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Outline

Last time: A Cartan geometry (G → M, ω) of type (G ,P):

... is a “nice” soln to a Cartan equiv. problem for str. on M.

... is a curved deformation of (G → G/P, ωG ).

... can be viewed in terms of structure equations.

Today:

1 Parabolic geometries: normalization conditions & harmonic
curvature κH .

2 Cartan reduction method applied to 2nd order ODE.

Setting up structure equations.
Implementing the (equivariant) reduction method.
Interpreting the results.
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Exhibiting homogeneous models

Q: How to exhibit a homogeneous model?

Example (2nd order ODE)

Coordinate model: Let p = y ′. Then y ′′ = exp(p) has syms

X1 = ∂x , X2 = ∂y , X3 = x∂x + (y − x)∂y − ∂p.

Lie-theoretic model: (f, f0) with f0 = 0, f = 〈e1, e2, e3〉 s.t.

[e1, e2] = e2, [e1, e3] = −e2 + e3, [e2, e3] = 0.

Endow f/f0 with pair of lines 〈e1 − e3〉 ⊕ 〈e3〉. (Evaluate
E ⊕V = 〈∂x + p∂y + exp(p)∂p〉⊕ 〈∂p〉 at say x = y = p = 0.)

Cartan-theoretic model: ?

Q: What is the curvature / holonomy? (These readily follow from

the Cartan-theoretic description.)
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Parabolic geometries
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Parabolic subalgebras

Definition

Let g be a semisimple Lie alg. A subalgebra p ( g is parabolic if
p = g≥0 for some Z-grading g =

⊕
i gi (with [gi , gj ] ⊂ gi+j , ∀i , j).

p = g0 n g+, g0 = z(g0)× gss0 , g+ = nilradical of p.
∃ grading element Z ∈ z(g0), i.e. adZ|gj = j id|gj , ∀j ∈ Z.

Defining gi :=
⊕

j≥i gj , ∃ p-inv. filtration on g with g0 = p.

Ndg Killing form B(x , y) = tr(adx ◦ ady ) induces:
(g−)∗ ∼= g+ as g0-modules (so g = g−ν ⊕ ...⊕ gν);
(g/p)∗ ∼= g+ as p-modules.

Geometrically, the filtration is important! Grading is auxilliary.

Example (g = sl3, p = p1,2 = (trace-free) upper triangular)

p =

(
0 1 2

-1 0 1

-2 -1 0

)
⊂ g. We have g =

Heisenberg︷ ︸︸ ︷
g−2 ⊕ g−1⊕

p︷ ︸︸ ︷
g0 ⊕ g1 ⊕ g2, so

g ↪→ pr(g−, g0). In fact, g ∼= pr(g−, g0). (Next lecture, via H1(g−, g).)
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Aside: Root space decomposition

Let g be C-semisimple, h ⊂ g Cartan subalgebra.

Example (g = sl2)

“sl2-triple”: H =
(

1 0
0 −1

)
, E = ( 0 1

0 0 ), F = ( 0 0
1 0 ). Commutators:

[H,E] = +2E, [H,F] = −2F, [E,F] = H.

Eigenvalues of adH wrt (F,H,E)-basis are −2, 0,+2. Here h = 〈H〉.

Given α ∈ h∗, define gα = {x ∈ g : [h, x ] = α(h)x ,∀h ∈ h}.
Root system: ∆ = {α ∈ h∗ : gα 6= 0}. Have ∆ = ∆+ ∪ (−∆+).

Root space decomposition: g = h⊕
⊕

α∈∆ gα.

Borel subalg b := h⊕
⊕

α∈∆+ gα.

Defn: Any subalgebra p ( g containing b is parabolic.
(Equivalent to previous defn.)
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Aside: Lie algebra gradings

Example (Root space decomp: g = sl3, h = trace-free diagonal)

Let εi (diag(a1, a2, a3)) = ai . Simple rts: α1 = ε1 − ε2, α2 = ε2 − ε3.

α ∈ ∆ α1 α2 α1 + α2 −α1 −α2 −α1 − α2

Basis for gα E12 E23 E13 E21 E32 E31

Alt. notation e10 e01 e11 f10 f01 f11

` := rank(g). Simple roots {αi}`i=1 ⊂ h∗, dual basis {Zi}`i=1 ⊂ h.
FACT: p ⊂ g ↔ Ip ⊂ {1, ..., `}. Grading element Z :=

∑
i∈Ip Zi .

Example (Parabolics in sl3)

Z1 = diag( 2
3 ,−

1
3 ,−

1
3 ), Z2 = diag( 1

3 ,
1
3 ,−

2
3 ).

Z Z1 + Z2 Z1 Z2

p p1,2 =

(
0 1 2

-1 0 1

-2 -1 0

)
p1 =

(
0 1 1

-1 0 0

-1 0 0

)
p2 =

(
0 0 1

0 0 1

-1 -1 0

)
marked
Dynkin
diagram
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Parabolic geometries

G : ss Lie grp, P: parabolic subgrp, i.e. parabolic p = Lie(P) ⊂ g.

A parabolic geom. is a Cartan geom. (G → M, ω) of type (G ,P):

ωu : TuG → g is a linear iso. ∀u ∈ G;

R∗pω = Adp−1 ◦ ω, ∀p ∈ P;

ω(X̃ ) = X , ∀X ∈ p, where X̃ = fund. vertical v.f. for X .

Curvature K = dω + 1
2 [ω, ω] ∈ Ω2(G; g). Curvature function

κ : G →
∧

2(g/p)∗ ⊗ g ∼=
∧

2 g+ ⊗ g.

Definition

1 regular if κ(gi , gj) ⊂ gi+j+1, ∀i , j . (⇐⇒ κ is valued in the
subspace of

∧
2(g/p)∗ ⊗ g on which Z has pos. eigenvalues.)

2 normal if ∂∗κ = 0, where ∂∗ :
∧2 g+ ⊗ g→ g+ ⊗ g is def. by

∂∗(X ∧ Y ⊗ v) = −Y ⊗ [X , v ] + X ⊗ [Y , v ]− [X ,Y ]⊗ v .

∴ κ ∈ ker(∂∗)+ = {φ ∈ ker(∂∗) : Z(φ) > 0} (“curvature module”).
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Fundamental theorem of parabolic geometries

Theorem (Tanaka, Morimoto, Čap–Schichl)

There is an equivalence of categories: regular, normal
parabolic geometry of type (G ,P)

(G → M, ω)

↔
{

“underlying geometric
structure” on M

}

Example (Underlying structures of parabolic geometries)

Conformal, projective, (2, 3, 5), CR, 2nd order ODE systems, ...

The formulation above is a paraphrasing. More precisely:

If pr(g−, g0) ∼= g, then “underlying str.” is a filtered G0-str.

If pr(g−) ∼= g, then “underlying str.” is a distribution.

Notable exceptions when g is simple:

projective: g = sl(n + 1,R), p = stab([e1]).
contact projective: g = sp(2n,R), p = stab([e1]).
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Kostant’s harmonic theory

Recall: (g−)∗ ∼=g0 (g/p)∗ ∼=p g+. Codomain of κ can be viewed in:∧
2(g/p)∗ ⊗ g

∼=

· · · ∂∗←−
∧

2g+ ⊗ g
∂∗←− · · ·

∼=

· · · ∂−→
∧

2(g−)∗ ⊗ g
∂−→ · · ·

Kostant Laplacian: � = ∂∂∗ + ∂∗∂ Algebraic Hodge decomp:

∧
2(g−)∗ ⊗ g =

ker(∂∗)︷ ︸︸ ︷
im(∂∗)⊕ ker(�)⊕ im(∂)︸ ︷︷ ︸

ker(∂)

,

H2(g+, g) := ker(∂∗)
im(∂∗)

∼=g0 ker(�) ∼=g0

ker(∂)
im(∂) =: H2(g−, g)

homology cohomology!
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Harmonic (homological) curvature

For (regular / normal) parabolic geometries, define

κH : G → ker(∂∗)
im(∂∗) =: H2(g+, g), κH := κ mod im(∂∗).

Theorem (Harmonic curvature completely obstructs flatness)

κH = 0 iff κ = 0 iff (locally) equivalent to (G → G/P, ωG ).

Examples (Harmonic curvature)

conformal geometry: Weyl (n ≥ 4) or Cotton (n = 3).

(2, 3, 5)-distributions: binary quartic.

2nd order ODE: Tresse (relative) invariants I1, I2.

H2(g+, g) is a completely reducible p-rep, i.e. g+ acts trivially.
∴ Study H2(g+, g) ∼=g0 H2(g−, g). (Use Kostant’s thm - next lecture.)
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Cartan reduction applied to 2nd order ODE
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Cartan reduction - starting point

We’ll describe a “top-down” method. (Need not be “homog.”, but
we need “locally const type” for bundle reductions.)

Input: (G ,P) . Fund. thm. ⇒ abstract str. eqns for (G → M, ω),

i.e. dω = −1
2 [ω, ω] + K . Since ω is P-equivariant, then so is K .

Cartan reduction is a combination of: (i) orbit normalization, and

(ii) integrability conditions (d2 = 0). Key ideas :

Use κ (& derivatives) to reduce str grp P. (Start with κH .)
Reductions H ↪→ G (also subject to str grp action) are

equipped with coframings, and sym. dim. ≤ dim(H) .

Case branching is based on different orbit types.
Organize based on κH type, sym dim, further invariants, ...
Some branches are extraneous due to d2 = 0.

Output: List of homogeneous models . For each:
1 Adapted coframings with constant structure functions.
2 Embedding data, i.e. how does the original ω restrict?

Integration is only used on a given output ( coordinate model).
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2nd order ODE

Tresse (1896): For y ′′ = f (x , y , y ′), ∃ two key relative invariants

I1 = (Dx)2(fpp)− fpDx(fpp)− 4Dx(fyp) + 4fpfyp − 3fy fpp + 6fyy , I2 = fpppp,

where Dx := ∂x + p∂y + f ∂p. Homogeneous classification (over C):

Sym dim Coordinate models (p = y ′)

8 y ′′ = 0

3 y ′′ = pa, y ′′ = p(1−p2)+c(1−p2)3/2

x
,

y ′′ = exp(p), y ′′ = (xp − y)3

The parameters a, c have exclusions and redundancies. (Later.)

Why adopt the Cartan approach? Is it overkill?

Reasoning: This geometry is low-dim. One could obtain the list via
classification of Lie alg of vector fields in the plane, i.e. prolong
these to J2(C,C) and find their invariant ODEs.

Limitations of v.f. approach to classification:

extraneous Lie algebras (need to solve PDE for each).
v.f. classification is incomplete in dim ≥ 3.
exclusions / redundancies? e.g. y ′′ = p3 has 8-dim sym.
what is the curvature / holonomy of these models?
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Parabolic geometry associated to 2nd order ODE

Fund. Thm. ⇒ any 2nd order ODE corresponds to a regular,
normal parabolic geometry (G8 → M3, ω) of type (SL3,P = P1,2).

ω =


2ζ1+ζ2

3 τ1 τ3

$1
−ζ1+ζ2

3 τ2

$3 $2
−ζ1−2ζ2

3

 ∈ Ω1(G; sl3).

Initial structure group dim = dim(P) = 5; sym dim ≤ 8.
Grading element: Z = Z1 + Z2. Bi-grading element: (Z1,Z2).

ω is an abstract coframing; $i are semi-basic forms.
Regular / normal ⇒ κ ∈ ker(∂∗)+.

Since g = sl3 is a matrix Lie algebra, then 1
2 [ω, ω] = ω ∧ ω,

i.e. matrix multiply & wedge the 1-form components.
Useful later: given fund.v.f. Z̃1, we have ω(Z̃1) = Z1, so

ζ1(Z̃1) = 1, ζ2(Z̃1) = 0, τ1(Z̃1) = 0, etc.
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Structure equations

Curvature module ker(∂∗)+ is 4-dim:

Hom. Bi-hom. 2-chain in
∧2 g+ ⊗ g 2-cochain in

∧2(g/p)∗ ⊗ g

+4 (3, 1) e10 ∧ e11 ⊗ e10 f ∗10 ∧ f ∗11 ⊗ e10

(1, 3) e01 ∧ e11 ⊗ e01 f ∗01 ∧ f ∗11 ⊗ e01

+5 (3, 2) e10 ∧ e11 ⊗ e11 f ∗10 ∧ f ∗11 ⊗ e11

(2, 3) e01 ∧ e11 ⊗ e11 f ∗01 ∧ f ∗11 ⊗ e11

Killing form ⇒ (f ∗10, f
∗

01, f
∗

11) 7→ (6e10, 6e01, 6e11).

“Primary” structure equations: dω = −ω ∧ ω + K

dτ3 = −(ζ1 + ζ2) ∧ τ3 − τ1 ∧ τ2 + B1$1 ∧$3 + B2$2 ∧$3

dτ2 = −ζ2 ∧ τ2 + τ3 ∧$1 + A2$2 ∧$3

dτ1 = −ζ1 ∧ τ1 − τ3 ∧$2 + A1$1 ∧$3

dζ2 = τ1 ∧$1 − 2τ2 ∧$2 − τ3 ∧$3 K = 0: Maurer–Cartan

dζ1 = −2τ1 ∧$1 + τ2 ∧$2 − τ3 ∧$3 str eqns for g = sl3.

d$1 = ζ1 ∧$1 − τ2 ∧$3

d$2 = ζ2 ∧$2 + τ1 ∧$3

d$3 = $1 ∧$2 + (ζ1 + ζ2) ∧$3
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Equivariancy: vertical variations

Since ω is P-equivariant, so is K : R∗pK = Adp−1 ◦ K , ∀p ∈ P.

Infinitesimally, L
X̃
K = −adX ◦ K , ∀X ∈ p.

“Secondary” str. eqns (Exercise: Derive these in two ways.):

d(A1) = −(3ζ1 + ζ2)A1 + α1

d(A2) = −(ζ1 + 3ζ2)A2 + α2

d(B1) = −(3ζ1 + 2ζ2)B1 + τ2A1 + β1

d(B2) = −(2ζ1 + 3ζ2)B2 − τ1A2 + β2

where αi = aij$j and βi = bij$j are semi-basic forms. Comments:

Cartan would write δ(A1) = −(3ζ1 + ζ2)A1 (“vertical variation”).
I’ve abused notation with αi earlier. (Not simple roots above.)

Bianchi identities (d2 = 0, given primary / secondary str. eqns.):

a21 = −B2, a12 = B1, b12 = b21.

This completes the setup of the structure equations.
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Cartan reduction - first steps

Goal: Find non-flat homogeneous models.

Note A1,A2,B1,B2 are undetermined functions on G. Start with
A1,A2, i.e. harmonic curvature κH . (Note: Work over C.)

δ(A1) = −(3ζ1 + ζ2)A1, δ(A2) = −(ζ1 + 3ζ2)A2.

Coeffs of ζ1 and ζ2  p-action on (A1,A2)-space:

3A1
∂

∂A1
+ A2

∂

∂A2
, A1

∂

∂A1
+ 3A2

∂

∂A2
.

(More precisely: Evaluate 1-forms on fund. v.f. Z̃1 and Z̃2.)

Have linearly indep. (complex) scalings, so we case-split:

1 A1 = A2 = 0: by Bianchi identities, we get the flat model;

2 A1 6= 0, A2 = 0 (or dually, A1 = 0, A2 6= 0);

3 A1A2 6= 0. (We’ll illustrate key ideas in this branch.)
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A1A2 6= 0 case

d(A1) = −(3ζ1 + ζ2)A1 + α1

d(A2) = −(ζ1 + 3ζ2)A2 + α2

Given A1A2 6= 0 (assumed locally true), we now normalize:

A1 = A2 = 1 . Get sub-bundle H ↪→ G. Fibre dim = 3;
sym dim ≤ dim(H) = 6.

On H, ζ1 = 3α1−α2
8 , ζ2 = 3α2−α1

8 are semi-basic. (Implicitly,

I will henceforth omit “pullback” notation for forms.){
d(B1) = −(3ζ1 + 2ζ2)B1 + τ2A1 + β1

d(B2) = −(2ζ1 + 3ζ2)B2 − τ1A2 + β2

on H⇒

{
δ(B1) = τ2

δ(B2) = −τ1

On H, coeffs of τ1, τ2  translations ∂B2 ,−∂B1 on (B1,B2)-space,
so normalize to get a subbundle H′ ↪→ H:

B1 = B2 = 0 . Moreover, τ1 = β2, τ2 = −β1 are semi-basic.

Fibre dim. = 1; sym dim ≤ dim(H′) = 4.
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A1A2 6= 0 continued...

Q: On H′, can we normalize the residual 1-dim str grp?

On H′, evaluate dω in two ways, e.g. for τ1, we have:

1 dτ1 = −ζ1 ∧ τ1 − τ3 ∧$2 + A1$1 ∧$3; impose relations.

2 Substitute τ1 = β2 = b2j$j . Take d .

Let MESS be the difference above, which must equal zero (on H′).

Let $123 := $1 ∧$2 ∧$3. We find that:

0 = MESS ∧$1 ∧$3 = −$123 ∧ (d(b22) + τ3).

Get a translation −∂b22 on b22-space. Normalize to get H′′ ↪→ H′
via b22 = 0 (and τ3 = T3j$j). On H′′, we have ($1, $2, $3) and

0-dim str. grp. Conclusion: sym.dim ≤ 3 for A1A2 6= 0 branch.

Now impose compatibility conditions as above and d2 = 0. Get a
homogeneous model if all str. coeffs are constant wrt $i , e.g. T3j .
In this case, Lie’s 3rd thm ⇒ H′′ is locally a Lie group F .
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Interpreting the output of Cartan reduction
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Sample output 1: Reduced structure equations

One branch of the Cartan reduction yields a 1-parameter family:

For ρ ∈ C×, we have an adapted coframing ($1, $2, $3) with:

(∗) :


d$1 =

(
2ρ$1 + 1

3ρ$2

)
∧$3

d$2 =
(

1
3ρ$1 − 2ρ$2

)
∧$3

d$3 = $1 ∧$2

Residual str. grp: ($1, $2, $3) 7→ (σ$1,
1
σ3$2,

1
σ2$3), where

σ8 = 1, which induces ρ 7→ ρσ2. Essential parameter: ρ4 .

Contact distribution C = ker{$3} = E ⊕ V , where
E = ker{$2, $3}, V = ker{$1, $3}.
“Self-dual”: E ↔ V via ($1, $2, $3) 7→ (−i$2, i$1,−$3).
All str. fcns are constant, so Lie’s 3rd thm ⇒ {$i} is a basis
for the left-inv. 1-forms on a (local) Lie group F . What is f?

Killing form is ndg iff ρ4 6= − 1
36 iff f ∼= sl2 .

When ρ4 = − 1
36 , f is solvable, with derived series = [3, 2, 0].
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Interpreting the structure equations

Cartan reduction involves only structure group normalization &
exterior differentiation. Integration is not involved in this process.

To interpret the str eqns (∗) in classical terms, we need to
integrate them, e.g. find $1, $2, $3 in coords (x , y , p) s.t.

1 $3 = 〈dy − pdx〉, 〈$2, $3〉 = 〈dy − pdx , dp − fdx〉, 〈$1, $3〉 = 〈dx , dy〉,
i.e. E = 〈∂x + p∂y + f ∂p〉, V = 〈∂p〉, for some function f = f (x , y , p).

2 the structure equations (∗) are satisfied.

(Above, 〈· · · 〉 refers to arbitrary linear combinations with function coeffs.)

Let’s outline some details in the exceptional ρ4 = − 1
36 case.

What 2nd order ODE does this correspond to?

Dennis The Classifying homogeneous geometric structures 23/28



Example of integrating structure equations

Set ρ := exp(iπ/4)√
6

, {wi} & {$i} dual. Then f(1) = spanC{w1− iw2,w3},

f(2) = 0, and 0 6= adw1 |f(1) trace-free & diagonalizable. Define
(w ′1,w

′
2,w

′
3) = (aw1,w1 − iw2 + bw3,w1 − iw2 − bw3). We find ∃a, b s.t.

[w ′1,w
′
2] = w ′2

[w ′1,w
′
3] = −w ′3

[w ′2,w
′
3] = 0

⇐⇒


d$′1 = 0

d$′2 = −$′1 ∧$′2
d$′3 = +$′1 ∧$′3

Poincaré lemma ⇒ $′1 = dz1. Other eqns: 0 = d(ez1$′2) = d(e−z1$′3),
so $′2 = e−z1dz2, $′3 = ez1dz3. Passing back to $i , we get:{
$1 = 31/4

2
(−1 + i)3/2dz1 + e−z1 dz2 + ez1 dz3

$2 = −ie−z1 dz2 − iez1 dz3

$3 = 31/4
√
−1+i

(e−z1 dz2 − ez1 dz3)

⇒

{
E = 〈∂z1〉
V = 〈∂z3 + e2z1∂z2 + 2(1+i)

3
√
−1+i

ez1 33/4∂z1〉

Set (x , y , p) := (cz3, cz2, e
2z1 ). Choose c s.t. V = 〈∂x + p∂y + p3/2∂p〉

and E = 〈∂p〉. By self-duality, this 2nd order ODE is y ′′ = (y ′)3/2 .

Exercise

Find syms, pick a basepoint, align Lie alg str to the reduced str eqns.
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y ′′ = (y ′)3/2 and the rest of the family

The transformation (x , y)
φ7−→ (y ,−x) prolongs to J2(C,C) as

(x , y , y ′, y ′′)
φ(2)

7−→ (y ,−x ,− 1
y ′ ,

y ′′

(y ′)3 ), and induces the equivalence:

y ′′ = (y ′)a
φ(2)

7−→ y ′′ = (y ′)3−a.

Note that φ has order 4, but this induces a Z2-action a 7→ 3− a. The

value a = 3
2 is the unique fixed point. The family y ′′ = (y ′)a has:

3-dim symmetry iff a ∈ C\{0, 1, 2, 3}. (Use Tresse’s I1, I2.) In this
case, f is solvable (so y ′′ = (y ′)a is not the ODE for ρ4 6= − 1

36 ) with:

[v1, v2] = (a− 1)v2, [v1, v3] = (a− 2)v3, [v2, v3] = 0.

essential parameter a(3− a).

Exercise

Relate syms of y ′′ = p(1−p2)+c(1−p2)3/2

x
to (∗). Show 1

ρ4 = −36(1 + 1
c2 ) . In

particular, c 6= 0, with redundancy c 7→ −c. Essential parameter: c2.
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Sample output 2: Embedding data

(∗∗) :

{
ζ1 = −ρ$3, ζ2 = 2ρ$3,

τ1 = 1
3ρ$1, τ2 = −ρ$1 − 1

3ρ$2, τ3 = 1
9ρ2$3

1 Get a linear map ω̄ : f ↪→ sl3 given by:

aw1 + bw2 + cw3 7→

0 a
3ρ

c
9ρ2

a ρc −ρa− b
3ρ

c b −ρc

 .

(Observe: f is a filtered deformation of g−.)
2 Cartan curvature κ obstructs ω̄ being a Lie alg morphism:

κ(x , y) = [ω̄(x), ω̄(y)]sl3 − ω̄([x , y ]f).

κ(w1,w2) = 0, κ(w1,w3) =
(

0 1 0
0 0 0
0 0 0

)
, κ(w2,w3) =

(
0 0 0
0 0 1
0 0 0

)
.

Rmk: The invariant ρ arises in the embedding, not in κ.

Cartan reduction output: (f, [·, ·]f) & ω̄ : f→ g . (More next time.)
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Application: Holonomy

On the principal G -bundle Ĝ = G ×P G , ω equivariantly extends to
a principal connection ω̂ ∈ Ω1(Ĝ; g). Get a notion of holonomy.

For homogeneous Cartan geometries (G → M, ω), invariant ω are
encoded by data (f, [·, ·]f) and ω̄ : f→ g. (More next time.) Use it to
compute holonomy (à la Ambrose–Singer, see e.g. Hammerl 2011):

Recall: κ(·, ·) = [ω̄(·), ω̄(·)]g − ω̄([·, ·]f). Define subspaces of g by:

hol0(ω̄) := 〈κ(x , y) : x , y ∈ f〉,
holi (ω̄) := holi−1(ω̄) + [ω̄(f), holi−1(ω̄)], i ≥ 1.

The holonomy is obtained at stabilization, i.e. hol(ω̄) := hol∞(ω̄).

Theorem

For the 2nd order ODE encoded by (∗) and (∗∗), hol(ω̄) = sl3.

This is obtained by simple direct computation: hol0 = 〈e10, e01〉,
hol1 = hol0 ⊕ 〈e11, f10, f01〉 ⊕ h, and hol∞ = hol2 = sl3.
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Summary

“Regular/normal” parabolic geometries  structure eqns.

Cartan reduction is a “top-down” classification method.

Strengths: systematic, conceptual approach is indep. of dim,
coordinate-free, uses only d and orbit normalization, get
structural information: e.g. curvature / holonomy.
Limitations: can have heavy branching, introducing coordinates
on Cartan reduction output requires effort (integration), data
management is an issue (many relations arise).

2nd order ODE: submax sym dim 3 with simply-transitive
models, i.e. trivial isotropy f0. For many other structures, e.g.
(2, 3, 5), ∃ multiply-transitive (f0 6= 0) non-flat models. This
aids the search for models, e.g. f0 · κ = 0 (next lecture).
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