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Do we need Cartan tensor?

Yes. By many reasons, probably the most important is as follows:

without Cartan tensor there is no way to answer the following important
question: if a given (2,3,5) distribution is flat or not?

| will give one of equivalent definitions of a flat (2,3,5) distributins using
one of my tools: characteristic matrix of an endowed 5-dim Lie algebra.
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Endowed 5-dim algebras and their characteristic matrices

By definition, an endowed 5-dim algebra is a 5-dim Lie algebra A endowed
with a generating 2-plane P = span(ai, az) meaning that the vectors

a1, ay, a3 = [a1, a2, as = [a1,a3), a5 = [a2, a3]

are linearly independent.

Any endowed 5-dim algebra can be described by the following 3 x 5 matrix
(rij) that | call a characteristic matrix:

[a1, a4] = nia1+---+nsas
[a1,a5] = [a2,as] = mria1+- -+ nsas
[a2, a5] = = mniai+---+nsas

All other structure equations follow from the Jacobi identity.
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Homogeneous (2,3,5) distribution
induced by an andowed 5-dim algebra

Let (A, P) be an endowed 5-dim algebra.

Let (G,id) be a nbhd of id of the Lie group G of A,
so that P is a 2-plane in T4G.

Push P to (G,id) by the flows of left invariant vector fields on G.
We obtain a local (germ at id) (2,3,5) distribution on (G, id).

It is homogeneous becuse its symmetry algebra either is A or contains A.
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The most known classical theorem

Theorem 1. (Cartan, Tanaka). Let D be the germ at 0 € R®
of a (2,3,5) distribution. The following are equivalent:

1. D is equivalent to a distribution induced by
the endowed 5-dim algebra with the zero characteristic matrix.

2. The symmetry algebra of D is g»
3. The Cartan tensor of D vanishes at any point near 0 € R®

Definition. If the conditions of Theorem 1. hold,
the (2,3,5) distribution is called flat.

Question. What can be said about the (2,3,5) distribution induced
by the endowed 5-dim algebra with non-zero characteristic matrix?
a. Can it be flat? b. Its symmetry algebra?

| will give complete answers. Quick answer to a: yes
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Less known very important theorem

Theorem 2. (Cartan) If D is not flat, its symmetry algebra has dim < 7.
My proof of Theorem 2 is as follows.
Theorem 3. (M. Zh) Let D be the germ at 0 € R® of a non-flat (2,3,5)

distribution. The isotropy subalgebra at 0 of the symmetry algebra of D
is, as an abstract Lie algebra, one of the following:

a. 1-dim; b. 2-dim non-Abelian; c. sl(2).
Each of these cases is realizable.
In case c, the Cartan tensor of D at 0 is equal to 0.

Theorem 2. is a logical corollary of Theorems 3. and 1.
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How | prove Theorem 37
My base theorem for non-flat distributions

My proof of Theorem 3, and of many other theorems,
uses the following statement that for me plays the key role.

Theorem 4 (the base theorem for non-flat distributions (M. Zh.)
The isotropy subalgebra of the symmetry algebra any non-flat (2,3,5)
distribution germ at 0 € R> does not contain vector fields with

the zero linear approximation at 0.

Theorem 5 (logical corollary of Theorem 4)
The isotropy subalgebra Z of the symmetry algebra any non-flat (2,3,5)

distribution germ D at 0 € RS is isomorphic (as an abstract Lie alegbra) to

the Lie algebra j3Z (the linear approximation of 7).

Theorem 6 (M.Zh). Let D and Z be as in Corollary 5. Then j3T is
isomorphic to one of a, b, c in Theorem 3.

Theorem 3. is a logical corollary of Theorems 5 and 6
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My approach is based on:

In order to prove Cartan-Tanaka classical Theorem 1, my base Theorem 4,
and Theorem 6 (Theorems 2,3,5 are, as | explained, their corollaries),

and many other statements that will be formulated in this mini-course,

| use the following, for (2,3,5) distributions D:

A. A theorem explaining the Cartan tensor of D at a fixed point

B. A theorem on characteristic polynomial of D :
a generalization of Cartan tensor at a fixed point

C. A theorem on almost exact normal form for all possible D
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Theorems A,B,C for local Riemannian metrics

Given the germ at 0 € R” of a Riemannian metric on R”,
take an orthonormal basis Vi, ..., V,, of vector fields,
and a local coordinate system x = (xq, ..., Xp)-

Describe the metric by an n x n matrix M(x)
with the functional entries M; j(x) = Vj(x;).

Theorem 7. (Gauss lemma; M. Zh).
1. For a suitable orthonormal basis and suitable local coordinates one has

M(x) = I + A(x), A"(x) = A(x), A(x)-x=0, x = (x1,...,x,)""

2.This normal form is exact up to transformations
A(x) = R™A(Rx)R where R is a constant orthogonal matrix.

3. The metric is flat if and only if A(x) = 0.

Remark. The local coordinates in this normal form are normal (geodesic).
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Proof of Theorem 7 by the Poincare way

What | call the Poincare way is the way used in the whole local analysis
and physics (but unfortunately so far not by many people in local
differential geometry), especially after the resonance normal form
obtained by Poincare for vector fields, that is used and developed in
thousands of works.

We have M(x) = I + AD(x) + A®)(x) + --- where (i) denotes the
homogeneous part of degree i. Assume we have normalized A()(x) for
i < k and want to normalize A(K)(x). For that, let us change the local
coordinates and the basis as follows:

x = x + &K (x),
(V.o Vo) = exp(SK) (X)) - (WA, ..., Vi)', SU(x) € so(n)
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Proof of Theorem 7 by the Poincare way (continuation)

These transformation preserve already normalized Al)(x),i > k and
A (x) — AW (x) + (¢ (x))" + S (x)

The first statement of Theorem 7 now follows from the following claim.

Claim 8. One of the complement spaces to the image of the operator
(©M(x), SK(x)) = (@M (x))" + 5V (x), SW(x) € so(n)

is the space of symmetric matrices
AR)(x) such that AW (x) - x =0, x = (xq, ..., xn) ™.
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Proof of Claim 8 by GR inner products

The simplest exercise. For the inner product < ax’, bx' >= ilab in the
space of homogeneous degree i polynomials of one variable one has

k

p(x) = ax*, q(x) = bx*"1 = < p/(x), q(x) >=< p(x), q(x)x >

and consequently (p(x) — p’(x)) is the operator g(x) — q(x)x.

The inner product in this exercise can be easily and naturally extended to
homogeneous vector functions and matrices with homogeneous entries. |
call these inner products GR inner products because they were introduced
and used for many nice theorems on normal forms for vector fields by my
first teacher Genrich Ruvimovich Belitskii.

Those who did the exercise above will easily give an explicit formula for GR

inner products and will prove that with respect to them ((Cb(k)(X))/)* is

the operator A (x) = AK)(x)-x,x = (x1, ..., Xo)'" which implies Claim 8.
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Proof of the remaining part of Theorem 7

In the normalization way used the transformations that differ from the
identity by (i), 7 > 1 and did not use transformations of degree (0) that
preserve /, i.e. we did not use the action of O(n).

The constructed normal form is “good” meaning that it is preserved by
the action of O(n): it is easy to see that O(n) acts as follows

A(x) = R™A(Rx)R, R € O(n) which preserves the equations

A(x) = A%(x) and A(x) - x =0, x = (x1, ..., Xn) ™.

The fact that the constructed normal form is exact follows (modulo simple
general claims related to the Poincare way) form the following statement
that can be easily checked:

Claim. For k > 1 the kernel of the operator
(0 (x), SW(x)) = (¢ (x))" + SW(x), SK(x) € s0(n)

is trivial.
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The characteristic matrix and
the Riemannian curvature tensor at a fixed point

For non-flat Riemannian metric germ at 0 € R> we have
M =1+ AR (x) + AT (x) 4 ...
and the equations AK)(x) = (A(k)(x))tr and AW (x) - x =0,
X = (X1, ..., o) imply k > 2 (for k = 1 the matrix A()(x) is zero).

The matrix AK)(x) in the normal form might be called
the characteristic matrix.

If k = 2 the characteristic matrix can be identified
with the curvature tensor at 0 € R®.

If k > 2 then the curvature tensor vanishes at 0 € R
which does not mean, of course, that it vanishes at other points near 0.
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Straightforward generalizations

For germs on R" of conformal structures (metrics up to multiplication by a
non-vanishing function) we use a change of coordinates and a change of
orthonormal basis as above, and we multiply M(x) by a nin-vanishing
function H, so that the transformation of A(K)(x) is as follows:

A (x) = AW (x) + (@) (x))" + S (x) + HK (x)1
and exactly in the same way we obtain the normal form M = | + A(x),
AY(x) = A(x), A(x)-x =0, traceA(x) =0

If n > 4 the homogeneous decomposition of A(x) starts, as well as for
metrics, with A®) and A® can be identified with the Weyl tensor; if n = 3
it starts with A®) and A®) can be identified with the Cotton tensor. If

n = 2 the equations above imply A(x) = 0.

Generalization to Einstein metric and Einstein conformal structure are also
straightforward. Maybe they can be used for some problems posed in

Pawel Nurowski's lectures?
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s it possible to do a similar work for (2,3,5) distributions?

The first answer is no because unlike Riemannian metrics or conformal
structures we cannot describe the class of all (2,3,5) distributions in the
form (0) + (1) + (2) + - - - with a fixed (0) and arbitrary (1), (2), ....

The second answer is yes due to a very good quasi.
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Quasi-homogeneity

Let E = x10x, + - - + XnOx,

Definition. A function f(x) is called homogeneous of degree d if
E(f) = df. A vector field V is called homogeneous of degree d if
[E,V]=dV.

Example. The vector field x;* - - - - x/"0y, is homogeneous of degree
n+--+rm-1

Let now E) = Ax10x + -+ + AnxnOx,

Definition. Replace E by E) in the definition above. A function f(x) or a
vector field V' in that definition is called quasi-homogeneous of degree d
with respect to the weights A1, ..., A,.

Example. With respect to the weights 1,1,2, 3, 3 there are non-zero
vector field on R of any degree d > —3.
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Andre Bellaiche theorem

Theorem (A. Bellaiche). Let Vi, ..., Vi be any bracket generating tuple of
vector field germs at 0 € R". In suitable local coordinates

Vi = NP g B

where [i] denotes the quasi-homogeneous part with respect to the natural
weights defined by the growth vector of the tuple.

Example of the natural weights. Let Vi, V; be vector field germs at

0 € R? such that V4(0) # 0 and V5 and all repeated brackets of V4, V5 of
lenghth < 99 are at 0 proportional to V4(0), and one of the brackets of
lenghth 100 is not. Then the growth vector is (1,1,..,1,2) with 1 repeated
100 times, and the natital weights are (1,101).
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Starting point

In what n =5 and follows [/] denotes quasi-homogeneity of degree i with
respect to the weights 1,1,2,3,3 that are natural for (2,3,5) distributions.

The Bellaiche theorem implies that any (2,3,5) distribution germ D can be
described by vector fields

(W)= (b)) +o+ms. (3) et

and the distribution described by the vector fields Ny, N is
a flat (2,3,5) distribution.
It can be identified with the nilpotent approximation=symbol of D.
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The linear operator
(linearization of the pseudo-group action)
We have a pseudo-group that consists of local diffeos (change of

coordinates) and non-singilar 2 x 2 matrices H(x) corresponding to the
change of basis Vi, V5 of a (2,3,5) distribution. It acts as follows:

A AP MY
(@, ). (V2) e (¢*v2>

The Lie algebra of this pseudo-group is (Z, H(x)) where

Z is a vector field germ and H(x) is any 2 x 2 matrix. We need the
linearization at id of the map

A A W
(@, ). <N2> e (¢*N2>

It is the linear operator

e 2= (i) +# ()
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Working with the operator Ly

In the same way as for Riemannian metrics we obtain a normal form

Vi) _ (M), (W [°]+ Wy [1]+...
Vo) \ N\, Wa Wa
W (]
where (W > belongs to any fixed beforehand complementary space to
2
the image of the operator Ly restricted to [i + 1].

End of the first lecture

Some of the comments of the listeners are in the next page
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Some of the comments of the listeners to the first lecture

Bronek Jakubczyk: The Poincare way approach to classification of Riemannian
metrics is contained in the book:

Jerry Kijowski, Geometria rozniczkowa jako narzedzie nauk przyrodniczych
Bronek presented me this book, sorry that | forgot to mention it

Borya Kruglikov: Theorem 4, that | call the base theorem for non-flat (2,3,5)
distributions, has a huge generalization: Theorem 1.3 in the paper

B.Krugkikov, D.The, Jet-determination of symmetries of parabolic geometries,
Math. Ann., 2018. | should discuss with Borya or Dennis: one of the assumption
of their theorem is that the geometry is torsion free. How to prove that the
geometry of (2,3,5) distributions is torsion free? It is not excluded that proving
Th. 1.4 | am proving, implicitly, namely that, in another language.

Igor Zelenko: | mentioned Igor's fundamental form, constructed by abnormal
curves, but did not say - sorry! that lgor has it now not only for (2,3,5)
distributions (the case that it can be identified with the Cartan tensor, according
to lgor's Phd Thesis) but for all (2, n) bracket-generating distributions (maybe
with a constant growth vector only? or with the max growth vector only? Jointly
with Borya Doubrov? To disciss with Igor)
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