Classifying homogeneous geometric structures (Lecture 2)

Dennis The
Department of Mathematics \& Statistics
UiT The Arctic University of Norway

9 February 2021
GRIEG project 2019/34/H/ST1/00636

Outline

Last time: A Cartan geometry $(\mathcal{G} \rightarrow M, \omega$) of type (G, P):

- ... is a "nice" soln to a Cartan equiv. problem for str. on M.
- ... is a curved deformation of ($G \rightarrow G / P, \omega_{G}$).
- ... can be viewed in terms of structure equations.

Today:

(1) Parabolic geometries: normalization conditions \& harmonic curvature κ_{H}.
(3) Cartan reduction method applied to 2 nd order ODE.

- Setting up structure equations.
- Implementing the (equivariant) reduction method.
- Interpreting the results.

Exhibiting homogeneous models

Q: How to exhibit a homogeneous model?

Example (2nd order ODE)

- Coordinate model: Let $p=y^{\prime}$. Then $y^{\prime \prime}=\exp (p)$ has syms

$$
\mathbf{X}_{1}=\partial_{x}, \quad \mathbf{X}_{2}=\partial_{y}, \quad \mathbf{X}_{3}=x \partial_{x}+(y-x) \partial_{y}-\partial_{p}
$$

- Lie-theoretic model: $\left(\mathfrak{f}, \mathfrak{f}^{0}\right)$ with $\mathfrak{f}^{0}=0, \mathfrak{f}=\left\langle e_{1}, e_{2}, e_{3}\right\rangle$ s.t.

$$
\left[e_{1}, e_{2}\right]=e_{2}, \quad\left[e_{1}, e_{3}\right]=-e_{2}+e_{3}, \quad\left[e_{2}, e_{3}\right]=0
$$

Endow $\mathfrak{f} / \mathfrak{f}^{0}$ with pair of lines $\left\langle e_{1}-e_{3}\right\rangle \oplus\left\langle e_{3}\right\rangle$. (Evaluate $E \oplus V=\left\langle\partial_{x}+p \partial_{y}+\exp (p) \partial_{p}\right\rangle \oplus\left\langle\partial_{p}\right\rangle$ at say $x=y=p=0$.)

- Cartan-theoretic model:

Q: What is the curvature / holonomy?
(These readily follow from the Cartan-theoretic description.)

Parabolic geometries

Parabolic subalgebras

Definition

Let \mathfrak{g} be a semisimple Lie alg. A subalgebra $\mathfrak{p} \subsetneq \mathfrak{g}$ is parabolic if $\mathfrak{p}=\mathfrak{g}_{\geq 0}$ for some \mathbb{Z}-grading $\mathfrak{g}=\bigoplus_{i} \mathfrak{g}_{i}$ (with $\left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right] \subset \mathfrak{g}_{i+j}$, $\forall i, j$).

- $\mathfrak{p}=\mathfrak{g}_{0} \ltimes \mathfrak{g}_{+}, \quad \mathfrak{g}_{0}=\mathfrak{z}\left(\mathfrak{g}_{0}\right) \times \mathfrak{g}_{0}^{\text {ss }}, \quad \mathfrak{g}_{+}=$nilradical of \mathfrak{p}.
- \exists grading element $Z \in \mathfrak{z}\left(\mathfrak{g}_{0}\right)$, i.e. $\left.\operatorname{ad}_{Z}\right|_{\mathfrak{g}_{j}}=\left.j \mathrm{id}\right|_{\mathfrak{g}_{j}}, \forall j \in \mathbb{Z}$.
- Defining $\mathfrak{g}^{i}:=\bigoplus_{j \geq i} \mathfrak{g}_{j}, \exists \mathfrak{p}$-inv. filtration on \mathfrak{g} with $\mathfrak{g}^{0}=\mathfrak{p}$.
- Ndg Killing form $B(x, y)=\operatorname{tr}\left(\mathrm{ad}_{x} \circ \operatorname{ad}_{y}\right)$ induces:
- $\left(\mathfrak{g}_{-}\right)^{*} \cong \mathfrak{g}_{+}$as \mathfrak{g}_{0}-modules (so $\mathfrak{g}=\mathfrak{g}_{-\nu} \oplus \ldots \oplus \mathfrak{g}_{\nu}$);
- $(\mathfrak{g} / \mathfrak{p})^{*} \cong \mathfrak{g}_{+}$as \mathfrak{p}-modules.
- Geometrically, the filtration is important! Grading is auxilliary.

Example $\left(\mathfrak{g}=\mathfrak{s l}_{3}, \mathfrak{p}=\mathfrak{p}_{1,2}=\right.$ (trace-free) upper triangular)
$\mathfrak{p}=\left(\begin{array}{c|cc|}0 & 1 & 2 \\ \hline-1 & 0 & 1 \\ \hline-2 \mid-1 & 0\end{array}\right) \subset \mathfrak{g}$. We have $\mathfrak{g}=\overbrace{\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}}^{\text {Heisenberg }} \oplus \overbrace{\mathfrak{g}_{0} \oplus \mathfrak{g}_{1} \oplus \mathfrak{g}_{2}}^{\mathfrak{p}}$, so
$\mathfrak{g} \hookrightarrow \operatorname{pr}\left(\mathfrak{g}_{-}, \mathfrak{g}_{0}\right) . \operatorname{In}$ fact, $\mathfrak{g} \cong \operatorname{pr}\left(\mathfrak{g}_{-}, \mathfrak{g}_{0}\right)$. (Next lecture, via $\left.H^{1}\left(\mathfrak{g}_{-}, \mathfrak{g}\right).\right)$

Aside: Root space decomposition

Let \mathfrak{g} be \mathbb{C}-semisimple, $\mathfrak{h} \subset \mathfrak{g}$ Cartan subalgebra.

Example $\left(\mathfrak{g}=\mathfrak{s l}_{2}\right)$

" $\mathfrak{S l}_{2}$-triple": $\mathrm{H}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), \mathrm{E}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), \mathrm{F}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$. Commutators:

$$
[H, E]=+2 E, \quad[H, F]=-2 F, \quad[E, F]=H
$$

Eigenvalues of $\operatorname{ad}_{\mathrm{H}}$ wrt $(\mathrm{F}, \mathrm{H}, \mathrm{E})$-basis are $-2,0,+2$. Here $\mathfrak{h}=\langle\mathrm{H}\rangle$.
Given $\alpha \in \mathfrak{h}^{*}$, define $\mathfrak{g}_{\alpha}=\{x \in \mathfrak{g}:[h, x]=\alpha(h) x, \forall h \in \mathfrak{h}\}$.
Root system: $\Delta=\left\{\alpha \in \mathfrak{h}^{*}: \mathfrak{g}_{\alpha} \neq 0\right\}$. Have $\Delta=\Delta^{+} \cup\left(-\Delta^{+}\right)$.

- Root space decomposition: $\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}$.
- Borel subalg $\mathfrak{b}:=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta^{+}} \mathfrak{g}_{\alpha}$.
- Defn: Any subalgebra $\mathfrak{p} \subsetneq \mathfrak{g}$ containing \mathfrak{b} is parabolic. (Equivalent to previous defn.)

Aside: Lie algebra gradings

Example (Root space decomp: $\mathfrak{g}=\mathfrak{s l}_{3}, \mathfrak{h}=$ trace-free diagonal)

Let $\epsilon_{i}\left(\operatorname{diag}\left(a_{1}, a_{2}, a_{3}\right)\right)=a_{i}$. Simple rts: $\alpha_{1}=\epsilon_{1}-\epsilon_{2}, \alpha_{2}=\epsilon_{2}-\epsilon_{3}$.

$$
\alpha \in \Delta
$$

Basis for \mathfrak{g}_{α}
Alt. notation
$\alpha_{1} \quad \alpha_{2}$
$E_{12} \quad E_{23}$
$e_{10} \quad e_{01}$

$$
\alpha_{1}+\alpha_{2} \quad-\alpha_{1} \quad-\alpha_{2} \quad-\alpha_{1}-\alpha_{2}
$$

$$
E_{13}
$$

e_{11} E_{21} E_{32}
E_{31}
f_{11}
$\ell:=\operatorname{rank}(\mathfrak{g})$. Simple roots $\left\{\alpha_{i}\right\}_{i=1}^{\ell} \subset \mathfrak{h}^{*}$, dual basis $\left\{Z_{i}\right\}_{i=1}^{\ell} \subset \mathfrak{h}$.
FACT: $\mathfrak{p} \subset \mathfrak{g} \leftrightarrow I_{\mathfrak{p}} \subset\{1, \ldots, \ell\}$. Grading element $Z:=\sum_{i \in I_{\mathfrak{p}}} Z_{i}$.

Example (Parabolics in $\mathfrak{s l}_{3}$)

$Z_{1}=\operatorname{diag}\left(\frac{2}{3},-\frac{1}{3},-\frac{1}{3}\right), Z_{2}=\operatorname{diag}\left(\frac{1}{3}, \frac{1}{3},-\frac{2}{3}\right)$.

Z	$\mathrm{Z}_{1}+\mathrm{Z}_{2}$	Z_{1}	Z_{2}
\mathfrak{p}	$\mathfrak{p}_{1,2}=\left(\begin{array}{cccc}0 & 1 & 2 \\ \hline-1 & 0 & 1 \\ \hline-2 & -1 & 0\end{array}\right)$	$\mathfrak{p}_{1}=\left(\begin{array}{c\|c\|c}0 & 1 & 1 \\ \hline-1 & 0 & 0 \\ \hline-1 & 0 & 0\end{array}\right)$	$\mathfrak{p}_{2}=\left(\begin{array}{c\|c\|c\|}0 & 0 & 1 \\ \hline 0 & 0 & 1 \\ \hline-1 & -1 & 0\end{array}\right)$
$\begin{array}{\|l\|l} \text { marked } \\ \text { Dinkkin } \\ \text { diagram } \end{array}$	$x \rightarrow$	$\times \longrightarrow$	$0-\times$

Parabolic geometries

G : ss Lie grp, P : parabolic subgrp, i.e. parabolic $\mathfrak{p}=\operatorname{Lie}(P) \subset \mathfrak{g}$.
A parabolic geom. is a Cartan geom. $(\mathcal{G} \rightarrow M, \omega$) of type (G, P) :

- $\omega_{u}: T_{u} \mathcal{G} \rightarrow \mathfrak{g}$ is a linear iso. $\forall u \in \mathcal{G}$;
- $R_{p}^{*} \omega=\operatorname{Ad}_{p^{-1}} \circ \omega, \forall p \in P$;
- $\omega(\widetilde{X})=X, \forall X \in \mathfrak{p}$, where $\widetilde{X}=$ fund. vertical v.f. for X.

Curvature $K=d \omega+\frac{1}{2}[\omega, \omega] \in \Omega^{2}(\mathcal{G} ; \mathfrak{g})$. Curvature function

$$
\kappa: \mathcal{G} \rightarrow \bigwedge^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g} \cong \bigwedge^{2} \mathfrak{g}_{+} \otimes \mathfrak{g}
$$

Definition

(1) regular if $\kappa\left(\mathfrak{g}^{i}, \mathfrak{g}^{j}\right) \subset \mathfrak{g}^{i+j+1}, \forall i, j$. ($\Longleftrightarrow \kappa$ is valued in the subspace of $\bigwedge^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g}$ on which Z has pos. eigenvalues.)
(2) normal if $\partial^{*} \kappa=0$, where $\partial^{*}: \bigwedge^{2} \mathfrak{g}_{+} \otimes \mathfrak{g} \rightarrow \mathfrak{g}_{+} \otimes \mathfrak{g}$ is def. by

$$
\partial^{*}(X \wedge Y \otimes v)=-Y \otimes[X, v]+X \otimes[Y, v]-[X, Y] \otimes v .
$$

$\therefore \kappa \in \operatorname{ker}\left(\partial^{*}\right)_{+}=\left\{\phi \in \operatorname{ker}\left(\partial^{*}\right): \mathrm{Z}(\phi)>0\right\}$ ("curvature module").

Fundamental theorem of parabolic geometries

Theorem (Tanaka, Morimoto, Čap-Schichl)

There is an equivalence of categories:
$\left\{\begin{array}{c}\text { regular, normal } \\ \text { parabolic geometry of type }(G, P) \\ (\mathcal{G} \rightarrow M, \omega)\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}\text { "underlying geometric } \\ \text { structure" on } M\end{array}\right\}$

Example (Underlying structures of parabolic geometries)

Conformal, projective, $(2,3,5)$, CR, 2nd order ODE systems, ...
The formulation above is a paraphrasing. More precisely:

- If $\operatorname{pr}\left(\mathfrak{g}_{-}, \mathfrak{g}_{0}\right) \cong \mathfrak{g}$, then "underlying str." is a filtered G_{0}-str.
- If $\operatorname{pr}\left(\mathfrak{g}_{-}\right) \cong \mathfrak{g}$, then "underlying str." is a distribution.
- Notable exceptions when \mathfrak{g} is simple:
- projective: $\mathfrak{g}=\mathfrak{s l}(n+1, \mathbb{R}), \mathfrak{p}=\mathfrak{s t a b}\left(\left[e_{1}\right]\right)$.
- contact projective: $\mathfrak{g}=\mathfrak{s p}(2 n, \mathbb{R}), \mathfrak{p}=\mathfrak{s t a b}\left(\left[e_{1}\right]\right)$.

Kostant's harmonic theory

Recall: $\left(\mathfrak{g}_{-}\right)^{*} \cong_{\mathfrak{g}_{0}}(\mathfrak{g} / \mathfrak{p})^{*} \cong_{\mathfrak{p}} \mathfrak{g}_{+}$. Codomain of κ can be viewed in:

$$
\begin{aligned}
& \bigwedge^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g} \\
& \text { IR } \\
& \cdots \stackrel{\partial^{*}}{\leftarrow} \quad \bigwedge^{2} \mathfrak{g}_{+} \otimes \mathfrak{g} \quad \stackrel{\partial^{*}}{\leftarrow} \quad \cdots \\
& 12 \\
& \cdots \xrightarrow{\partial} \quad \bigwedge^{2}\left(\mathfrak{g}_{-}\right)^{*} \otimes \mathfrak{g} \quad \xrightarrow{\partial} \quad \cdots
\end{aligned}
$$

Kostant Laplacian: $\quad \square=\partial \partial^{*}+\partial^{*} \partial$ Algebraic Hodge decomp:

$$
\bigwedge^{2}(\mathfrak{g}-)^{*} \otimes \mathfrak{g}=\overbrace{\operatorname{im}\left(\partial^{*}\right) \oplus \underbrace{\operatorname{ker}\left(\partial^{*}\right)}_{\operatorname{ker}(\partial)}), ~ ; i(\square)}^{\operatorname{ker}(\partial)},
$$

$H_{2}\left(\mathfrak{g}_{+}, \mathfrak{g}\right):=\frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)} \cong_{\mathfrak{g}_{0}} \operatorname{ker}(\square) \cong_{\mathfrak{g}_{0}} \frac{\operatorname{ker}(\partial)}{\operatorname{im}(\partial)}=: H^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$

Harmonic (homological) curvature

For (regular / normal) parabolic geometries, define

$$
\kappa_{H}: \mathcal{G} \rightarrow \frac{\operatorname{ker}\left(\partial^{*}\right)}{\operatorname{im}\left(\partial^{*}\right)}=: H_{2}\left(\mathfrak{g}_{+}, \mathfrak{g}\right), \quad \kappa_{H}:=\kappa \bmod \operatorname{im}\left(\partial^{*}\right)
$$

Theorem (Harmonic curvature completely obstructs flatness)

$\kappa_{H}=0$ iff $\kappa=0$ iff (locally) equivalent to $\left(G \rightarrow G / P, \omega_{G}\right)$.

Examples (Harmonic curvature)

- conformal geometry: Weyl $(n \geq 4)$ or Cotton $(n=3)$.
- $(2,3,5)$-distributions: binary quartic.
- 2nd order ODE: Tresse (relative) invariants I_{1}, I_{2}.
$H_{2}\left(\mathfrak{g}_{+}, \mathfrak{g}\right)$ is a completely reducible \mathfrak{p}-rep, i.e. \mathfrak{g}_{+}acts trivially.
\therefore Study $H_{2}\left(\mathfrak{g}_{+}, \mathfrak{g}\right) \cong_{\mathfrak{g}_{0}} H^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$. (Use Kostant's thm - next lecture.)

Cartan reduction applied to 2 nd order ODE

Cartan reduction - starting point

We'll describe a "top-down" method. (Need not be "homog.", but we need "locally const type" for bundle reductions.)
Input: (G, P). Fund. thm. \Rightarrow abstract str. eqns for $(\mathcal{G} \rightarrow M, \omega)$, i.e. $d \omega=-\frac{1}{2}[\omega, \omega]+K$. Since ω is P-equivariant, then so is K.

Cartan reduction is a combination of: (i) orbit normalization, and
(ii) integrability conditions $\left(d^{2}=0\right)$. Key ideas.

- Use κ (\& derivatives) to reduce str grp P. (Start with κ_{H}.)
- Reductions $\mathcal{H} \hookrightarrow \mathcal{G}$ (also subject to str grp action) are equipped with coframings, and sym. $\operatorname{dim} . \leq \operatorname{dim}(\mathcal{H})$.
- Case branching is based on different orbit types.
- Organize based on κ_{H} type, sym dim, further invariants, ...
- Some branches are extraneous due to $d^{2}=0$.
- Output: List of homogeneous models. For each:
(1) Adapted coframings with constant structure functions.
(2) Embedding data, i.e. how does the original ω restrict?

Integration is only used on a given output (\rightsquigarrow coordinate model).

2nd order ODE

Tresse (1896): For $y^{\prime \prime}=f\left(x, y, y^{\prime}\right), \exists$ two key relative invariants
$I_{1}=\left(D_{x}\right)^{2}\left(f_{p p}\right)-f_{p} D_{x}\left(f_{p p}\right)-4 D_{x}\left(f_{y p}\right)+4 f_{p} f_{y p}-3 f_{y} f_{p p}+6 f_{y y}, \quad I_{2}=f_{p p p p}$, where $D_{x}:=\partial_{x}+p \partial_{y}+f \partial_{p}$. Homogeneous classification (over \mathbb{C}):

Sym dim	Coordinate models $\left(p=y^{\prime}\right)$
8	$y^{\prime \prime}=0$
3	$y^{\prime \prime}=p^{a}, \quad y^{\prime \prime}=\frac{p\left(1-p^{2}\right)+c\left(1-p^{2}\right)^{3 / 2}}{x}$ $y^{\prime \prime}=\exp (p), \quad y^{\prime \prime}=(x p-y)^{3}$

The parameters a, c have exclusions and redundancies. (Later.)
Why adopt the Cartan approach? Is it overkill?

- Reasoning: This geometry is low-dim. One could obtain the list via classification of Lie alg of vector fields in the plane, i.e. prolong these to $J^{2}(\mathbb{C}, \mathbb{C})$ and find their invariant ODEs.
- Limitations of v.f. approach to classification:
- extraneous Lie algebras (need to solve PDE for each).
- v.f. classification is incomplete in $\operatorname{dim} \geq 3$.
- exclusions / redundancies? e.g. $y^{\prime \prime}=p^{3}$ has 8 -dim sym.
- what is the curvature / holonomy of these models?

Parabolic geometry associated to 2nd order ODE

Fund. Thm. \Rightarrow any 2 nd order ODE corresponds to a regular, normal parabolic geometry $\left(\mathcal{G}^{8} \rightarrow M^{3}, \omega\right)$ of type $\left(S L_{3}, P=P_{1,2}\right)$.

$$
\omega=\left(\begin{array}{ccc}
\frac{2 \zeta_{1}+\zeta_{2}}{3} & \tau_{1} & \tau_{3} \\
\varpi_{1} & \frac{-\zeta_{1}+\zeta_{2}}{3} & \frac{\tau_{2}}{\varpi_{3}} \\
\varpi_{2} & \frac{-\zeta_{1}-2 \zeta_{2}}{3}
\end{array}\right) \in \Omega^{1}\left(\mathcal{G} ; \mathfrak{s l}_{3}\right) .
$$

- Initial structure group $\operatorname{dim}=\operatorname{dim}(P)=5$; sym $\operatorname{dim} \leq 8$.
- Grading element: $Z=Z_{1}+Z_{2}$. Bi-grading element: $\left(Z_{1}, Z_{2}\right)$.
- ω is an abstract coframing; ϖ_{i} are semi-basic forms.
- Regular / normal $\Rightarrow \kappa \in \operatorname{ker}\left(\partial^{*}\right)_{+}$.
- Since $\mathfrak{g}=\mathfrak{s l}_{3}$ is a matrix Lie algebra, then $\frac{1}{2}[\omega, \omega]=\omega \wedge \omega$, i.e. matrix multiply \& wedge the 1 -form components.
- Useful later: given fund.v.f. $\widetilde{Z_{1}}$, we have $\omega\left(\widetilde{Z_{1}}\right)=Z_{1}$, so $\zeta_{1}\left(\widetilde{Z_{1}}\right)=1, \zeta_{2}\left(\widetilde{Z_{1}}\right)=0, \tau_{1}\left(\widetilde{Z_{1}}\right)=0$, etc.

Structure equations

Curvature module $\operatorname{ker}\left(\partial^{*}\right)_{+}$is 4-dim:

Hom.	Bi-hom.	2-chain in $\bigwedge^{2} \mathfrak{g}+\otimes \mathfrak{g}$	2-cochain in $\bigwedge^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g}$
+4	$(3,1)$	$e_{10} \wedge e_{11} \otimes e_{10}$	$f_{10}^{*} \wedge f_{11}^{*} \otimes e_{10}$
	$(1,3)$	$e_{01} \wedge e_{11} \otimes e_{01}$	$f_{01}^{*} \wedge f_{11}^{*} \otimes e_{01}$
+5	$(3,2)$	$e_{10} \wedge e_{11} \otimes e_{11}$	$f_{10}^{*} \wedge f_{11}^{*} \otimes e_{11}$
	$(2,3)$	$e_{01} \wedge e_{11} \otimes e_{11}$	$f_{01}^{*} \wedge f_{11}^{*} \otimes e_{11}$

$$
\text { Killing form } \Rightarrow\left(f_{10}^{*}, f_{01}^{*}, f_{11}^{*}\right) \mapsto\left(6 e_{10}, 6 e_{01}, 6 e_{11}\right)
$$

"Primary" structure equations: $d \omega=-\omega \wedge \omega+K$

$$
\begin{aligned}
d \tau_{3} & =-\left(\zeta_{1}+\zeta_{2}\right) \wedge \tau_{3}-\tau_{1} \wedge \tau_{2}+B_{1} \varpi_{1} \wedge \varpi_{3}+B_{2} \varpi_{2} \wedge \varpi_{3} \\
d \tau_{2} & =-\zeta_{2} \wedge \tau_{2}+\tau_{3} \wedge \varpi_{1}+A_{2} \varpi_{2} \wedge \varpi_{3} \\
d \tau_{1} & =-\zeta_{1} \wedge \tau_{1}-\tau_{3} \wedge \varpi_{2}+A_{1} \varpi_{1} \wedge \varpi_{3} \\
d \zeta_{2} & =\tau_{1} \wedge \varpi_{1}-2 \tau_{2} \wedge \varpi_{2}-\tau_{3} \wedge \varpi_{3} \\
d \zeta_{1} & =-2 \tau_{1} \wedge \varpi_{1}+\tau_{2} \wedge \varpi_{2}-\tau_{3} \wedge \varpi_{3} \quad \text { str eqns for } \mathfrak{g}=\mathfrak{s l}_{3} \\
d \varpi_{1} & =\zeta_{1} \wedge \varpi_{1}-\tau_{2} \wedge \varpi_{3} \\
d \varpi_{2} & =\zeta_{2} \wedge \varpi_{2}+\tau_{1} \wedge \varpi_{3} \\
d \varpi_{3} & =\varpi_{1} \wedge \varpi_{2}+\left(\zeta_{1}+\zeta_{2}\right) \wedge \varpi_{3}
\end{aligned}
$$

Equivariancy: vertical variations

Since ω is P-equivariant, so is $K: R_{p}^{*} K=\operatorname{Ad}_{p^{-1}} \circ K, \forall p \in P$. Infinitesimally, $\mathcal{L}_{\widetilde{X}} K=-\operatorname{ad}_{X} \circ K, \forall X \in \mathfrak{p}$.
"Secondary" str. eqns (Exercise: Derive these in two ways.):

$$
\begin{aligned}
& d\left(A_{1}\right)=-\left(3 \zeta_{1}+\zeta_{2}\right) A_{1}+\alpha_{1} \\
& d\left(A_{2}\right)=-\left(\zeta_{1}+3 \zeta_{2}\right) A_{2}+\alpha_{2} \\
& d\left(B_{1}\right)=-\left(3 \zeta_{1}+2 \zeta_{2}\right) B_{1}+\tau_{2} A_{1}+\beta_{1} \\
& d\left(B_{2}\right)=-\left(2 \zeta_{1}+3 \zeta_{2}\right) B_{2}-\tau_{1} A_{2}+\beta_{2}
\end{aligned}
$$

where $\alpha_{i}=a_{i j} \varpi_{j}$ and $\beta_{i}=b_{i j} \varpi_{j}$ are semi-basic forms. Comments:

- Cartan would write $\delta\left(A_{1}\right)=-\left(3 \zeta_{1}+\zeta_{2}\right) A_{1}$ ("vertical variation").
- I've abused notation with α_{i} earlier. (Not simple roots above.) Bianchi identities ($d^{2}=0$, given primary / secondary str. eqns.):

$$
a_{21}=-B_{2}, \quad a_{12}=B_{1}, \quad b_{12}=b_{21} .
$$

This completes the setup of the structure equations.

Cartan reduction - first steps

Goal: Find non-flat homogeneous models.
Note $A_{1}, A_{2}, B_{1}, B_{2}$ are undetermined functions on \mathcal{G}. Start with A_{1}, A_{2}, i.e. harmonic curvature κ_{H}. (Note: Work over \mathbb{C}.)

$$
\delta\left(A_{1}\right)=-\left(3 \zeta_{1}+\zeta_{2}\right) A_{1}, \quad \delta\left(A_{2}\right)=-\left(\zeta_{1}+3 \zeta_{2}\right) A_{2} .
$$

Coeffs of ζ_{1} and $\zeta_{2} \rightsquigarrow \mathfrak{p}$-action on $\left(A_{1}, A_{2}\right)$-space:

$$
3 A_{1} \frac{\partial}{\partial A_{1}}+A_{2} \frac{\partial}{\partial A_{2}}, \quad A_{1} \frac{\partial}{\partial A_{1}}+3 A_{2} \frac{\partial}{\partial A_{2}} .
$$

(More precisely: Evaluate 1-forms on fund. v.f. $\widetilde{Z_{1}}$ and $\widetilde{Z_{2}}$.)
Have linearly indep. (complex) scalings, so we case-split:
(1) $A_{1}=A_{2}=0$: by Bianchi identities, we get the flat model;
(2) $A_{1} \neq 0, A_{2}=0$ (or dually, $A_{1}=0, A_{2} \neq 0$);
(3) $A_{1} A_{2} \neq 0$. (We'll illustrate key ideas in this branch.)

$$
\begin{aligned}
& d\left(A_{1}\right)=-\left(3 \zeta_{1}+\zeta_{2}\right) A_{1}+\alpha_{1} \\
& d\left(A_{2}\right)=-\left(\zeta_{1}+3 \zeta_{2}\right) A_{2}+\alpha_{2}
\end{aligned}
$$

Given $A_{1} A_{2} \neq 0$ (assumed locally true), we now normalize:

- $A_{1}=A_{2}=1$. Get sub-bundle $\mathcal{H} \hookrightarrow \mathcal{G}$. Fibre $\operatorname{dim}=3$; $\operatorname{sym} \operatorname{dim} \leq \operatorname{dim}(\mathcal{H})=6$.
- On $\mathcal{H}, \zeta_{1}=\frac{3 \alpha_{1}-\alpha_{2}}{8}, \zeta_{2}=\frac{3 \alpha_{2}-\alpha_{1}}{8}$ are semi-basic. (Implicitly, I will henceforth omit "pullback" notation for forms.)

$$
\left\{\begin{array} { l }
{ d (B _ { 1 }) = - (3 \zeta _ { 1 } + 2 \zeta _ { 2 }) B _ { 1 } + \tau _ { 2 } A _ { 1 } + \beta _ { 1 } } \\
{ d (B _ { 2 }) = - (2 \zeta _ { 1 } + 3 \zeta _ { 2 }) B _ { 2 } - \tau _ { 1 } A _ { 2 } + \beta _ { 2 } }
\end{array} \quad \stackrel { \text { on } \mathcal { H } } { \Rightarrow } \left\{\begin{array}{l}
\delta\left(B_{1}\right)=\tau_{2} \\
\delta\left(B_{2}\right)=-\tau_{1}
\end{array}\right.\right.
$$

On \mathcal{H}, coeffs of $\tau_{1}, \tau_{2} \rightsquigarrow$ translations $\partial_{B_{2}},-\partial_{B_{1}}$ on $\left(B_{1}, B_{2}\right)$-space, so normalize to get a subbundle $\mathcal{H}^{\prime} \hookrightarrow \mathcal{H}$:

- $B_{1}=B_{2}=0$. Moreover, $\tau_{1}=\beta_{2}, \tau_{2}=-\beta_{1}$ are semi-basic.
- Fibre $\operatorname{dim} .=1$; sym $\operatorname{dim} \leq \operatorname{dim}\left(\mathcal{H}^{\prime}\right)=4$.

$A_{1} A_{2} \neq 0$ continued...

Q: On \mathcal{H}^{\prime}, can we normalize the residual 1-dim str grp?

On \mathcal{H}^{\prime}, evaluate $d \omega$ in two ways, e.g. for τ_{1}, we have:
(1) $d \tau_{1}=-\zeta_{1} \wedge \tau_{1}-\tau_{3} \wedge \varpi_{2}+A_{1} \varpi_{1} \wedge \varpi_{3}$; impose relations.
(2) Substitute $\tau_{1}=\beta_{2}=b_{2 j} \varpi_{j}$. Take d.

Let MESS be the difference above, which must equal zero (on \mathcal{H}^{\prime}).
Let $\varpi_{123}:=\varpi_{1} \wedge \varpi_{2} \wedge \varpi_{3}$. We find that:

$$
0=M E S S \wedge \varpi_{1} \wedge \varpi_{3}=-\varpi_{123} \wedge\left(d\left(b_{22}\right)+\tau_{3}\right)
$$

Get a translation $-\partial_{b_{22}}$ on b_{22}-space. Normalize to get $\mathcal{H}^{\prime \prime} \hookrightarrow \mathcal{H}^{\prime}$ via $b_{22}=0$ (and $\left.\tau_{3}=T_{3 j} \varpi_{j}\right)$. On $\mathcal{H}^{\prime \prime}$, we have $\left(\varpi_{1}, \varpi_{2}, \varpi_{3}\right)$ and 0 -dim str. grp. Conclusion: sym. $\operatorname{dim} \leq 3$ for $A_{1} A_{2} \neq 0$ branch.

Now impose compatibility conditions as above and $d^{2}=0$. Get a homogeneous model if all str. coeffs are constant wrt ϖ_{i}, e.g. $T_{3 j}$. In this case, Lie's 3 rd thm $\Rightarrow \mathcal{H}^{\prime \prime}$ is locally a Lie group F.

Interpreting the output of Cartan reduction

Sample output 1: Reduced structure equations

One branch of the Cartan reduction yields a 1-parameter family:
For $\rho \in \mathbb{C}^{\times}$, we have an adapted coframing $\left(\varpi_{1}, \varpi_{2}, \varpi_{3}\right)$ with:

$$
(*):\left\{\begin{array}{l}
d \varpi_{1}=\left(2 \rho \varpi_{1}+\frac{1}{3 \rho} \varpi_{2}\right) \wedge \varpi_{3} \\
d \varpi_{2}=\left(\frac{1}{3 \rho} \varpi_{1}-2 \rho \varpi_{2}\right) \wedge \varpi_{3} \\
d \varpi_{3}=\varpi_{1} \wedge \varpi_{2}
\end{array}\right.
$$

- Residual str. grp: $\left(\varpi_{1}, \varpi_{2}, \varpi_{3}\right) \mapsto\left(\sigma \varpi_{1}, \frac{1}{\sigma^{3}} \varpi_{2}, \frac{1}{\sigma^{2}} \varpi_{3}\right)$, where $\sigma^{8}=1$, which induces $\rho \mapsto \rho \sigma^{2}$. Essential parameter: ρ^{4}.
- Contact distribution $C=\operatorname{ker}\left\{\varpi_{3}\right\}=E \oplus V$, where $E=\operatorname{ker}\left\{\varpi_{2}, \varpi_{3}\right\}, V=\operatorname{ker}\left\{\varpi_{1}, \varpi_{3}\right\}$.
- "Self-dual": $E \leftrightarrow V$ via $\left(\varpi_{1}, \varpi_{2}, \varpi_{3}\right) \mapsto\left(-i \varpi_{2}, i \varpi_{1},-\varpi_{3}\right)$.
- All str. fcns are constant, so Lie's 3rd thm $\Rightarrow\left\{\varpi_{i}\right\}$ is a basis for the left-inv. 1-forms on a (local) Lie group F. What is \mathfrak{f} ?
- Killing form is ndg iff $\rho^{4} \neq-\frac{1}{36}$ iff $\mathfrak{f} \cong \mathfrak{s l}_{2}$.
- When $\rho^{4}=-\frac{1}{36}, \mathfrak{f}$ is solvable, with derived series $=[3,2,0]$.

Interpreting the structure equations

Cartan reduction involves only structure group normalization \& exterior differentiation. Integration is not involved in this process.

To interpret the str eqns $(*)$ in classical terms, we need to integrate them, e.g. find $\varpi_{1}, \varpi_{2}, \varpi_{3}$ in coords (x, y, p) s.t.
(1) $\varpi_{3}=\langle d y-p d x\rangle,\left\langle\varpi_{2}, \varpi_{3}\right\rangle=\langle d y-p d x, d p-f d x\rangle,\left\langle\varpi_{1}, \varpi_{3}\right\rangle=\langle d x, d y\rangle$, i.e. $E=\left\langle\partial_{x}+p \partial_{y}+f \partial_{p}\right\rangle, V=\left\langle\partial_{p}\right\rangle$, for some function $f=f(x, y, p)$.
(2) the structure equations $(*)$ are satisfied.
(Above, $\langle\cdots\rangle$ refers to arbitrary linear combinations with function coeffs.)
Let's outline some details in the exceptional $\rho^{4}=-\frac{1}{36}$ case.
What 2nd order ODE does this correspond to?

Example of integrating structure equations

Set $\rho:=\frac{\exp (i \pi / 4)}{\sqrt{6}},\left\{w_{i}\right\} \&\left\{\varpi_{i}\right\}$ dual. Then $\mathfrak{f}^{(1)}=\operatorname{span}_{\mathbb{C}}\left\{w_{1}-i w_{2}, w_{3}\right\}$, $\mathfrak{f}^{(2)}=0$, and $0 \neq\left.\operatorname{ad}_{w_{1}}\right|_{f^{(1)}}$ trace-free \& diagonalizable. Define $\left(w_{1}^{\prime}, w_{2}^{\prime}, w_{3}^{\prime}\right)=\left(a w_{1}, w_{1}-i w_{2}+b w_{3}, w_{1}-i w_{2}-b w_{3}\right)$. We find $\exists a, b$ s.t.

$$
\left\{\begin{array} { l }
{ [w _ { 1 } ^ { \prime } , w _ { 2 } ^ { \prime }] = w _ { 2 } ^ { \prime } } \\
{ [w _ { 1 } ^ { \prime } , w _ { 3 } ^ { \prime }] = - w _ { 3 } ^ { \prime } } \\
{ [w _ { 2 } ^ { \prime } , w _ { 3 } ^ { \prime }] = 0 }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
d \varpi_{1}^{\prime}=0 \\
d \varpi_{2}^{\prime}=-\varpi_{1}^{\prime} \wedge \varpi_{2}^{\prime} \\
d \varpi_{3}^{\prime}=+\varpi_{1}^{\prime} \wedge \varpi_{3}^{\prime}
\end{array}\right.\right.
$$

Poincaré lemma $\Rightarrow \varpi_{1}^{\prime}=d z_{1}$. Other eqns: $0=d\left(e^{z_{1}} \varpi_{2}^{\prime}\right)=d\left(e^{-z_{1}} \varpi_{3}^{\prime}\right)$, so $\varpi_{2}^{\prime}=e^{-z_{1}} d z_{2}, \varpi_{3}^{\prime}=e^{z_{1}} d z_{3}$. Passing back to ϖ_{i}, we get:

$$
\left\{\begin{array} { l }
{ \varpi _ { 1 } = \frac { 3 ^ { 1 / 4 } } { 2 } (- 1 + i) ^ { 3 / 2 } d z _ { 1 } + e ^ { - z _ { 1 } } d z _ { 2 } + e ^ { z _ { 1 } } d z _ { 3 } } \\
{ \varpi _ { 2 } = - i ^ { - z _ { 1 } } d z _ { 2 } - i e ^ { z _ { 1 } } d z _ { 3 } } \\
{ \varpi _ { 3 } = \frac { 3 ^ { 1 / 4 } } { \sqrt { - 1 + i } } (e ^ { - z _ { 1 } } d z _ { 2 } - e ^ { z _ { 1 } } d z _ { 3 }) }
\end{array} \Rightarrow \left\{\begin{array}{l}
E=\left\langle\partial_{z_{1}}\right\rangle \\
V=\left\langle\partial_{z_{3}}+e^{2 z_{1}} \partial_{z_{2}}+\frac{2(1+i)}{3 \sqrt{-1+i}} e^{z_{1}} 3^{3 / 4} \partial_{z_{1}}\right\rangle
\end{array}\right.\right.
$$

Set $(x, y, p):=\left(c z_{3}, c z_{2}, e^{2 z_{1}}\right)$. Choose c s.t. $V=\left\langle\partial_{x}+p \partial_{y}+p^{3 / 2} \partial_{p}\right\rangle$ and $E=\left\langle\partial_{p}\right\rangle$. By self-duality, this 2nd order ODE is $y^{\prime \prime}=\left(y^{\prime}\right)^{3 / 2}$.

Exercise

Find syms, pick a basepoint, align Lie alg str to the reduced str eqns.

$y^{\prime \prime}=\left(y^{\prime}\right)^{3 / 2}$ and the rest of the family

The transformation $(x, y) \stackrel{\phi}{\longmapsto}(y,-x)$ prolongs to $J^{2}(\mathbb{C}, \mathbb{C})$ as $\left(x, y, y^{\prime}, y^{\prime \prime}\right) \xrightarrow{\phi^{(2)}}\left(y,-x,-\frac{1}{y^{\prime}}, \frac{y^{\prime \prime}}{\left(y^{\prime}\right)^{3}}\right)$, and induces the equivalence:

$$
y^{\prime \prime}=\left(y^{\prime}\right)^{a} \quad \xrightarrow{\phi^{(2)}} \quad y^{\prime \prime}=\left(y^{\prime}\right)^{3-a} .
$$

Note that ϕ has order 4 , but this induces a \mathbb{Z}_{2}-action $a \mapsto 3-a$. The value $a=\frac{3}{2}$ is the unique fixed point. The family $y^{\prime \prime}=\left(y^{\prime}\right)^{a}$ has:

- 3-dim symmetry iff $a \in \mathbb{C} \backslash\{0,1,2,3\}$. (Use Tresse's I_{1}, I_{2}.) In this case, \mathfrak{f} is solvable (so $y^{\prime \prime}=\left(y^{\prime}\right)^{a}$ is not the ODE for $\rho^{4} \neq-\frac{1}{36}$) with:

$$
\left[v_{1}, v_{2}\right]=(a-1) v_{2}, \quad\left[v_{1}, v_{3}\right]=(a-2) v_{3}, \quad\left[v_{2}, v_{3}\right]=0 .
$$

- essential parameter $a(3-a)$.

Exercise

Relate syms of $y^{\prime \prime}=\frac{p\left(1-\rho^{2}\right)+c\left(1-\rho^{2}\right)^{3 / 2}}{x}$ to $(*)$. Show $\frac{1}{\rho^{4}}=-36\left(1+\frac{1}{c^{2}}\right)$. In particular, $c \neq 0$, with redundancy $c \mapsto-c$. Essential parameter: c^{2}.

Sample output 2: Embedding data

$$
(* *):\left\{\begin{array}{l}
\zeta_{1}=-\rho \varpi_{3}, \quad \zeta_{2}=2 \rho \varpi_{3}, \\
\tau_{1}=\frac{1}{3 \rho} \varpi_{1}, \quad \tau_{2}=-\rho \varpi_{1}-\frac{1}{3 \rho} \varpi_{2}, \quad \tau_{3}=\frac{1}{9 \rho^{2}} \varpi_{3}
\end{array}\right.
$$

(1) Get a linear map $\bar{\omega}: \mathfrak{f} \hookrightarrow \mathfrak{S l}_{3}$ given by:

$$
a w_{1}+b w_{2}+c w_{3} \quad \mapsto \quad\left(\begin{array}{ccc}
0 & \frac{a}{3 \rho} & \frac{c}{9 \rho^{2}} \\
a & \rho c & -\rho a-\frac{b}{3 \rho} \\
c & b & -\rho c
\end{array}\right)
$$

(Observe: \mathfrak{f} is a filtered deformation of \mathfrak{g}_{-}.)
(2) Cartan curvature κ obstructs $\bar{\omega}$ being a Lie alg morphism:

- $\kappa(x, y)=[\bar{\omega}(x), \bar{\omega}(y)]_{\mathfrak{s}_{3}}-\bar{\omega}\left([x, y]_{\mathfrak{f}}\right)$.
- $\kappa\left(w_{1}, w_{2}\right)=0, \kappa\left(w_{1}, w_{3}\right)=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right), \kappa\left(w_{2}, w_{3}\right)=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$.

Rmk: The invariant ρ arises in the embedding, not in κ.
Cartan reduction output: $\left(\mathfrak{f},[\cdot, \cdot]_{\mathfrak{f}}\right) \& \bar{\omega}: \mathfrak{f} \rightarrow \mathfrak{g}$. (More next time.)

Application: Holonomy

On the principal G-bundle $\widehat{\mathcal{G}}=\mathcal{G} \times{ }_{P} G, \omega$ equivariantly extends to a principal connection $\widehat{\omega} \in \Omega^{1}(\widehat{\mathcal{G}} ; \mathfrak{g})$. Get a notion of holonomy.

For homogeneous Cartan geometries $(\mathcal{G} \rightarrow M, \omega)$, invariant ω are encoded by data ($\mathfrak{f},[\cdot, \cdot]_{\mathfrak{f}}$) and $\bar{\omega}: \mathfrak{f} \rightarrow \mathfrak{g}$. (More next time.) Use it to compute holonomy (à la Ambrose-Singer, see e.g. Hammerl 2011):

Recall: $\kappa(\cdot, \cdot)=[\bar{\omega}(\cdot), \bar{\omega}(\cdot)]_{\mathfrak{g}}-\bar{\omega}\left([\cdot, \cdot]_{\mathfrak{f}}\right)$. Define subspaces of \mathfrak{g} by:

$$
\begin{aligned}
& \mathfrak{h o l}^{0}(\bar{\omega}):=\langle\kappa(x, y): x, y \in \mathfrak{f}\rangle, \\
& \mathfrak{h o l}^{i}(\bar{\omega}):=\mathfrak{h o l}^{i-1}(\bar{\omega})+\left[\bar{\omega}(\mathfrak{f}), \mathfrak{h o l}{ }^{i-1}(\bar{\omega})\right], \quad i \geq 1 .
\end{aligned}
$$

The holonomy is obtained at stabilization, i.e. $\mathfrak{h o l}(\bar{\omega}):=\mathfrak{h o l}^{\infty}(\bar{\omega})$.

Theorem

For the $2 n d$ order $O D E$ encoded by $(*)$ and $(* *), \mathfrak{h o l}(\bar{\omega})=\mathfrak{s l l}_{3}$.
This is obtained by simple direct computation: $\mathfrak{h o l}{ }^{0}=\left\langle e_{10}, e_{01}\right\rangle$, $\mathfrak{h o l}{ }^{1}=\mathfrak{h o l}^{0} \oplus\left\langle e_{11}, f_{10}, f_{01}\right\rangle \oplus \mathfrak{h}$, and $\mathfrak{h o l}{ }^{\infty}=\mathfrak{h o l}^{2}=\mathfrak{s l}_{3}$.

- "Regular/normal" parabolic geometries \rightsquigarrow structure eqns.
- Cartan reduction is a "top-down" classification method.
- Strengths: systematic, conceptual approach is indep. of dim, coordinate-free, uses only d and orbit normalization, get structural information: e.g. curvature / holonomy.
- Limitations: can have heavy branching, introducing coordinates on Cartan reduction output requires effort (integration), data management is an issue (many relations arise).
- 2nd order ODE: submax sym dim 3 with simply-transitive models, i.e. trivial isotropy \mathfrak{f}^{0}. For many other structures, e.g. $(2,3,5), \exists$ multiply-transitive $\left(f^{0} \neq 0\right)$ non-flat models. This aids the search for models, e.g. $\mathfrak{f}^{0} \cdot \kappa=0$ (next lecture).

