Review: elementary Lie algebra structure theory

$\mathfrak{g} \mathbb{C}$-ss, \mathfrak{h} CSA, $\Delta \subset \mathfrak{h}^{*}$ roots, Killing form $\rightsquigarrow \operatorname{ndg}\langle\cdot, \cdot\rangle$ on $V=\operatorname{span}_{\mathbb{R}} \Delta$. Simple roots $\left\{\alpha_{i}\right\}_{i=1}^{\ell} \subset \mathfrak{h}$, dual basis $\left\{\mathrm{Z}_{i}\right\}$, fundamental weights $\left\{\lambda_{i}\right\}_{i=1}^{\ell}$, i.e. $\left\langle\lambda_{i}, \alpha_{j}^{\vee}\right\rangle=\delta_{i j}$, where $\alpha^{\vee}=\frac{2 \alpha}{\langle\alpha, \alpha\rangle}$ is the coroot of $\alpha \in \Delta$.

Cartan matrix: $c_{i j}=\left\langle\alpha_{i}, \alpha_{j}^{\vee}\right\rangle$. Have $\forall i \neq j, c_{i j} \in \mathbb{Z}_{\leq 0}, c_{i j} c_{j i} \in\{0,1,2,3\}$.
Have basis change $\alpha_{i}=c_{i j} \lambda_{j}, \quad \lambda_{i}=c^{i j} \alpha_{j}$, where $c^{i j}=$ inverse of $c_{i j}$.
Dynkin diagram: Graph with $\alpha_{i} \leftrightarrow$ node i; bond from i to j of multiplicity $c_{i j} c_{j i}$, directed towards the shorter root if $c_{i j} c_{j i}>1$.

Parabolics: $\mathfrak{p} \subset \mathfrak{g} \leftrightarrow I_{\mathfrak{p}} \subset\{1, \ldots, \ell\}$. Crosses on $I_{\mathfrak{p}}$ in DD; $Z:=\sum_{i \in I_{\mathfrak{p}}} Z_{i}$.
Reflection wrt $\alpha^{\perp}: \quad s_{\alpha}(\lambda):=\lambda-\frac{2\langle\lambda, \alpha\rangle}{\langle\alpha, \alpha\rangle} \alpha=\lambda-\left\langle\lambda, \alpha^{\vee}\right\rangle \alpha$.
Weyl group: $W \leq \mathrm{O}(V)$ is the subgroup generated by $\left\{s_{\alpha}: \alpha \in \Delta\right\}$.

- Δ is W-invariant.
- W is finite and generated by simple reflections $\left\{s_{\alpha_{i}}\right\}_{i=1}^{\ell}$.
- Any $w \in W$ is a word, e.g. (12) $:=s_{\alpha_{1}} \circ s_{\alpha_{2}}$.

Our main examples

\mathfrak{g} $c_{i j}$ Dynkin diagram Highest weight λ	$\begin{gathered} \hline \mathfrak{s l}_{3} \\ \left(\begin{array}{cc} 2_{3} & -1 \\ -1 & 2 \end{array}\right) \\ \circ \\ \alpha_{1}+\alpha_{2}=\lambda_{1}+\lambda_{2} \end{gathered}$	$\begin{gathered} \hline \operatorname{Lie}\left(G_{2}\right) \\ (2,-1 \\ -3 \\ \hline=0 \\ 3 \alpha_{1}+2 \alpha_{2}=\lambda_{2} \end{gathered}$
Marked DD Grading element Z Graded root diagram		

$\mathfrak{g}_{0}=\mathfrak{z}\left(\mathfrak{g}_{0}\right) \times \mathfrak{g}_{0}^{\text {ss }}: \quad \operatorname{dim}\left(\mathfrak{z}\left(\mathfrak{g}_{0}\right)\right)=\#$ crosses; $\mathfrak{g}_{0}^{\text {ss }} \leftrightarrow$ DD after omitting crosses

