An introduction to supergravity in 11 dimensions

Andrea Santi UiT The Arctic University of Norway

GRIEG Seminar, February 11th 2022 Partly based on joint works with P. de Medeiros and J. Figueroa-O'Farrill

Plan of the series of talks:

First part:

- d = 11 Supergravity
- Detour on Lie superalgebras (including the Poincaré superalgebra)

<ロト < 同 ト < 三 ト < 三 ト < 三 ・ の < ()</p>

- Killing spinor equations and Killing superalgebras
- Brane solutions

Second part:

- Homogeneity theorem
- Filtered deformations
- Spencer cohomology and Killing spinors
- Maximally supersymmetric backgrounds

Third part:

- Rudiments of spinorial algebra & spin geometry
- PDEs on spinor bilinears
- Highly supersymmetric backgrounds

Rudiments of spinorial algebra & spin geometry

Let (V, η) be a vector space with a positive-definite inner product. The *Clifford* algebra $\mathcal{C}\ell(V)$ associated to (V, η) is associative algebra with a unity generated by V with the relation $v^2 = -\eta(v, v)1$ for all $v \in V$.

Rem I. By polarization, the Clifford relations are equivalent to

$$v \cdot w + w \cdot v = -2\eta(v, w)$$

for all $v, w \in V$. It follows that $C\ell(V) = C\ell(V)_{\bar{0}} \oplus C\ell(V)_{\bar{1}}$ is a \mathbb{Z}_2 -graded algebra. **Rem II.** If $\{e_i\}$ is an orthonormal basis of V, then

$$e_i \cdot e_j = \begin{cases} -e_j \cdot e_i & \text{ if } i \neq j \\ -1 & \text{ if } i = j \end{cases}$$

Setting the alternating product of generators

$$e_{i_1\cdots i_p} := \frac{1}{p!} \sum_{\sigma \in S_p} (-1)^{|\sigma|} e_{i_{\sigma(1)}} \cdots e_{i_{\sigma(p)}}$$

gives a vector space isomorphism $\mathcal{C}\ell(V) \cong \Lambda^{\bullet}V = \mathbb{R} \oplus V \oplus \Lambda^2 V \oplus \cdots \oplus \Lambda^m V$.

Exercises on Clifford algebras

Show that

$$v \cdot \alpha = v \wedge \alpha - \imath_v \alpha \tag{1}$$

$$\alpha \cdot v = (-1)^{|\alpha|} \left(v \wedge \alpha + \imath_v \alpha \right) \tag{2}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$(v \wedge w) \cdot \alpha = v \wedge w \wedge \alpha + \imath_v \imath_w \alpha - v \wedge \imath_w \alpha + w \wedge \imath_v \alpha \tag{3}$$

$$\alpha \cdot (v \wedge w) = v \wedge w \wedge \alpha + \imath_v \imath_w \alpha + v \wedge \imath_w \alpha - w \wedge \imath_v \alpha \tag{4}$$

for all $v, w \in V$ and $\alpha \in \Lambda^{\bullet} V$.

	···· · · · /,s				11(22)	0(64)	D(128)	P(128) @ P(128)	R(256)
8	R(16)	C(16)	H(16)	$\mathbb{H}(16) \oplus \mathbb{H}(16)$	HI(32)	U(04)	rs(120)	14(120) @ 14(120)	
7	C(8)	H(8)	$\mathbb{H}(8) \oplus \mathbb{H}(8)$	H(16)	C(32)	R(64)	$\mathbb{R}(64) \oplus \mathbb{R}(64)$	R(128)	C(128)
6	H(4)	⊞(4) ⊕ ⊞(4)	H(8)	C(16)	R(32)	ℝ(32) ⊕ ℝ(32)	R(64)	C(64)	H(64)
5	H(2) @ H(2)	H(4)	C(8)	R (16)	R(16) ⊕ R(16)	R(32)	C(32)	ℍ(32)	H(32) H(32)
4	H(2)	C(4)	R(8)	R(8) ⊕ R(8)	R(16)	C(16)	ℍ(16)	H(16) ⊕ H(16)	H(32)
F	C(2)	R(4)	R(4) R(4)	R(8)	C(8)	H(8)	H(8) H(8)	H(16)	C(32)
ŀ,	₽(2)	$\mathbb{R}(2) \oplus \mathbb{R}(2)$	R(4)	C(4)	ℍ(4)	H(4) ⊕ H(4)	H(8)	C(16)	R(32)
Ļ,	B (2)	₽(2)	C(2)	⊞(2)	H(2) ⊕ H(2)	H(4)	C(8)	R (16)	$\mathbb{R}(16) \oplus \mathbb{R}(16)$
Ľ		04(2)	0(2)		11(2)	C(A)	D(8)	R(8)	R(16)
0	R	C	н	н өн	H(2)	U(4)	P&(0)	14(0) () 14(0)	
	0	1	2	3	4	5	6	7	8

Rudiments of spinorial algebra & spin geometry

$$\begin{aligned} \operatorname{Spin}(V) &= \{g = v_1 \cdots v_{2k} \mid v_i \in V \text{ s.t } \eta(v_i, v_i) = +1\} \subset \mathcal{C}\ell(V) \\ \mathfrak{so}(V) &\stackrel{\simeq}{\to} \mathcal{C}\ell(V) \text{ via } v \wedge w \mapsto \frac{1}{4}[v, w] = \frac{1}{4}(v \cdot w - w \cdot v) \end{aligned}$$

Important fact: $g \in \text{Spin}(V)$, $v \in V \Rightarrow g \cdot v \cdot g^{-1} \in V$. This is the 2-fold cover $\text{Ad} : \text{Spin}(V) \to \text{SO}(V)$ (archetipical example to have in mind: $\text{Spin}(3) \cong \text{Sp}(1) \to \text{SO}(3) = \text{SO}(\text{Im }\mathbb{H})$)

<ロト < 同 ト < 三 ト < 三 ト < 三 ・ の < ()</p>

Rudiments of spinorial algebra & spin geometry

Let (M,g) be an orientable Riemannian manifold and

 $SO(M) = \{u : \mathbb{R}^m \to T_x M \text{ orientation-preserving linear isomorphism s.t.}$ $u^* q = \eta \mid x \in M\}$

the bundle of oriented orthonormal frames.

Def. A spin structure on (M,g) is principal Spin(V)-bundle $\text{Spin}(M) \to M$ together with commutative diagram of bundle morphisms

which restricts fiberwise to Ad : $\operatorname{Spin}(V) \to SO(V)$. The vector bundle $S(M) = \operatorname{Spin}(M) \times_{\operatorname{Spin}(V)} S$ is called *spinor bundle* $(S = \operatorname{irrep.}_{G} \circ \operatorname{fcl}(V))_{S \in \mathbb{C}}$.

Example

 $M=S^m\cong \mathrm{SO}(m+1)/\mathrm{SO}(m)\cong \mathrm{Spin}(m+1)/\mathrm{Spin}(m)$

$$SO(M) \cong SO(m+1) \ni g = \begin{pmatrix} g_1 & g_2 & \cdots & g_{m+1} \end{pmatrix}$$

Spinor fields satisfying special PDEs

Def. A spinor field $\epsilon \in \Gamma(S(M))$ is called

- parallel if $\nabla_X \epsilon = 0 \ \forall X \in \mathfrak{X}(M)$;
- *Killing* if there is constant λ such that $\nabla_X \epsilon = \lambda X \cdot \epsilon \ \forall X \in \mathfrak{X}(M)$.

Thm[Friedrich '80s] If a Riemannian manifold (M, g) has a non-trivial parallel spinor, then Ric = 0.

Proof. Clearly $\nabla_X \epsilon = 0 \Rightarrow R(X, Y)\epsilon = 0$, where $R \in \Lambda^2 T^*M \otimes \operatorname{End}(S(M))$, so the Clifford trace $0 = 4 \sum_j e_j \cdot R(e_i, e_j)\epsilon$. Now

$$R(e_i, e_j) = \frac{1}{2} \sum_{k,l} R_{ijkl} e_k \wedge e_l \Rightarrow R(e_i, e_j) \epsilon = \frac{1}{4} \sum_{k,l} R_{ijkl} e_k \cdot e_l \cdot \epsilon$$

and substituting into the Clifford trace leads to $0 = \sum_{j,k,l} R_{ijkl} e_j \cdot e_k \cdot e_l \cdot \epsilon$.

・ロト・日本・モト・モー も うへで

Spinor fields satisfying special PDEs

Now

$$0 = \sum_{j,k,l} R_{ijkl}e_j \cdot e_k \cdot e_l \cdot \epsilon$$

=
$$\sum_{j,k,l} R_{ijkl} (e_{jkl} - \eta_{jk}e_l + \eta_{jl}e_k) \cdot \epsilon$$

=
$$\sum_{j,k,l} R_{ijkl} (e_{jkl} + 2\eta_{jl}e_k) \cdot \epsilon$$

The first term vanishes due to Bianchi Identity $R_{ijkl} + R_{iljk} + R_{iklj} = 0$ so we are left with $0 = -2 \sum_{j,k,l} R_{jikl} \eta_{jl} e_k \cdot \epsilon = -2 \sum_k \operatorname{Ric}_{ik} e_k \cdot \epsilon$. Equivalently, if we look at the Ricci tensor as an endomorphism, we have $\operatorname{Ric}(X) \cdot \epsilon = 0$ for all $X \in \mathfrak{X}(M)$, so that $\operatorname{Ric}(X) = 0$ for all $X \in \mathfrak{X}(M)$, which is our claim

Spinor fields satisfying special PDEs

Wang's classification of complete, simply connected, irreducible Riemannian manifolds admitting parallel spinors (1989):

Holonomy Representation	Geometry	Parallel spinors
SU(2n+1)	Calabi-Yau	(1, 1)
$\mathrm{SU}(2n)$	Calabi-Yau	(2, 0)
$\operatorname{Sp}(n)$	Hyper-Kähler	(n+1, 0)
$G_2 \ (\subset \mathrm{SO}(7))$	exceptional	1
$\operatorname{Spin}(7) (\subset \operatorname{SO}(8))$	exceptional	1

Thm[Bär, Baum '90s] If a Riemannian manifold (M, g) has a non-trivial Killing spinor with Killing constant $\lambda \in \mathbb{C}$, then $\operatorname{Ric} = 4\lambda^2(m-1)g$, i.e., M is Einstein and $\lambda \in \mathbb{R}$ or $\lambda \in i\mathbb{R}$.

Supergravity

Let (M, g, F) be Lorentzian mnfd (M, g), dim M = 11, with closed $F \in \Omega^4(M)$ and endowed with a spinor bundle $S(M) \longrightarrow M$ (the fiber $S(M)_x \cong S = \mathbb{R}^{32}$). The bosonic equations of supergravity are two coupled PDEs [Cremmer-Julia-Scherk '78]:

$$\operatorname{Ric}(X,Y) = \frac{1}{2}g(i_X F, i_Y F) - \frac{1}{6}g(X,Y)|F|^2$$

$$d * F = \frac{1}{2}F \wedge F$$

Killing superalgebra $\mathfrak{k} = \mathfrak{k}_{\bar{0}} \oplus \mathfrak{k}_{\bar{1}}$ where

$$\begin{aligned} &\mathfrak{t}_{\bar{0}} = \left\{ \xi \in \mathfrak{X}(M) \mid \mathcal{L}_{\xi}g = \mathcal{L}_{\xi}F = 0 \right\} \\ &\mathfrak{t}_{\bar{1}} = \left\{ \epsilon \in \Gamma(S(M)) \mid \nabla_{X}\epsilon = \frac{1}{24} \left(X \cdot F - 3F \cdot X \right) \cdot \epsilon \right\} \end{aligned}$$

<ロト < 同 ト < 三 ト < 三 ト < 三 ・ の < ()</p>

High supersymmetry

It has long been suspected that there is some critical fraction of supersymmetry which forces the equations of motion of supergravity. In 2017, we gave following positive answer:

Thm[Figueroa-O'Farrill, A.S. '17] Let (M,g) be 11-dimensional Lorentzian mnfd with *closed* $F \in \Omega^4(M)$. If dim $\mathfrak{k}_{\overline{1}} > 16$, then (i) (M,g,F) satisfies Einstein and Maxwell eqs (the bound is sharp) and (ii) F = 0 iff (M,g,F) is the flat model.

Main ingredients of the proof:

- 1 Filtered subdeformations,
- 2 PDEs satisfied by differential forms constructed out of Killing spinors,
- 3 the local homogeneity theorem.

Killing superalgebras as filtered deformations

Thm[Figueroa-O'Farrill, A.S. '17] Any Killing superalgebra \mathfrak{k} is a filtered deformation of a graded subalgebra $\mathfrak{a} = V' \oplus S' \oplus \mathfrak{h}$ of Poincaré superalgebra $\mathfrak{p} = V \oplus S \oplus \mathfrak{so}(V)$.

Explicitly:

$$[A, B] = AB - BA \qquad [A, s] = As$$

$$[A, v] = Av + \delta(A, v) \qquad [v, s] = \beta^{\varphi}(v, s) + X_v s \qquad (5)$$

$$[v, w] = \alpha(v, w) + \rho(v, w), \qquad [s, s] = \kappa(s, s) + \gamma^{\varphi}(s, s) - X_{\kappa(s, s)}$$

for $A,B\in \mathfrak{h},\,v,w\in V'$, $s\in S'$, where

$$\begin{aligned} \alpha(v,w) &= X_v w - X_w v \\ \delta(A,v) &= [A, X_v] - X_{Av} \\ \rho(v,w) &= [X_v, X_w] - X_{\alpha(v,w)} + R(v,w) \end{aligned} \qquad \beta^{\varphi}(v,s) &= \frac{1}{24} (v \cdot \varphi - 3\varphi \cdot v) \cdot s, \\ \gamma^{\varphi}(s,s)(v) &= -2\kappa (\beta^{\varphi}(v,s),s). \end{aligned}$$

for some \mathfrak{h} -invariant $\varphi \in \Lambda^4 V$ and a map $X: V' \to \mathfrak{so}(V)$.

Jacobi Identities for Killing superalgebras

- [hhh], [hhS'], [hhV'] are satisfied because h is a Lie subalgebra of so(V) that stabilizes S' and V';
- $[\mathfrak{h}S'S']$ and $[\mathfrak{h}S'V']$ are satisfied as $\mathfrak{h} < \mathfrak{so}(V) \cap \mathfrak{stab}(\varphi)$. E.g. for $A \in \mathfrak{h}$ and $s \in S'$, we have

$$\begin{split} [A,[s,s]] &= [A,\kappa(s,s) + \gamma^{\varphi}(s,s) - X_{\kappa(s,s)}] \\ &= A\kappa(s,s) + [A,\gamma^{\varphi}(s,s)] - X_{A\kappa(s,s)} \\ &= 2\kappa(As,s) + 2\gamma^{\varphi}(As,s) - 2X_{\kappa(As,s)} = 2[[A,s],s] \end{split}$$

since κ and γ^{φ} are equivariant under $\mathfrak{so}(V) \cap \mathfrak{stab}(\varphi)$;

- $[\mathfrak{h}V'V']$ boilds down to $R: \Lambda^2V' \to \mathfrak{so}(V)$ being \mathfrak{h} -equivariant;
- + [S'S'S'] says that [[s,s],s]=0 for all $s\in S'$ and it expands to

$$\gamma^{\varphi}(s,s)s = -\beta^{\varphi}(\kappa(s,s),s)$$
.

This is actually true for all $s \in S$ (it is one cocycle condition in $H^{2,2}(\mathfrak{p}_{-},\mathfrak{p})$);

Jacobi Identities for Killing superalgebras

• [S'S'V'] Jacobi Identity. After a somewhat lengthy calculation and letting $\beta_v^{\varphi}(s) = \beta^{\varphi}(v, s)$ for all $v \in V$ and $s \in S$, this identity is equivalent to

 $\frac{1}{2}R(v,\kappa(s,s))w = \kappa\big((X_v\beta^{\varphi})(w,s),s\big) - \kappa\big(\beta_v^{\varphi}(s),\beta_w^{\varphi}(s)\big) - \kappa\big(\beta_w^{\varphi}\beta_v^{\varphi}(s),s\big),$

for all $s \in S'$, $v \in V'$ and $w \in V$;

• [S'V'V'] expands to the following condition

$$R(v,w)s = (X_v\beta^{\varphi})(w,s) - (X_w\beta^{\varphi})(v,s) + [\beta_v^{\varphi}, \beta_w^{\varphi}](s),$$

for all $s \in S'$ and $v, w \in V'$;

• [V'V'V'] expands to Bianchi Identities for R, algebraic and differential.

PDEs on Spinor Bilinears

For any section ε of S(M) we may define *differential forms* on M as follows:

1
$$\omega^{(1)} \in \Omega^1(M)$$
, where $\omega^{(1)}(X) = \langle \varepsilon, X \cdot \varepsilon \rangle$
2 $\omega^{(2)} \in \Omega^2(M)$, where

$$\omega^{(2)}(X_1, X_2) = \langle \varepsilon, (X_1 \wedge X_2) \cdot \varepsilon \rangle$$

3 $\omega^{(5)} \in \Omega^5(M)$, where $\omega^{(5)}(X_1, \dots, X_5) = \langle \varepsilon, (X_1 \land \dots \land X_5) \cdot \varepsilon \rangle$

The 1-form $\omega^{(1)}$ is the metric dual of Dirac current $\kappa = \kappa(\varepsilon, \varepsilon)$ of ε . **Prop.** If $\varepsilon \in \mathfrak{k}_1$ then:

$$d\omega^{(2)} = -\imath_{\kappa}F \tag{6}$$

$$d\omega^{(5)} = \imath_{\kappa} \star F - \omega^{(2)} \wedge F. \tag{7}$$

These imply that the supergravity *Maxwell eqs are satisfied* if dF = 0 and the space $\mathfrak{k}_{\bar{1}}$ of Killing spinors has $\dim \mathfrak{k}_{\bar{1}} > 16$.

Proof of PDEs on Spinor Bilinears

Proof.

We first rewrite

$$\nabla_Z \epsilon = \frac{1}{24} \left(Z \cdot F - 3F \cdot Z \right) \cdot \epsilon$$

= $\frac{1}{24} \left(Z \wedge F - \imath_Z F \right) \cdot \epsilon - \frac{1}{8} \left(Z \wedge F + \imath_Z F \right) \cdot \epsilon$
= $-\frac{1}{12} \left(Z \wedge F \right) \cdot \epsilon - \frac{1}{6} \left(\imath_Z F \right) \cdot \epsilon$

and then compute

$$\begin{aligned} (\nabla_Z \omega^{(2)})(X,Y) &= \langle \nabla_Z \epsilon, X \wedge Y \cdot \epsilon \rangle + \langle \epsilon, X \wedge Y \cdot \nabla_Z \epsilon \rangle \\ &= -\frac{1}{6} \left\langle (i_Z F) \cdot \epsilon, X \wedge Y \cdot \epsilon \right\rangle - \frac{1}{6} \left\langle \epsilon, X \wedge Y \cdot (i_Z F) \cdot \epsilon \right\rangle \\ &- \frac{1}{12} \left\langle (Z \wedge F) \cdot \epsilon, X \wedge Y \cdot \epsilon \right\rangle - \frac{1}{12} \left\langle \epsilon, X \wedge Y \cdot (Z \wedge F) \cdot \epsilon \right\rangle \\ &= -\frac{1}{6} \left\langle \epsilon, (i_Z F) \cdot X \wedge Y \cdot \epsilon \right\rangle - \frac{1}{6} \left\langle \epsilon, X \wedge Y \cdot (i_Z F) \cdot \epsilon \right\rangle \\ &+ \frac{1}{12} \left\langle \epsilon, (Z \wedge F) \cdot X \wedge Y \cdot \epsilon \right\rangle - \frac{1}{12} \left\langle \epsilon, X \wedge Y \cdot (Z \wedge F) \cdot \epsilon \right\rangle . \end{aligned}$$

Using again the exercise on Clifford multiplication we get

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof of PDEs on Spinor Bilinears - continued

$$\begin{split} (\nabla_Z \omega^{(2)})(X,Y) &= -\frac{1}{3} \left\langle \epsilon, X \wedge Y \wedge (\imath_Z F) \cdot \epsilon \right\rangle - \frac{1}{3} \left\langle \epsilon, \imath_X \imath_Y \imath_Z F \cdot \epsilon \right\rangle \\ &+ \frac{1}{6} \left\langle \epsilon, X \wedge \imath_Y \left(Z \wedge F \right) \cdot \epsilon \right\rangle - \frac{1}{6} \left\langle \epsilon, Y \wedge \imath_X \left(Z \wedge F \right) \cdot \epsilon \right\rangle \\ &= -\frac{1}{3} \left\langle \epsilon, X \wedge Y \wedge (\imath_Z F) \cdot \epsilon \right\rangle - \frac{1}{3} \left\langle \epsilon, \imath_X \imath_Y \imath_Z F \cdot \epsilon \right\rangle \\ &+ \frac{1}{6} g(Y,Z) \left\langle \epsilon, X \wedge F \cdot \epsilon \right\rangle - \frac{1}{6} g(X,Z) \left\langle \epsilon, Y \wedge F \cdot \epsilon \right\rangle \\ &- \frac{1}{6} \left\langle \epsilon, X \wedge Z \wedge (\imath_Y F) \cdot \epsilon \right\rangle + \frac{1}{6} \left\langle \epsilon, Y \wedge Z \wedge (\imath_X F) \cdot \epsilon \right\rangle \end{split}$$

and skewsymmetrizing in X, Y and Z we finally arrive at

$$d\omega^{(2)}(X,Y,Z) = (\nabla_X \omega^{(2)})(Y,Z) + (\nabla_Y \omega^{(2)})(Z,X) + (\nabla_Z \omega^{(2)})(X,Y)$$
$$= -\langle \epsilon, \imath_X \imath_Y \imath_Z F \cdot \epsilon \rangle = -\omega^{(1)}(\imath_X \imath_Y \imath_Z F) = -\imath_\kappa \imath_X \imath_Y \imath_Z F$$
$$= -(\imath_\kappa F)(X,Y,Z)$$

that is $d\omega^{(2)} = -i_{\kappa}F$. Exercise: you are free to prove the identity for $d\omega^{(5)}$ in a similar fashion.

Proof of PDEs on Spinor Bilinears - the end

Let us then prove that the Maxwell eqs are satisfied if dF = 0 and $\dim \mathfrak{k}_{\bar{1}} > 16$. We first compute

$$0 = \star \mathcal{L}_{\kappa} F = \mathcal{L}_{\kappa} \star F = d\imath_{\kappa} \star F + \imath_{k} d \star F$$

= $d(\omega^{(2)} \wedge F) + \imath_{\kappa} d \star F = d\omega^{(2)} \wedge F + \imath_{\kappa} d \star F$
= $-\frac{1}{2} \imath_{k} (F \wedge F) + \imath_{\kappa} d \star F = \imath_{\kappa} \left(d \star F - \frac{1}{2} F \wedge F \right)$.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

and then use the local homogeneity theorem.

High supersymmetry

Thm[Figueroa-O'Farrill, A.S. '17] Let (M, g) be 11-dimensional Lorentzian mnfd with *closed* $F \in \Omega^4(M)$. If dim $\mathfrak{k}_{\overline{1}} > 16$, then (i) (M, g, F) satisfies Einstein and Maxwell eqs (the bound is sharp) and (ii) F = 0 iff (M, g, F) is the flat model.

High supersymmetry

Thm[Figueroa-O'Farrill, A.S. '17] Let (M, g) be 11-dimensional Lorentzian mnfd with *closed* $F \in \Omega^4(M)$. If dim $\mathfrak{k}_{\overline{1}} > 16$, then (i) (M, g, F) satisfies Einstein and Maxwell eqs (the bound is sharp) and (ii) F = 0 iff (M, g, F) is the flat model. **Sketch of proof of (i)**. The Jacobi identity [S'S'V] in the filtered deformation gives

$$\frac{1}{2}R(v,\kappa(s,s))w = \kappa((X_v\beta^{\varphi})(w,s),s) - \kappa(\beta_v^{\varphi}(s),\beta_w^{\varphi}(s)) - \kappa(\beta_w^{\varphi}\beta_v^{\varphi}(s),s)$$

for all $s \in S'$ and $v, w \in V$. As $\kappa(S', S') = V$ by local homogeneity theorem, this fully determines the curvature R and, by a further contraction, the Ricci tensor

$$\operatorname{Ric}(v,\kappa(s,s)) = \frac{1}{2}g(\iota_v F, \iota_{e_i}F)\left\langle s, e^i \cdot s \right\rangle - \frac{1}{6} \|F\|^2 \left\langle s, v \cdot s \right\rangle \\ - \frac{1}{6} \left\langle (v \wedge F \wedge F + 2\iota_v \delta F - v \wedge dF) \cdot s, s \right\rangle.$$

We then showed that the terms which depend on forms of different degree in $\odot^2 S' \subset \odot^2 S \cong \Lambda^1 V \oplus \Lambda^2 V \oplus \Lambda^5 V$ satisfy the eqs separately (not immediate: this embedding is diagonal)

Upshots

The theorem allows to establish a reconstruction result:

Def. A filtered subdeformation $\mathfrak{g} = \mathfrak{g}_{\bar{0}} \oplus \mathfrak{g}_{\bar{1}}$ of \mathfrak{p} with $\dim \mathfrak{g}_{\bar{1}} > 16$ is *realizable* if it is constructed out of a closed 4-form $\varphi \in \Lambda^4 V$ as in (5).

Reconstruction thm[Figueroa-O'Farrill, A.S. '17] The highly supersymmetric bgkds, up to local equivalence, are in a *one-to-one correspondence* with maximal realizable filtered subdeformations \mathfrak{g} of \mathfrak{p} satisfying $\mathfrak{g}_{\bar{0}} = [\mathfrak{g}_{\bar{1}}, \mathfrak{g}_{\bar{1}}]$, up to isomorphism of filtered subdeformations.

References

- J. Figueroa-O'Farrill, A. S., Spencer cohomology and 11-dimensional supergravity, Comm. Math. Phys. 349 (2017), 627-660.
- J. Figueroa-O'Farrill, A. S., On the algebraic structure of Killing superalgebras, Adv. Theor. Math. Phys. 21 (2017), 1115–1160.
- A. S., Remarks on highly supersymmetric backgrounds of d = 11 supergravity, preprint arXiv:1912.10688 (2019), 23pp, to appear on the Proceedings of the Abel Symposium 2019.
- P. de Medeiros, J. Figueroa-O'Farrill, A. S., *Killing superalgebras for Lorentzian four-manifolds*, J. High Energy Phys. 6 (2016), 50 pp.
- P. de Medeiros, J. Figueroa-O'Farrill, A. S., Killing superalgebras for Lorentzian six-manifolds, J. Geom. Phys. 132 (2018), 13-44.

Thanks!

4 日 > 4 日 > 4 日 > 4 日 > 4 日 > 9 4 で