenomenological equation called the
equation of state.
In its simplest form it gives an implicit relation between µ
and p; in GR it is usually given in the form p = p(µ).
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Perfect fluid as a polytrope

The simplest example is when p = wµ.
if w = −1, p + µ = 0, and we recover the cosmological
constant case with one eigenvalue µ; Tρν = pgρν ;
if w = 0, p = 0 - no preasure; such fluid is called dust;
Tρν = µuρuν .
if w = 1

3 , p = 1
3µ - and this is a relation known from

statistical physics characterizing preasure of light carying
energy density µ.
Note that in the standard cosmology they believe that the
Universe at the beginning was radiation dominated
(p = 1

3µ), that now it is matter dominated (p = 0), and at
the end of its evolution it will be of cosmological
constant type (p = −µ).
Other cases discussed in (more fancy) cosmology is
w = −1

3 - it corresponds to a gas of strings, and w = −2
3 -

it corresponds to a gas of domain walls.
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Electromagnetic field

The electromagnetic field in vacuum is described in
General Relativity by a field of a 2-form F = 1

2Fµνθ
µ ∧ θν ,

satisfying Maxwell’s equations
dF = d ∗ F = 0

coupled to the Einstein’s equations
Rµν − 1

2Rgµν + Λgµν = Tµν , with Maxwell’s energy
momentum tensor:

Tµν = FµρFν
ρ − 1

4gµνFρσF ρσ.
From the algebraic point of view there are two kinds of
energy momentum tensors of the electromagnetic field.
they depend on the fact if the complex 2-form F̃ = F − i ∗ F
is simple, F̃ ∧ F̃ = 0, or not.
If F̃ is not simple, the corresponding energy momentum
tensor Tµ

ν has two real eigenvalues, each with
multiplicity two.
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Null electromagnetic field and pure radiation

If F̃ is simple, then there exists a nonzero real vector
field k on M which is null, g(k , k) = 0, and such that
F̃ (k , ·) = 0. In such case, the energy momentum tensor
Tµν of the corresponding Maxwell form F is Tµν = Φkµkν ,
with Φ nonegative real function on M.
The electromagnetic field corresponding to a simple F̃ is
called null. Null electromagnetic fields correspond to pure
radiation. They behave as plane electromagnetic waves
in Minkowski spacetime.
One can consider energy momentum tensors of the form
Tµν = Φkµkν with null kµ without reference to any
electromagnetic field. Such energy momentum tensors
are interpreted as being produced by incoherent
radiation of massless particles propagating with speed
of light along the rays of kµ. Due to the similarity of
Tρν = Φkρkν to Tρν = µuρuν – the energy momentum of a
dust, the pure radiation is also called null dust.

11/14



Null electromagnetic field and pure radiation

If F̃ is simple, then there exists a nonzero real vector
field k on M which is null, g(k , k) = 0, and such that
F̃ (k , ·) = 0. In such case, the energy momentum tensor
Tµν of the corresponding Maxwell form F is Tµν = Φkµkν ,
with Φ nonegative real function on M.
The electromagnetic field corresponding to a simple F̃ is
called null. Null electromagnetic fields correspond to pure
radiation. They behave as plane electromagnetic waves
in Minkowski spacetime.
One can consider energy momentum tensors of the form
Tµν = Φkµkν with null kµ without reference to any
electromagnetic field. Such energy momentum tensors
are interpreted as being produced by incoherent
radiation of massless particles propagating with speed
of light along the rays of kµ. Due to the similarity of
Tρν = Φkρkν to Tρν = µuρuν – the energy momentum of a
dust, the pure radiation is also called null dust.

11/14



Null electromagnetic field and pure radiation

If F̃ is simple, then there exists a nonzero real vector
field k on M which is null, g(k , k) = 0, and such that
F̃ (k , ·) = 0. In such case, the energy momentum tensor
Tµν of the corresponding Maxwell form F is Tµν = Φkµkν ,
with Φ nonegative real function on M.
The electromagnetic field corresponding to a simple F̃ is
called null. Null electromagnetic fields correspond to pure
radiation. They behave as plane electromagnetic waves
in Minkowski spacetime.
One can consider energy momentum tensors of the form
Tµν = Φkµkν with null kµ without reference to any
electromagnetic field. Such energy momentum tensors
are interpreted as being produced by incoherent
radiation of massless particles propagating with speed
of light along the rays of kµ. Due to the similarity of
Tρν = Φkρkν to Tρν = µuρuν – the energy momentum of a
dust, the pure radiation is also called null dust.

11/14



Null electromagnetic field and pure radiation

If F̃ is simple, then there exists a nonzero real vector
field k on M which is null, g(k , k) = 0, and such that
F̃ (k , ·) = 0. In such case, the energy momentum tensor
Tµν of the corresponding Maxwell form F is Tµν = Φkµkν ,
with Φ nonegative real function on M.
The electromagnetic field corresponding to a simple F̃ is
called null. Null electromagnetic fields correspond to pure
radiation. They behave as plane electromagnetic waves
in Minkowski spacetime.
One can consider energy momentum tensors of the form
Tµν = Φkµkν with null kµ without reference to any
electromagnetic field. Such energy momentum tensors
are interpreted as being produced by incoherent
radiation of massless particles propagating with speed
of light along the rays of kµ. Due to the similarity of
Tρν = Φkρkν to Tρν = µuρuν – the energy momentum of a
dust, the pure radiation is also called null dust.

11/14



Null electromagnetic field and pure radiation

If F̃ is simple, then there exists a nonzero real vector
field k on M which is null, g(k , k) = 0, and such that
F̃ (k , ·) = 0. In such case, the energy momentum tensor
Tµν of the corresponding Maxwell form F is Tµν = Φkµkν ,
with Φ nonegative real function on M.
The electromagnetic field corresponding to a simple F̃ is
called null. Null electromagnetic fields correspond to pure
radiation. They behave as plane electromagnetic waves
in Minkowski spacetime.
One can consider energy momentum tensors of the form
Tµν = Φkµkν with null kµ without reference to any
electromagnetic field. Such energy momentum tensors
are interpreted as being produced by incoherent
radiation of massless particles propagating with speed
of light along the rays of kµ. Due to the similarity of
Tρν = Φkρkν to Tρν = µuρuν – the energy momentum of a
dust, the pure radiation is also called null dust.

11/14



Null electromagnetic field and pure radiation

If F̃ is simple, then there exists a nonzero real vector
field k on M which is null, g(k , k) = 0, and such that
F̃ (k , ·) = 0. In such case, the energy momentum tensor
Tµν of the corresponding Maxwell form F is Tµν = Φkµkν ,
with Φ nonegative real function on M.
The electromagnetic field corresponding to a simple F̃ is
called null. Null electromagnetic fields correspond to pure
radiation. They behave as plane electromagnetic waves
in Minkowski spacetime.
One can consider energy momentum tensors of the form
Tµν = Φkµkν with null kµ without reference to any
electromagnetic field. Such energy momentum tensors
are interpreted as being produced by incoherent
radiation of massless particles propagating with speed
of light along the rays of kµ. Due to the similarity of
Tρν = Φkρkν to Tρν = µuρuν – the energy momentum of a
dust, the pure radiation is also called null dust.

11/14



Null electromagnetic field and pure radiation

If F̃ is simple, then there exists a nonzero real vector
field k on M which is null, g(k , k) = 0, and such that
F̃ (k , ·) = 0. In such case, the energy momentum tensor
Tµν of the corresponding Maxwell form F is Tµν = Φkµkν ,
with Φ nonegative real function on M.
The electromagnetic field corresponding to a simple F̃ is
called null. Null electromagnetic fields correspond to pure
radiation. They behave as plane electromagnetic waves
in Minkowski spacetime.
One can consider energy momentum tensors of the form
Tµν = Φkµkν with null kµ without reference to any
electromagnetic field. Such energy momentum tensors
are interpreted as being produced by incoherent
radiation of massless particles propagating with speed
of light along the rays of kµ. Due to the similarity of
Tρν = Φkρkν to Tρν = µuρuν – the energy momentum of a
dust, the pure radiation is also called null dust.

11/14



Null electromagnetic field and pure radiation

If F̃ is simple, then there exists a nonzero real vector
field k on M which is null, g(k , k) = 0, and such that
F̃ (k , ·) = 0. In such case, the energy momentum tensor
Tµν of the corresponding Maxwell form F is Tµν = Φkµkν ,
with Φ nonegative real function on M.
The electromagnetic field corresponding to a simple F̃ is
called null. Null electromagnetic fields correspond to pure
radiation. They behave as plane electromagnetic waves
in Minkowski spacetime.
One can consider energy momentum tensors of the form
Tµν = Φkµkν with null kµ without reference to any
electromagnetic field. Such energy momentum tensors
are interpreted as being produced by incoherent
radiation of massless particles propagating with speed
of light along the rays of kµ. Due to the similarity of
Tρν = Φkρkν to Tρν = µuρuν – the energy momentum of a
dust, the pure radiation is also called null dust.

11/14



Null electromagnetic field and pure radiation

If F̃ is simple, then there exists a nonzero real vector
field k on M which is null, g(k , k) = 0, and such that
F̃ (k , ·) = 0. In such case, the energy momentum tensor
Tµν of the corresponding Maxwell form F is Tµν = Φkµkν ,
with Φ nonegative real function on M.
The electromagnetic field corresponding to a simple F̃ is
called null. Null electromagnetic fields correspond to pure
radiation. They behave as plane electromagnetic waves
in Minkowski spacetime.
One can consider energy momentum tensors of the form
Tµν = Φkµkν with null kµ without reference to any
electromagnetic field. Such energy momentum tensors
are interpreted as being produced by incoherent
radiation of massless particles propagating with speed
of light along the rays of kµ. Due to the similarity of
Tρν = Φkρkν to Tρν = µuρuν – the energy momentum of a
dust, the pure radiation is also called null dust.

11/14



Null electromagnetic field and pure radiation

If F̃ is simple, then there exists a nonzero real vector
field k on M which is null, g(k , k) = 0, and such that
F̃ (k , ·) = 0. In such case, the energy momentum tensor
Tµν of the corresponding Maxwell form F is Tµν = Φkµkν ,
with Φ nonegative real function on M.
The electromagnetic field corresponding to a simple F̃ is
called null. Null electromagnetic fields correspond to pure
radiation. They behave as plane electromagnetic waves
in Minkowski spacetime.
One can consider energy momentum tensors of the form
Tµν = Φkµkν with null kµ without reference to any
electromagnetic field. Such energy momentum tensors
are interpreted as being produced by incoherent
radiation of massless particles propagating with speed
of light along the rays of kµ. Due to the similarity of
Tρν = Φkρkν to Tρν = µuρuν – the energy momentum of a
dust, the pure radiation is also called null dust.

11/14



Energy conditions

A physically resonable energy momentum tensor has to
satisfy the

dominant energy condition:
the local energy density ρ = Tµνuµuν as measured by any
observer with 4-velocity uµ is non-negative and the local
energy flow qµ = Tµ

νuν is causal
Tµνuµuν ≥ 0 and qµqµ ≤ 0.

In particular, for the politrope perfect fluid with p = wµ this
gives µ ≥ 0, |w | ≤ 1.

12/14



Energy conditions

A physically resonable energy momentum tensor has to
satisfy the

dominant energy condition:
the local energy density ρ = Tµνuµuν as measured by any
observer with 4-velocity uµ is non-negative and the local
energy flow qµ = Tµ

νuν is causal
Tµνuµuν ≥ 0 and qµqµ ≤ 0.

In particular, for the politrope perfect fluid with p = wµ this
gives µ ≥ 0, |w | ≤ 1.

12/14



Energy conditions

A physically resonable energy momentum tensor has to
satisfy the

dominant energy condition:
the local energy density ρ = Tµνuµuν as measured by any
observer with 4-velocity uµ is non-negative and the local
energy flow qµ = Tµ

νuν is causal
Tµνuµuν ≥ 0 and qµqµ ≤ 0.

In particular, for the politrope perfect fluid with p = wµ this
gives µ ≥ 0, |w | ≤ 1.

12/14



Energy conditions

A physically resonable energy momentum tensor has to
satisfy the

dominant energy condition:
the local energy density ρ = Tµνuµuν as measured by any
observer with 4-velocity uµ is non-negative and the local
energy flow qµ = Tµ

νuν is causal
Tµνuµuν ≥ 0 and qµqµ ≤ 0.

In particular, for the politrope perfect fluid with p = wµ this
gives µ ≥ 0, |w | ≤ 1.

12/14



Energy conditions

A physically resonable energy momentum tensor has to
satisfy the

dominant energy condition:
the local energy density ρ = Tµνuµuν as measured by any
observer with 4-velocity uµ is non-negative and the local
energy flow qµ = Tµ

νuν is causal
Tµνuµuν ≥ 0 and qµqµ ≤ 0.

In particular, for the politrope perfect fluid with p = wµ this
gives µ ≥ 0, |w | ≤ 1.

12/14



Energy conditions

A physically resonable energy momentum tensor has to
satisfy the

dominant energy condition:
the local energy density ρ = Tµνuµuν as measured by any
observer with 4-velocity uµ is non-negative and the local
energy flow qµ = Tµ

νuν is causal
Tµνuµuν ≥ 0 and qµqµ ≤ 0.

In particular, for the politrope perfect fluid with p = wµ this
gives µ ≥ 0, |w | ≤ 1.

12/14



Conformal spacetimes

A spacetime M with a conformal class of metrics [g] i.e.
with Lorentzian metrics such that any two g1 and g2 are
related to each other via g2 = e2φg1 is called a conformal
spacetime (M, [g]).
Problem:
Characterize conformal spacetimes having in
conformal class metrics whose energy momentum
tensors, via Einstein equations, are in a given
algebraic type.
The answer is known for Einstein metrics and pure
radiation.
I would like to have an answer for perfect fluids (???),
and in particular for various politropes (???).
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