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Plan of the series of talks:

First part:

� d = 11 Supergravity

� Detour on Lie superalgebras (including the Poincaré superalgebra)

� Killing spinor equations and Killing superalgebras

� Brane solutions

Second part:

� Homogeneity theorem

� Filtered deformations

� Spencer cohomology and Killing spinors

� Maximally supersymmetric backgrounds

Third part:

� Cli�ord algebras

� PDEs on spinor bilinears

� Highly supersymmetric backgrounds



An incomplete history of supersymmetry

� 1960s: Is there a group larger than the Poincaré group whose irreps

contain irreps of the Poincaré group with di�erent masses and spin?

� 1967: No (Coleman�Mandula);

� 1975: Yes, more or less (Haag�Lopuszanski�Sohnius). It required the

introduction of the Poincaré supergroup, whose irreps break up into

particles with the same mass but di�erent spin (bosons/fermions);

� 1976: construction of supergravity in d = 4 (Ferrara�Freedman�van

Nieuwenhuizen);

� 1978: there exists irrep of Poincaré supergroup in d = 11 with �eld

content (g,A,Ψ) (Nahm);

� 1978: the theory of 11-dimensional supergravity predicted by Nahm

was constructed by Cremmer�Julia�Scherk.



An incomplete history of supersymmetry

The action functional they discovered is given by the sum

I = IEH+IM+ICS+· · · = 1
2

∫
M

S dvol + 1
4

∫
M

F∧?F+ 1
12

∫
M

F∧F∧A+O(Ψ)

where:

� (M, g) is an 11-dimensional Lorentzian spin manifold;

� F ∈ Ω4(M) is a closed 4-form on M (locally F = dA);

� Ψ ∈ Γ(T ∗M ⊗ S(M)) is the gravitino (here S(M) is spinor bundle).

It is one of the crown jewels of modern theoretical physics. The action is

invariant under local di�eomorphisms and also �supersymmetries�, special

transformations that are spinorial analogues of classical di�eomorphisms

between manifolds.



An incomplete history of supersymmetry

The bosonic �eld equations of 11-dimensional supergravity are a very

interesting system of coupled PDEs:

d ? F = 1
2F ∧ F �Maxwell type eqs�

Ric(X,Y ) = 1
2g(ıXF, ıY F )− 1

6‖F‖
2g(X,Y ) �Einstein type eqs�

(1)

The transformation of the gravitino Ψ under a supersymmetry ε ∈ Γ(S(M))

takes the form δεΨ = Dε+O(Ψ), where D is the connection on the spinor

bundle given by

DXε = ∇Xε− 1
24

(
X · F − 3F ·X

)
· ε (2)



Goal of these lectures

� understand these notions and their interplay;

� see the main properties of supergravity backgrounds (construction of

a Lie superalgebra generated from spinor �elds, structural results for

highly supersymmetric backgrounds, etc...) together with the most

important examples;

� along the way...a bit of spin geometry and Lie superalgebra theory

(Kac's classi�cation of simple Lie superalgebras, the Poincaré

superalgebra, etc...).



Detour on Lie superalgebra theory

Def. A Lie superalgebra is a vector space of the form

g = g0 ⊕ g1

endowed with a bilinear map [·, ·] : g× g −→ g such that

� [g0, g0] ⊂ g0, [g0, g1] ⊂ g1, [g1, g1] ⊂ g0;

� for any homogeneous X, Y (i.e. with X ∈ gi, Y ∈ gj)

[X,Y ] = −(−1)|X||Y |[Y,X]

(
|X| = parity of X =

{
0

1

)

� for any homogeneous X, Y , Z

[X, [Y,Z]] = [[X,Y ], Z] + (−1)|X||Y |[Y, [X,Z]]



Detour on Lie superalgebra theory

Equivalently, a Lie superalgebra g = g0 ⊕ g1 is the datum of:

� a Lie algebra g0̄;

� a representation ρ : g0̄ → gl(g1̄) of g0̄;

� a symmetric bilinear map κ : �2g1̄ → g0̄ that is g0̄-equivariant;

� a compatibility condition for ρ and κ:

ρ
(
κ(X,X)

)
X = 0

for all X ∈ g1̄.



Detour on Lie superalgebra theory

Ex 0. The general linear Lie superalgebra gl(m|n) is de�ned as follows:

Cm|n = Cm ⊕ Cn (decomposition into even and odd parts)

L =

(
A B

C D

)
=

(
A 0

0 D

)
+

(
0 B

C 0

)
[L,L′] = L ◦ L′ − (−1)|L||L

′|L′ ◦ L, for example

[

(
0 B

C 0

)
,

(
0 B′

C ′ 0

)
] =

(
BC ′ +B′C 0

0 CB′ + C ′B

)

The supertrace of L is de�ned as str(L) = tr(A)− tr(D) and the special

linear Lie superalgebra as sl(m|n) = {L ∈ gl(m|n) | str(L) = 0}. If m = n,

then Id is central in sl(m|n) and one also considers psl(m|n) = sl(m|n)/C Id.



Detour on Lie superalgebra theory

Ex 1. Orthosymplectic Lie superalgebra:

Cm|n together with an even non-degenerate supersymmetric bilinear form

(with, say, Gram matrix

(
Id 0

0 J

)
)

osp(m|2n) =

{(
A B

C D

)
| At +A = 0, DtJ + JD = 0, Bt = JC

}
Ex 2. Periplectic Lie superalgebra:

Cm|m together with an odd non-degenerate supersymmetric bilinear form

(with, say, Gram matrix

(
0 Id

Id 0

)
)

pe(m) =

{(
A B

C −At

)
| Bt = B,C = −Ct

}
, spe(m) = pe(m) ∩ sl(m|m)



Detour on Lie superalgebra theory

Ex 3. Queer Lie superalgebra:

Cm|m together with an odd complex structure (with, say, matrix

(
0 − Id

Id 0

)
)

q(m) =

{(
A B

B A

)}

sq(m) =

{(
A B

B A

)
| tr(B) = 0

}
psq(m) = sq(m)/C Id

Ex 4. Lie superalgebra of all vector �elds on a purely odd supermanifold:

W (m) = Der Λ•Cm =

{
m∑
α=1

Pα(θ1, · · · , θm)∂θα | Pα ∈ Λ•Cm
}



Detour on Lie superalgebra theory

Finite-dimensional simple (complex) Lie superalgebras g = g0̄ ⊕ g1̄ were classi�ed

by V. Kac in 1977 and split into two main families:

� classical, for which the adjoint action of g0̄ on g1̄ is completely reducible;

� Cartan Lie superalgebras W (m), S(m), S̃(m), H(m), analogs to simple

Lie algebras of vector �elds.

Classical Lie superalgebras consist in turn of the strange pe(m) and psq(m)

and of the Lie superalgebras with a non-degenerate �Killing form�:

g g0 g1

sl(m|n)

m,n ≥ 1
sl(m)⊕ sl(n)⊕ C

(
Cm ⊗ (Cn)∗

)
⊕

(
(Cm)∗ ⊗ Cn

)
osp(m|2n)

m,n ≥ 1
so(m)⊕ sp(2n) Cm ⊗ C2n

osp(4|2;α)

α 6= 0,±1,∞
sl(2)⊕ sl(2)⊕ sl(2) C2 ⊗ C2 ⊗ C2

F (3|1) so(7)⊕ sl(2) S⊗ C2

G(3) G2 ⊕ sl(2) C7 ⊗ C2



Exercises on Lie superalgebra theory

The Killing form of g = g0̄ ⊕ g1̄ is de�ned as b(X,Y ) = str(adX ◦ adY ). Show

that:

� b is even: b(gī, gj̄) = 0 if ī+ j̄ = 1̄;

� b is supersymmetric: b(X,Y ) = (−1)|X||Y |b(Y,X);

� if g = sl(m|n), then b(X,Y ) = 2(m− n) str(X · Y );

� if g = osp(m|2n), then b(X,Y ) = (m− 2n− 2) str(X · Y );

� if g = pe(m), then b = 0 (do not compute b explicitly!).

Show that:

� Levi Thm is not true in general (hint: sl(m|m) 6= psl(m|m)⊕ C Id);

� derivations are not all inner (hint: der(psl(m|m)) = pgl(m|m));

� semisimple Lie superalgebras are not necessarily direct sum of simple

ideals (hint: g = g−1 ⊕ g0 ⊕ g1 = C∂θ ⊕ l⊕ lθ for l simple Lie algebra).



The Poincaré superalgebra

Let (V, η) be a real d-dimensional Lorentzian vector space. The double

cover Spin(V ) of the special orthogonal group SO(V ) can be identi�ed

with a particular group of invertible elements in the so-called Cli�ord

algebra C`(V ). Such algebra is isomorphic to the vector space

C`(V ) = Λ•V = R⊕V ⊕Λ2V ⊕ · · ·⊕ΛdV , but with a modi�ed product.

C`(V ) always admits a representation as a suitable matrix algebra, for

example C`(V ) ∼= R(32)⊕ R(32) if d = 11 and C`(V ) ∼= R(4) if d = 4.

Since Spin(V ) ⊂ C`(V ), we have a representation of Spin(V ) (and hence

of so(V ) = Lie(Spin(V )) ∼= Λ2V ) by means of matrices acting on the

spinor representation S (for example, S = R32 if d = 11, S = R4 if d = 4).

Since C`(V ) = Λ•V , we also have that polyvectors on V correspond to

matrices acting on S. The actions of such matrices are called Cli�ord

products between elements of Λ•V and elements of S.



The Poincaré superalgebra

Let d = 11 for concreteness. On S there is an so(V )-invariant symplectic

form 〈−,−〉 such that 〈v · s1, s2〉 = −〈s1, v · s2〉 for all v ∈ V , s1, s2 ∈ S.
The transpose of Cli�ord action V ⊗ S → S gives a way to square

spinors: a map κ : �2S → V known as Dirac current:

η(κ(s, s), v) = 〈s, v · s〉 v ∈ V , s ∈ S (3)



The Poincaré superalgebra

Let d = 11 for concreteness. On S there is an so(V )-invariant symplectic

form 〈−,−〉 such that 〈v · s1, s2〉 = −〈s1, v · s2〉 for all v ∈ V , s1, s2 ∈ S.
The transpose of Cli�ord action V ⊗ S → S gives a way to square

spinors: a map κ : �2S → V known as Dirac current:

η(κ(s, s), v) = 〈s, v · s〉 v ∈ V , s ∈ S (3)

Def. The Poincaré superalgebra is the Lie superalgebra p = p0̄⊕p1̄ where

(i) p0 = so(V )⊕ V ;

(ii) p1 = S;

(iii) the nonzero Lie brackets are:

[A,B] = AB−BA , [A, s] = As , [A, v] = Av , [s, s] = κ(s, s) ,

for all A,B ∈ so(V ), s ∈ S, v ∈ V .



Killing superalgebras

Let (M, g, F ) be Lorentzian mnfd (M, g), dimM = 11, with closed F ∈ Ω4(M)

and endowed with a spinor bundle S(M) −→M (the �ber S(M)x ∼= S = R32). The

bosonic equations of supergravity are two coupled PDEs [Cremmer-Julia-Scherk '78]:

Ric(X,Y ) = 1
2
g(iXF, iY F )− 1

6
g(X,Y )|F |2

d ∗ F = 1
2
F ∧ F

 (∗)

Supersymmetry transf. δεΨ = Dε+O(Ψ) of the gravitino Ψ gives the so-called

superconnection on S(M):

DXε = ∇Xε− 1
24

(
X · F − 3F ·X

)
· ε ,

for all v.f. X and sections ε of S(M).



Killing superalgebras

Let (M, g, F ) be Lorentzian mnfd (M, g), dimM = 11, with closed F ∈ Ω4(M)

and endowed with a spinor bundle S(M) −→M (the �ber S(M)x ∼= S = R32). The

bosonic equations of supergravity are two coupled PDEs [Cremmer-Julia-Scherk '78]:

Ric(X,Y ) = 1
2
g(iXF, iY F )− 1

6
g(X,Y )|F |2

d ∗ F = 1
2
F ∧ F

 (∗)

Supersymmetry transf. δεΨ = Dε+O(Ψ) of the gravitino Ψ gives the so-called

superconnection on S(M):

DXε = ∇Xε− 1
24

(
X · F − 3F ·X

)
· ε ,

for all v.f. X and sections ε of S(M).

Def. A symmetry of a solution of (∗) is a pair (ξ, ε) given by

(i) a Killing vector �eld for g preserving F , i.e., a v.f. ξ s.t Lξg = LξF = 0;

(ii) a (generalized) Killing spinor, i.e., a section ε of S(M) s.t. Dε = 0.



Killing superalgebras

Thm[Figueroa-O'Farrill, Meessen, Philip '05] The Z2-graded v.s. k = k0̄ ⊕ k1̄
of symmetries of (M, g, F ) has a natural structure of Lie superalgebra, called

the Killing superalgebra.

Ex. (M, g) Minkowski, F = 0, D = ∇ then k1̄ ∼= S, k0̄ ∼= so(V )⊕ V and k = p.

Idea of the proof.

We will use that the L-C connection is compatible with symplectic form

on S(M) and Cli�ord multiplication, and employ combinatorial identities

for the Cli�ord algebra together with PDEs associated to di�erential forms.

Now

k0̄ = {ξ ∈ X(M) | Lξg = LξF = 0}

is clearly a Lie algebra, and we have a putative bracket [k1̄, k1̄] ⊂ k0̄ given

by the Dirac current. What about the action of k0̄ on k1̄?



Idea of the proof � continued

Kosmann's spinorial Lie derivative is de�ned for all Killing vector �elds ξ

and spinor �elds ε by

Lξε = ∇ξε+Aξ(ε) ,

where Aξ ∈ Γ(so(TM)) is the tensor de�ned by Aξ(X) = −∇Xξ. (As
kind of motivation, note LξX = ∇ξX +Aξ(X) = ∇ξX −∇Xξ = [ξ,X].)

Exercise:

� [Lξ,Lη]ε = L[ξ,η]ε

� Lξ(X · ε) = [ξ,X] · ε+X · Lξε

� Lξ(fε) = ξ(f)ε+ fLξε

� [Lξ,∇X ]ε = ∇[ξ,X]ε

It follows that k0̄ acts on k1̄ via the spinorial Lie derivative:



Idea of the proof � continued

for all ξ ∈ k0̄, ε ∈ k1̄ and X ∈ X(M), we have

∇X(Lξε) = Lξ(∇Xε)−∇[ξ,X]ε

= Lξ
(

1
24 (X · F − 3F ·X) · ε

)
− 1

24

(
[ξ,X] · F − 3F · [ξ,X]

)
· ε

= 1
24 (X · LξF − 3LξF ·X) · ε+ 1

24 (X · F − 3F ·X) · Lξε

= 1
24 (X · F − 3F ·X) · Lξε .

It is also easy to see that the Dirac current is equivariant:

g
(
Lξκ(ε, ε), X

)
= ξ
(
g(κ(ε, ε), X)

)
− g
(
κ(ε, ε),LξX

)
= ξ
(
〈ε,X · ε〉

)
− 〈ε,LξX · ε〉

= 〈Lξε,X · ε〉+ 〈ε,X · Lξε〉

= g
(
κ(Lξε, ε), X

)
+ g
(
κ(ε,Lξε), X

)
.

It remains to show that κ takes values in k0̄ and the odd-odd-odd identity.



Idea of the proof � continued

First of all, for ξ = κ(ε, ε), we have

g
(
∇Xξ, Y

)
= g
(
∇Xκ(ε, ε), Y

)
= 2g

(
κ(∇Xε, ε), Y

)
= 2

24g
(
κ(X · F · ε, ε), Y

)
− 3 2

24g
(
κ(F ·X · ε, ε), Y

)
= 2

24 〈X · F · ε, Y · ε〉 − 3 2
24 〈F ·X · ε, Y · ε〉

= − 2
24 〈Y ·X · F · ε, ε〉+ 3 2

24 〈Y · F ·X · ε, ε〉

= − 2
24 〈ıY ıXF · ε, ε〉 −

2
24 〈Y ∧X ∧ F · ε, ε〉

− 3 2
24 〈ıY ıXF · ε, ε〉+ 3 2

24 〈Y ∧ F ∧X · ε, ε〉

where we used �2S ∼= Λ1V ⊕ Λ2V ⊕ Λ5V and Λ2S ∼= Λ0V ⊕ Λ3V ⊕ Λ4V .

The expression is clearly skew in X and Y , hence ∇ξ is a section of so(TM)

and ξ a Killing vector �eld! The rest is the di�cult part of the proof.



Idea of the proof � continued

To prove that ξ = κ(ε, ε) preserves also F , we shall consider the 2-form

ω(2) ∈ Ω2(M) constructed quadratically out of ε:

ω(2)(X,Y ) = 〈ε,X ∧ Y · ε〉 .

Since ε is a Killing spinor, the 2-form satis�es some interesting PDEs (we

will be back on this in the next lectures). One of them is dω(2) = −ıξF .
Then

LξF = dıξF + ıξdF = −d(dω(2)) = 0 ,

since F is closed. It remains the odd-odd-odd identity, which amounts to

the vanishing of Lξε = ∇ξε+Aξ(ε) = 1
24

(
ξ · F − 3F · ξ

)
ε+Aξ(ε). Now

Aξ(X) = −∇Xξ = −∇X
(
κ(ε, ε)

)
= −2κ(∇Xε, ε)

= − 1
12κ(

(
X · F − 3F ·X

)
ε, ε) ,

so that Aξ and Lξε depend algebraically on ε. One then checks Lξε = 0

algebraically. �







Thanks!


