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Plan of the series of talks:

First part:

� d = 11 Supergravity

� Detour on Lie superalgebras (including the Poincaré superalgebra)

� Killing spinor equations and Killing superalgebras

� Brane solutions

Second part:

� Homogeneity theorem

� Filtered deformations

� Spencer cohomology and Killing spinors

� Maximally supersymmetric backgrounds

Third part:

� Rudiments of spinorial algebra & spin geometry

� PDEs on spinor bilinears

� Highly supersymmetric backgrounds



Rudiments of spinorial algebra & spin geometry

Let (V, η) be a vector space with a positive-de�nite inner product. The Cli�ord

algebra C`(V ) associated to (V, η) is associative algebra with a unity generated

by V with the relation v2 = −η(v, v)1 for all v ∈ V .

Rem I. By polarization, the Cli�ord relations are equivalent to

v · w + w · v = −2η(v, w)

for all v, w ∈ V . It follows that C`(V ) = C`(V )0̄ ⊕ C`(V )1̄ is a Z2-graded algebra.

Rem II. If {ei} is an orthonormal basis of V , then

ei · ej =

−ej · ei if i 6= j

−1 if i = j

Setting the alternating product of generators

ei1···ip := 1
p!

∑
σ∈Sp

(−1)|σ|eiσ(1) · · · eiσ(p)

gives a vector space isomorphism C`(V ) ∼= Λ•V = R⊕ V ⊕Λ2V ⊕ · · · ⊕ΛmV .



Exercises on Cli�ord algebras

Show that

v · α = v ∧ α− ıvα (1)

α · v = (−1)|α|
(
v ∧ α+ ıvα

)
(2)

(v ∧ w) · α = v ∧ w ∧ α+ ıvıwα− v ∧ ıwα+ w ∧ ıvα (3)

α · (v ∧ w) = v ∧ w ∧ α+ ıvıwα+ v ∧ ıwα− w ∧ ıvα (4)

for all v, w ∈ V and α ∈ Λ•V .





Rudiments of spinorial algebra & spin geometry

Spin(V ) = {g = v1 · · · v2k | vi ∈ V s.t η(vi, vi) = +1} ⊂ C`(V )

so(V )
∼=→ C`(V ) via v ∧ w 7→ 1

4
[v, w] =

1

4
(v · w − w · v)

Important fact: g ∈ Spin(V ), v ∈ V ⇒ g · v · g−1 ∈ V . This is the

2-fold cover Ad : Spin(V )→ SO(V ) (archetipical example to have in

mind: Spin(3) ∼= Sp(1)→ SO(3) = SO(ImH))



Rudiments of spinorial algebra & spin geometry

Let (M, g) be an orientable Riemannian manifold and

SO(M) = {u : Rm → TxM orientation-preserving linear isomorphism s.t.

u∗g = η | x ∈M}

the bundle of oriented orthonormal frames.

Def. A spin structure on (M, g) is principal Spin(V )-bundle Spin(M)→M

together with commutative diagram of bundle morphisms

Spin(M)

?
SO(M)

@
@
@R

�
���

M

which restricts �berwise to Ad : Spin(V )→ SO(V ). The vector bundle

S(M) = Spin(M)×Spin(V ) S is called spinor bundle (S = irrep. of C`(V )).



Example

M = Sm ∼= SO(m+ 1)/SO(m) ∼= Spin(m+ 1)/Spin(m)

SO(M) ∼= SO(m+ 1) 3 g =
(
g1 g2 · · · gm+1

)

?
M

?
g1

Spin(M) ∼= Spin(m+ 1)

?
SO(m+ 1)

@
@@R

��
��

��
���1

M



Spinor �elds satisfying special PDEs

Def. A spinor �eld ε ∈ Γ(S(M)) is called

� parallel if ∇Xε = 0 ∀X ∈ X(M);

� Killing if there is constant λ such that ∇Xε = λX · ε ∀X ∈ X(M).

Thm[Friedrich '80s] If a Riemannian manifold (M, g) has a non-trivial

parallel spinor, then Ric = 0.

Proof. Clearly ∇Xε = 0⇒ R(X,Y )ε = 0, where R ∈ Λ2T ∗M ⊗ End(S(M)),

so the Cli�ord trace 0 = 4
∑

j ej ·R(ei, ej)ε. Now

R(ei, ej) = 1
2

∑
k,l

Rijklek ∧ el ⇒ R(ei, ej)ε = 1
4

∑
k,l

Rijklek · el · ε

and substituting into the Cli�ord trace leads to 0 =
∑

j,k,lRijklej · ek · el · ε.



Spinor �elds satisfying special PDEs

Now

0 =
∑
j,k,l

Rijklej · ek · el · ε

=
∑
j,k,l

Rijkl

(
ejkl − ηjkel + ηjlek

)
· ε

=
∑
j,k,l

Rijkl

(
ejkl + 2ηjlek

)
· ε

The �rst term vanishes due to Bianchi Identity Rijkl +Riljk +Riklj = 0

so we are left with 0 = −2
∑

j,k,lRjiklηjlek · ε = −2
∑

k Ricik ek · ε.
Equivalently, if we look at the Ricci tensor as an endomorphism, we have

Ric(X) · ε = 0 for all X ∈ X(M), so that Ric(X) = 0 for all X ∈ X(M),

which is our claim �



Spinor �elds satisfying special PDEs

Wang's classi�cation of complete, simply connected, irreducible Riemannian

manifolds admitting parallel spinors (1989):

Holonomy Representation Geometry Parallel spinors

SU(2n+ 1) Calabi-Yau (1, 1)

SU(2n) Calabi-Yau (2, 0)

Sp(n) Hyper-Kähler (n+ 1, 0)

G2 (⊂ SO(7)) exceptional 1

Spin(7) (⊂ SO(8)) exceptional 1

Thm[Bär, Baum '90s] If a Riemannian manifold (M, g) has a non-trivial

Killing spinor with Killing constant λ ∈ C, then Ric = 4λ2(m− 1)g, i.e.,

M is Einstein and λ ∈ R or λ ∈ iR.



Supergravity

Let (M, g, F ) be Lorentzian mnfd (M, g), dimM = 11, with closed F ∈ Ω4(M)

and endowed with a spinor bundle S(M) −→M (the �ber S(M)x ∼= S = R32). The

bosonic equations of supergravity are two coupled PDEs [Cremmer-Julia-Scherk '78]:

Ric(X,Y ) = 1
2
g(iXF, iY F )− 1

6
g(X,Y )|F |2

d ∗ F = 1
2
F ∧ F

Killing superalgebra k = k0̄ ⊕ k1̄ where

k0̄ =
{
ξ ∈ X(M) | Lξg = LξF = 0

}
k1̄ =

{
ε ∈ Γ(S(M)) | ∇Xε = 1

24

(
X · F − 3F ·X

)
· ε
}



High supersymmetry

It has long been suspected that there is some critical fraction of supersymmetry

which forces the equations of motion of supergravity. In 2017, we gave following

positive answer:

Thm[Figueroa-O'Farrill, A.S. '17] Let (M, g) be 11-dimensional Lorentzian mnfd

with closed F ∈ Ω4(M). If dim k1̄ > 16, then (i) (M, g, F ) satis�es Einstein and

Maxwell eqs (the bound is sharp) and (ii) F = 0 i� (M, g, F ) is the �at model.

Main ingredients of the proof:

1 Filtered subdeformations,

2 PDEs satis�ed by di�erential forms constructed out of Killing spinors,

3 the local homogeneity theorem.



Killing superalgebras as �ltered deformations

Thm[Figueroa-O'Farrill, A.S. '17] Any Killing superalgebra k is a �ltered deformation

of a graded subalgebra a = V ′ ⊕ S′ ⊕ h of Poincaré superalgebra p = V ⊕ S ⊕ so(V ).

Explicitly:

[A,B] = AB −BA

[A, v] = Av + δ(A, v)

[v, w] = α(v, w) + ρ(v, w),

[A, s] = As

[v, s] = βϕ(v, s) +Xvs

[s, s] = κ(s, s) + γϕ(s, s)−Xκ(s,s)

(5)

for A,B ∈ h, v, w ∈ V ′, s ∈ S′, where

α(v, w) = Xvw −Xwv

δ(A, v) = [A,Xv]−XAv
ρ(v, w) = [Xv, Xw]−Xα(v,w) +R(v, w)

βϕ(v, s) = 1
24

(v · ϕ− 3ϕ · v) · s,

γϕ(s, s)(v) = −2κ(βϕ(v, s), s).

for some h-invariant ϕ ∈ Λ4V and a map X : V ′ → so(V ).



Jacobi Identities for Killing superalgebras

• [hhh], [hhS′], [hhV ′] are satis�ed because h is a Lie subalgebra of so(V )

that stabilizes S′ and V ′;

• [hS′S′] and [hS′V ′] are satis�ed as h < so(V ) ∩ stab(ϕ). E.g. for A ∈ h

and s ∈ S′, we have

[A, [s, s]] = [A, κ(s, s) + γϕ(s, s)−Xκ(s,s)]

= Aκ(s, s) + [A, γϕ(s, s)]−XAκ(s,s)

= 2κ(As, s) + 2γϕ(As, s)− 2Xκ(As,s) = 2[[A, s], s]

since κ and γϕ are equivariant under so(V ) ∩ stab(ϕ);

• [hV ′V ′] boilds down to R : Λ2V ′ → so(V ) being h-equivariant;

• [S′S′S′] says that [[s, s], s] = 0 for all s ∈ S′ and it expands to

γϕ(s, s)s = −βϕ(κ(s, s), s) .

This is actually true for all s ∈ S (it is one cocycle condition in H2,2(p−, p));



Jacobi Identities for Killing superalgebras

• [S′S′V ′] Jacobi Identity. After a somewhat lengthy calculation and letting

βϕv (s) = βϕ(v, s) for all v ∈ V and s ∈ S, this identity is equivalent to

1
2
R(v, κ(s, s))w= κ

(
(Xvβ

ϕ)(w, s), s
)
− κ
(
βϕv (s), βϕw(s)

)
− κ
(
βϕwβ

ϕ
v (s), s

)
,

for all s ∈ S′, v ∈ V ′ and w ∈ V ;

• [S′V ′V ′] expands to the following condition

R(v, w)s = (Xvβ
ϕ)(w, s)− (Xwβ

ϕ)(v, s) + [βϕv , β
ϕ
w](s),

for all s ∈ S′ and v, w ∈ V ′;

• [V ′V ′V ′] expands to Bianchi Identities for R, algebraic and di�erential.



PDEs on Spinor Bilinears

For any section ε of S(M) we may de�ne di�erential forms on M as follows:

1 ω(1) ∈ Ω1(M), where

ω(1)(X) = 〈ε,X · ε〉

2 ω(2) ∈ Ω2(M), where

ω(2)(X1, X2) = 〈ε, (X1 ∧X2) · ε〉

3 ω(5) ∈ Ω5(M), where

ω(5)(X1, . . . , X5) = 〈ε, (X1 ∧ . . . ∧X5) · ε〉

The 1-form ω(1) is the metric dual of Dirac current κ = κ(ε, ε) of ε.

Prop. If ε ∈ k1̄ then:

dω(2) = −ıκF (6)

dω(5) = ıκ ? F − ω(2) ∧ F. (7)

These imply that the supergravity Maxwell eqs are satis�ed if dF = 0 and the

space k1̄ of Killing spinors has dim k1̄ > 16.



Proof of PDEs on Spinor Bilinears

Proof.

We �rst rewrite

∇Zε = 1
24

(
Z · F − 3F · Z

)
· ε

= 1
24

(
Z ∧ F − ıZF ) · ε− 1

8

(
Z ∧ F + ıZF

)
· ε

= − 1
12

(
Z ∧ F ) · ε− 1

6

(
ıZF

)
· ε

and then compute

(∇Zω(2))(X,Y ) = 〈∇Zε,X ∧ Y · ε〉+ 〈ε,X ∧ Y · ∇Zε〉

= − 1
6

〈(
ıZF

)
· ε,X ∧ Y · ε

〉
− 1

6

〈
ε,X ∧ Y ·

(
ıZF

)
· ε
〉

− 1
12

〈(
Z ∧ F ) · ε,X ∧ Y · ε

〉
− 1

12

〈
ε,X ∧ Y ·

(
Z ∧ F ) · ε

〉
= − 1

6

〈
ε,
(
ıZF

)
·X ∧ Y · ε

〉
− 1

6

〈
ε,X ∧ Y ·

(
ıZF

)
· ε
〉

+ 1
12

〈
ε,
(
Z ∧ F ) ·X ∧ Y · ε

〉
− 1

12

〈
ε,X ∧ Y ·

(
Z ∧ F ) · ε

〉
.

Using again the exercise on Cli�ord multiplication we get



Proof of PDEs on Spinor Bilinears � continued

(∇Zω(2))(X,Y ) = − 1
3

〈
ε,X ∧ Y ∧

(
ıZF

)
· ε
〉
− 1

3
〈ε, ıX ıY ıZF · ε〉

+ 1
6

〈
ε,X ∧ ıY

(
Z ∧ F

)
· ε
〉
− 1

6

〈
ε, Y ∧ ıX

(
Z ∧ F

)
· ε
〉

= − 1
3

〈
ε,X ∧ Y ∧

(
ıZF

)
· ε
〉
− 1

3
〈ε, ıX ıY ıZF · ε〉

+ 1
6
g(Y,Z) 〈ε,X ∧ F · ε〉 − 1

6
g(X,Z) 〈ε, Y ∧ F · ε〉

− 1
6

〈
ε,X ∧ Z ∧

(
ıY F

)
· ε
〉

+ 1
6

〈
ε, Y ∧ Z ∧

(
ıXF

)
· ε
〉

and skewsymmetrizing in X, Y and Z we �nally arrive at

dω(2)(X,Y, Z) = (∇Xω(2))(Y,Z) + (∇Y ω(2))(Z,X) + (∇Zω(2))(X,Y )

= −〈ε, ıX ıY ıZF · ε〉 = −ω(1)(ıX ıY ıZF ) = −ıκıX ıY ıZF

= −(ıκF )(X,Y, Z)

that is dω(2) = −ıκF . Exercise: you are free to prove the identity for dω(5) in

a similar fashion.



Proof of PDEs on Spinor Bilinears � the end

Let us then prove that the Maxwell eqs are satis�ed if dF = 0 and dim k1̄ > 16.

We �rst compute

0 = ?LκF = Lκ ? F = dıκ ? F + ıkd ? F

= d(ω(2) ∧ F ) + ıκd ? F = dω(2) ∧ F + ıκd ? F

= − 1
2
ık(F ∧ F ) + ıκd ? F = ıκ

(
d ? F − 1

2
F ∧ F

)
.

and then use the local homogeneity theorem. �



High supersymmetry

Thm[Figueroa-O'Farrill, A.S. '17] Let (M, g) be 11-dimensional Lorentzian mnfd

with closed F ∈ Ω4(M). If dim k1̄ > 16, then (i) (M, g, F ) satis�es Einstein and

Maxwell eqs (the bound is sharp) and (ii) F = 0 i� (M, g, F ) is the �at model.



High supersymmetry

Thm[Figueroa-O'Farrill, A.S. '17] Let (M, g) be 11-dimensional Lorentzian mnfd

with closed F ∈ Ω4(M). If dim k1̄ > 16, then (i) (M, g, F ) satis�es Einstein and

Maxwell eqs (the bound is sharp) and (ii) F = 0 i� (M, g, F ) is the �at model.

Sketch of proof of (i). The Jacobi identity [S′S′V ] in the �ltered deformation gives

1
2
R(v, κ(s, s))w = κ((Xvβ

ϕ)(w, s), s)− κ(βϕv (s), βϕw(s))− κ(βϕwβ
ϕ
v (s), s)

for all s ∈ S′ and v, w ∈ V . As κ(S′, S′) = V by local homogeneity theorem, this

fully determines the curvature R and, by a further contraction, the Ricci tensor

Ric(v, κ(s, s)) = 1
2
g(ıvF, ıeiF )

〈
s, ei · s

〉
− 1

6
‖F‖2

〈
s, v · s

〉
− 1

6

〈
(v ∧ F ∧ F + 2ιvδF − v ∧ dF ) · s, s

〉
.

We then showed that the terms which depend on forms of di�erent degree in

�2S′ ⊂ �2S ∼= Λ1V ⊕ Λ2V ⊕ Λ5V satisfy the eqs separately (not immediate:

this embedding is diagonal) �



Upshots

The theorem allows to establish a reconstruction result:

Def. A �ltered subdeformation g = g0̄ ⊕ g1̄ of p with dim g1̄ > 16 is realizable if

it is constructed out of a closed 4-form ϕ ∈ Λ4V as in (5).

Reconstruction thm[Figueroa-O'Farrill, A.S. '17] The highly supersymmetric bgkds,

up to local equivalence, are in a one-to-one correspondence with maximal realizable

�ltered subdeformations g of p satisfying g0̄ = [g1̄, g1̄], up to isomorphism of

�ltered subdeformations.
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Thanks!


