Classifying homogeneous geometric structures (Lecture 2)

Dennis The

Department of Mathematics & Statistics UIT The Arctic University of Norway

9 February 2021

GRIEG project 2019/34/H/ST1/00636

Outline

Last time: A Cartan geometry $(\mathcal{G} \to M, \omega)$ of type $(\mathcal{G}, \mathcal{P})$:

- ... is a "nice" soln to a Cartan equiv. problem for str. on M.
- ... is a curved deformation of ($G \rightarrow G/P, \omega_G$).
- ... can be viewed in terms of structure equations.

Today:

- Parabolic geometries: normalization conditions & harmonic curvature κ_{H} .
- ② Cartan reduction method applied to 2nd order ODE.
 - Setting up structure equations.
 - Implementing the (equivariant) reduction method.
 - Interpreting the results.

Exhibiting homogeneous models

Q: How to exhibit a homogeneous model?

Example (2nd order ODE)

• Coordinate model: Let p = y'. Then $y'' = \exp(p)$ has syms

$$\mathbf{X}_1 = \partial_x, \quad \mathbf{X}_2 = \partial_y, \quad \mathbf{X}_3 = x\partial_x + (y - x)\partial_y - \partial_p.$$

• Lie-theoretic model: $(\mathfrak{f},\mathfrak{f}^0)$ with $\mathfrak{f}^0 = 0$, $\mathfrak{f} = \langle e_1, e_2, e_3 \rangle$ s.t.

$$[e_1,e_2]=e_2, \quad [e_1,e_3]=-e_2+e_3, \quad [e_2,e_3]=0.$$

Endow f/f^0 with pair of lines $\langle e_1 - e_3 \rangle \oplus \langle e_3 \rangle$. (Evaluate $E \oplus V = \langle \partial_x + p \partial_y + \exp(p) \partial_p \rangle \oplus \langle \partial_p \rangle$ at say x = y = p = 0.) • Cartan-theoretic model: ?

Q: What is the curvature / holonomy? (These readily follow from the Cartan-theoretic description.)

Parabolic geometries

Parabolic subalgebras

Definition

Let \mathfrak{g} be a semisimple Lie alg. A subalgebra $\mathfrak{p} \subsetneq \mathfrak{g}$ is parabolic if $\mathfrak{p} = \mathfrak{g}_{\geq 0}$ for some \mathbb{Z} -grading $\mathfrak{g} = \bigoplus_i \mathfrak{g}_i$ (with $[\mathfrak{g}_i, \mathfrak{g}_j] \subset \mathfrak{g}_{i+j}, \forall i, j$).

•
$$\mathfrak{p} = \mathfrak{g}_0 \ltimes \mathfrak{g}_+$$
, $\mathfrak{g}_0 = \mathfrak{z}(\mathfrak{g}_0) \times \mathfrak{g}_0^{\mathrm{ss}}$, $\mathfrak{g}_+ = \mathsf{nilradical} \text{ of } \mathfrak{p}$.

- \exists grading element $Z \in \mathfrak{z}(\mathfrak{g}_0)$, i.e. $\operatorname{ad}_Z|_{\mathfrak{g}_j} = j \operatorname{id}|_{\mathfrak{g}_j}, \forall j \in \mathbb{Z}$.
- Defining $\mathfrak{g}^i := \bigoplus_{j \ge i} \mathfrak{g}_j$, $\exists \mathfrak{p}$ -inv. filtration on \mathfrak{g} with $\mathfrak{g}^0 = \mathfrak{p}$.
- Ndg Killing form $B(x, y) = tr(ad_x \circ ad_y)$ induces:
 - $(\mathfrak{g}_{-})^{*} \cong \mathfrak{g}_{+}$ as \mathfrak{g}_{0} -modules (so $\mathfrak{g} = \mathfrak{g}_{-\nu} \oplus ... \oplus \mathfrak{g}_{\nu}$);

•
$$(\mathfrak{g}/\mathfrak{p})^* \cong \mathfrak{g}_+$$
 as \mathfrak{p} -modules.

• Geometrically, the filtration is important! Grading is auxilliary.

Example
$$(\mathfrak{g} = \mathfrak{sl}_3, \mathfrak{p} = \mathfrak{p}_{1,2} = (\text{trace-free}) \text{ upper triangular})$$

 $\mathfrak{p} = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ -2 & |-1 & 0 \end{pmatrix} \subset \mathfrak{g}.$ We have $\mathfrak{g} = \underbrace{\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2}_{\mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \mathfrak{g}_2}, \text{ so}$
 $\mathfrak{g} \hookrightarrow \operatorname{pr}(\mathfrak{g}_-, \mathfrak{g}_0).$ In fact, $\mathfrak{g} \cong \operatorname{pr}(\mathfrak{g}_-, \mathfrak{g}_0).$ (Next lecture, via $H^1(\mathfrak{g}_-, \mathfrak{g}).$)

Aside: Root space decomposition

Let \mathfrak{g} be \mathbb{C} -semisimple, $\mathfrak{h} \subset \mathfrak{g}$ Cartan subalgebra.

Example $\overline{(\mathfrak{g} = \mathfrak{sl}_2)}$

" \mathfrak{sl}_2 -triple": $H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. Commutators:

$$[\mathsf{H},\mathsf{E}]=+2\mathsf{E},\quad [\mathsf{H},\mathsf{F}]=-2\mathsf{F},\quad [\mathsf{E},\mathsf{F}]=\mathsf{H}.$$

Eigenvalues of $\operatorname{ad}_{\mathsf{H}}$ wrt (F, H, E)-basis are -2, 0, +2. Here $\mathfrak{h} = \langle \mathsf{H} \rangle$.

Given $\alpha \in \mathfrak{h}^*$, define $\mathfrak{g}_{\alpha} = \{x \in \mathfrak{g} : [h, x] = \alpha(h)x, \forall h \in \mathfrak{h}\}.$ Root system: $\Delta = \{\alpha \in \mathfrak{h}^* : \mathfrak{g}_{\alpha} \neq 0\}$. Have $\Delta = \Delta^+ \cup (-\Delta^+)$.

- Root space decomposition: $\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}$.
- Borel subalg $\mathfrak{b} := \mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta^+} \mathfrak{g}_{\alpha}$.
- Defn: Any subalgebra p ⊊ g containing b is parabolic. (Equivalent to previous defn.)

Aside: Lie algebra gradings

Example (Root space decomp: $\mathfrak{g} = \mathfrak{sl}_3$, $\mathfrak{h} =$ trace-free diagonal)

Let $\epsilon_i(\text{diag}(a_1, a_2, a_3)) = a_i$. Simple rts: $\alpha_1 = \epsilon_1 - \epsilon_2$, $\alpha_2 = \epsilon_2 - \epsilon_3$.

$\alpha \in \Delta$	α_1	α_2	$\alpha_1 + \alpha_2$	$-\alpha_1$	$-\alpha_2$	$-\alpha_1 - \alpha_2$
Basis for \mathfrak{g}_{lpha}	<i>E</i> ₁₂	E ₂₃	E ₁₃	E_{21}	E_{32}	E ₃₁
Alt. notation	e ₁₀	e_{01}	<i>e</i> ₁₁	<i>f</i> ₁₀	f ₀₁	f_{11}

$$\begin{split} \ell &:= \operatorname{rank}(\mathfrak{g}). \text{ Simple roots } \{\alpha_i\}_{i=1}^{\ell} \subset \mathfrak{h}^*, \text{ dual basis } \{\mathsf{Z}_i\}_{i=1}^{\ell} \subset \mathfrak{h}.\\ \mathsf{FACT:} \ \mathfrak{p} \subset \mathfrak{g} \leftrightarrow \mathit{I_\mathfrak{p}} \subset \{1,...,\ell\}. \text{ Grading element } \mathsf{Z} &:= \sum_{i \in \mathit{I_\mathfrak{p}}} \mathsf{Z}_i. \end{split}$$

Example (Parabolics in \mathfrak{sl}_3)

${\sf Z}_1={\sf diag}(rac{2}{3},-rac{1}{3},-rac{1}{3}),\ {\sf Z}_2={\sf diag}(rac{1}{3},rac{1}{3},-rac{2}{3}).$					
Z	$Z_1 + Z_2$	Z ₁	Z ₂		
þ	$\mathfrak{p}_{1,2} = \begin{pmatrix} 0 & 1 & 2 \\ -1 & 0 & 1 \\ \hline -2 & -1 & 0 \end{pmatrix}$	$\mathfrak{p}_1 = \begin{pmatrix} 0 & 1 & 1 \\ -1 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$	$\mathfrak{p}_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ -1 & -1 & 0 \end{pmatrix}$		
marked Dynkin diagram	X—X	X	◦——X		

Parabolic geometries

G: ss Lie grp, P: parabolic subgrp, i.e. parabolic $\mathfrak{p} = \text{Lie}(P) \subset \mathfrak{g}$.

A parabolic geom. is a Cartan geom. $(\mathcal{G} \to M, \omega)$ of type $(\mathcal{G}, \mathcal{P})$:

- ω_u : $T_u \mathcal{G} \to \mathfrak{g}$ is a linear iso. $\forall u \in \mathcal{G}$;
- $R_{p}^{*}\omega = \operatorname{Ad}_{p^{-1}} \circ \omega, \ \forall p \in P;$

• $\omega(\widetilde{X}) = X, \forall X \in \mathfrak{p}$, where $\widetilde{X} =$ fund. vertical v.f. for X.

Curvature $K = d\omega + \frac{1}{2}[\omega, \omega] \in \Omega^2(\mathcal{G}; \mathfrak{g})$. Curvature function

$$\kappa: \mathcal{G} \to \bigwedge^2 (\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g} \cong \bigwedge^2 \mathfrak{g}_+ \otimes \mathfrak{g}.$$

Definition

egular if κ(gⁱ, g^j) ⊂ g^{i+j+1}, ∀i, j. (⇔ κ is valued in the subspace of Λ²(g/p)* ⊗ g on which Z has pos. eigenvalues.)
 normal if ∂*κ = 0, where ∂* : Λ² g₊ ⊗ g → g₊ ⊗ g is def. bv

$$\partial^*(X \wedge Y \otimes v) = -Y \otimes [X, v] + X \otimes [Y, v] - [X, Y] \otimes v.$$

 $\therefore \kappa \in \ker(\partial^*)_+ = \{\phi \in \ker(\partial^*) : \mathsf{Z}(\phi) > \mathsf{0}\} \text{ ("curvature module")}.$

Fundamental theorem of parabolic geometries

Theorem (Tanaka, Morimoto, Čap–Schichl)

There is an equivalence of categories:

$$\begin{cases}
 regular, normal \\
 parabolic geometry of type (G, P) \\
 (G \to M, \omega)
\end{cases} \leftrightarrow \begin{cases}
 "underlying geometric} \\
 structure" on M
\end{cases}$$

Example (Underlying structures of parabolic geometries)

Conformal, projective, (2, 3, 5), CR, 2nd order ODE systems, ...

The formulation above is a paraphrasing. More precisely:

- If $pr(\mathfrak{g}_{-},\mathfrak{g}_{0})\cong\mathfrak{g}$, then "underlying str." is a filtered G_{0} -str.
- If $pr(\mathfrak{g}_{-}) \cong \mathfrak{g}$, then "underlying str." is a distribution.
- Notable exceptions when g is simple:
 - projective: $\mathfrak{g} = \mathfrak{sl}(n+1,\mathbb{R})$, $\mathfrak{p} = \mathfrak{stab}([e_1])$.
 - contact projective: $\mathfrak{g} = \mathfrak{sp}(2n, \mathbb{R}), \ \mathfrak{p} = \mathfrak{stab}([e_1]).$

Kostant's harmonic theory

Recall: $(\mathfrak{g}_{-})^* \cong_{\mathfrak{g}_0} (\mathfrak{g}/\mathfrak{p})^* \cong_{\mathfrak{p}} \mathfrak{g}_{+}$. Codomain of κ can be viewed in: $\bigwedge^2(\mathfrak{g}/\mathfrak{p})^*\otimes\mathfrak{g}$ 112 $\cdots \stackrel{\partial^*}{\longleftarrow} \qquad \bigwedge^2 \mathfrak{g}_+ \otimes \mathfrak{g} \quad \stackrel{\partial^*}{\longleftarrow} \quad \cdots$ 115 $\cdots \xrightarrow{\partial} \quad \bigwedge^2(\mathfrak{g}_-)^* \otimes \mathfrak{g} \xrightarrow{\partial} \cdots$ Kostant Laplacian: $|\Box = \partial \partial^* + \partial^* \partial|$ Algebraic Hodge decomp: $ker(\partial^*)$ $\bigwedge^2(\mathfrak{g}_-)^*\otimes\mathfrak{g}=\widetilde{\mathrm{im}}(\partial^*)\oplus \underline{\mathrm{ker}(\Box)}\oplus \mathrm{im}(\partial),$ $ker(\partial)$ $H_2(\mathfrak{g}_+,\mathfrak{g}):=\frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)}\cong_{\mathfrak{g}_0}\ker(\Box)\cong_{\mathfrak{g}_0}\frac{\ker(\partial)}{\operatorname{im}(\partial)}=:H^2(\mathfrak{g}_-,\mathfrak{g})$ homology cohomology!

Harmonic (homological) curvature

For (regular / normal) parabolic geometries, define

$$\kappa_H: \mathcal{G} \to \frac{\ker(\partial^*)}{\operatorname{im}(\partial^*)} =: H_2(\mathfrak{g}_+, \mathfrak{g}), \quad \kappa_H:=\kappa \mod \operatorname{im}(\partial^*).$$

Theorem (Harmonic curvature completely obstructs flatness)

 $\kappa_H = 0$ iff $\kappa = 0$ iff (locally) equivalent to $(G \rightarrow G/P, \omega_G)$.

Examples (Harmonic curvature)

- conformal geometry: Weyl $(n \ge 4)$ or Cotton (n = 3).
- (2,3,5)-distributions: binary quartic.
- 2nd order ODE: Tresse (relative) invariants I_1, I_2 .

 $H_2(\mathfrak{g}_+,\mathfrak{g})$ is a completely reducible \mathfrak{p} -rep, i.e. \mathfrak{g}_+ acts trivially. \therefore Study $H_2(\mathfrak{g}_+,\mathfrak{g}) \cong_{\mathfrak{g}_0} H^2(\mathfrak{g}_-,\mathfrak{g})$. (Use Kostant's thm - next lecture.)

Cartan reduction applied to 2nd order ODE

Cartan reduction - starting point

We'll describe a "top-down" method. (Need not be "homog.", but we need "locally const type" for bundle reductions.)

Input: (G, P) Fund. thm. \Rightarrow abstract str. eqns for $(\mathcal{G} \to M, \omega)$, i.e. $d\omega = -\frac{1}{2}[\omega, \omega] + K$. Since ω is *P*-equivariant, then so is *K*.

Cartan reduction is a combination of: (i) orbit normalization, and (ii) integrability conditions $(d^2 = 0)$. Key ideas:

- Use κ (& derivatives) to reduce str grp *P*. (Start with κ_{H} .)
- Reductions $\mathcal{H} \hookrightarrow \mathcal{G}$ (also subject to str grp action) are equipped with coframings, and sym. dim. $\leq \dim(\mathcal{H})$.
- Case branching is based on different orbit types.
 - Organize based on κ_H type, sym dim, further invariants, ...
 - Some branches are extraneous due to $d^2 = 0$.
- Output: List of homogeneous models . For each:
 - Adapted coframings with constant structure functions.
 - 2 Embedding data, i.e. how does the original ω restrict?

Integration is only used on a given output (~> coordinate model).

2nd order ODE

Tresse (1896): For y'' = f(x, y, y'), \exists two key relative invariants $I_1 = (D_x)^2(f_{pp}) - f_p D_x(f_{pp}) - 4D_x(f_{yp}) + 4f_p f_{yp} - 3f_y f_{pp} + 6f_{yy}$, $I_2 = f_{pppp}$, where $D_x := \partial_x + p\partial_y + f\partial_p$. Homogeneous classification (over \mathbb{C}):

Sym dim	Coordinate models $(p = y')$		
8	y''=0		
3	$y'' = p^a, y'' = \frac{p(1-p^2)+c(1-p^2)^{3/2}}{x},$		
	$y'' = \exp(p), y'' = (xp - y)^3$		

The parameters *a*, *c* have exclusions and redundancies. (Later.)

Why adopt the Cartan approach? Is it overkill?

- Reasoning: This geometry is low-dim. One could obtain the list via classification of Lie alg of vector fields in the plane, i.e. prolong these to J²(ℂ, ℂ) and find their invariant ODEs.
- Limitations of v.f. approach to classification:
 - extraneous Lie algebras (need to solve PDE for each).
 - v.f. classification is incomplete in dim \geq 3.
 - exclusions / redundancies? e.g. $y'' = p^3$ has 8-dim sym.
 - what is the curvature / holonomy of these models?

Parabolic geometry associated to 2nd order ODE

Fund. Thm. \Rightarrow any 2nd order ODE corresponds to a regular, normal parabolic geometry ($\mathcal{G}^8 \rightarrow M^3, \omega$) of type ($SL_3, P = P_{1,2}$).

- Initial structure group dim = $\dim(P) = 5$; sym dim ≤ 8 .
- Grading element: $Z = Z_1 + Z_2$. Bi-grading element: (Z_1, Z_2) .
- ω is an abstract coframing; ϖ_i are semi-basic forms.
- Regular / normal $\Rightarrow \kappa \in \ker(\partial^*)_+$.
- Since g = sl₃ is a matrix Lie algebra, then ½[ω,ω] = ω ∧ ω, i.e. matrix multiply & wedge the 1-form components.
- Useful later: given fund.v.f. $\widetilde{Z_1}$, we have $\omega(\widetilde{Z_1}) = Z_1$, so $\zeta_1(\widetilde{Z_1}) = 1$, $\zeta_2(\widetilde{Z_1}) = 0$, $\tau_1(\widetilde{Z_1}) = 0$, etc.

Structure equations

Curvature module ker $(\partial^*)_+$ is 4-dim:

Hom.	Bi-hom.	2-chain in $\bigwedge^2 \mathfrak{g}_+ \otimes \mathfrak{g}$	2-cochain in $\bigwedge^2(\mathfrak{g}/\mathfrak{p})^*\otimes\mathfrak{g}$
+4	(3,1)	$e_{10} \wedge e_{11} \otimes e_{10}$	$f_{10}^* \wedge f_{11}^* \otimes e_{10}$
	(1,3)	$e_{01} \wedge e_{11} \otimes e_{01}$	$\mathit{f_{01}^*} \wedge \mathit{f_{11}^*} \otimes \mathit{e_{01}}$
+5	(3,2)	$e_{10} \wedge e_{11} \otimes e_{11}$	$f_{10}^* \wedge f_{11}^* \otimes e_{11}$
	(2,3)	$e_{01} \wedge e_{11} \otimes e_{11}$	$\mathit{f_{01}^{*}} \wedge \mathit{f_{11}^{*}} \otimes \mathit{e_{11}}$

Killing form \Rightarrow $(f_{10}^*, f_{01}^*, f_{11}^*) \mapsto (6e_{10}, 6e_{01}, 6e_{11}).$

"Primary" structure equations: $d\omega = -\omega \wedge \omega + K$

$$d\tau_{3} = -(\zeta_{1} + \zeta_{2}) \wedge \tau_{3} - \tau_{1} \wedge \tau_{2} + B_{1}\varpi_{1} \wedge \varpi_{3} + B_{2}\varpi_{2} \wedge \varpi_{3}$$

$$d\tau_{2} = -\zeta_{2} \wedge \tau_{2} + \tau_{3} \wedge \varpi_{1} + A_{2}\varpi_{2} \wedge \varpi_{3}$$

$$d\tau_{1} = -\zeta_{1} \wedge \tau_{1} - \tau_{3} \wedge \varpi_{2} + A_{1}\varpi_{1} \wedge \varpi_{3}$$

$$d\zeta_{2} = \tau_{1} \wedge \varpi_{1} - 2\tau_{2} \wedge \varpi_{2} - \tau_{3} \wedge \varpi_{3}$$

$$K = 0: \text{ Maurer-Cartan}$$

$$d\zeta_{1} = -2\tau_{1} \wedge \varpi_{1} + \tau_{2} \wedge \varpi_{2} - \tau_{3} \wedge \varpi_{3}$$

$$d\varpi_{1} = \zeta_{1} \wedge \varpi_{1} - \tau_{2} \wedge \varpi_{3}$$

$$d\varpi_{2} = \zeta_{2} \wedge \varpi_{2} + \tau_{1} \wedge \varpi_{3}$$

$$d\varpi_{3} = \varpi_{1} \wedge \varpi_{2} + (\zeta_{1} + \zeta_{2}) \wedge \varpi_{3}$$

Equivariancy: vertical variations

Since
$$\omega$$
 is *P*-equivariant, so is K : $\mathbb{R}_{p}^{*}K = \operatorname{Ad}_{p^{-1}} \circ K$, $\forall p \in P$.
Infinitesimally, $\mathbb{L}_{\widetilde{X}}K = -\operatorname{ad}_{X} \circ K$, $\forall X \in \mathfrak{p}$.

"Secondary" str. eqns (Exercise: Derive these in two ways.):

$$d(A_1) = -(3\zeta_1 + \zeta_2)A_1 + \alpha_1$$

$$d(A_2) = -(\zeta_1 + 3\zeta_2)A_2 + \alpha_2$$

$$d(B_1) = -(3\zeta_1 + 2\zeta_2)B_1 + \tau_2A_1 + \beta_2$$

$$d(B_2) = -(2\zeta_1 + 3\zeta_2)B_2 - \tau_1A_2 + \beta_2$$

where $\alpha_i = a_{ij} \varpi_j$ and $\beta_i = b_{ij} \varpi_j$ are semi-basic forms. Comments:

Cartan would write δ(A₁) = -(3ζ₁ + ζ₂)A₁ ("vertical variation").
I've abused notation with α_i earlier. (Not simple roots above.)
Bianchi identities (d² = 0, given primary / secondary str. eqns.):

$$a_{21} = -B_2, \quad a_{12} = B_1, \quad b_{12} = b_{21}.$$

This completes the setup of the structure equations.

Cartan reduction - first steps

1

Goal: Find non-flat homogeneous models.

Note A_1, A_2, B_1, B_2 are undetermined functions on \mathcal{G} . Start with A_1, A_2 , i.e. harmonic curvature κ_H . (Note: Work over \mathbb{C} .)

$$\delta(A_1) = -(3\zeta_1 + \zeta_2)A_1, \quad \delta(A_2) = -(\zeta_1 + 3\zeta_2)A_2.$$

Coeffs of ζ_1 and $\zeta_2 \quad \rightsquigarrow \quad p\text{-action on } (A_1, A_2)\text{-space:}$

$$3A_1\frac{\partial}{\partial A_1} + A_2\frac{\partial}{\partial A_2}, \quad A_1\frac{\partial}{\partial A_1} + 3A_2\frac{\partial}{\partial A_2}.$$

(More precisely: Evaluate 1-forms on fund. v.f. $\widetilde{Z_1}$ and $\widetilde{Z_2}.)$

Have linearly indep. (complex) scalings, so we case-split:

A₁ = A₂ = 0: by Bianchi identities, we get the flat model;
A₁ ≠ 0, A₂ = 0 (or dually, A₁ = 0, A₂ ≠ 0);
A₁A₂ ≠ 0. (We'll illustrate key ideas in this branch.)

$$d(A_1) = -(3\zeta_1 + \zeta_2)A_1 + \alpha_1 d(A_2) = -(\zeta_1 + 3\zeta_2)A_2 + \alpha_2$$

Given $A_1A_2 \neq 0$ (assumed locally true), we now normalize:

- $A_1 = A_2 = 1$. Get sub-bundle $\mathcal{H} \hookrightarrow \mathcal{G}$. Fibre dim = 3; sym dim $\leq \dim(\mathcal{H}) = 6$.
- On \mathcal{H} , $\left[\zeta_1 = \frac{3\alpha_1 \alpha_2}{8}, \zeta_2 = \frac{3\alpha_2 \alpha_1}{8}\right]$ are semi-basic. (Implicitly, I will henceforth omit "pullback" notation for forms.)

$$\begin{cases} d(B_1) = -(3\zeta_1 + 2\zeta_2)B_1 + \tau_2 A_1 + \beta_1 & \xrightarrow{\text{on } \mathcal{H}} \\ d(B_2) = -(2\zeta_1 + 3\zeta_2)B_2 - \tau_1 A_2 + \beta_2 & \Rightarrow \end{cases} \begin{cases} \delta(B_1) = \tau_2 \\ \delta(B_2) = -\tau_1 \end{cases}$$

On \mathcal{H} , coeffs of $\tau_1, \tau_2 \rightsquigarrow$ translations $\partial_{B_2}, -\partial_{B_1}$ on (B_1, B_2) -space, so normalize to get a subbundle $\mathcal{H}' \hookrightarrow \mathcal{H}$:

- $B_1 = B_2 = 0$. Moreover, $\tau_1 = \beta_2, \tau_2 = -\beta_1$ are semi-basic.
- Fibre dim. = 1; sym dim $\leq \dim(\mathcal{H}') = 4$.

Q: On \mathcal{H}' , can we normalize the residual 1-dim str grp?

On \mathcal{H}' , evaluate $d\omega$ in two ways, e.g. for τ_1 , we have:

- $d\tau_1 = -\zeta_1 \wedge \tau_1 \tau_3 \wedge \varpi_2 + A_1 \varpi_1 \wedge \varpi_3$; impose relations.
- Substitute $\tau_1 = \beta_2 = b_{2j} \varpi_j$. Take *d*.

Let *MESS* be the difference above, which must equal zero (on \mathcal{H}').

Let $\varpi_{123} := \varpi_1 \wedge \varpi_2 \wedge \varpi_3$. We find that:

$$0 = MESS \land \varpi_1 \land \varpi_3 = -\varpi_{123} \land (d(b_{22}) + \tau_3).$$

Get a translation $-\partial_{b_{22}}$ on b_{22} -space. Normalize to get $\mathcal{H}'' \hookrightarrow \mathcal{H}'$ via $b_{22} = 0$ (and $\tau_3 = T_{3j}\varpi_j$). On \mathcal{H}'' , we have $(\varpi_1, \varpi_2, \varpi_3)$ and 0-dim str. grp. Conclusion: sym.dim ≤ 3 for $A_1A_2 \neq 0$ branch.

Now impose compatibility conditions as above and $d^2 = 0$. Get a homogeneous model if all str. coeffs are constant wrt ϖ_i , e.g. T_{3j} . In this case, Lie's 3rd thm $\Rightarrow \mathcal{H}''$ is locally a Lie group F.

Interpreting the output of Cartan reduction

Sample output 1: Reduced structure equations

One branch of the Cartan reduction yields a 1-parameter family: For $\rho \in \mathbb{C}^{\times}$, we have an adapted coframing $(\varpi_1, \varpi_2, \varpi_3)$ with:

$$(*): \quad \begin{cases} d\varpi_1 &= \left(2\rho\varpi_1 + \frac{1}{3\rho}\varpi_2\right) \wedge \varpi_3 \\ d\varpi_2 &= \left(\frac{1}{3\rho}\varpi_1 - 2\rho\varpi_2\right) \wedge \varpi_3 \\ d\varpi_3 &= \varpi_1 \wedge \varpi_2 \end{cases}$$

- Residual str. grp: (ω₁, ω₂, ω₃) → (σω₁, ¹/_{σ³}ω₂, ¹/_{σ²}ω₃), where σ⁸ = 1, which induces ρ → ρσ². Essential parameter: ρ⁴.
 Contact distribution C = ker{ω₃} = E ⊕ V, where E = ker{ω₂, ω₃}, V = ker{ω₁, ω₃}.
 "Self-dual": E ↔ V via (ω₁, ω₂, ω₃) → (-iω₂, iω₁, -ω₃).
 All str. fcns are constant, so Lie's 3rd thm ⇒ {ω_i} is a basis
- for the left-inv. 1-forms on a (local) Lie group F. What is f?
 - Killing form is ndg iff $\rho^4 \neq -\frac{1}{36}$ iff $\mathfrak{f} \cong \mathfrak{sl}_2$.

• When $\rho^4 = -\frac{1}{36}$, f is solvable, with derived series = [3, 2, 0].

Cartan reduction involves only structure group normalization & exterior differentiation. Integration is not involved in this process.

To interpret the str eqns (*) in classical terms, we need to integrate them, e.g. find $\varpi_1, \varpi_2, \varpi_3$ in coords (x, y, p) s.t.

2 the structure equations (*) are satisfied.

(Above, $\langle \cdots \rangle$ refers to arbitrary linear combinations with function coeffs.)

Let's outline some details in the exceptional $\rho^4 = -\frac{1}{36}$ case. What 2nd order ODE does this correspond to?

Example of integrating structure equations

Set
$$\rho := \frac{\exp(i\pi/4)}{\sqrt{6}}$$
, $\{w_i\}$ & $\{\varpi_i\}$ dual. Then $\mathfrak{f}^{(1)} = \operatorname{span}_{\mathbb{C}}\{w_1 - iw_2, w_3\}$,
 $\mathfrak{f}^{(2)} = 0$, and $0 \neq \operatorname{ad}_{w_1}|_{\mathfrak{f}^{(1)}}$ trace-free & diagonalizable. Define
 $(w'_1, w'_2, w'_3) = (aw_1, w_1 - iw_2 + bw_3, w_1 - iw_2 - bw_3)$. We find $\exists a, b \text{ s.t.}$

$$\begin{cases} [w'_1, w'_2] = w'_2 \\ [w'_1, w'_3] = -w'_3 \\ [w'_2, w'_3] = 0 \end{cases} \iff \begin{cases} d\varpi'_1 = 0 \\ d\varpi'_2 = -\varpi'_1 \land \varpi'_2 \\ d\varpi'_3 = +\varpi'_1 \land \varpi'_3 \end{cases}$$

Poincaré lemma $\Rightarrow \varpi'_1 = dz_1$. Other eqns: $0 = d(e^{z_1} \varpi'_2) = d(e^{-z_1} \varpi'_3)$, so $\varpi'_2 = e^{-z_1} dz_2$, $\varpi'_3 = e^{z_1} dz_3$. Passing back to ϖ_i , we get:

$$\begin{cases} \varpi_1 = \frac{3^{1/4}}{2} (-1+i)^{3/2} dz_1 + e^{-z_1} dz_2 + e^{z_1} dz_3 \\ \varpi_2 = -ie^{-z_1} dz_2 - ie^{z_1} dz_3 \\ \varpi_3 = \frac{3^{1/4}}{\sqrt{-1+i}} (e^{-z_1} dz_2 - e^{z_1} dz_3) \end{cases} \Rightarrow \begin{cases} E = \langle \partial_{z_1} \rangle \\ V = \langle \partial_{z_3} + e^{2z_1} \partial_{z_2} + \frac{2(1+i)}{3\sqrt{-1+i}} e^{z_1} 3^{3/4} \partial_{z_1} \rangle \end{cases}$$

Set $(x, y, p) := (cz_3, cz_2, e^{2z_1})$. Choose c s.t. $V = \langle \partial_x + p \partial_y + p^{3/2} \partial_p \rangle$ and $E = \langle \partial_p \rangle$. By self-duality, this 2nd order ODE is $y'' = (y')^{3/2}$.

Exercise

Find syms, pick a basepoint, align Lie alg str to the reduced str eqns.

$y'' = (y')^{3/2}$ and the rest of the family

The transformation $(x, y) \stackrel{\phi}{\longmapsto} (y, -x)$ prolongs to $J^2(\mathbb{C}, \mathbb{C})$ as $(x, y, y', y'') \stackrel{\phi^{(2)}}{\longmapsto} (y, -x, -\frac{1}{y'}, \frac{y''}{(y')^3})$, and induces the equivalence:

$$y'' = (y')^a \quad \stackrel{\phi^{(2)}}{\longmapsto} \quad y'' = (y')^{3-a}$$

Note that ϕ has order 4, but this induces a \mathbb{Z}_2 -action $a \mapsto 3 - a$. The value $\boxed{a = \frac{3}{2}}$ is the unique fixed point. The family $y'' = (y')^a$ has:

• 3-dim symmetry iff $a \in \mathbb{C} \setminus \{0, 1, 2, 3\}$. (Use Tresse's I_1, I_2 .) In this case, f is solvable (so $y'' = (y')^a$ is not the ODE for $\rho^4 \neq -\frac{1}{36}$) with:

$$[v_1, v_2] = (a - 1)v_2, \quad [v_1, v_3] = (a - 2)v_3, \quad [v_2, v_3] = 0.$$

• essential parameter a(3-a).

Exercise

Relate syms of
$$y'' = \frac{p(1-p^2)+c(1-p^2)^{3/2}}{x}$$
 to (*). Show $\frac{1}{p^4} = -36(1+\frac{1}{c^2})$. In particular, $c \neq 0$, with redundancy $c \mapsto -c$. Essential parameter: c^2 .

$$(**): \begin{cases} \zeta_1 = -\rho \varpi_3, & \zeta_2 = 2\rho \varpi_3, \\ \tau_1 = \frac{1}{3\rho} \varpi_1, & \tau_2 = -\rho \varpi_1 - \frac{1}{3\rho} \varpi_2, & \tau_3 = \frac{1}{9\rho^2} \varpi_3 \end{cases}$$

1 Get a linear map $\bar{\omega} : \mathfrak{f} \hookrightarrow \mathfrak{sl}_3$ given by:

$$aw_1 + bw_2 + cw_3 \quad \mapsto \quad \begin{pmatrix} 0 & \frac{a}{3\rho} & \frac{c}{9\rho^2} \\ a & \rho c & -\rho a - \frac{b}{3\rho} \\ c & b & -\rho c \end{pmatrix}.$$

Application: Holonomy

On the principal *G*-bundle $\widehat{\mathcal{G}} = \mathcal{G} \times_P G$, ω equivariantly extends to a principal connection $\widehat{\omega} \in \Omega^1(\widehat{\mathcal{G}}; \mathfrak{g})$. Get a notion of holonomy.

For homogeneous Cartan geometries $(\mathcal{G} \to M, \omega)$, invariant ω are encoded by data $(\mathfrak{f}, [\cdot, \cdot]_{\mathfrak{f}})$ and $\bar{\omega} : \mathfrak{f} \to \mathfrak{g}$. (More next time.) Use it to compute holonomy (à la Ambrose–Singer, see e.g. Hammerl 2011):

Recall: $\kappa(\cdot, \cdot) = [\bar{\omega}(\cdot), \bar{\omega}(\cdot)]_{\mathfrak{g}} - \bar{\omega}([\cdot, \cdot]_{\mathfrak{f}})$. Define subspaces of \mathfrak{g} by:

$$\begin{split} \mathfrak{hol}^0(\bar{\omega}) &:= \langle \kappa(x,y) : x, y \in \mathfrak{f} \rangle, \\ \mathfrak{hol}^i(\bar{\omega}) &:= \mathfrak{hol}^{i-1}(\bar{\omega}) + [\bar{\omega}(\mathfrak{f}), \mathfrak{hol}^{i-1}(\bar{\omega})], \ i \geq 1. \end{split}$$

The holonomy is obtained at stabilization, i.e. $\mathfrak{hol}(\bar{\omega}) := \mathfrak{hol}^{\infty}(\bar{\omega})$.

Theorem

For the 2nd order ODE encoded by (*) and (**), $\mathfrak{hol}(\bar{\omega}) = \mathfrak{sl}_3$.

This is obtained by simple direct computation: $\mathfrak{hol}^0 = \langle e_{10}, e_{01} \rangle$, $\mathfrak{hol}^1 = \mathfrak{hol}^0 \oplus \langle e_{11}, f_{10}, f_{01} \rangle \oplus \mathfrak{h}$, and $\mathfrak{hol}^\infty = \mathfrak{hol}^2 = \mathfrak{sl}_3$.

Summary

- "Regular/normal" parabolic geometries \rightsquigarrow structure eqns.
- Cartan reduction is a "top-down" classification method.
 - Strengths: systematic, conceptual approach is indep. of dim, coordinate-free, uses only *d* and orbit normalization, get structural information: e.g. curvature / holonomy.
 - Limitations: can have heavy branching, introducing coordinates on Cartan reduction output requires effort (integration), data management is an issue (many relations arise).
- 2nd order ODE: submax sym dim 3 with simply-transitive models, i.e. trivial isotropy f⁰. For many other structures, e.g. (2,3,5), ∃ multiply-transitive (f⁰ ≠ 0) non-flat models. This aids the search for models, e.g. f⁰ · κ = 0 (next lecture).