An introduction to supergravity in 11 dimensions

Andrea Santi
UiT The Arctic University of Norway

GRIEG Seminar, February 11th 2022
Partly based on joint works with P. de Medeiros and J. Figueroa-O'Farrill

Plan of the series of talks:

First part:

- $d=11$ Supergravity
- Detour on Lie superalgebras (including the Poincaré superalgebra)
- Killing spinor equations and Killing superalgebras
- Brane solutions

Second part:

- Homogeneity theorem
- Filtered deformations
- Spencer cohomology and Killing spinors
- Maximally supersymmetric backgrounds

Third part:

- Rudiments of spinorial algebra \& spin geometry
- PDEs on spinor bilinears
- Highly supersymmetric backgrounds

Rudiments of spinorial algebra \& spin geometry
Let (V, η) be a vector space with a positive-definite inner product. The Clifford algebra $\mathcal{C} \ell(V)$ associated to (V, η) is associative algebra with a unity generated by V with the relation $v^{2}=-\eta(v, v) 1$ for all $v \in V$.
Rem I. By polarization, the Clifford relations are equivalent to

$$
v \cdot w+w \cdot v=-2 \eta(v, w)
$$

for all $v, w \in V$. It follows that $\mathcal{C} \ell(V)=\mathcal{C} \ell(V)_{\overline{0}} \oplus \mathcal{C} \ell(V)_{\overline{1}}$ is a \mathbb{Z}_{2}-graded algebra. Rem II. If $\left\{e_{i}\right\}$ is an orthonormal basis of V, then

$$
e_{i} \cdot e_{j}= \begin{cases}-e_{j} \cdot e_{i} & \text { if } i \neq j \\ -1 & \text { if } i=j\end{cases}
$$

Setting the alternating product of generators

$$
e_{i_{1} \cdots i_{p}}:=\frac{1}{p!} \sum_{\sigma \in S_{p}}(-1)^{|\sigma|} e_{i_{\sigma(1)}} \cdots e_{i_{\sigma(p)}}
$$

gives a vector space isomorphism $\mathcal{C} \ell(V) \cong \Lambda^{\bullet} V=\mathbb{R} \oplus V \oplus \Lambda^{2} V \oplus \cdots \oplus \Lambda^{m} V$.

Exercises on Clifford algebras

Show that

$$
\begin{align*}
v \cdot \alpha & =v \wedge \alpha-\imath_{v} \alpha \tag{1}\\
\alpha \cdot v & =(-1)^{|\alpha|}\left(v \wedge \alpha+\imath_{v} \alpha\right) \tag{2}\\
(v \wedge w) \cdot \alpha & =v \wedge w \wedge \alpha+\imath_{v} \imath_{w} \alpha-v \wedge \imath_{w} \alpha+w \wedge \imath_{v} \alpha \tag{3}\\
\alpha \cdot(v \wedge w) & =v \wedge w \wedge \alpha+\imath_{v} \imath_{w} \alpha+v \wedge \imath_{w} \alpha-w \wedge \imath_{v} \alpha \tag{4}
\end{align*}
$$

for all $v, w \in V$ and $\alpha \in \Lambda^{\bullet} V$.

Table II. $\mathrm{C}_{r, s}$ in the box (r, s)

8	$\mathbb{R}(16)$	$\mathbb{C}(16)$	M(16)	$\mathbb{H}(16) \oplus H(16)$	$\mathbb{H}(32)$	$\mathbb{C}(64)$	$\mathbb{R}(128)$	$\mathbb{R}(128) \oplus \mathbb{R}(128)$	$\mathbb{R}(256)$
7	$\mathbb{C}(8)$	H(8)	$H(8) \oplus H(8)$	$M(16)$	$\mathrm{C}(32)$	$\mathbb{P}(64)$	$\mathbb{R}(64) \oplus \mathbb{R}(64)$	$\mathbb{R}(128)$	C(128)
6	$\mathbb{H}(4)$	$\xrightarrow[H]{(4) \oplus} \oplus\left(\begin{array}{l}\text { (4) }\end{array}\right.$	H(8)	$\mathbb{C}(16)$	$\mathbb{R}(32)$	$\mathbb{R}(32) \oplus \mathbb{R}(32)$	$\mathbb{R}(64)$	$\mathbb{C}(64)$	$\xrightarrow[H]{(64)}$
5	$H(2) \oplus \mathbb{H}(2)$	$\mathbb{H}(4)$	C(8)	$\mathbb{R}(16)$	$\mathbb{P}(16) \oplus \mathbb{R}(16)$	$\mathbb{R}(32)$	$\mathbb{C}(32)$	$\mathbb{H}(32)$	$\mathscr{H}(32) \oplus \mathbb{H}(32)$
4	H(2)	$\mathbb{C}(4)$	$\mathbb{R}(8)$	$\mathbb{R}(8) \oplus \mathbb{R}(8)$	$\mathbb{R}(16)$	$\mathbb{C}(16)$	$H(16)$	$\mathbb{H}(16) \oplus \mathbb{H}(16)$	$\mathbb{H}(32)$
3	$\mathbb{C}(2)$	$\mathbb{R}(4)$	$\mathbb{R}(4) \oplus \mathbb{R}(4)$	$\mathbb{R}(8)$	$\mathbb{C}(8)$	$\mathrm{H}(8)$	$\mathfrak{H}(8) \oplus \mathbb{H}(8)$	$\mathbb{H}(16)$	$\mathbb{C}(32)$
2	$\mathbb{R}(2)$	$\mathbb{R}(2) \oplus \mathbb{R}(2)$	$\underline{P R}(4)$	$\mathbb{C}(4)$	$\mathbb{H}(4)$	$\mathbb{H}(4) \oplus \mathbb{H}(4)$	$\mathrm{H}(8)$	$\mathbb{C}(16)$	$\mathbb{R}(32)$
1	$\mathbb{R} \oplus \mathbb{R}$	$\mathbb{R}(2)$	$\mathbb{C}(2)$	H(2)	$\mathbb{H}(2) \oplus \mathbb{H}(2)$	$\mathbb{H}(4)$	$\mathbb{C}(8)$	$\mathbb{R}(16)$	$\mathbb{R}(16) \oplus \mathbb{R}(16)$
0	\mathbb{R}	\mathbb{C}	H	$\mathbb{H} \oplus \mathrm{H}^{(}$	$\underline{H}(2)$	$\mathbb{C}(4)$	\mathbb{R} (8)	$\mathbb{R}(8) \oplus \mathbb{R}(8)$	$\mathbb{R}(16)$
	0	1	2	3	4	5	6	7	8

Rudiments of spinorial algebra \& spin geometry

$$
\begin{aligned}
\operatorname{Spin}(V) & =\left\{g=v_{1} \cdots v_{2 k} \mid v_{i} \in V \text { s.t } \eta\left(v_{i}, v_{i}\right)=+1\right\} \subset \mathcal{C} \ell(V) \\
\mathfrak{s o}(V) & \stackrel{\cong}{\rightrightarrows} \mathcal{C} \ell(V) \text { via } v \wedge w \mapsto \frac{1}{4}[v, w]=\frac{1}{4}(v \cdot w-w \cdot v)
\end{aligned}
$$

Important fact: $g \in \operatorname{Spin}(V), v \in V \Rightarrow g \cdot v \cdot g^{-1} \in V$. This is the 2-fold cover Ad : $\operatorname{Spin}(V) \rightarrow \mathrm{SO}(V)$ (archetipical example to have in mind: $\operatorname{Spin}(3) \cong \operatorname{Sp}(1) \rightarrow \mathrm{SO}(3)=\mathrm{SO}(\operatorname{Im} \mathbb{H}))$

Rudiments of spinorial algebra \& spin geometry

Let (M, g) be an orientable Riemannian manifold and
$S O(M)=\left\{u: \mathbb{R}^{m} \rightarrow T_{x} M\right.$ orientation-preserving linear isomorphism s.t.

$$
\left.u^{*} g=\eta \mid x \in M\right\}
$$

the bundle of oriented orthonormal frames.
Def. A spin structure on (M, g) is principal $\operatorname{Spin}(V)$-bundle $\operatorname{Spin}(M) \rightarrow M$ together with commutative diagram of bundle morphisms

which restricts fiberwise to $\operatorname{Ad}: \operatorname{Spin}(V) \rightarrow S O(V)$. The vector bundle $S(M)=\operatorname{Spin}(M) \times_{\operatorname{Spin}(V)} S$ is called spinor bundle $(S=$ irrep. of $\mathcal{C} \ell(V))$.

Example

$$
M=S^{m} \cong \mathrm{SO}(m+1) / \mathrm{SO}(m) \cong \operatorname{Spin}(m+1) / \operatorname{Spin}(m)
$$

Spinor fields satisfying special PDEs

Def. A spinor field $\epsilon \in \Gamma(S(M))$ is called

- parallel if $\nabla_{X} \epsilon=0 \forall X \in \mathfrak{X}(M)$;
- Killing if there is constant λ such that $\nabla_{X} \epsilon=\lambda X \cdot \epsilon \forall X \in \mathfrak{X}(M)$.

Thm[Friedrich '80s] If a Riemannian manifold (M, g) has a non-trivial parallel spinor, then Ric $=0$.

Proof. Clearly $\nabla_{X} \epsilon=0 \Rightarrow R(X, Y) \epsilon=0$, where $R \in \Lambda^{2} T^{*} M \otimes \operatorname{End}(S(M))$, so the Clifford trace $0=4 \sum_{j} e_{j} \cdot R\left(e_{i}, e_{j}\right) \epsilon$. Now

$$
R\left(e_{i}, e_{j}\right)=\frac{1}{2} \sum_{k, l} R_{i j k l} e_{k} \wedge e_{l} \Rightarrow R\left(e_{i}, e_{j}\right) \epsilon=\frac{1}{4} \sum_{k, l} R_{i j k l} e_{k} \cdot e_{l} \cdot \epsilon
$$

and substituting into the Clifford trace leads to $0=\sum_{j, k, l} R_{i j k l} e_{j} \cdot e_{k} \cdot e_{l} \cdot \epsilon$.

Spinor fields satisfying special PDEs

Now

$$
\begin{aligned}
0 & =\sum_{j, k, l} R_{i j k l} e_{j} \cdot e_{k} \cdot e_{l} \cdot \epsilon \\
& =\sum_{j, k, l} R_{i j k l}\left(e_{j k l}-\eta_{j k} e_{l}+\eta_{j l} e_{k}\right) \cdot \epsilon \\
& =\sum_{j, k, l} R_{i j k l}\left(e_{j k l}+2 \eta_{j l} e_{k}\right) \cdot \epsilon
\end{aligned}
$$

The first term vanishes due to Bianchi Identity $R_{i j k l}+R_{i l j k}+R_{i k l j}=0$ so we are left with $0=-2 \sum_{j, k, l} R_{j i k l} \eta_{j l} e_{k} \cdot \epsilon=-2 \sum_{k} \operatorname{Ric}_{i k} e_{k} \cdot \epsilon$. Equivalently, if we look at the Ricci tensor as an endomorphism, we have $\operatorname{Ric}(X) \cdot \epsilon=0$ for all $X \in \mathfrak{X}(M)$, so that $\operatorname{Ric}(X)=0$ for all $X \in \mathfrak{X}(M)$, which is our claim \square

Spinor fields satisfying special PDEs

Wang's classification of complete, simply connected, irreducible Riemannian manifolds admitting parallel spinors (1989):

Holonomy Representation	Geometry	Parallel spinors
$\mathrm{SU}(2 n+1)$	Calabi-Yau	$(1,1)$
$\mathrm{SU}(2 n)$	Calabi-Yau	$(2,0)$
$\mathrm{Sp}(n)$	Hyper-Kähler	$(n+1,0)$
$G_{2}(\subset \mathrm{SO}(7))$	exceptional	1
$\operatorname{Spin}(7)(\subset \mathrm{SO}(8))$	exceptional	1

Thm[Bär, Baum '90s] If a Riemannian manifold (M, g) has a non-trivial Killing spinor with Killing constant $\lambda \in \mathbb{C}$, then $\operatorname{Ric}=4 \lambda^{2}(m-1) g$, i.e., M is Einstein and $\lambda \in \mathbb{R}$ or $\lambda \in i \mathbb{R}$.

Supergravity

Let (M, g, F) be Lorentzian $m n f d \quad(M, g), \operatorname{dim} M=11$, with closed $F \in \Omega^{4}(M)$ and endowed with a spinor bundle $S(M) \longrightarrow M$ (the fiber $S(M)_{x} \cong S=\mathbb{R}^{32}$). The bosonic equations of supergravity are two coupled PDEs [Cremmer-Julia-Scherk '78]:

$$
\begin{aligned}
& \operatorname{Ric}(X, Y)=\frac{1}{2} g\left(i_{X} F, i_{Y} F\right)-\frac{1}{6} g(X, Y)|F|^{2} \\
& d * F=\frac{1}{2} F \wedge F
\end{aligned}
$$

Killing superalgebra $\mathfrak{k}=\mathfrak{k}_{\overline{0}} \oplus \mathfrak{k}_{\overline{1}}$ where

$$
\begin{aligned}
& \mathfrak{k}_{\overline{0}}=\left\{\xi \in \mathfrak{X}(M) \mid \mathcal{L}_{\xi} g=\mathcal{L}_{\xi} F=0\right\} \\
& \mathfrak{k}_{\overline{1}}=\left\{\epsilon \in \Gamma(S(M)) \left\lvert\, \nabla_{X} \epsilon=\frac{1}{24}(X \cdot F-3 F \cdot X) \cdot \epsilon\right.\right\}
\end{aligned}
$$

High supersymmetry

It has long been suspected that there is some critical fraction of supersymmetry which forces the equations of motion of supergravity. In 2017, we gave following positive answer:

Thm[Figueroa-O'Farrill, A.S. '17] Let (M, g) be 11-dimensional Lorentzian mnfd with closed $F \in \Omega^{4}(M)$. If $\operatorname{dim} \mathfrak{k}_{\overline{1}}>16$, then (i) (M, g, F) satisfies Einstein and Maxwell eqs (the bound is sharp) and (ii) $F=0$ iff (M, g, F) is the flat model.

Main ingredients of the proof:
1 Filtered subdeformations,
2 PDEs satisfied by differential forms constructed out of Killing spinors,
3 the local homogeneity theorem.

Killing superalgebras as filtered deformations

Thm[Figueroa-O'Farrill, A.S. '17] Any Killing superalgebra \mathfrak{k} is a filtered deformation of a graded subalgebra $\mathfrak{a}=V^{\prime} \oplus S^{\prime} \oplus \mathfrak{h}$ of Poincaré superalgebra $\mathfrak{p}=V \oplus S \oplus \mathfrak{s o}(V)$.

Explicitly:

$$
\begin{align*}
{[A, B] } & =A B-B A & {[A, s] } & =A s \\
{[A, v] } & =A v+\delta(A, v) & {[v, s] } & =\beta^{\varphi}(v, s)+X_{v} s \tag{5}\\
{[v, w] } & =\alpha(v, w)+\rho(v, w), & {[s, s] } & =\kappa(s, s)+\gamma^{\varphi}(s, s)-X_{\kappa(s, s)}
\end{align*}
$$

for $A, B \in \mathfrak{h}, v, w \in V^{\prime}, s \in S^{\prime}$, where
$\alpha(v, w)=X_{v} w-X_{w} v$
$\delta(A, v)=\left[A, X_{v}\right]-X_{A v}$

$$
\begin{aligned}
\beta^{\varphi}(v, s) & =\frac{1}{24}(v \cdot \varphi-3 \varphi \cdot v) \cdot s, \\
\gamma^{\varphi}(s, s)(v) & =-2 \kappa\left(\beta^{\varphi}(v, s), s\right) .
\end{aligned}
$$

$\rho(v, w)=\left[X_{v}, X_{w}\right]-X_{\alpha(v, w)}+R(v, w)$
for some \mathfrak{h}-invariant $\varphi \in \Lambda^{4} V$ and a map $X: V^{\prime} \rightarrow \mathfrak{s o}(V)$.

Jacobi Identities for Killing superalgebras

- $[\mathfrak{h h h}],\left[\mathfrak{h h} S^{\prime}\right],\left[\mathfrak{h h} V^{\prime}\right]$ are satisfied because \mathfrak{h} is a Lie subalgebra of $\mathfrak{s o}(V)$ that stabilizes S^{\prime} and V^{\prime};
- $\left[\mathfrak{h} S^{\prime} S^{\prime}\right]$ and $\left[\mathfrak{h} S^{\prime} V^{\prime}\right]$ are satisfied as $\mathfrak{h}<\mathfrak{s o}(V) \cap \mathfrak{s t a b}(\varphi)$. E.g. for $A \in \mathfrak{h}$ and $s \in S^{\prime}$, we have

$$
\begin{aligned}
{[A,[s, s]] } & =\left[A, \kappa(s, s)+\gamma^{\varphi}(s, s)-X_{\kappa(s, s)}\right] \\
& =A \kappa(s, s)+\left[A, \gamma^{\varphi}(s, s)\right]-X_{A \kappa(s, s)} \\
& =2 \kappa(A s, s)+2 \gamma^{\varphi}(A s, s)-2 X_{\kappa(A s, s)}=2[[A, s], s]
\end{aligned}
$$

since κ and γ^{φ} are equivariant under $\mathfrak{s o}(V) \cap \mathfrak{s t a b}(\varphi)$;

- $\left[\mathfrak{h} V^{\prime} V^{\prime}\right]$ boilds down to $R: \Lambda^{2} V^{\prime} \rightarrow \mathfrak{s o}(V)$ being \mathfrak{h}-equivariant;
- $\left[S^{\prime} S^{\prime} S^{\prime}\right]$ says that $[[s, s], s]=0$ for all $s \in S^{\prime}$ and it expands to

$$
\gamma^{\varphi}(s, s) s=-\beta^{\varphi}(\kappa(s, s), s)
$$

This is actually true for all $s \in S$ (it is one cocycle condition in $H^{2,2}\left(\mathfrak{p}_{-}, \mathfrak{p}\right)$);

Jacobi Identities for Killing superalgebras

- $\left[S^{\prime} S^{\prime} V^{\prime}\right]$ Jacobi Identity. After a somewhat lengthy calculation and letting $\beta_{v}^{\varphi}(s)=\beta^{\varphi}(v, s)$ for all $v \in V$ and $s \in S$, this identity is equivalent to
$\frac{1}{2} R(v, \kappa(s, s)) w=\kappa\left(\left(X_{v} \beta^{\varphi}\right)(w, s), s\right)-\kappa\left(\beta_{v}^{\varphi}(s), \beta_{w}^{\varphi}(s)\right)-\kappa\left(\beta_{w}^{\varphi} \beta_{v}^{\varphi}(s), s\right)$,
for all $s \in S^{\prime}, v \in V^{\prime}$ and $w \in V$;
- $\left[S^{\prime} V^{\prime} V^{\prime}\right]$ expands to the following condition

$$
R(v, w) s=\left(X_{v} \beta^{\varphi}\right)(w, s)-\left(X_{w} \beta^{\varphi}\right)(v, s)+\left[\beta_{v}^{\varphi}, \beta_{w}^{\varphi}\right](s),
$$

for all $s \in S^{\prime}$ and $v, w \in V^{\prime}$;

- $\left[V^{\prime} V^{\prime} V^{\prime}\right]$ expands to Bianchi Identities for R, algebraic and differential.

PDEs on Spinor Bilinears

For any section ε of $S(M)$ we may define differential forms on M as follows:
$1 \omega^{(1)} \in \Omega^{1}(M)$, where

$$
\omega^{(1)}(X)=\langle\varepsilon, X \cdot \varepsilon\rangle
$$

$2 \omega^{(2)} \in \Omega^{2}(M)$, where

$$
\omega^{(2)}\left(X_{1}, X_{2}\right)=\left\langle\varepsilon,\left(X_{1} \wedge X_{2}\right) \cdot \varepsilon\right\rangle
$$

$3 \omega^{(5)} \in \Omega^{5}(M)$, where

$$
\omega^{(5)}\left(X_{1}, \ldots, X_{5}\right)=\left\langle\varepsilon,\left(X_{1} \wedge \ldots \wedge X_{5}\right) \cdot \varepsilon\right\rangle
$$

The 1-form $\omega^{(1)}$ is the metric dual of Dirac current $\kappa=\kappa(\varepsilon, \varepsilon)$ of ε.
Prop. If $\varepsilon \in \mathfrak{k}_{\overline{1}}$ then:

$$
\begin{align*}
& d \omega^{(2)}=-\imath_{\kappa} F \tag{6}\\
& d \omega^{(5)}=\imath_{\kappa} \star F-\omega^{(2)} \wedge F . \tag{7}
\end{align*}
$$

These imply that the supergravity Maxwell eqs are satisfied if $d F=0$ and the space $\mathfrak{k}_{\overline{1}}$ of Killing spinors has $\operatorname{dim} \mathfrak{k}_{\overline{1}}>16$.

Proof of PDEs on Spinor Bilinears

Proof.
We first rewrite

$$
\begin{aligned}
\nabla_{Z} \epsilon & =\frac{1}{24}(Z \cdot F-3 F \cdot Z) \cdot \epsilon \\
& =\frac{1}{24}\left(Z \wedge F-\imath_{Z} F\right) \cdot \epsilon-\frac{1}{8}\left(Z \wedge F+\imath_{Z} F\right) \cdot \epsilon \\
& =-\frac{1}{12}(Z \wedge F) \cdot \epsilon-\frac{1}{6}\left(\imath_{Z} F\right) \cdot \epsilon
\end{aligned}
$$

and then compute

$$
\begin{aligned}
\left(\nabla_{Z} \omega^{(2)}\right)(X, Y)= & \left\langle\nabla_{Z} \epsilon, X \wedge Y \cdot \epsilon\right\rangle+\left\langle\epsilon, X \wedge Y \cdot \nabla_{Z} \epsilon\right\rangle \\
= & -\frac{1}{6}\left\langle\left(\imath_{Z} F\right) \cdot \epsilon, X \wedge Y \cdot \epsilon\right\rangle-\frac{1}{6}\left\langle\epsilon, X \wedge Y \cdot\left(\imath_{Z} F\right) \cdot \epsilon\right\rangle \\
& -\frac{1}{12}\langle(Z \wedge F) \cdot \epsilon, X \wedge Y \cdot \epsilon\rangle-\frac{1}{12}\langle\epsilon, X \wedge Y \cdot(Z \wedge F) \cdot \epsilon\rangle \\
= & -\frac{1}{6}\left\langle\epsilon,\left(\imath_{Z} F\right) \cdot X \wedge Y \cdot \epsilon\right\rangle-\frac{1}{6}\left\langle\epsilon, X \wedge Y \cdot\left(\imath_{Z} F\right) \cdot \epsilon\right\rangle \\
& +\frac{1}{12}\langle\epsilon,(Z \wedge F) \cdot X \wedge Y \cdot \epsilon\rangle-\frac{1}{12}\langle\epsilon, X \wedge Y \cdot(Z \wedge F) \cdot \epsilon\rangle .
\end{aligned}
$$

Using again the exercise on Clifford multiplication we get

Proof of PDEs on Spinor Bilinears - continued

$$
\begin{aligned}
\left(\nabla_{Z} \omega^{(2)}\right)(X, Y)= & -\frac{1}{3}\left\langle\epsilon, X \wedge Y \wedge\left(\imath_{Z} F\right) \cdot \epsilon\right\rangle-\frac{1}{3}\left\langle\epsilon, \imath_{X} \imath_{Y} \imath_{Z} F \cdot \epsilon\right\rangle \\
& +\frac{1}{6}\left\langle\epsilon, X \wedge \imath_{Y}(Z \wedge F) \cdot \epsilon\right\rangle-\frac{1}{6}\left\langle\epsilon, Y \wedge \imath_{X}(Z \wedge F) \cdot \epsilon\right\rangle \\
= & -\frac{1}{3}\left\langle\epsilon, X \wedge Y \wedge\left(\imath_{Z} F\right) \cdot \epsilon\right\rangle-\frac{1}{3}\left\langle\epsilon, \imath_{X} \imath_{Y} \imath_{Z} F \cdot \epsilon\right\rangle \\
& +\frac{1}{6} g(Y, Z)\langle\epsilon, X \wedge F \cdot \epsilon\rangle-\frac{1}{6} g(X, Z)\langle\epsilon, Y \wedge F \cdot \epsilon\rangle \\
& -\frac{1}{6}\left\langle\epsilon, X \wedge Z \wedge\left(\imath_{Y} F\right) \cdot \epsilon\right\rangle+\frac{1}{6}\left\langle\epsilon, Y \wedge Z \wedge\left(\imath_{X} F\right) \cdot \epsilon\right\rangle
\end{aligned}
$$

and skewsymmetrizing in X, Y and Z we finally arrive at

$$
\begin{aligned}
d \omega^{(2)}(X, Y, Z) & =\left(\nabla_{X} \omega^{(2)}\right)(Y, Z)+\left(\nabla_{Y} \omega^{(2)}\right)(Z, X)+\left(\nabla_{Z} \omega^{(2)}\right)(X, Y) \\
& =-\left\langle\epsilon, \imath_{X} \imath_{Y} \imath_{Z} F \cdot \epsilon\right\rangle=-\omega^{(1)}\left(\imath_{X} \imath_{Y} \imath_{Z} F\right)=-\imath_{\kappa} \imath_{X} \imath_{Y} \imath_{Z} F \\
& =-\left(\imath_{\kappa} F\right)(X, Y, Z)
\end{aligned}
$$

that is $d \omega^{(2)}=-\imath_{\kappa} F$. Exercise: you are free to prove the identity for $d \omega^{(5)}$ in a similar fashion.

Proof of PDEs on Spinor Bilinears - the end

Let us then prove that the Maxwell eqs are satisfied if $d F=0$ and $\operatorname{dim} \mathfrak{k}_{\overline{1}}>16$. We first compute

$$
\begin{aligned}
0 & =\star \mathcal{L}_{\kappa} F=\mathcal{L}_{\kappa} \star F=d \imath_{\kappa} \star F+\imath_{k} d \star F \\
& =d\left(\omega^{(2)} \wedge F\right)+\imath_{\kappa} d \star F=d \omega^{(2)} \wedge F+\imath_{\kappa} d \star F \\
& =-\frac{1}{2} \imath_{k}(F \wedge F)+\imath_{\kappa} d \star F=\imath_{\kappa}\left(d \star F-\frac{1}{2} F \wedge F\right) .
\end{aligned}
$$

and then use the local homogeneity theorem.

High supersymmetry
Thm[Figueroa-O'Farrill, A.S. '17] Let (M, g) be 11-dimensional Lorentzian mnfd with closed $F \in \Omega^{4}(M)$. If $\operatorname{dim} \mathfrak{k}_{\overline{1}}>16$, then (i) (M, g, F) satisfies Einstein and Maxwell eqs (the bound is sharp) and (ii) $F=0$ iff (M, g, F) is the flat model.

High supersymmetry

Thm[Figueroa-O'Farrill, A.S. '17] Let (M, g) be 11-dimensional Lorentzian mnfd with closed $F \in \Omega^{4}(M)$. If $\operatorname{dim} \mathfrak{k}_{\overline{1}}>16$, then (i) (M, g, F) satisfies Einstein and Maxwell eqs (the bound is sharp) and (ii) $F=0$ iff (M, g, F) is the flat model.
Sketch of proof of (i). The Jacobi identity $\left[S^{\prime} S^{\prime} V\right]$ in the filtered deformation gives

$$
\frac{1}{2} R(v, \kappa(s, s)) w=\kappa\left(\left(X_{v} \beta^{\varphi}\right)(w, s), s\right)-\kappa\left(\beta_{v}^{\varphi}(s), \beta_{w}^{\varphi}(s)\right)-\kappa\left(\beta_{w}^{\varphi} \beta_{v}^{\varphi}(s), s\right)
$$

for all $s \in S^{\prime}$ and $v, w \in V$. As $\kappa\left(S^{\prime}, S^{\prime}\right)=V$ by local homogeneity theorem, this fully determines the curvature R and, by a further contraction, the Ricci tensor

$$
\begin{aligned}
\operatorname{Ric}(v, \kappa(s, s))=\frac{1}{2} g\left(\imath_{v} F, \imath_{e_{i}} F\right) & \left\langle s, e^{i} \cdot s\right\rangle-\frac{1}{6}\|F\|^{2}\langle s, v \cdot s\rangle \\
& -\frac{1}{6}\left\langle\left(v \wedge F \wedge F+2 \iota_{v} \delta F-v \wedge d F\right) \cdot s, s\right\rangle
\end{aligned}
$$

We then showed that the terms which depend on forms of different degree in $\odot^{2} S^{\prime} \subset \odot^{2} S \cong \Lambda^{1} V \oplus \Lambda^{2} V \oplus \Lambda^{5} V$ satisfy the eqs separately (not immediate: this embedding is diagonal)

Upshots

The theorem allows to establish a reconstruction result:

Def. A filtered subdeformation $\mathfrak{g}=\mathfrak{g}_{\overline{0}} \oplus \mathfrak{g}_{\overline{1}}$ of \mathfrak{p} with $\operatorname{dim} \mathfrak{g}_{\overline{1}}>16$ is realizable if it is constructed out of a closed 4 -form $\varphi \in \Lambda^{4} V$ as in (5).

Reconstruction thm[Figueroa-O'Farrill, A.S. '17] The highly supersymmetric bgkds, up to local equivalence, are in a one-to-one correspondence with maximal realizable filtered subdeformations \mathfrak{g} of \mathfrak{p} satisfying $\mathfrak{g}_{\overline{0}}=\left[\mathfrak{g}_{\overline{1}}, \mathfrak{g}_{\overline{1}}\right]$, up to isomorphism of filtered subdeformations.

References

- J. Figueroa-O'Farrill, A. S., Spencer cohomology and 11-dimensional supergravity, Comm. Math. Phys. 349 (2017), 627-660.
- J. Figueroa-O'Farrill, A. S., On the algebraic structure of Killing superalgebras, Adv. Theor. Math. Phys. 21 (2017), 1115-1160.
- A. S., Remarks on highly supersymmetric backgrounds of $d=11$ supergravity, preprint arXiv:1912.10688 (2019), 23pp, to appear on the Proceedings of the Abel Symposium 2019.
- P. de Medeiros, J. Figueroa-O'Farrill, A. S., Killing superalgebras for Lorentzian four-manifolds, J. High Energy Phys. 6 (2016), 50 pp.
- P. de Medeiros, J. Figueroa-O'Farrill, A. S., Killing superalgebras for Lorentzian six-manifolds, J. Geom. Phys. 132 (2018), 13-44.

Thanks!

