Review: elementary Lie algebra structure theory

 $\mathfrak{g} \mathbb{C}$ -ss, $\mathfrak{h} \mathsf{CSA}$, $\Delta \subset \mathfrak{h}^*$ roots, Killing form $\rightsquigarrow \mathsf{ndg} \langle \cdot, \cdot \rangle$ on $V = \operatorname{span}_{\mathbb{R}} \Delta$. Simple roots $\{\alpha_i\}_{i=1}^{\ell} \subset \mathfrak{h}$, dual basis $\{Z_i\}$, fundamental weights $\{\lambda_i\}_{i=1}^{\ell}$, i.e. $\langle \lambda_i, \alpha_i^{\vee} \rangle = \delta_{ij}$, where $\alpha^{\vee} = \frac{2\alpha}{\langle \alpha, \alpha \rangle}$ is the coroot of $\alpha \in \Delta$. Cartan matrix: $c_{ij} = \langle \alpha_i, \alpha_i^{\vee} \rangle$. Have $\forall i \neq j$, $c_{ij} \in \mathbb{Z}_{\leq 0}$, $c_{ij}c_{ji} \in \{0, 1, 2, 3\}$. Have basis change $\alpha_i = c_{ii}\lambda_i$, $\lambda_i = c^{ij}\alpha_i$, where $c^{ij} =$ inverse of c_{ij} . **Dynkin diagram**: Graph with $\alpha_i \leftrightarrow$ node *i*; bond from *i* to *j* of multiplicity $c_{ij}c_{ji}$, directed towards the shorter root if $c_{ii}c_{ji} > 1$. Parabolics: $\mathfrak{p} \subset \mathfrak{g} \leftrightarrow I_{\mathfrak{p}} \subset \{1, ..., \ell\}$. Crosses on $I_{\mathfrak{p}}$ in DD; $Z := \sum_{i \in I_{\mathfrak{p}}} Z_i$. Reflection wrt α^{\perp} : $s_{\alpha}(\lambda) := \lambda - \frac{2\langle \lambda, \alpha \rangle}{\langle \alpha, \alpha \rangle} \alpha = \lambda - \langle \lambda, \alpha^{\vee} \rangle \alpha$. Weyl group: $W \leq O(V)$ is the subgroup generated by $\{s_{\alpha} : \alpha \in \Delta\}$.

- Δ is W-invariant.
- W is finite and generated by simple reflections {s_{αi}}^ℓ_{i=1}.
- Any $w \in W$ is a word, e.g. $(12) := s_{\alpha_1} \circ s_{\alpha_2}$.

Our main examples

 $\mathfrak{g}_0 = \mathfrak{z}(\mathfrak{g}_0) \times \mathfrak{g}_0^{\mathrm{ss}} \colon \Big| \dim(\mathfrak{z}(\mathfrak{g}_0)) = \# \text{crosses}; \ \mathfrak{g}_0^{\mathrm{ss}} \leftrightarrow \text{DD} \text{ after omitting crosses}$