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Plan of the series of talks:

First part:
— d = 11 Supergravity
— Detour on Lie superalgebras (including the Poincaré superalgebra)
— Killing spinor equations and Killing superalgebras
— Brane solutions

Second part:
— Homogeneity theorem
Filtered deformations

— Spencer cohomology and Killing spinors
— Maximally supersymmetric backgrounds

Third part:
- Rudiments of spinorial algebra & spin geometry
— PDEs on spinor bilinears
— Highly supersymmetric backgrounds



Rudiments of spinorial algebra & spin geometry

Let (V,7n) be a vector space with a positive-definite inner product. The Clifford
algebra CL(V') associated to (V,n) is associative algebra with a unity generated
by V with the relation v*> = —n(v,v)1 for all v € V.
Rem |. By polarization, the Clifford relations are equivalent to
veow4w-v=-2n(v,w)

for all v,w € V. It follows that C4(V) = CL(V)5 @ CL(V)1 is a Zo-graded algebra.
Rem Il. If {e;} is an orthonormal basis of V/, then

—€5 - €5 if 75 ]

—1 ifi=j

€€ =

Setting the alternating product of generators

1 lol,. )
eilmip = p Z (—1) eza(l) [N eza(m

oSy

gives a vector space isomorphism CAV) =2 AV =ROV PA*V P --- @A™V,



Exercises on Clifford algebras

Show that

Vea=vNa— 1«
a-v= (—l)la‘(v/\a—&—zuoc)
(vAw)-a=vAwWAa+ 1l — VA Lya + WA Lo

a-(VAW) =0 AWAQ+ tylwe + VA e — WAty

forall v,w €V and a € A*V.



Table 1. CE, , in the box (r,s)

L R(16) C(16) H(16) | H(16) @ H(16) H(32) C(64) R(128) R(128) & R(128) R(256)
7 ®) H(8) H(8) ® H(®) H(16) c(32) R(64) R(64) @ R(64) R(128) €(128)
6 H() H(4) ® H(E) H(®) C(16) R(32) R(32) ® RG2) R(64) o(64) H(64)
5| HQ ® HE) H(4) C@®) R(16) R(16) & R(16) R(32) c(32) H(32) H(32) ® H(32)
4 H(2) C(é) R(8) R(8) @ R(8) R(16) C(16) H(16) H(16) @ H(16) H(32)
31 €@ R(4) R(4) ® R4 R(8) C@®) H(8) H(8) ® H(8) H(16) (32
2 RQ) RQ2) @ R() R(4) C(4) H(4) H(4) ® H(@) H(8) C(16) R(32)
1| ROR R(2) cQR) H(2) H2) @ H(Q) H(4) c®) R(16) R(16) ® R(16)
0 R ¢ H HeH HQ) %) R®) R ® R(S) R(16)
0 1 2 3 4 5 6 7 8




Rudiments of spinorial algebra & spin geometry

Spin(V) ={g=wv1---ver | v; € Vstn(v,v) =+1} CCLV)

~ 1 1
s0(V) = ClV)viavAwr— Z[U,w] = Z(U CwW— W)
Important fact: g € Spin(V),v €V = g-v-g~ ! € V. This is the
2-fold cover Ad : Spin(V') — SO(V) (archetipical example to have in
mind: Spin(3) 2 Sp(1) — SO(3) = SO(Im H))



Rudiments of spinorial algebra & spin geometry
Let (M, g) be an orientable Riemannian manifold and
SO(M) = {u: R™ — T, M orientation-preserving linear isomorphism s.t.
u'g=mn|xeM}

the bundle of oriented orthonormal frames.
Def. A spin structure on (M, g) is principal Spin(V')-bundle Spin(M) — M
together with commutative diagram of bundle morphisms

Spin(M) \

M

SO(M) /

which restricts fiberwise to Ad : Spin(V') — SO(V'). The vector bundle
S(M) = Spin(M) Xgpin(v) S is called spinor bundle (S = irrep. of CL(V)).



Example

M = S™ = S0O(m+ 1)/SO(m) = Spin(m + 1)/Spin(m)

SO(M) 2 SO(m +1) 3 g = (g1 PR

|

M g1

Spin(M) = Spin(m + 1) \
SO(m + 1) /

M

ngrl)



Spinor fields satisfying special PDEs

Def. A spinor field ¢ € T'(S(M)) is called
— parallel if Vxe=0VX € X(M);
- Killing if there is constant A such that Vxe = AX - e VX € X(M).

Thm|Friedrich '80s] If a Riemannian manifold (M, g) has a non-trivial
parallel spinor, then Ric = 0.

Proof. Clearly Vxe = 0= R(X,Y)e =0, where R € A>T*M ® End(S(M)),
so the Clifford trace 0 =43, e; - R(e;, e;)e. Now

R(ez,ej 2 E szklek/\el:>R(eZ,e] 4 E R”klek e €
k,l k,l

and substituting into the Clifford trace leads to 0 = Zj’k,l Rijrie; - ex - e - €



Spinor fields satisfying special PDEs

Now

0= E Rijklej'ek‘el‘e

gkl

= E Rijri(ejri — njrer + njiex) - €
Jik,l

= g Rijri(ejr + 2njie) - €
Jik,l

The first term vanishes due to Bianchi Identity R;jx + Riji + Rigij =0
so we are left with 0 = —2 Zj,k,l Rjz’klnjlek ce= -2 Zk Ric;r er - €.
Equivalently, if we look at the Ricci tensor as an endomorphism, we have
Ric(X)-e=0 for all X € X(M), so that Ric(X) =0 for all X € X(M),
which is our claim W



Spinor fields satisfying special PDEs

Wang's classification of complete, simply connected, irreducible Riemannian
manifolds admitting parallel spinors (1989):

Holonomy Representation ‘ Geometry ‘ Parallel spinors ‘
SU(2n + 1) Calabi-Yau (1,1)
SU(2n) Calabi-Yau (2,0)
Sp(n) Hyper-Kahler (n+1,0)
G2 (C SO(7)) exceptional 1
Spin(7) (C SO(8)) exceptional 1

Thm[Bar, Baum '90s] If a Riemannian manifold (M, g) has a non-trivial
Killing spinor with Killing constant A € C, then Ric = 4\?(m — 1)g, i.e.,
M is Einstein and A € R or X € iR.



Supergravity
Let (M, g, F) be Lorentzian mnfd (M, g), dim M = 11, with closed F € Q*(M)

and endowed with a spinor bundle S(M) — M (the fiber S(M), = S = R3?). The
bosonic equations of supergravity are two coupled PDEs [Cremmer-Julia-Scherk '78]:
RIC(X7 Y) = %g(lea ZYF) - %Q(X, Yv)|1—?|2
d«F=L.FAF

Killing superalgebra € = t5 @ £; where

to={6 € X(M)|Leg=LF =0}
tr ={ee€(S(M))|Vxe= 5 (X -F—-3F -X) ¢}



High supersymmetry

It has long been suspected that there is some critical fraction of supersymmetry
which forces the equations of motion of supergravity. In 2017, we gave following

positive answer:

Thm[Figueroa-O'Farrill, A.S. '17] Let (M, g) be 11-dimensional Lorentzian mnfd
with closed F' € Q*(M). If dim ¢; > 16, then (i) (M, g, F) satisfies Einstein and
Maxwell eqs (the bound is sharp) and (i) F = 0 iff (M, g, F) is the flat model.

Main ingredients of the proof:
1 Filtered subdeformations,
2 PDEs satisfied by differential forms constructed out of Killing spinors,

3 the local homogeneity theorem.



Killing superalgebras as filtered deformations

Thm[Figueroa-O’Farrill, A.S. '17] Any Killing superalgebra ¢ is a filtered deformation
of a graded subalgebra a = V' © S’ @ b of Poincaré superalgebra p =V @ S @ s0(V)

Explicitly:
[A,B] = AB — BA [A, s] = As
[A,v] = Av+6(A,v) [v,8] = B9 (v,5) + Xus (5)

[’U, w} = (k(’l}, LU) + p(’U., ’Ll/‘), [57 S} = K'/(S, S) + '\/LP(S-, 5) - XH(S.S)

for A Beb, v,weV’', seS, where
a(v,w) = Xpw — Xyv (0. 5) L ( 5 )
v,8) = o5 (v-p—3p-v)-s,
5(A, ) = [A, Xo] — Xas SN
v¥(s,8)(v) = —2k(B% (v, 5), ).
p(v,w) = [Xv,Xw] — Xa(v,w) + R(v,w)

for some B-invariant € A*V and a map X : V' — so0(V).



Jacobi Identities for Killing superalgebras

(bbb, [bHS'], [HHV'] are satisfied because b is a Lie subalgebra of so(V)
that stabilizes S’ and V';

[hS'S’] and [HS'V'] are satisfied as h < s0(V) Nstab(p). E.g. for A€ h
and s € S’, we have

(A, [s,s]] = [A, k(s,5) + 77 (5, 8) = Xp(s9)]
= An(5,5) + [4,77(5,5)] — Xanos
=2k(As, s) + 299 (As, ) — 2X ;(4s,5) = 2[[4, 5], 5]
since k and v¥ are equivariant under so(V') N stab(p);
[HV'V’] boilds down to R : A*V’' — 50(V) being h-equivariant;
[S’S’S’] says that [[s, s],s] = 0 for all s € S” and it expands to
77 (s, 8)s = =B (k(s,5),s) .

This is actually true for all s € S (it is one cocycle condition in H*?(p_,p));



Jacobi Identities for Killing superalgebras

e [S'S'V’] Jacobi Identity. After a somewhat lengthy calculation and letting
BE(s) = B¥(v,s) for all v € V and s € S, this identity is equivalent to

R(v,k(s, s))w= k((X.8%)(w, s),s) — k(B (s), B (s)) — k(BEBE(s), s),

1
2
forallse€ S, ve V' and w e V;

e [S'V'V'] expands to the following condition

R(v,w)s = (Xo7)(w, s) — (XwB?)(v,5) + 87, BEI(5),

forall s € 8" and v, w € V’;
e [V'V'V’] expands to Bianchi Identities for R, algebraic and differential.



PDEs on Spinor Bilinears

For any section € of S(M) we may define differential forms on M as follows:
1w e Q' (M), where
Ww(X) = (e, X - &)
2 w? € Q%(M), where
w? (X1, Xs) = (g, (X1 A Xa2) - €)
3 w® € Q°(M), where
W (X1, ., Xs) = (e, (X1 A... A X5)-€)
The 1-form w™) is the metric dual of Dirac current k = (e, €) of e.
Prop. If € € £; then:
dw® = —1, F (6)
dw® =1« F —wP AF. (7)
These imply that the supergravity Maxwell eqs are satisfied if dF = 0 and the
space 7 of Killing spinors has dim ¢; > 16.



Proof of PDEs on Spinor Bilinears

Proof.
We first rewrite

Vze:i(Z-F—3F~Z)-e
:i(Z/\F—zZF)-e—é(Z/\F—i—ZZF)~e
:f%(Z/\F)-efé(zzF)f

and then compute

(Vzw)(X,Y) = (Vze6, X AY - €) + (6, X AY - Vze)
:—%<(12F)~6,X/\Y'6>—%<E,X/\Y'(ZzF)'€>
f1—12<(Z/\F)~6,XAY-6>7%<6,X/\Y-(Z/\F)~6>
:—%<e,(zZF)-X/\Y-e>—é<e,X/\Y~(22F)~e>
+ 5 (6 (ZAF)- XAY €)= 5 (6 XANY - (ZAF)-€) .

Using again the exercise on Clifford multiplication we get



Proof of PDEs on Spinor Bilinears — continued

(Vzw®)(X,Y) = =L (e X AY A (12F) - €) — L (e, 1xtv1zF - €)
+i{e, XNy (ZAF)-€)— <eY/\zX(Z/\F) €)
L, XANY A (12F) - €) — 1 (e,1xrv1zF - €)
—&—%g(KZ)(e,X/\Ff)—gg(X,Z)<e7Y/\F-e>
— (& XNZA(wF)-e)+ (6, Y ANZA(1xF)-€)

and skewsymmetrizing in X, Y and Z we finally arrive at

dw® (XY, Z) = (Vxw?)(Y, 2) + (Vyw®)(Z,X) + (Vz0)(X,Y)

— (e, ixtyizF - €) = (l)(lx’l,yle) = —xtyizg F
— (L F)(X,Y, 2)
that is dw® = —1, F. Exercise: you are free to prove the identity for dw(® in

a similar fashion.



Proof of PDEs on Spinor Bilinears — the end

Let us then prove that the Maxwell eqs are satisfied if dF = 0 and dim £; > 16.
We first compute

O0=*LF =L, *xF=diyu*xF +1ud*xF
=dwWP ANF)+10d* F =do® ANF +1,d+ F
= —L(FAF)+ud*F=1,(d«F—LFAF).

and then use the local homogeneity theorem. B



High supersymmetry

Thm[Figueroa-O'Farrill, A.S. '17] Let (M, g) be 11-dimensional Lorentzian mnfd
with closed F € Q*(M). If dim€; > 16, then (i) (M, g, F) satisfies Einstein and
Maxwell eqgs (the bound is sharp) and (ii) F = 0 iff (M, g, F) is the flat model.



High supersymmetry

Thm[Figueroa-O'Farrill, A.S. '17] Let (M, g) be 11-dimensional Lorentzian mnfd
with closed F € Q*(M). If dim€; > 16, then (i) (M, g, F) satisfies Einstein and
Maxwell eqgs (the bound is sharp) and (ii) F = 0 iff (M, g, F) is the flat model.
Sketch of proof of (i). The Jacobi identity [S"S'V] in the filtered deformation gives

3R(v,K(s, 8))w = k((XuB7)(w, 5), 5) — £(BY (5), BE(5)) — w(BEBE (), 5)
forall s € 8" and v,w € V. As x(S’,8’) = V by local homogeneity theorem, this
fully determines the curvature R and, by a further contraction, the Ricci tensor

Ric(v, k(s,8)) = 2g(1uF,1e, F) <5, e - 5> - %HFH2<5, v 5>

— %<(’U/\F/\F+2LU6F—’U/\dF)-S,S>.
We then showed that the terms which depend on forms of different degree in

®28" C ®2S =2 A'V @ A*V @ APV satisfy the eqgs separately (not immediate:
this embedding is diagonal) B



Upshots

The theorem allows to establish a reconstruction result:

Def. A filtered subdeformation g = gg @ g7 of p with dim g7 > 16 is realizable if
it is constructed out of a closed 4-form ¢ € A*V as in (5).

Reconstruction thm[Figueroa-O'Farrill, A.S. '17] The highly supersymmetric bgkds,
up to local equivalence, are in a one-to-one correspondence with maximal realizable
filtered subdeformations g of p satisfying g5 = [g1, 91], up to isomorphism of

filtered subdeformations.
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Thanks!

o F = = E DA



