Tutorial: caclulating Cartan tensor and deeper invariants.

 Theory, algorithm A, algorithm B
Algorithm A

input: vector fields V_{1}, V_{2}, given in any coordinates; a point p at which the distribution D described by V_{1}, V_{2} is $(2,3,5)$. output: the Cartan tensor of D at p.

Algorithm B

input: a 3×5 characteristic matrix of an endowed 5 -dim algebra $(\mathcal{A}, \mathcal{P})$.
output: the Cartan tensor of the homogeneous left-invariant distribution D induced by $(\mathcal{A}, \mathcal{P})$.

- In algorithm B we realize by vector fields neither $(\mathcal{A}, \mathcal{P})$ nor \mathcal{D}.
- Algorithm B given an explicit formula for Cartan tensor in terms of 15 parameters of the characteistic matrix.

L_{N}-equivalence of pairs of vector fields

Take any symbol (nilpotent approximation) $N=\left(N_{1}, N_{2}\right)$ meaning (here) two vector fields, expressed in a local coordinate system x_{1}, \ldots, x_{5} such that N_{1}, N_{2} are quasi-homogeneous of degree -1 wrt the weights $1,1,2,3,3$ and the vector fields

$$
N_{1}, N_{2}, N_{3}=\left[N_{1}, N_{2}\right], \quad N_{4}=\left[N_{1}, N_{3}\right], N_{5}=\left[N_{2}, N_{3}\right]
$$

are linearly independent at $0 \in \mathbb{R}^{5}$. Recall the linear operator

$$
L_{N}:(Z, H) \rightarrow\left[Z,\binom{N_{1}}{N_{2}}\right]+H\binom{N_{1}}{N_{2}}
$$

Z is a vector field
H is a 2×2 matrix whose entries are functions

Definition. Two pairs of vector fields are L_{N}-eqivalent if their difference belongs to the image of L_{N}.

Preliminary normal form 1 wrt L_{N}-equivalence

Any pair of vector fields can be expressed in the form

$$
\begin{align*}
& U_{1}=F_{11} N_{1}+F_{12} N_{2}+F_{13} N_{3}+F_{14} N_{4}+F_{15} N_{5} \\
& U_{2}=F_{21} N_{1}+F_{22} N_{2}+F_{23} N_{3}+F_{24} N_{4}+F_{25} N_{5} \tag{1}
\end{align*}
$$

Claim 1. The pair of vector fields (1) is L_{N}-equivalent to

$$
\begin{gathered}
\text { Preliminary normal form } 1 \\
U_{1}=A_{11} N_{4}+A_{12} N_{4} \\
U_{2}=A_{21} N_{4}+A_{22} N_{5}
\end{gathered}
$$

where $A_{11}=F_{14}, A_{12}=F_{15}, A_{21}=F_{24}, A_{22}=F_{25}$
Proof. Take $Z=f_{1} N_{1}+f_{2} N_{2}$. Then
$\left[Z, N_{1}\right]=-f_{2} N_{3} \bmod N_{1}, N_{2}, \quad\left[Z, N_{2}\right]=f_{1} N_{3} \bmod N_{1}, N_{2}$ and the claim follows.

(Z, H) preserving preliminary normal form 1

Saying that (Z, H) preserves a normal form we mean that the operator L_{N} brings (Z, H) to a pair of vector fields in this normal form.

Claim 2. A pair (Z, H) preserves the preliminary normal form 1 if and only if

$$
\begin{gathered}
(Z, H) \text { preserving preliminary normal form } 1 \\
\quad Z=f_{1} N_{1}+f_{2} N_{2}+f_{3} N_{3}+f_{4} N_{4}+f_{5} N_{5} \\
f_{1}=-N_{2}\left(f_{3}\right), f_{2}=N_{1}\left(f_{3}\right), H=\left(\begin{array}{ll}
N_{1}\left(f_{1}\right) & N_{1}\left(f_{2}\right) \\
N_{2}\left(f_{1}\right) & N_{2}\left(f_{2}\right)
\end{array}\right)
\end{gathered}
$$

Proof. We have

$$
\begin{gathered}
Z=f_{1} N_{1}+f_{2} N_{2}+f_{3} N_{3}+f_{4} N_{4}+f_{5} N_{5} \Longrightarrow \\
{\left[Z, N_{1}\right]=-N_{1}\left(f_{1}\right) N_{1}-N_{1}\left(f_{2}\right) N_{2}-\left(f_{2}+N_{1}\left(f_{3}\right)\right) N_{3} \bmod N_{4}, N_{5}} \\
{\left[Z, N_{2}\right]=-N_{2}\left(f_{1}\right) N_{1}-N_{2}\left(f_{2}\right) N_{2}+\left(f_{1}-N_{2}\left(f_{3}\right)\right) N_{3} \bmod N_{4}, N_{5}}
\end{gathered}
$$

and the claim follows.

Equivalence problem for 2×2 matrices (whose entries are functions)

For any pair (Z, H) preserving the preliminary normal form 1 (see the formulas in the previous slide) we have

$$
\begin{aligned}
L_{N}(Z, H)= & -\left(f_{3}+N_{1}\left(f_{4}\right)\right) N_{4}-N_{1}\left(f_{5}\right) N_{5} \\
& -N_{2}\left(f_{4}\right) N_{4}-\left(f_{3}+N_{2}\left(f_{5}\right)\right) N_{5}
\end{aligned}
$$

Introduce the following operator, from the space of triples of functions to the space of 2×2 matrices with functional entries:

$$
M_{N}\left(f_{3}, f_{4}, f_{5}\right)=\left(\begin{array}{cc}
f_{3}+N_{1}\left(f_{4}\right) & N_{1}\left(f_{5}\right) \\
N_{2}\left(f_{4}\right) & f_{3}+N_{2}\left(f_{5}\right)
\end{array}\right)
$$

Therefore the L_{N}-equivalence for pairs of vector fields reduces to the following equivalence for 2×2 matrices with functional entries:
Definition. Two 2×2 matrices, with functional entries, are equivalent if their difference belongs to the image of the operator M_{N}.

Good choice of N_{1}, N_{2}

My choice of N_{1}, N_{2} is, as I said in the lectures, as follows:

$$
\begin{aligned}
& N_{1}=\partial_{x_{1}}+x_{2}\left(\partial_{z}+x_{1} \partial_{y_{1}}+x_{2} \partial_{y_{2}}\right) \\
& N_{2}=\partial_{x_{2}}-x_{1}\left(\partial_{z}+x_{1} \partial_{y_{1}}+x_{2} \partial_{y_{2}}\right)
\end{aligned}
$$

The main advantage, that will be used throughout constructing an exact normal form is as follows:

$$
x_{1} N_{1}+x_{2} N_{2}=\text { Euler vector field }=E=x_{1} \partial_{x_{1}}+x_{2} \partial_{x_{2}}
$$

Preliminary normal form 2

In what follows N_{1}, N_{2} is the nilpotent approximation in the previous slide.
Claim 3. Any 2×2 matrix with functional entries is equivalent to a matrix Q such that

$$
\text { preliminary normal form } 2
$$

$$
Q=\left(Q_{i j}\right): \quad Q^{\operatorname{tr}}\binom{x_{1}}{x_{2}}=0 \Leftrightarrow Q=\left(\begin{array}{cc}
x_{2} S_{1} & x_{2} S_{2} \\
-x_{1} S_{1} & -x_{1} S_{2}
\end{array}\right)
$$

Proof. We have $M_{N}\left(f_{3}=0, f_{4}, f_{5}\right)=\left(\begin{array}{ll}N_{1}\left(f_{4}\right) & N_{1}\left(f_{5}\right) \\ N_{2}\left(f_{4}\right) & N_{2}\left(f_{5}\right)\end{array}\right)$, thereore $\left(M_{N}\left(f_{3}=0, f_{4}, f_{5}\right)\right)^{\operatorname{tr}}\binom{x_{1}}{x_{2}}=\binom{E\left(f_{4}\right)}{E\left(f_{5}\right)}$, and the claim follows from the simple fact that the equation $E(f)=g$ has a solution f for any g in the ideal $\left(x_{1}, x_{2}\right)$.
Recall that E is the Euler vector field $x_{1} \partial_{x_{1}}+x_{2} \partial_{x_{2}}$.

Reduction to preliminary normal form 2

In order to bring an arbitrary 2×2 matrix A to preliminary normal form 2, we need the following operators. Introduce the operator T:

$$
\begin{gathered}
\mathrm{T}(f)=\text { a unique function } \tilde{f} \text { such that } \widetilde{f}+E(\widetilde{f})=f \\
f=\sum_{i \geq 0} f^{(i)}, \quad f^{(i)}=\sum_{i_{1}+i_{2}=i} c_{i_{1}, i_{2}}\left(z, y_{1}, y_{2}\right) x_{1}^{i_{1}} x_{2}^{i_{2}} \Longrightarrow \\
\widetilde{f}=\sum_{i \geq 0} \Longrightarrow \frac{f i}{i+1} .
\end{gathered}
$$

We will need the following operators $\mathrm{T}_{1}, \mathrm{~T}_{2}$:

$$
\mathrm{T}_{1}(f)=N_{1}(\mathrm{~T}(f)), \quad \mathrm{T}_{2}(f)=N_{2}(\mathrm{~T}(f))
$$

Claim 4. A matrix $A=\left(A_{i j}\right)$ is equivalent to preliminary normal form 2 with

$$
S_{1}=\mathrm{T}_{2}\left(A_{11}\right)-\mathrm{T}_{1}\left(A_{21}\right), \quad S_{2}=\mathrm{T}_{2}\left(A_{12}\right)-\mathrm{T}_{1}\left(A_{22}\right)
$$

Proof. Exercise.

$\left(f_{3}, f_{4}, f_{5}\right)$ preserving preliminary normal form 2

Like above, we will say that $\left(f_{3}, f_{4}, f_{5}\right)$ preserves preliminary normal form 2 in the operator M_{N} brings (f_{3}, f_{4}, f_{5}) to this normal form.

Claim 5. $\left(f_{3}, f_{4}, f_{5}\right)$ preserves preliminary normal form 2 if and only if
f_{3}, f_{4}, f_{5} preserving preliminary normal form 2

$$
f_{4}=x_{1} h+\alpha_{1}\left(z, y_{1}, y_{2}\right), f_{5}=x_{2} h+\alpha_{2}\left(z, y_{1}, y_{2}\right), f_{3}=-h-E(h)
$$

Proof. We have the equations

$$
E\left(f_{4}\right)+x_{1} f_{3}=0, \quad E\left(f_{5}\right)+x_{2} f_{3}=0
$$

It follows $\frac{\partial f_{4}}{\partial x_{2}} \in\left(x_{1}\right)$ and $\frac{\partial f_{5}}{\partial x_{1}} \in\left(x_{2}\right)$. Consequently
$f_{4}=x_{1} h_{1}+\alpha_{1}\left(z, y_{1}, y_{2}\right)$ and $f_{5}=x_{1} h_{2}+\alpha_{2}\left(z, y_{1}, y_{2}\right)$. The two equations take the form $h_{1}+E\left(h_{1}\right)+f_{3}=0, h_{2}+E\left(h_{2}\right)+f_{3}=0$. It follows $h_{1}=h_{2}=h$ and $f_{3}=-h-E(h)$. Q.E.D.

Preliminary normal form 3

Claim 6. Any 2×2 matrix with functional entries is equivalent to a matrix Q such that
preliminary normal form 3

$$
Q=\left(Q_{i j}\right): \quad Q^{\operatorname{tr}}\binom{x_{1}}{x_{2}}=0, \text { trace } Q=0 \Leftrightarrow Q=F \cdot\left(\begin{array}{cc}
x_{1} x_{2} & x_{2}^{2} \\
-x_{1}^{2} & -x_{1} x_{2}
\end{array}\right)
$$

Proof. Take f_{3}, f_{4}, f_{5} that preserve te preliminary normal form 2 (see the previous slide) with $\alpha_{1}=\alpha_{2}=0$. Then

$$
\begin{aligned}
M_{N}\left(f_{3}, f_{4}, f_{5}\right)= & \left(\begin{array}{cc}
-E(h)+x_{1} N_{1}(h) & x_{2} N_{1}(h) \\
x_{1} N_{2}(h) & -E(h)+x_{2} N_{2}(h)
\end{array}\right)= \\
& =\left(\begin{array}{cc}
-x_{2} N_{2}(h) & x_{2} N_{1}(h) \\
x_{1} N_{2}(h) & -x_{1} N_{1}(h)
\end{array}\right)
\end{aligned}
$$

Therefore trace $M_{N}\left(f_{3}, f_{4}, f_{5}\right)=-E(h)$ and preliminary normal form 3 follows from preliminary normal form 2.

Reduction of preliminary normal form 2 to preliminary normal form 3

Claim 7. One has

$$
\left(\begin{array}{cc}
x_{2} S_{1} & x_{2} S_{2} \\
-x_{1} S_{1} & -x_{1} S_{2}
\end{array}\right) \sim F \cdot\left(\begin{array}{cc}
x_{1} x_{2} & x_{2}^{2} \\
-x_{1}^{2} & -x_{1} x_{2}
\end{array}\right)
$$

with

$$
F=\mathrm{T}_{1}\left(S_{1}\right)+\mathrm{T}_{2}\left(S_{2}\right)
$$

Proof. Exercise.

f_{3}, f_{4}, f_{5} preserving preliminary normal form 3

Claim 8. f_{3}, f_{4}, f_{5} preserve preliminary normal form 3 if and only if for some functions

$$
\alpha_{1}=\alpha_{1}\left(z, y_{1}, y_{2}\right), \alpha_{2}=\alpha_{2}\left(z, y_{1}, y_{2}\right), \beta=\beta\left(z, y_{1}, y_{2}\right)
$$

one has

$$
\begin{gathered}
f_{3}=-2 R_{1}\left(\alpha_{1}, \alpha_{2}\right)-3 R_{2}\left(\alpha_{1}, \alpha_{2}\right)-\beta \\
f_{4}=x_{1}\left(R_{1}\left(\alpha_{1}, \alpha_{2}\right)+R_{2}\left(\alpha_{1}, \alpha_{2}\right)+\beta\right)+\alpha_{1} \\
f_{5}=x_{2}\left(R_{1}\left(\alpha_{1}, \alpha_{2}\right)+R_{2}\left(\alpha_{1}, \alpha_{2}\right)+\beta\right)+\alpha_{2}
\end{gathered}
$$

where

$$
\begin{gathered}
R_{1}\left(\alpha_{1}, \alpha_{2}\right)=x_{2} \frac{\partial \alpha_{1}}{\partial z}-x_{1} \frac{\partial \alpha_{2}}{\partial z} \\
R_{2}\left(\alpha_{1}, \alpha_{2}\right)=\frac{1}{2}\left(-x_{1}^{2} \frac{\partial \alpha_{2}}{\partial y_{1}}+x_{1} x_{2}\left(\frac{\partial \alpha_{1}}{\partial y_{1}}-\frac{\partial \alpha_{2}}{\partial y_{2}}\right)+x_{2}^{2} \frac{\partial \alpha_{2}}{\partial y_{2}}\right)
\end{gathered}
$$

Proof of claim 8

Recall that f_{3}, f_{4}, f_{5} preserve preliminary form 3 if and only if

$$
f_{4}=x_{1} h+\alpha_{1}\left(z, y_{1}, y_{2}\right), f_{5}=x_{2} h+\alpha_{2}\left(z, y_{1}, y_{2}\right), f_{3}=-h-E(h)
$$

For such f_{3}, f_{4}, f_{5} the matrix $M_{N}\left(f_{3}, f_{4}, f_{5}\right)$ is in preliminary normal form 2 and it is in preliminary form 3 if and only if it has the zero trace. It gives the equation

$$
E(h)=N_{1}\left(\alpha_{1}\left(z, y_{1}, y_{2}\right)\right)+N_{2}\left(\alpha_{1}\left(z, y_{1}, y_{2}\right)\right)
$$

whose general solution is $h=R_{1}\left(\alpha_{1}, \alpha_{2}\right)+R_{2}\left(\alpha_{1}, \alpha_{2}\right)+\beta$, where $\beta=\beta\left(z, y_{1}, y_{2}\right)$ is an arbitrary function. Note that $R_{1}\left(\alpha_{1}, \alpha_{2}\right)$ and $R_{2}\left(\alpha_{1}, \alpha_{2}\right)$ are homogeneous polynomials in x_{1}, x_{2} of degrees 1 and 2 respectively. Therefore

$$
f_{3}=-h-E(h)=-2 R_{1}\left(\alpha_{1}, \alpha_{2}\right)-3 R_{2}\left(\alpha_{1}, \alpha_{2}\right)-\beta
$$

Q.E.D.

How f_{3}, f_{4}, f_{5} that preserve preliminary normal form 3

 changes the function F in this normal form?We have $F \rightarrow F+\Delta F$ where $M_{N}\left(f_{3}, f_{4}, f_{5}\right)=\Delta F \cdot\left(\begin{array}{cc}x_{1} x_{2} & x_{2}^{2} \\ -x_{1}^{2} & -x_{1} x_{2}\end{array}\right)$
The function f_{3}, f_{4}, f_{5} are determined by $\alpha_{1}=\alpha_{1}\left(z, y_{1}, y_{2}\right), \alpha_{2}=\alpha_{2}\left(z, y_{1}, y_{2}\right), \beta=\beta\left(z, y_{1}, y_{2}\right)$.
Claim 9 (proof: straightforward calculation). The ΔF above is the following degree 3 polynomial in x_{1}, x_{2} :

$$
\begin{gathered}
\Delta F=\sum_{i_{1}+i_{2} \leq 3} Q_{i j} x_{1}^{i_{1}} x_{2}^{i_{2}}, \quad Q_{i j}=Q_{i j}\left(z, y_{1}, y_{2}\right) \\
Q_{00}=\frac{\partial \beta}{\partial z}+\frac{1}{2} \frac{\partial \alpha_{1}}{\partial y_{1}}+\frac{1}{2} \frac{\partial \alpha_{2}}{\partial y_{2}}, \quad Q_{10}=\frac{\partial \beta}{\partial y_{1}}-\frac{\partial^{2} \alpha_{2}}{\partial z^{2}}, \quad Q_{01}=\frac{\partial \beta}{\partial y_{2}}+\frac{\partial^{2} \alpha_{1}}{\partial z^{2}} \\
Q_{20}=-\frac{3}{2} \frac{\partial^{2} \alpha_{2}}{\partial z \partial y_{1} 1}, Q_{11}=\frac{3}{2} \frac{\partial^{2} \alpha_{1}}{\partial z \partial y_{1}}-\frac{3}{2} \frac{\partial^{2} \alpha_{2}}{\partial z y_{1}}, \quad Q_{02}=\frac{3}{2} \frac{\partial^{2} \alpha_{1}}{\partial z \partial y_{2}} \\
Q_{30}=-\frac{1}{2} \frac{\partial^{2} \alpha_{2}}{\partial y_{1}^{2}}, \quad Q_{21}=\frac{1}{2} \frac{\partial^{2} \alpha_{1}^{1}}{\partial y_{1}^{1}}-\frac{\partial^{2} \alpha_{2}}{\partial \partial \lambda_{1} y_{2}} \\
Q_{12}=-\frac{1}{2} \frac{\partial^{2} \alpha_{2}}{\partial y_{2}^{2}}+\frac{\partial^{2} \alpha_{1}}{\partial y_{1} y_{2}}, \quad Q_{03}=\frac{1}{2} \frac{\partial^{2} \alpha_{1}}{\partial y_{2}^{2}},
\end{gathered}
$$

Exact normal form

The L_{N}-equivalence of pairs of vector fields has been reduced to the following equivalence of functions:

- Two functions $F\left(x_{1}, x_{2}, z, y_{1}, y_{2}\right), \widetilde{F}\left(x_{1}, x_{2}, z, y_{1}, y_{2}\right)$ are equivalent if their difference has the form ΔF in the previous slide, with some functions $\alpha_{1}\left(z, y_{1}, y_{2}\right), \alpha_{2}\left(z, y_{1}, y_{2}\right), \beta\left(z, y_{1}, y_{2}\right)$.

Proposition 10. With respect to this equivalence, an exact normal form is the ideal I that I defined in the first lecture.

The proof requires some work, but it is not difficult if you know certain techniques.

We have constructed an exact normal form for pairs of vector fields with respect to the L_{N}-equivalence:

$$
\binom{V_{1}}{V_{2}}=\binom{N_{1}}{N_{2}}+F \cdot\left(\begin{array}{cc}
x_{1} x_{2} & x_{2}^{2} \\
-x_{1}^{2} & -x_{1} x_{2}
\end{array}\right)\binom{\left[N_{1},\left[N_{1}, N_{2}\right]\right]}{\left[N_{2},\left[N_{1}, N_{2}\right]\right]}, F \in \text { ideal I }
$$

If Cartan tensor only, not deeper invariants: much simpler

Note that if a pair of vector fields in preliminary normal form 3 is quasi-homogeneous of degree i then the function F in this normal form is quasi-homogeneous of degree $i+1$.

The Cartan tensor is an invariant in the classification of quasi-3-jets. Therefore for finding Cartan tensor we have to normalize

$$
F=F^{[1]}+F^{[2]}+F^{[3]}+F^{[4]} .
$$

Here and in what follows [i] denotes the an object (function, vector field) is quasi-homogeneous of degree i.

It is easy to prove

$$
F^{[1]} \sim 0, F^{[2]} \sim 0, F^{[3]} \sim 0
$$

Claim 11.

An exact normal form for $F \in[4]$ is the space of homogeneous degree 4 polynomials $c_{4,0} x_{1}^{4}+\cdots+c_{0,4} x_{2}^{4}$.
Any $F\left(x_{1}, x_{2}, z, y_{1}, y_{2}\right) \in[4]$ is equivalent to $F\left(x_{1}, x_{2}, 0,0,0\right)$
Proof. It is a direct corollary of the fact that ΔF in claim 9 does not contain monomials $x_{1}^{4}, x_{1}^{3} x_{2}, x_{1}^{2} x_{2}^{2}, x_{1} x_{2}^{3}, x_{2}^{4} \in[4]$ and Claim 12. All other monomials in [4] are in ΔF, with suitable $\alpha_{1}\left(y_{1}, y_{2}, z\right), \alpha_{2}\left(y_{1}, y_{2}, z\right), \beta\left(y_{1}, y_{2}, z\right)$.

The simplest way to prove Claim 12 is using the dimensional counting; it reduces Claim 12 to
Claim 13. Let $\alpha_{1}\left(z, y_{1}, y_{2}\right), \alpha_{2}\left(z, y_{1}, y_{2}\right) \in[7], \beta\left(z, y_{1}, y_{2}\right) \in[6]$, so that $\Delta F \in[4]$. The equation $\Delta F=0$ holds if a 14 -dim vector space of tuples $\alpha_{1}, \alpha_{2}, \beta$.

We can easily calculate a basis of this 14 -dim vector space.
It gives a parameterization of $\mathfrak{g}_{2}=\operatorname{ker} L_{N}$.
Along with the calculations above it gives
a representation of \mathfrak{g}_{2} by vector fields.

Normal forms and deeper invariants

The Cartan invariant is the invariant in the classification of quasi-3-jets, with respect to the weights $1,1,2,3,3$.

It is a part of the invariants in the classification of usual 5 -jets, with respect to the weights $1,1,1,1,1$.
(Attn: for the usual jets $x_{1}^{2} \partial_{x_{1}}$ has degree 1 , not 0).
In the clasification of usual 4 -jets there are no invariants.
The calculations above and the ideal I (first lecture) lead to the following normal form for the usual 5-jets:
$V_{1}=N_{1}+x_{2} G\left(x_{1} \partial_{y_{1}}+x_{2} \partial_{y_{2}}\right)$
$V_{2}=N_{2}-x_{1} G\left(x_{1} \partial_{y_{1}}+x_{2} \partial_{y_{2}}\right)$
$G=F^{(4)}\left(x_{1}, x_{2}\right)+z F^{(3)}\left(x_{1}, x_{2}\right)+z^{2} F^{(2)}\left(x_{1}, x_{2}\right)+$
$+r_{1} x_{1} z\left(x_{1} y_{2}-x_{2} y_{1}\right)+r_{2} x_{2} z\left(x_{1} y_{2}-x_{2} y_{1}\right)+w\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2}$
(i) = homogeneous degree i
$F^{(4)}=$ Cartan tensor, up to a non-singular linear transformation of $x_{1}, \underline{x_{2}}$.

Here, except Cartan tensor, we have 10 more parameters: the coefficients of $F^{(3)}\left(x_{1}, x_{2}\right), F^{(2)}\left(x_{1}, x_{2}\right)$ and r_{1}, r_{2}, w.

But the tuple of these 10 parameters is not an invariant, bacause of 2-dim $\mathfrak{g}_{2}{ }^{[1]}$ and 1-dim $\mathfrak{g}_{2}{ }^{[2]}$, and 2-dim $\mathfrak{g}_{2}{ }^{[3]}$.
Since $z F^{(3)}\left(x_{1}, x_{2}\right) \in[5], z^{2} F^{(2)}\left(x_{1}, x_{2}\right) \in[6]$,
$x_{1} z\left(x_{1} y_{2}-x_{2} y_{1}\right), x_{2} z\left(x_{1} y_{2}-x_{2} y_{1}\right) \in[7]$
there is a certain action of $\mathfrak{g}_{2}{ }^{[1]}$ on $F^{(3)}\left(x_{1}, x_{2}\right)$, of $\mathfrak{g}_{2}{ }^{[2]}$ on $F^{(2)}\left(x_{1}, x_{2}\right)$, and of $\mathfrak{g}_{2}{ }^{[3]}$ on $\left(r_{1}, r_{2}\right)$ in the normal form in the previous slide.

This action depends on the Cartan tensor $F^{(4)}\left(x_{1}, x_{2}\right)$.

Claim 14. For a generic Cartan tensor $\left.\overline{\left(\sim \pm x_{1}^{4}\right.}+c x_{1}^{2} x_{2}^{2} \pm x_{2}^{4}, c \neq \pm 2\right)$ we have the following reduction:
$F^{(3)}\left(x_{1}, x_{2}\right) \rightarrow w_{1} x_{1}^{3}+w_{2} x_{2}^{3}$
$F^{(2)}\left(x_{1}, x_{2}\right) \rightarrow w_{3} x_{1}^{3}+w_{4} x_{2}^{3}$
$r_{1}, r_{2} \rightarrow 0$
After this reduction, the tuple $c, w_{1}, w_{2}, w_{3}, w_{4}, w$ is a complete invariant in the classification of 5 -jets of $(2,3,5)$ distributions with respects to the weights $1,1,1,1,1$.

Question. Probably there is a certain geometric object, that can be constructed in a canonical way (some curvature?) and can be identified with the equivalence class of 5 -jets of $(2,3,5)$ distributions with respects to the weights $1,1,1,1,1$,
in the same way as the Cartan tensor and can be identified with the equivalence class of 5 -jets of $(2,3,5)$ distributions with respects to the weights $1,1,2,3,3$.
I would be happy if Dennis can answer.

Can we do a similar work with another nilpotent approximation?

Conceptually: yes. Practically: NOT.
Take for example the "Monge symbol"
$N_{1}=\partial_{x_{1}}, N_{2}=\partial_{x_{2}}+x_{1} \partial_{x_{3}}+x_{3} \partial_{x_{4}}+x_{1}^{2} \partial_{x_{5}}$.
It is easy to obtain the following preliminary normal form with respect to the L_{N}-equivalence:
$V_{1}=N_{1}, \quad V_{2}=N_{2}+x_{1}^{2}\left(P^{(4)}\left(x_{1}, x_{2}\right)+[\geq 5]\right) \partial_{x_{5}}$
and $P^{(4)}\left(x_{1}, x_{2}\right)$ in this normal form is another way
to express the Cartan tensor.
BUT this normal form does not respect the group
$G L(2)=$ quasi-homogeneous degree [0] symmetries of N, i.e. in the terminology of my first lecture it is not good.

The Cartan invariant will be the equivalence class of the tuple of 5 coefficients of $P^{(4)}\left(x_{1}, x_{2}\right)$ with respect to a very involved action of $G L(2)$.
And normalization of $[\geq 5]$ to some ideal, like I did for "my" nilpotent approximation is, I guess, not doable.

The thing is that the infinitesimal symmetries of quasi-degree [0] of the Monge symbol are very involved (one can easily calculate them), whereas "my" symbol has the following advantage which is the reason why I can do simple calculations, without being blocked after few steps, and why I can effectively use the obtained normal form:
The quasi-homogeneous infinitesimal symmetries of "my" symbol of quasi-degree [0] with respect to the weights $1,1,2,3,3$ are homogeneous of degree (0) with respect to the weights $1,1,1,1,1$.

Algorithm A, first two steps

Algorithm A:
input: vector fields V_{1}, V_{2}, given in any coordinates; a point p at which the distribution D described by V_{1}, V_{2} is $(2,3,5)$. output: the Cartan tensor of D at p.

Step 1: shift the coordinates such that $p=(0,0,0,0,0)$.
Step 2: calculate the usual 5 -jet of the vector fields (with respect to the weights $1,1,1,1,1$; attn.: it is the 6 -jet of the coefficients of the vector fields) and take away the higher order terms - they do not affect the Cartan tensor.

Algorithm A, steps 3 and 4

Step 3. Work with the usual 1-jet of the vector fields (with respect to the weights $1,1,1,1,1$; attn.: it is the 2 -jet of the coefficients of the vector fields) in order to change the coordinates such that the vector fields do not contain quasi-homogeneous parts, with respect to the weights $1,1,2,3,3$, of degree $[-3]$ and $[-2]$, and the quasi-homogeneous degree [-1] part is "my" symbol.
It is simple but a bit technical; can be easily algoritmized.
I have no time to explain.
Step 4. Calculate the quasi-homogeneous parts of the vector fields, with respect to the weights $1,1,2,3,3$, of degrees [0], [1], [2], [3] and take away the terms of higher degrees with respect to these weights - they do not affect the Cartan tensor. Now we have
$\binom{V_{1}}{V_{2}}=\binom{N_{1}}{N_{2}}+W^{[0]}+W^{[1]}+W^{[2]}+W^{[3]}$
where $W^{[i]}$ are certain pairs of quasi-homogeneous
vector fields of degree [i].

Algorithm A, steps 5 and 6

Step 5. Find $(Z, H) \in[1]$ such that $L_{N}(Z, H)=-W^{[0]}$.
We know that such (Z, H) exists and unique
up to the 2-dim vector space $\mathfrak{g}_{2}{ }^{[1]}$.
Does not make difference which (Z, H) to take.
A straightforward way is to solve a system
of 48 equations with respect to 50 unknowns.
A better way is to use step-by-step reduction formulas given above.
Step 6. Make a change of coordinates $\exp (Z, H)$ with a properly defined exponential map for (Z,H).
We obtain
$\binom{V_{1}}{V_{2}}=\binom{N_{1}}{N_{2}}+\widetilde{W}^{[1]}+\widetilde{W}^{[2]}+\widetilde{W}^{[3]}+\cdots$
with new quasi-homogeneous parts of degrees [1], [2], [3].
The h.o.t. can be taken away.

The calculation of $\widetilde{W}^{[1]}, \widetilde{W}^{[2]}, \widetilde{W}^{[3]}$ is immediate using the formula

$$
\exp (Z, H)_{*} V=V+L_{V}(Z, H)+\frac{1}{2!} L_{V}^{2}(Z, H)+\frac{1}{3!} L_{V}^{3}(Z, H)+\cdots
$$

where $V=\binom{V_{1}}{V_{2}}$ and $L_{V}(Z, H)=[Z, V]+H V$.
Remark. No need to calculate $\widetilde{W}^{[2]}$ - will be explained below.

Algorithm A, steps 7,8

Step 7. Find $(Z, H) \in[2]$ such that $L_{N}(Z, H)=-\widetilde{W}^{[1]}$.
We know that such (Z, H) exists and unique up to the 1 -dim vector space $\mathfrak{g}_{2}{ }^{[2]}$.
Does not make difference which (Z, H) to take.
A straightforward way is to solve a system of many p (around 100) equations with respect to $p+1$ unknown.
A better way is to use step-by-step reduction formulas given above.
Step 8. Make a change of coordinates $\exp (Z, H)$. We obtain
$\binom{V_{1}}{V_{2}}=\binom{N_{1}}{N_{2}}+\widehat{W}^{[2]}+\widehat{W}^{[3]}+\cdots$
with new quasi-homogeneous parts of degrees [2], [3].
The h.o.t. can be taken away.

Algorithm A, steps 9,10

Step 9. Use the above formula for $\exp (Z, H)_{*} V$ to calculate $\widehat{W} \widehat{W}^{[3]}$. No need to calculate $\widehat{W}^{[2]}$.
Step 10. We know that $\widehat{W}^{[2]}$ can be killed by a suitable $(Z, H) \in[3]$.
It will change the quasi-homogeneous parts of degrees ≥ 4 but not $\widehat{W}^{[3]}$, so that up to equivalence
$\binom{V_{1}}{V_{2}}=\binom{N_{1}}{N_{2}}+\widehat{W^{[3]}}+[\geq 4]$
The part $[\geq 4]$ can be taken away.

Algorithm A, final step 11

Express $\widehat{W}^{[3]}$ in the form

$$
\widehat{W}^{[3]}=\binom{A_{11} N_{4}+A_{12} N_{5}}{A_{21} N_{4}+A_{22} N_{5}} \bmod N_{1}, N_{2},\left[N_{1}, N_{2}\right]
$$

Find Cartan tensor from $A_{i j}$ by the explicit formulas above.

Algorithm B

input: a 3×5 characteristic matrix of an endowed 5 -dim algebra $(\mathcal{A}, \mathcal{P})$. output: the Cartan tensor of the homogeneous left-invariant distribution D induced by $(\mathcal{A}, \mathcal{P})$.

- In algorithm B we realize by vector fields neither $(\mathcal{A}, \mathcal{P})$ nor \mathcal{D}.
- Algorithm B given an explicit formula for Cartan tensor in terms of 15 parameters of the characteistic matrix.

$\mathfrak{g}_{2}=\operatorname{ker} L_{N}$

$$
\begin{gathered}
\mathfrak{g}_{2}=\mathfrak{g}_{2}{ }^{[-3]}+\mathfrak{g}_{2}{ }^{[-2]}+\mathfrak{g}_{2}{ }^{[-1]}+\mathfrak{g}_{2}{ }^{[0]}+\mathfrak{g}_{2}{ }^{[1]}+\mathfrak{g}_{2}{ }^{[2]}+\mathfrak{g}_{2}{ }^{[3]} \\
\mathfrak{g}_{2}^{[i]}=Z \text { in } \operatorname{ker} L_{N}^{[i]}:(Z, H) \in[i] \rightarrow\left[Z,\binom{N_{1}}{N_{2}}\right]+H\binom{N_{1}}{N_{2}} \\
\mathfrak{g}_{2}{ }^{[\pm 1]}=\operatorname{span}\left(\xi_{1}^{[\pm 1]}, \xi_{2}^{[\pm 1]}\right), \mathfrak{g}_{2}{ }^{[\pm 3]}=\operatorname{span}\left(\xi_{1}^{[\pm 3]}, \xi_{2}^{[\pm 3]}\right) \\
\mathfrak{g}_{2}{ }^{[\pm 2]}=\operatorname{span}\left(\xi^{[\pm 2]}\right) \\
\mathfrak{g}_{2}^{[0]}=\operatorname{span}\left(\xi_{A}^{[0]}, A \in \operatorname{basis} \text { of } \mathfrak{g l}(2)\right) \\
\xi_{A}^{[0]}=\left\langle A\binom{x_{1}}{x_{2}},\binom{\partial_{x_{1}}}{\partial_{x_{2}}}\right\rangle+\operatorname{trace} A \cdot z \partial_{z}+ \\
+\left\langle(A+\operatorname{trace} A \cdot I)\binom{y_{1}}{y_{2}},\binom{\partial_{y_{1}}}{\partial_{y_{2}}}\right\rangle
\end{gathered}
$$

$\mathfrak{g}_{2}=\operatorname{ker} L_{N}: \quad$ structure equations, part 1

$$
\begin{aligned}
& {\left[\xi_{1}^{[\pm 1]}, \xi_{2}^{[\pm 1]}\right]=\xi^{ \pm 2}, \quad\left[\xi_{1}^{[\pm 1]}, \xi^{[\pm 2]}\right]=\xi_{1}^{[\pm 3]}, \quad\left[\xi_{2}^{[\pm 1]}, \xi^{[\pm 2]}\right]=\xi_{2}^{[\pm 3]}}
\end{aligned}
$$

$$
\begin{aligned}
& +: Q=A, \quad-: Q=-A^{\operatorname{tr}}
\end{aligned}
$$

$\mathfrak{g}_{2}=\operatorname{ker} L_{N}: \quad$ structure equations, part 2

	$\xi_{1}^{\text {[1] }}$	$\xi_{2}^{[1]}$	$\xi^{[2]}$	$\xi_{1}^{[3]}$	$\xi_{2}^{[3]}$
$\xi_{1}^{[-1]}$	$\left.\xi^{[0]} \begin{array}{cc} 1 & 0 \\ 0 & -\frac{1}{2} \end{array}\right)$	$\xi^{[0]}\left(\begin{array}{ll} 0 & \frac{3}{2} \\ 0 & 0 \end{array}\right)$	$-2 \xi^{[1]}$	$-\frac{3}{2} \xi^{[2]}$	0
$\xi_{2}^{[-1]}$	$\xi^{[0]}\left(\begin{array}{ll} 0 & 0 \\ \frac{3}{2} & 0 \end{array}\right)$	$\xi^{[0]}\left(\begin{array}{cc} -\frac{1}{2} & 0 \\ 0 & 1 \end{array}\right)$	$2 \xi_{1}^{[1]}$	0	$-\frac{3}{2} \xi^{[2]}$
$\xi^{[-2]}$	$2 \xi_{2}^{[-1]}$	$2 \xi_{1}^{[-1]}$	$\xi^{[0]}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$	$3 \xi_{1}^{[1]}$	$3 \xi_{2}^{[1]}$
$\xi_{1}^{[-3]}$	$\frac{3}{2} \xi^{[-2]}$	0	$-3 \xi_{1}^{[-1]}$	$\xi^{[0]}\left(\begin{array}{cc} \frac{9}{2} & 0 \\ 0 & 0 \end{array}\right)$	$\xi^{[0]}\left(\begin{array}{ll}0 & \frac{9}{2} \\ 0 & 0\end{array}\right)$
$\xi_{2}^{[-3]}$	0	$\frac{3}{2} \xi^{[-2]}$	$-3 \xi_{2}^{[-1]}$	$\xi^{(0]}\left(\begin{array}{ll}0 & 0 \\ \frac{9}{2} & 0\end{array}\right)$	$\xi^{[0]}\left(\begin{array}{ll}0 & 0 \\ 0 & \frac{9}{2}\end{array}\right)$

Normal form and symmetries

We have a homogeneous $(2,3,5)$ distribution dscribed by vector fields

$$
\begin{gathered}
V_{1}=N_{1}+V_{1}^{[3]}+[\geq 4], \\
V_{2}=N_{2}+V_{2}^{[3]}+[\geq 4], \\
F=c_{40} x_{1}^{4}+c_{31} x_{1}^{3} x_{2}+c_{22} x_{1}^{2} x_{2}^{2}+c_{13} x_{1} x_{2}^{3}+c_{2} F\left(x_{1} \partial_{y_{1}}+x_{2} \partial_{y_{2}}\right) \\
\left.\partial_{y_{1}}+x_{2} \partial_{y_{2}}\right) \\
\text { Cartan tensor }
\end{gathered}
$$

We have 5 unfinitesimal symmetries

$$
a_{1}, a_{2}, a_{3}=\left[a_{1}, a_{2}\right], a_{4}=\left[a_{1}, a_{3}\right], a_{5}=\left[a_{2}, a_{3}\right]
$$

where $a_{1}(0)=V_{1}(0), a_{2}(0)=V_{2}(0)$.
The generating 2 -plane in the Lie algebra $\operatorname{span}\left(a_{1}, \ldots, a_{5}\right)$ is

$$
\mathcal{P}=\operatorname{span}\left(a_{1}, a_{2}\right)
$$

Since $\left[a_{i}, V_{j}\right]=0 \bmod V_{1}, V_{2}$ it follows that for the decompisition of a_{1}, a_{2} by quasi-homogeneous parts [i] we have

$$
\begin{gathered}
a_{1}=a_{1}^{[-1]}+a_{1}^{[0]}+a_{1}^{[1]}+a_{1}^{[2]}+[\geq 3] \\
a_{2}=a_{2}^{[-1]}+a_{2}^{[0]}+a_{2}^{[1]}+a_{2}^{[2]}+[\geq 3] \\
a_{i}^{[-1]} \in \mathfrak{g}_{2}{ }^{[-1]}, a_{i}^{[0]} \in \mathfrak{g}_{2}{ }^{[0]}, a_{i}^{[1]} \in \mathfrak{g}_{2}^{[1]}, a_{i}^{[2]} \in \mathfrak{g}_{2}{ }^{[2]}
\end{gathered}
$$

Therefore we have the following normal form for (distribution; infinitesimal symmetries a_{1}, a_{2}):

$$
\begin{gathered}
V_{1}=N_{1}+V_{1}^{[3]}+[\geq 4] \\
V_{2}=N_{2}+V_{2}^{[3]}+[\geq 4] \\
a_{1}=\xi_{1}^{[-1]}+\xi_{A}^{[0]}+r_{11} \xi_{1}^{[1]}+r_{12} \xi_{2}^{[1]}+r_{13} \xi^{[2]}+[\geq 3] \\
a_{2}=\xi_{2}^{[-1]}+\xi_{B}^{[0]}+r_{21} \xi_{1}^{[1]}+r_{22} \xi_{2}^{[1]}+r_{23} \xi^{[2]}+[\geq 3]
\end{gathered}
$$

parameterized by $r_{i j}$ and 2×2 matrices A, B.

Simplification of the normal form

Apply a local diffeo (a change of coordinates) of the form

$$
\Phi=\exp \left(w_{1} \xi_{1}^{[1]}+w_{2} \xi_{2}^{[1]}+w_{3} \xi^{[2]}+w_{4} \xi_{1}^{[3]}+w_{5} \xi_{2}^{[3]}\right)
$$

Whatever are w_{1}, \ldots, w_{5}, we have

$$
\begin{aligned}
& \Phi_{*} V_{1}=V_{1} \bmod V_{1}, V_{2}+[\geq 4] \\
& \Phi_{*} V_{2}=V_{2} \bmod V_{1}, V_{2}+[\geq 4]
\end{aligned}
$$

Therefore this change of coordinates, along with multiplication of V_{1}, V_{2} by a suitable 2×2 matrix, preserves the normal form for V_{1}, V_{2} in the previous slide.

Claim. Taking suitable w_{1}, \ldots, w_{5}, we can change the parameters in the normal form for a_{1}, a_{2} in the previous slide such that
A and B are traceless matrices (by w_{1}, w_{2})
$r_{12}=r_{21}\left(\right.$ by $\left.w_{3}\right)$
$r_{13}=r_{23}=0\left(\right.$ by $\left.w_{4}, w_{5}\right)$

Working with the normal form for a_{1}, a_{2}

We obtain the following normal form for a_{1}, a_{2} :

$$
\begin{array}{ll}
a_{1}=\xi_{1}^{[-1]}+\xi_{A}^{[0]}+r_{1} \xi_{1}^{[1]}+s \xi_{2}^{[1]}+[\geq 3], & \operatorname{trace} A=0 \\
a_{2}=\xi_{2}^{[-1]}+\xi_{B}^{[0]}+s \xi_{1}^{[1]}+r_{2} \xi_{2}^{[1]}+[\geq 3], & \text { trace } B=0
\end{array}
$$

We have

$$
\begin{aligned}
& a_{3}=\xi^{[-2]}+a_{3}^{[-1]}+a_{3}^{[0]}+a_{3}^{[1]}+[\geq 2] \\
& a_{4}=\xi_{1}^{[-3]}+a_{4}^{[-2]}+a_{4}^{[-1]}+a_{4}^{[0]}+[\geq 1] \\
& a_{5}=\xi_{2}^{[-3]}+a_{5}^{[-2]}+a_{5}^{[-1]}+a_{5}^{[0]}+[\geq 1] \\
& {\left[a_{1}, a_{4}\right]=\left[a_{1}, a_{4}\right]^{[-3]}+\left[a_{1}, a_{4}\right]^{[-2]}+\left[a_{1}, a_{4}\right]^{[-1]}+[\geq 0]} \\
& {\left[a_{1}, a_{5}\right]=\left[a_{1}, a_{5}\right]^{[-3]}+\left[a_{1}, a_{5}\right]^{[-2]}+\left[a_{1}, a_{5}\right]^{[-1]}+[\geq 0]} \\
& {\left[a_{2}, a_{5}\right]=\left[a_{2}, a_{5}\right]^{[-3]}+\left[a_{2}, a_{5}\right]^{[-2]}+\left[a_{2}, a_{5}\right]^{[-1]}+[\geq 0]}
\end{aligned}
$$

All blue quasi-homogeneous parts are uniquely determined by the tracelsss matrices A, B and r_{1}, r_{2}, s.

The traceless matrices A, B and r_{1}, r_{2}, s are determined

 by the 3×5 characteristic matrix $\left(t_{i j}\right)$We have
$a_{3}^{[-1]}=\left(-A_{12}+B_{11}\right) \xi_{1}^{[-1]}+\left(A_{11}+B_{21}\right) \xi_{2}^{[-3]}$
It follows
$a_{4}^{[-2]}=\left(A_{11}+B_{21}\right) \xi^{[-2]}, \quad a_{5}^{[-2]}=\left(A_{12}-B_{11}\right) \xi^{[-2]}$
It follows
$\left[a_{1}, a_{4}\right]^{[-3]}=B_{21} \xi_{3}^{[-1]}-A_{21} \xi_{3}^{[-2]}$
$\left[a_{1}, a_{5}\right]^{[-3]}=-B_{11} \xi_{3}^{[-1]}+A_{11} \xi_{3}^{[-2]}$
$\left[a_{2}, a_{5}\right]^{[-3]}=-B_{12} \xi_{3}^{[-1]}+A_{12} \xi_{3}^{[-2]}$
On the other hand, from the characteristic matrix:
$\left[a_{1}, a_{4}\right]^{[-3]}=t_{14} \xi_{1}^{[-3]}+t_{15} \xi_{2}^{[-3]}$
$\left[a_{1}, a_{5}\right]^{[-3]}=t_{24} \xi_{1}^{[-3]}+t_{25} \xi_{2}^{[-3]}$
$\left[a_{2}, a_{5}\right]^{[-3]}=t_{34} \xi_{1}^{[-3]}+t_{35} \xi_{2}^{[-3]}$

It follows:
$A=\left(\begin{array}{cc}t_{25} & t_{35} \\ -t_{35} & -t_{25}\end{array}\right), \quad B=\left(\begin{array}{cc}-t_{24} & -t_{34} \\ -t_{14} & t_{24}\end{array}\right)$
A similar calculation of $\left[a_{1}, a_{4}\right]^{[-2]},\left[a_{1}, a_{5}\right]^{[-2]},\left[a_{2}, a_{5}\right]^{[-2]}$, from the structure equations for \mathfrak{g}_{2}
versus from the characteristic matrix leads to:

$$
\begin{aligned}
& r_{1}=\frac{1}{5}\left(-t_{13}-t_{14}^{2}-4 t_{15} t_{24}+2 t_{14} t_{25}+t_{25}^{2}-2 t_{15} t_{35}\right) \\
& r_{2}=\frac{1}{5}\left(-t_{33}+t_{24}^{2}-4 t_{25} t_{34}-2 t_{14} t_{34}-t_{35}^{2}+2 t_{24} t_{35}\right) \\
& s=\frac{1}{5}\left(-t_{23}-t_{14} t_{24}-3 t_{24} t_{25}-t_{15} t_{34}+2 t_{14} t_{35}-t_{25} t_{35}\right)
\end{aligned}
$$

What does it give?

Now we have a normal form for V_{1}, V_{2} describing the distribution

$$
\begin{array}{ll}
V_{1}=N_{1}+V_{1}^{[3]}+[\geq 4], & V_{1}^{[3]}=x_{2} F\left(x_{1} \partial_{y_{1}}+x_{2} \partial_{y_{2}}\right) \\
V_{2}=N_{2}+V_{2}^{[3]}+[\geq 4], & V_{2}^{[3]}=x_{2} F\left(x_{1} \partial_{y_{1}}+x_{2} \partial_{y_{2}}\right)
\end{array}
$$

$$
F=c_{40} x_{1}^{4}+c_{31} x_{1}^{3} x_{2}+c_{22} x_{1}^{2} x_{2}^{2}+c_{13} x_{1} x_{2}^{3}+c_{04} x_{2}^{4}=\text { Cartan tensor }
$$

and a normal form in the same coordinates for a_{1}, a_{2} :

$$
\begin{aligned}
& a_{1}=\xi_{1}^{[-1]}+\xi_{A}^{[0]}+r_{1} \xi_{1}^{[1]}+s \xi_{2}^{[1]}+\phi_{1}^{[3]}+[\geq 3] \\
& a_{2}=\xi_{2}^{[-1]}+\xi_{B}^{[0]}+s \xi_{1}^{1]}+r_{2} \xi_{2}^{[1]}+\phi_{2}^{[3]}+[\geq 3]
\end{aligned}
$$

and we know everything blue, in terms of the entries of the characteristic matrix, but we do not know $\phi_{1}^{[3]}, \phi_{2}^{[3]}$.

$\phi_{1}^{[3]}, \phi_{2}^{[3]}$ and Cartan tensor

The fact that a_{1} and a_{2} are infinitesimal symmetries implies the equations
$L_{N}\left(\phi_{1}^{[3]}, H_{1}\right)+\left[\xi_{1}^{[-1]},\binom{V_{1}^{[3]}}{V_{2}^{[3]}}\right]=0$
$L_{N}\left(\phi_{2}^{[3]}, H_{2}\right)+\left[\xi_{2}^{[-1]},\binom{V_{1}^{[3]}}{V_{2}^{[3]}}\right]=0$
where $H_{1}, H_{2} \in[3]$ are some 2×2 matrices. We know that these
equations are solvable wrt $\phi_{1}^{[3]}, H_{1}$ and $\phi_{2}^{[3]}, H_{2}$ for any $V_{1}^{[3]}, V_{2}^{[3]}$. The solutions are unique up to linear combinations, with numerical coefficients, of $\xi_{1}^{[3]}, \xi_{2}^{[3]} \in \mathfrak{g}_{2}{ }^{[3]}$. Therefore
$\phi_{1}^{[3]}=c_{40} R_{11}^{[3]}+\cdots+c_{04} R_{15}^{[3]}+q_{11} \xi_{1}^{[3]}+q_{12} \xi_{2}^{[3]}$
$\phi_{2}^{[3]}=c_{40} R_{21}^{[3]}+\cdots+c_{04} R_{25}^{[3]}+q_{21} \xi_{1}^{[3]}+q_{22} \xi_{2}^{[3]}$
where c_{40}, \ldots, c_{04} are the coefficients of the cartan tensor and $R_{i j}^{[3]}$ are fixed functions, we can express them by a formula.

Formulas for the coefficients c_{40}, \ldots, c_{04} of the Cartan tensor

Calculating $\left[a_{1}, a_{4}\right]^{[-1]},\left[a_{1}, a_{5}\right]^{[-1]},\left[a_{2}, a_{5}\right]^{[-1]}$, from the structure equations for \mathfrak{g}_{2}
versus from the characteristic matrix
gives us certain equations where c_{1}, \ldots, c_{5} and $q_{i j}$ are not involved.
These equations give us the relations between the entries of the characteristic matrix that follow from Jacobi identity.
But calculating $\left[a_{1}, a_{4}\right]^{[0]},\left[a_{1}, a_{5}\right]^{[0]},\left[a_{2}, a_{5}\right]^{[0]}$,
from the structure equations for \mathfrak{g}_{2}
versus from the characteristic matrix
leads to a system of 12 linear equations wrt the 9 unknowns
$c_{1}, \ldots, c_{5}, q_{11}, q_{12}, q_{21}, q_{22}$.
We know that this system is solvable.
It has a unique solution, and we obtain formulas for c_{40}, \ldots, c_{04}.

Are these formulas involved?

No, here they are:
$c_{40}=\frac{1}{100}\left(9 t_{13}^{2}+100 t_{12} t_{14}+18 t_{13} t_{14}^{2}+9 t_{14}^{4}-100 t_{11} t_{15}+60 t_{14} t_{15} t_{23}-\right.$ $188 t_{13} t_{15} t_{24}+72 t_{14}^{2} t_{15} t_{24}+364 t_{15}^{2} t_{24}^{2}+164 t_{13} t_{14} t_{25}-36 t_{14}^{3} t_{25}+$ $180 t_{15} t_{23} t_{25}-464 t_{14} t_{15} t_{24} t_{25}-198 t_{13} t_{25}^{2}+238 t_{14}^{2} t_{25}^{2}+608 t_{15} t_{24} t_{25}^{2}-$ $404 t_{14} t_{25}^{3}+189 t_{25}^{4}-60 t_{15}^{2} t_{33}-60 t_{14} t_{15}^{2} t_{34}-60 t_{15}^{2} t_{25} t_{34}+96 t_{13} t_{15} t_{35}-$ $\left.24 t_{14}^{2} t_{15} t_{35}-416 t_{15}^{2} t_{24} t_{35}+308 t_{14} t_{15} t_{25} t_{35}-276 t_{15} t_{25}^{2} t_{35}+96 t_{15}^{2} t_{35}^{2}\right)$ and not more involved formulas for $c_{31}, c_{22}, c_{13}, c_{04}$. You want to have these formulas? E-mail to me and you will have them.

Recall that the parameters $t_{i j}$ of a characteristic matrix is not an arbitrary tuple of 15 real numbers, there are certain relations because of Jacobi identity. But these relations do not simplify the formulas substantialy.

The case of endowed $(5,3,0)$ algebra

Recall (lecture 1, lecture 3) that the characteristic matrix of a $(5,3,0)$ endowed algebra is determined by its last 2 -columns reduced characteristic matrix.
It is a 3×2 matrix, and its 6 entries are arbitrary numbers.
Any reduced characteristic matrix is equivalent to

$$
\left(\begin{array}{ll}
a & b \\
c & d \\
0 & e
\end{array}\right)
$$

In this case the coefficients of Cartan tensor are as follows:
$c_{40}=9 a^{4}+90 a^{2} b c+125 b^{2} c^{2}-54 a^{3} d-190 a b c d+101 a^{2} d^{2}+60 b c d^{2}-$ $60 a d^{3}-42 a^{2} b e-90 b^{2} c e+66 a b d e+9 b^{2} e^{2}$
$c_{31}=4(3 c-e)\left(3 a^{3}+25 a b c-13 a^{2} d+12 a d^{2}-12 a b e-9 b d e\right)$
$c_{22}=$
$2(3 c-e)\left(6 a^{2} c+50 b c^{2}-26 a c d+24 c d^{2}-a^{2} e-15 b c e+9 a d e-18 d^{2} e-9 b e^{2}\right)$
$c_{13}=-4(a-3 d)(4 c-3 e)(3 c-e) e$
$c_{04}=-(4 c-3 e)(5 c-3 e)(3 c-e) e$
We see that in the case $e=3 c$ the Cartan tensor is either $\pm x_{1}^{4}$ or 0 . Note that we know that without computing Cartan tensor, because in the case $e=3 c$ the reduced characteristic matrix is special (see lecture 3) and then the endowed 5-dim algebra is an endowed subalgebra of one of the 7-dim endowed algebras.

And we see a number of cases when the Cartan tensor is 0 , i.e. the distribution is flat. Example: $e=\frac{4 c}{3}, a=\frac{4 d}{3}, 27 b c=20 d^{2}$.

All what was explained in this minicourse, including the tutorial, is published in:

Proceedings of the GRIEG seminar
B. Kruglikov, O. Makhmali, P. Nurowski Eds

Warsaw-Oslo, 2021
For futher tutorials please e-mail to me
what you are interested in,
and we will do it by Zoom hosted by me.
THANKS TO ALL THE LISTENERS!

