
Tutorial: caclulating Cartan tensor and deeper invariants.
Theory, algorithm A, algorithm B

Algorithm A

input: vector fields V1,V2, given in any coordinates;
a point p at which the distribution D described by V1,V2 is (2,3,5).

output: the Cartan tensor of D at p.

Algorithm B

input: a 3× 5 characteristic matrix of an endowed 5-dim algebra (A,P).

output: the Cartan tensor of the homogeneous left-invariant distribution D
induced by (A,P).

• In algorithm B we realize by vector fields neither (A,P) nor D.

• Algorithm B given an explicit formula for Cartan tensor in terms of 15
parameters of the characteistic matrix.
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LN-equivalence of pairs of vector fields

Take any symbol (nilpotent approximation) N = (N1,N2) meaning (here)
two vector fields, expressed in a local coordinate system x1, ..., x5 such that
N1,N2 are quasi-homogeneous of degree −1 wrt the weights 1,1,2,3,3 and
the vector fields

N1, N2, N3 = [N1,N2], N4 = [N1,N3], N5 = [N2,N3]

are linearly independent at 0 ∈ R5. Recall the linear operator

LN : (Z ,H)→
[
Z ,

(
N1

N2

)]
+ H

(
N1

N2

)
Z is a vector field

H is a 2× 2 matrix whose entries are functions

Definition. Two pairs of vector fields are LN -eqivalent
if their difference belongs to the image of LN .
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Preliminary normal form 1 wrt LN-equivalence

Any pair of vector fields can be expressed in the form

U1 = F11N1 + F12N2 + F13N3 + F14N4 + F15N5

U2 = F21N1 + F22N2 + F23N3 + F24N4 + F25N5
(1)

Claim 1. The pair of vector fields (1) is LN -equivalent to

Preliminary normal form 1
U1 = A11N4 + A12N4

U2 = A21N4 + A22N5

where A11 = F14, A12 = F15,A21 = F24, A22 = F25

Proof. Take Z = f1N1 + f2N2. Then
[Z ,N1] = −f2N3 mod N1,N2, [Z ,N2] = f1N3 mod N1,N2

and the claim follows.
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(Z ,H) preserving preliminary normal form 1

Saying that (Z ,H) preserves a normal form we mean that the operator LN
brings (Z ,H) to a pair of vector fields in this normal form.

Claim 2. A pair (Z ,H) preserves the preliminary normal form 1
if and only if

(Z ,H) preserving preliminary normal form 1
Z = f1N1 + f2N2 + f3N3 + f4N4 + f5N5

f1 = −N2(f3), f2 = N1(f3), H =

(
N1(f1) N1(f2)
N2(f1) N2(f2)

)
Proof. We have

Z = f1N1 + f2N2 + f3N3 + f4N4 + f5N5 =⇒
[Z ,N1] = −N1(f1)N1 − N1(f2)N2 − (f2 + N1(f3))N3 mod N4,N5

[Z ,N2] = −N2(f1)N1 − N2(f2)N2 + (f1 − N2(f3))N3 mod N4,N5

and the claim follows.
April 29, 2021 4 / 46



Equivalence problem for 2× 2 matrices
(whose entries are functions)

For any pair (Z ,H) preserving the preliminary normal form 1 (see the
formulas in the previous slide) we have

LN(Z ,H) =
−(f3 + N1(f4))N4 − N1(f5)N5

−N2(f4)N4 − (f3 + N2(f5))N5

Introduce the following operator, from the space of triples of functions to
the space of 2× 2 matrices with functional entries:

MN(f3, f4, f5) =

(
f3 + N1(f4) N1(f5)
N2(f4) f3 + N2(f5)

)
Therefore the LN -equivalence for pairs of vector fields reduces to the
following equivalence for 2× 2 matrices with functional entries:

Definition. Two 2× 2 matrices, with functional entries, are equivalent if
their difference belongs to the image of the operator MN .
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Good choice of N1,N2

My choice of N1,N2 is, as I said in the lectures, as follows:

N1 = ∂x1 + x2(∂z + x1∂y1 + x2∂y2)
N2 = ∂x2 − x1(∂z + x1∂y1 + x2∂y2)

The main advantage, that will be used throughout constructing an exact
normal form is as follows:

x1N1 + x2N2 = Euler vector field = E = x1∂x1 + x2∂x2
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Preliminary normal form 2

In what follows N1,N2 is the nilpotent approximation in the previous slide.

Claim 3. Any 2× 2 matrix with functional entries
is equivalent to a matrix Q such that

preliminary normal form 2

Q = (Qij) : Qtr

(
x1
x2

)
= 0 ⇔ Q =

(
x2S1 x2S2
−x1S1 −x1S2

)

Proof. We have MN(f3 = 0, f4, f5) =

(
N1(f4) N1(f5)
N2(f4) N2(f5)

)
, thereore(

MN(f3 = 0, f4, f5)
)tr(x1

x2

)
=

(
E (f4)
E (f5)

)
, and the claim follows from the

simple fact that the equation E (f ) = g has a solution f for any g in the
ideal (x1, x2).

Recall that E is the Euler vector field x1∂x1 + x2∂x2 .
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Reduction to preliminary normal form 2

In order to bring an arbitrary 2× 2 matrix A to preliminary normal form 2,
we need the following operators. Introduce the operator T:

T(f ) = a unique function f̃ such that f̃ + E (f̃ ) = f

f =
∑

i≥0 f
(i), f (i) =

∑
i1+i2=i ci1,i2(z , y1, y2)x i11 x

i2
2 =⇒

f̃ =
∑

i≥0
f (i)

i+1 .

We will need the following operators T1,T2 :

T1(f ) = N1(T(f )), T2(f ) = N2(T(f ))

Claim 4. A matrix A = (Aij) is equivalent
to preliminary normal form 2 with

S1 = T2(A11)− T1(A21), S2 = T2(A12)− T1(A22).

Proof. Exercise.

April 29, 2021 8 / 46



(f3, f4, f5) preserving preliminary normal form 2

Like above, we will say that (f3, f4, f5) preserves preliminary normal form 2
in the operator MN brings (f3, f4, f5) to this normal form.

Claim 5. (f3, f4, f5) preserves preliminary normal form 2 if and only if

f3, f4, f5 preserving preliminary normal form 2
f4 = x1h + α1(z , y1, y2), f5 = x2h + α2(z , y1, y2), f3 = −h − E (h)

Proof. We have the equations

E (f4) + x1f3 = 0, E (f5) + x2f3 = 0

It follows ∂f4
∂x2
∈ (x1) and ∂f5

∂x1
∈ (x2). Consequently

f4 = x1h1 + α1(z , y1, y2) and f5 = x1h2 + α2(z , y1, y2). The two equations
take the form h1 + E (h1) + f3 = 0, h2 + E (h2) + f3 = 0. It follows
h1 = h2 = h and f3 = −h − E (h). Q.E.D.
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Preliminary normal form 3

Claim 6. Any 2× 2 matrix with functional entries
is equivalent to a matrix Q such that

preliminary normal form 3

Q = (Qij) : Qtr

(
x1
x2

)
= 0, trace Q = 0 ⇔ Q = F ·

(
x1x2 x22
−x21 −x1x2

)
Proof. Take f3, f4, f5 that preserve te preliminary normal form 2
(see the previous slide) with α1 = α2 = 0. Then

MN(f3, f4, f5) =

(
−E (h) + x1N1(h) x2N1(h)

x1N2(h) −E (h) + x2N2(h)

)
=

=

(
−x2N2(h) x2N1(h)
x1N2(h) −x1N1(h)

)
Therefore traceMN(f3, f4, f5) = −E (h) and preliminary normal form 3
follows from preliminary normal form 2.
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Reduction of preliminary normal form 2
to preliminary normal form 3

Claim 7. One has(
x2S1 x2S2
−x1S1 −x1S2

)
∼ F ·

(
x1x2 x22
−x21 −x1x2

)
with

F = T1(S1) + T2(S2).

Proof. Exercise.
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f3, f4, f5 preserving preliminary normal form 3

Claim 8. f3, f4, f5 preserve preliminary normal form 3
if and only if for some functions

α1 = α1(z , y1, y2), α2 = α2(z , y1, y2), β = β(z , y1, y2)

one has

f3 = −2R1(α1, α2)− 3R2(α1, α2)− β
f4 = x1

(
R1(α1, α2) + R2(α1, α2) + β

)
+ α1

f5 = x2
(
R1(α1, α2) + R2(α1, α2) + β

)
+ α2

where

R1(α1, α2) = x2
∂α1
∂z − x1

∂α2
∂z

R2(α1, α2) = 1
2

(
− x21

∂α2
∂y1

+ x1x2
(
∂α1
∂y1
− ∂α2

∂y2

)
+ x22

∂α2
∂y2

)
April 29, 2021 12 / 46



Proof of claim 8

Recall that f3, f4, f5 preserve preliminary form 3 if and only if

f4 = x1h + α1(z , y1, y2), f5 = x2h + α2(z , y1, y2), f3 = −h − E (h)

For such f3, f4, f5 the matrix MN(f3, f4, f5) is in preliminary normal form 2
and it is in preliminary form 3 if and only if it has the zero trace. It gives
the equation

E (h) = N1(α1(z , y1, y2)) + N2(α1(z , y1, y2))

whose general solution is h = R1(α1, α2) + R2(α1, α2) + β, where
β = β(z , y1, y2) is an arbitrary function. Note that R1(α1, α2) and
R2(α1, α2) are homogeneous polynomials in x1, x2 of degrees 1 and 2
respectively. Therefore

f3 = −h − E (h) = −2R1(α1, α2)− 3R2(α1, α2)− β

Q.E.D.
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How f3, f4, f5 that preserve preliminary normal form 3
changes the function F in this normal form?

We have F → F + ∆F where MN(f3, f4, f5) = ∆F ·
(
x1x2 x22
−x21 −x1x2

)
The function f3, f4, f5 are determined by
α1 = α1(z , y1, y2), α2 = α2(z , y1, y2), β = β(z , y1, y2).

Claim 9 (proof: straightforward calculation). The ∆F above is the
following degree 3 polynomial in x1, x2:

∆F =
∑

i1+i2≤3

Qijx
i1
1 x

i2
2 , Qij = Qij(z , y1, y2)

Q00 = ∂β
∂z + 1

2
∂α1
∂y1

+ 1
2
∂α2
∂y2

, Q10 = ∂β
∂y1
− ∂2α2

∂z2
, Q01 = ∂β

∂y2
+ ∂2α1

∂z2

Q20 = −3
2
∂2α2
∂z∂y1

, Q11 = 3
2
∂2α1
∂z∂y1

− 3
2
∂2α2
∂z∂y2

, Q02 = 3
2
∂2α1
∂z∂y2

Q30 = −1
2
∂2α2

∂y2
1

, Q21 = 1
2
∂2α1

∂y2
1
− ∂2α2

∂y1∂y2

Q12 = −1
2
∂2α2

∂y2
2

+ ∂2α1
∂y1∂y2

, Q03 = 1
2
∂2α1

∂y2
2
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Exact normal form

The LN -equivalence of pairs of vector fields has been reduced to the
following equivalence of functions:

• Two functions F (x1, x2, z , y1, y2), F̃ (x1, x2, z , y1, y2) are equivalent if
their difference has the form ∆F in the previous slide,
with some functions α1(z , y1, y2), α2(z , y1, y2), β(z , y1, y2).

Proposition 10. With respect to this equivalence, an exact normal form is
the ideal I that I defined in the first lecture.

The proof requires some work,
but it is not difficult if you know certain techniques.

We have constructed an exact normal form for pairs of vector fields with
respect to the LN -equivalence:(

V1

V2

)
=

(
N1

N2

)
+ F ·

(
x1x2 x22
−x21 −x1x2

)(
[N1, [N1,N2]]
[N2, [N1,N2]]

)
, F ∈ ideal I

April 29, 2021 15 / 46



If Cartan tensor only, not deeper invariants:
much simpler

Note that if a pair of vector fields in preliminary normal form 3 is
quasi-homogeneous of degree i then the function F in this normal form
is quasi-homogeneous of degree i + 1.

The Cartan tensor is an invariant in the classification of quasi-3-jets.
Therefore for finding Cartan tensor we have to normalize

F = F [1] + F [2] + F [3] + F [4].

Here and in what follows [i ] denotes the an object (function, vector field)
is quasi-homogeneous of degree i .

It is easy to prove
F [1] ∼ 0, F [2] ∼ 0, F [3] ∼ 0.
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Claim 11.
An exact normal form for F ∈ [4] is the space of homogeneous degree 4
polynomials c4,0x

4
1 + · · ·+ c0,4x

4
2 .

Any F (x1, x2, z , y1, y2) ∈ [4] is equivalent to F (x1, x2, 0, 0, 0)

Proof. It is a direct corollary of the fact that ∆F in claim 9 does not
contain monomials x41 , x

3
1x2, x

2
1x

2
2 , x1x

3
2 , x

4
2 ∈ [4] and

Claim 12. All other monomials in [4] are in ∆F , with suitable
α1(y1, y2, z), α2(y1, y2, z), β(y1, y2, z).

The simplest way to prove Claim 12 is using the dimensional counting; it
reduces Claim 12 to

Claim 13. Let α1(z , y1, y2), α2(z , y1, y2) ∈ [7], β(z , y1, y2) ∈ [6], so that
∆F ∈ [4]. The equation ∆F = 0 holds if a 14-dim vector space of tuples
α1, α2, β.

We can easily calculate a basis of this 14-dim vector space.
It gives a parameterization of g2 = ker LN .
Along with the calculations above it gives
a representation of g2 by vector fields.
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Normal forms and deeper invariants

The Cartan invariant is the invariant in the classification of quasi-3-jets,
with respect to the weights 1,1,2,3,3.

It is a part of the invariants in the classification of usual 5-jets,
with respect to the weights 1,1,1,1,1.
(Attn: for the usual jets x21∂x1 has degree 1, not 0).
In the clasification of usual 4-jets there are no invariants.

The calculations above and the ideal I (first lecture) lead to the following
normal form for the usual 5-jets:

V1 = N1 + x2G (x1∂y1 + x2∂y2)

V2 = N2 − x1G (x1∂y1 + x2∂y2)

G = F (4)(x1, x2) + zF (3)(x1, x2) + z2F (2)(x1, x2)+
+r1x1z(x1y2 − x2y1) + r2x2z(x1y2 − x2y1) + w(x1y2 − x2y1)2

(i) = homogeneous degree i

F (4)=Cartan tensor, up to a non-singular linear transformation of x1, x2.
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Here, except Cartan tensor, we have 10 more parameters:
the coefficients of F (3)(x1, x2),F (2)(x1, x2) and r1, r2,w .

But the tuple of these 10 parameters is not an invariant,
bacause of 2-dim g2

[1] and 1-dim g2
[2], and 2-dim g2

[3].

Since zF (3)(x1, x2) ∈ [5], z2F (2)(x1, x2) ∈ [6],
x1z(x1y2 − x2y1), x2z(x1y2 − x2y1) ∈ [7]

there is a certain action of g2
[1] on F (3)(x1, x2), of g2

[2] on F (2)(x1, x2),
and of g2

[3] on (r1, r2) in the normal form in the previous slide.

This action depends on the Cartan tensor F (4)(x1, x2).
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Claim 14. For a generic Cartan tensor
(∼ ±x41 + cx21x

2
2 ± x42 , c 6= ±2) we have the following reduction:

F (3)(x1, x2)→ w1x
3
1 + w2x

3
2

F (2)(x1, x2)→ w3x
3
1 + w4x

3
2

r1, r2 → 0

After this reduction, the tuple c ,w1,w2,w3,w4,w is a complete invariant
in the classification of 5-jets of (2,3,5) distributions with respects to the
weights 1,1,1,1,1.

Question. Probably there is a certain geometric object, that can be
constructed in a canonical way (some curvature?) and can be identified
with the equivalence class of 5-jets of (2,3,5) distributions with respects to
the weights 1,1,1,1,1,
in the same way as the Cartan tensor and can be identified with the
equivalence class of 5-jets of (2,3,5) distributions with respects to the
weights 1,1,2,3,3.
I would be happy if Dennis can answer.

April 29, 2021 20 / 46



Can we do a similar work with another nilpotent
approximation?

Conceptually: yes. Practically: NOT.

Take for example the “Monge symbol”

N1 = ∂x1 , N2 = ∂x2 + x1∂x3 + x3∂x4 + x21∂x5 .

It is easy to obtain the following preliminary normal form with respect to
the LN -equivalence:

V1 = N1, V2 = N2 + x21

(
P(4)(x1, x2) + [≥ 5]

)
∂x5

and P(4)(x1, x2) in this normal form is another way
to express the Cartan tensor.

BUT this normal form does not respect the group
GL(2)=quasi-homogeneous degree [0] symmetries of N,
i.e. in the terminology of my first lecture it is not good.
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The Cartan invariant will be the equivalence class of the tuple of 5
coefficients of P(4)(x1, x2) with respect to a very involved action of GL(2).

And normalization of [≥ 5] to some ideal, like I did for “my” nilpotent
approximation is, I guess, not doable.

The thing is that the infinitesimal symmetries of quasi-degree [0] of the
Monge symbol are very involved (one can easily calculate them), whereas
“my” symbol has the following advantage which is the reason why I can
do simple calculations, without being blocked after few steps, and why I
can effectively use the obtained normal form:

The quasi-homogeneous infinitesimal symmetries of “my” symbol of
quasi-degree [0] with respect to the weights 1,1,2,3,3 are homogeneous of
degree (0) with respect to the weights 1,1,1,1,1.
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Algorithm A, first two steps

Algorithm A:

input: vector fields V1,V2, given in any coordinates;
a point p at which the distribution D described by V1,V2 is (2,3,5).

output: the Cartan tensor of D at p.

Step 1: shift the coordinates such that p = (0, 0, 0, 0, 0).

Step 2: calculate the usual 5-jet of the vector fields (with respect to the
weights 1,1,1,1,1; attn.: it is the 6-jet of the coefficients of the vector
fields) and take away the higher order terms - they do not affect the
Cartan tensor.
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Algorithm A, steps 3 and 4

Step 3. Work with the usual 1-jet of the vector fields (with respect to the
weights 1,1,1,1,1; attn.: it is the 2-jet of the coefficients of the vector
fields) in order to change the coordinates such that the vector fields do not
contain quasi-homogeneous parts, with respect to the weights 1,1,2,3,3, of
degree [-3] and [-2], and the quasi-homogeneous degree [-1] part is “my”
symbol.

It is simple but a bit technical; can be easily algoritmized.
I have no time to explain.

Step 4. Calculate the quasi-homogeneous parts of the vector fields, with
respect to the weights 1,1,2,3,3, of degrees [0], [1], [2], [3] and take away
the terms of higher degrees with respect to these weights - they do not
affect the Cartan tensor. Now we have(
V1

V2

)
=

(
N1

N2

)
+ W [0] + W [1] + W [2] + W [3]

where W [i ] are certain pairs of quasi-homogeneous
vector fields of degree [i ].
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Algorithm A, steps 5 and 6

Step 5. Find (Z ,H) ∈ [1] such that LN(Z ,H) = −W [0].
We know that such (Z ,H) exists and unique
up to the 2-dim vector space g2

[1].
Does not make difference which (Z ,H) to take.

A straightforward way is to solve a system
of 48 equations with respect to 50 unknowns.
A better way is to use step-by-step reduction formulas given above.

Step 6. Make a change of coordinates exp(Z ,H) with a properly defined
exponential map for (Z ,H).

We obtain(
V1

V2

)
=

(
N1

N2

)
+ W̃ [1] + W̃ [2] + W̃ [3] + · · ·

with new quasi-homogeneous parts of degrees [1], [2], [3].
The h.o.t. can be taken away.
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The calculation of W̃ [1], W̃ [2], W̃ [3] is immediate
using the formula

exp(Z ,H)∗V = V + LV (Z ,H) +
1

2!
L2V (Z ,H) +

1

3!
L3V (Z ,H) + · · ·

where V =

(
V1

V2

)
and LV (Z ,H) = [Z ,V ] + HV .

Remark. No need to calculate W̃ [2] - will be explained below.
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Algorithm A, steps 7,8

Step 7. Find (Z ,H) ∈ [2] such that LN(Z ,H) = −W̃ [1].
We know that such (Z ,H) exists and unique
up to the 1-dim vector space g2

[2].
Does not make difference which (Z ,H) to take.

A straightforward way is to solve a system
of many p (around 100) equations with respect to p + 1 unknown.
A better way is to use step-by-step reduction formulas given above.

Step 8. Make a change of coordinates exp(Z ,H). We obtain(
V1

V2

)
=

(
N1

N2

)
+ Ŵ [2] + Ŵ [3] + · · ·

with new quasi-homogeneous parts of degrees [2], [3].
The h.o.t. can be taken away.
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Algorithm A, steps 9,10

Step 9. Use the above formula for exp(Z ,H)∗V to calculate Ŵ [3].

No need to calculate Ŵ [2].

Step 10. We know that Ŵ [2] can be killed by a suitable (Z ,H) ∈ [3].

It will change the quasi-homogeneous parts of degrees ≥ 4 but not Ŵ [3],
so that up to equivalence(
V1

V2

)
=

(
N1

N2

)
+ Ŵ [3] + [≥ 4]

The part [≥ 4] can be taken away.
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Algorithm A, final step 11

Express Ŵ [3] in the form

Ŵ [3] =

(
A11N4 + A12N5

A21N4 + A22N5

)
mod N1,N2, [N1,N2]

Find Cartan tensor from Aij by the explicit formulas above.
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Algorithm B

input: a 3× 5 characteristic matrix of an endowed 5-dim algebra (A,P).

output: the Cartan tensor of the homogeneous left-invariant distribution D
induced by (A,P).

• In algorithm B we realize by vector fields neither (A,P) nor D.

• Algorithm B given an explicit formula for Cartan tensor in terms of 15
parameters of the characteistic matrix.
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g2 = ker LN

g2 = g2
[−3] + g2

[−2] + g2
[−1] + g2

[0] + g2
[1] + g2

[2] + g2
[3]

g2
[i ] = Z in ker L

[i ]
N

L
[i ]
N : (Z ,H) ∈ [i ] →

[
Z ,

(
N1

N2

)]
+ H

(
N1

N2

)
g2

[±1] = span
(
ξ
[±1]
1 , ξ

[±1]
2

)
, g2

[±3] = span
(
ξ
[±3]
1 , ξ

[±3]
2

)
g2

[±2] = span
(
ξ[±2]

)
g2

[0] = span
(
ξ
[0]
A , A ∈ basis of gl(2)

)
ξ
[0]
A =

〈
A

(
x1
x2

)
,

(
∂x1
∂x2

)〉
+ traceA · z∂z+

+
〈

(A + traceA · I )
(
y1
y2

)
,

(
∂y1
∂y2

)〉

April 29, 2021 31 / 46



g2 = ker LN : structure equations, part 1

[
ξ
[±1]
1 , ξ

[±1]
2

]
= ξ±2,

[
ξ
[±1]
1 , ξ[±2]

]
= ξ

[±3]
1 ,

[
ξ
[±1]
2 , ξ[±2]

]
= ξ

[±3]
2[

ξ
[0]
A ,

(
ξ
[±1]
1

ξ
[±1]
2

])] = Q

(
ξ
[±1]
1

ξ
[±1]
2

]),
[
ξ
[0]
A , ξ[±2]

]
= ±traceξ[±2]

[
ξ
[0]
A ,

(
ξ
[±3]
1

ξ
[±3]
2

])] = (Q ± traceA · I )

(
ξ
[±1]
1

ξ
[±1]
2

])
+ : Q = A, − : Q = −Atr
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g2 = ker LN : structure equations, part 2

ξ
[1]
1 ξ

[1]
2 ξ[2] ξ

[3]
1 ξ

[3]
2

ξ
[−1]
1 ξ

[0]1 0
0 − 1

2

 ξ
[0]0 3

2

0 0

 −2ξ
[1]
2 − 3

2
ξ[2] 0

ξ
[−1]
2 ξ

[0]0 0
3
2

0

 ξ
[0]− 1

2
0

0 1

 2ξ
[1]
1 0 − 3

2
ξ[2]

ξ[−2] 2ξ
[−1]
2 2ξ

[−1]
1 ξ

[0]1 0
0 1

 3ξ
[1]
1 3ξ

[1]
2

ξ
[−3]
1

3
2
ξ[−2] 0 −3ξ

[−1]
1 ξ

[0] 9
2

0
0 0

 ξ
[0]0 9

2

0 0


ξ
[−3]
2 0 3

2
ξ[−2] −3ξ

[−1]
2 ξ

[0]0 0
9
2

0

 ξ
[0]0 0
0 9

2


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Normal form and symmetries

We have a homogeneous (2,3,5) distribution dscribed by vector fields

V1 = N1 + V
[3]
1 + [≥ 4], V

[3]
1 = x2F (x1∂y1 + x2∂y2)

V2 = N2 + V
[3]
2 + [≥ 4], V

[3]
2 = x2F (x1∂y1 + x2∂y2)

F = c40x
4
1 + c31x

3
1x2 + c22x

2
1x

2
2 + c13x1x

3
2 + c04x

4
2 = Cartan tensor

We have 5 unfinitesimal symmetries

a1, a2, a3 = [a1, a2], a4 = [a1, a3], a5 = [a2, a3]

where a1(0) = V1(0), a2(0) = V2(0).

The generating 2-plane in the Lie algebra span(a1, ..., a5) is

P = span(a1, a2).
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Since [ai ,Vj ] = 0 mod V1,V2 it follows that for the decompisition of a1, a2
by quasi-homogeneous parts [i ] we have

a1 = a
[−1]
1 + a

[0]
1 + a

[1]
1 + a

[2]
1 + [≥ 3]

a2 = a
[−1]
2 + a

[0]
2 + a

[1]
2 + a

[2]
2 + [≥ 3]

a
[−1]
i ∈ g2

[−1], a
[0]
i ∈ g2

[0], a
[1]
i ∈ g2

[1], a
[2]
i ∈ g2

[2]

Therefore we have the following normal form for
(distribution; infinitesimal symmetries a1, a2):

V1 = N1 + V
[3]
1 + [≥ 4]

V2 = N2 + V
[3]
2 + [≥ 4]

a1 = ξ
[−1]
1 + ξ

[0]
A + r11ξ

[1]
1 + r12ξ

[1]
2 + r13ξ

[2] + [≥ 3]

a2 = ξ
[−1]
2 + ξ

[0]
B + r21ξ

[1]
1 + r22ξ

[1]
2 + r23ξ

[2] + [≥ 3]

parameterized by rij and 2× 2 matrices A,B.
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Simplification of the normal form

Apply a local diffeo (a change of coordinates) of the form

Φ = exp
(
w1ξ

[1]
1 + w2ξ

[1]
2 + w3ξ

[2] + w4ξ
[3]
1 + w5ξ

[3]
2

)
Whatever are w1, ...,w5, we have

Φ∗V1 = V1 mod V1,V2 + [≥ 4]
Φ∗V2 = V2 mod V1,V2 + [≥ 4]

Therefore this change of coordinates, along with multiplication of V1,V2

by a suitable 2× 2 matrix, preserves the normal form for V1,V2 in the
previous slide.

Claim. Taking suitable w1, ...,w5, we can change the parameters in the
normal form for a1, a2 in the previous slide such that

A and B are traceless matrices (by w1,w2)

r12 = r21 (by w3)

r13 = r23 = 0 (by w4,w5)
April 29, 2021 36 / 46



Working with the normal form for a1, a2

We obtain the following normal form for a1, a2:

a1 = ξ
[−1]
1 + ξ

[0]
A + r1ξ

[1]
1 + sξ

[1]
2 + [≥ 3], traceA = 0

a2 = ξ
[−1]
2 + ξ

[0]
B + sξ

[1]
1 + r2ξ

[1]
2 + [≥ 3], traceB = 0

We have

a3 = ξ[−2] + a
[−1]
3 + a

[0]
3 + a

[1]
3 + [≥ 2]

a4 = ξ
[−3]
1 + a

[−2]
4 + a

[−1]
4 + a

[0]
4 + [≥ 1]

a5 = ξ
[−3]
2 + a

[−2]
5 + a

[−1]
5 + a

[0]
5 + [≥ 1]

[a1, a4] = [a1, a4][−3] + [a1, a4][−2] + [a1, a4][−1] + [≥ 0]

[a1, a5] = [a1, a5][−3] + [a1, a5][−2] + [a1, a5][−1] + [≥ 0]

[a2, a5] = [a2, a5][−3] + [a2, a5][−2] + [a2, a5][−1] + [≥ 0]

All blue quasi-homogeneous parts are uniquely determined
by the tracelsss matrices A,B and r1, r2, s.
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The traceless matrices A,B and r1, r2, s are determined
by the 3× 5 characteristic matrix (tij)

We have

a
[−1]
3 = (−A12 + B11)ξ

[−1]
1 + (A11 + B21)ξ

[−3]
2

It follows

a
[−2]
4 = (A11 + B21)ξ[−2], a

[−2]
5 = (A12 − B11)ξ[−2]

It follows

[a1, a4][−3] = B21ξ
[−1]
3 − A21ξ

[−2]
3

[a1, a5][−3] = −B11ξ
[−1]
3 + A11ξ

[−2]
3

[a2, a5][−3] = −B12ξ
[−1]
3 + A12ξ

[−2]
3

On the other hand, from the characteristic matrix:

[a1, a4][−3] = t14ξ
[−3]
1 + t15ξ

[−3]
2

[a1, a5][−3] = t24ξ
[−3]
1 + t25ξ

[−3]
2

[a2, a5][−3] = t34ξ
[−3]
1 + t35ξ

[−3]
2
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It follows:

A =

(
t25 t35
−t35 −t25

)
, B =

(
−t24 −t34
−t14 t24

)
A similar calculation of [a1, a4][−2], [a1, a5][−2], [a2, a5][−2] ,
from the structure equations for g2
versus from the characteristic matrix leads to:

r1 = 1
5(−t13 − t214 − 4t15t24 + 2t14t25 + t225 − 2t15t35)

r2 = 1
5(−t33 + t224 − 4t25t34 − 2t14t34 − t235 + 2t24t35)

s = 1
5(−t23 − t14t24 − 3t24t25 − t15t34 + 2t14t35 − t25t35)
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What does it give?

Now we have a normal form for V1,V2 describing the distribution

V1 = N1 + V
[3]
1 + [≥ 4], V

[3]
1 = x2F (x1∂y1 + x2∂y2)

V2 = N2 + V
[3]
2 + [≥ 4], V

[3]
2 = x2F (x1∂y1 + x2∂y2)

F = c40x
4
1 + c31x

3
1x2 + c22x

2
1x

2
2 + c13x1x

3
2 + c04x

4
2 = Cartan tensor

and a normal form in the same coordinates for a1, a2:

a1 = ξ
[−1]
1 + ξ

[0]
A + r1ξ

[1]
1 + sξ

[1]
2 + φ

[3]
1 + [≥ 3]

a2 = ξ
[−1]
2 + ξ

[0]
B + sξ

[1]
1 + r2ξ

[1]
2 + φ

[3]
2 + [≥ 3]

and we know everything blue, in terms of the entries of the characteristic

matrix, but we do not know φ
[3]
1 , φ

[3]
2 .

April 29, 2021 40 / 46



φ
[3]
1 , φ

[3]
2 and Cartan tensor

The fact that a1 and a2 are infinitesimal symmetries implies the equations

LN

(
φ
[3]
1 ,H1

)
+

[
ξ
[−1]
1 ,

(
V

[3]
1

V
[3]
2

)]
= 0

LN

(
φ
[3]
2 ,H2

)
+

[
ξ
[−1]
2 ,

(
V

[3]
1

V
[3]
2

)]
= 0

where H1,H2 ∈ [3] are some 2× 2 matrices. We know that these

equations are solvable wrt φ
[3]
1 ,H1 and φ

[3]
2 ,H2 for any V

[3]
1 , V

[3]
2 . The

solutions are unique up to linear combinations, with numerical coefficients,

of ξ
[3]
1 , ξ

[3]
2 ∈ g2

[3]. Therefore

φ
[3]
1 = c40R

[3]
11 + · · ·+ c04R

[3]
15 + q11ξ

[3]
1 + q12ξ

[3]
2

φ
[3]
2 = c40R

[3]
21 + · · ·+ c04R

[3]
25 + q21ξ

[3]
1 + q22ξ

[3]
2

where c40, ..., c04 are the coefficients of the cartan tensor and R
[3]
ij are fixed

functions, we can express them by a formula.
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Formulas for the coefficients c40, ..., c04 of the Cartan
tensor

Calculating [a1, a4][−1], [a1, a5][−1], [a2, a5][−1] ,
from the structure equations for g2
versus from the characteristic matrix
gives us certain equations where c1, ..., c5 and qij are not involved.
These equations give us the relations between the entries of the
characteristic matrix that follow from Jacobi identity.

But calculating [a1, a4][0], [a1, a5][0], [a2, a5][0] ,
from the structure equations for g2
versus from the characteristic matrix
leads to a system of 12 linear equations wrt the 9 unknowns
c1, ..., c5, q11, q12, q21, q22.
We know that this system is solvable.
It has a unique solution, and we obtain formulas for c40, ..., c04.
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Are these formulas involved?

No, here they are:

c40 = 1
100(9t213 + 100t12t14 + 18t13t

2
14 + 9t414 − 100t11t15 + 60t14t15t23 −

188t13t15t24 + 72t214t15t24 + 364t215t
2
24 + 164t13t14t25 − 36t314t25 +

180t15t23t25 − 464t14t15t24t25 − 198t13t
2
25 + 238t214t

2
25 + 608t15t24t

2
25 −

404t14t
3
25 + 189t425 − 60t215t33 − 60t14t

2
15t34 − 60t215t25t34 + 96t13t15t35 −

24t214t15t35 − 416t215t24t35 + 308t14t15t25t35 − 276t15t
2
25t35 + 96t215t

2
35)

and not more involved formulas for c31, c22, c13, c04. You want to have
these formulas? E-mail to me and you will have them.

Recall that the parameters tij of a characteristic matrix is not an arbitrary
tuple of 15 real numbers, there are certain relations because of Jacobi
identity. But these relations do not simplify the formulas substantialy.
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The case of endowed (5,3,0) algebra

Recall (lecture 1, lecture 3) that the characteristic matrix
of a (5,3,0) endowed algebra is determined by its last 2-columns -
reduced characteristic matrix.
It is a 3× 2 matrix, and its 6 entries are arbitrary numbers.

Any reduced characteristic matrix is equivalent toa b
c d
0 e


In this case the coefficients of Cartan tensor are as follows:
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c40 = 9a4 + 90a2bc + 125b2c2 − 54a3d − 190abcd + 101a2d2 + 60bcd2 −
60ad3 − 42a2be − 90b2ce + 66abde + 9b2e2

c31 = 4(3c − e)(3a3 + 25abc − 13a2d + 12ad2 − 12abe − 9bde)

c22 =
2(3c−e)(6a2c+50bc2−26acd+24cd2−a2e−15bce+9ade−18d2e−9be2)

c13 = −4(a− 3d)(4c − 3e)(3c − e)e

c04 = −(4c − 3e)(5c − 3e)(3c − e)e

We see that in the case e = 3c the Cartan tensor is either ±x41 or 0. Note
that we know that without computing Cartan tensor, because in the case
e = 3c the reduced characteristic matrix is special (see lecture 3) and then
the endowed 5-dim algebra is an endowed subalgebra of one of the 7-dim
endowed algebras.

And we see a number of cases when the Cartan tensor is 0, i.e. the
distribution is flat. Example: e = 4c

3 , a = 4d
3 , 27bc = 20d2.
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All what was explained in this minicourse,
including the tutorial, is published in:

Proceedings of the GRIEG seminar
B. Kruglikov, O. Makhmali, P. Nurowski Eds
Warsaw-Oslo, 2021

For futher tutorials please e-mail to me
what you are interested in,
and we will do it by Zoom hosted by me.

THANKS TO ALL THE LISTENERS!
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