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Previously

Asymptotically de Sitter spacetimes

Einstein field equations

Rab −
1

2
Rgab + Λgab = Tab, (1)

with Λ > 0 and

gab = σ−2gab, Tab = σqτab, q ≥ 0. (2)

Characterized the geometry of conformal infinity Σ (n = 4) in
terms of constraints relating conformal fundamental forms

K̊ab, Wan̂bn̂, ∇bA
⊤
an̂

b, ⊤̊Bab

and the stress-energy tensor density τab.
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Spacetimes with initial isotropic singularity

Example:
Friedmann–Lemâıtre–Robertson–Walker (FLRW) metric

We want to solve (n = 4,Λ = 0)

R̃ab −
1

2
R̃g̃ab = T̃ab, (3)

with
g̃ = −dt2 + a2 (t)

(
dx2 + dy2 + dz2

)
(4)

and the perfect fluid stress-energy tensor:

T̃ab = (ρ + p) vavb + pg̃ab, (5)

where ρ = ρ(t) is the density, p = p(t) is the pressure and v ≡ ∂t
is the four-velocity.

Equation of state:

p = wρ, −1

3
≤ w ≤ 1 (6)
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Spacetimes with initial isotropic singularity

Solution with initial singularity at t = 0 =⇒ a(0) = 0:

a = c1t
2

3(w+1) , ρ = c2t
−2, c1, c2 = const. (7)

so
g̃ = −dt2 + c2

1 t
4

3(w+1)
(
dx2 + dy2 + dz2

)
. (8)

Introduce new time coordinate τ defined by

dt

c1t
2

3(w+1)

= dτ (9)

Then

g̃ = c3τ
4

3w+1
(
−dτ2 + dx2 + dy2 + dz2

)
= Ωα

(
−dτ2 + dx2 + dy2 + dz2

)
, α =

4

3w + 1
> 0,

(10)

if
(
w ̸= −1

3

)
and the initial isotropic singularity can be defined as

a spacelike hypersurface where Ω = 0.
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Conformal geometry of initial singularity

A. R. Gover, J. Kopiński and A. Waldron, The geometry of an
isotropic Big Bang, coming soon.

Isotropic singularity spacetime (ISS): n-dimensional spacetime(
M̃, g̃ab

)
that arises as follows. There is a smooth manifold M

with equipped with

smooth conformal structure c of Lorentzian signature

spacelike boundary Σ

a scale τ ∈ Γ (E [u]) with u < 0 that is defining:

Σ = τ−1 (0)
∇g

a τ ̸= 0 on Σ

Then M̃ := {x ∈ M
∣∣τ(x) > 0} and

g̃ab := ταgab, α := −2

u
, (11)

i.e. the physical metric g̃ab is degenerate on Σ.
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Einstein field equations and ISS

Einstein field equations

Let
(
M̃, g̃ab

)
satisfy the Einstein field equations with cosmological

constant Λ,

R̃ab −
1

2
R̃g̃ab + Λg̃ab = T̃ab, (12)

where T̃ab is the stress-energy tensor. After splitting into trace-
free and trace parts,

˚̃
Pab =

1

n − 2
˚̃
T ab, R̃ =

2

n − 2

(
nΛ − T̃c

c
)

(13)

Let χab be the stress-energy tensor density of weight v ,

χab ∈ Γ
(
E(ab)[v ]

)
, (14)

i.e.
χab = σ̃v T̃ab, (15)

where g̃ab = σ̃−2gab.
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Einstein field equations and ISS

Trace-free part of the Einstein field equations

∇a∇bσ̃ + σ̃Pab −
1

n
gab (∆σ̃ + σ̃J) =

σ̃1−v

n − 2
χ̊ab. (16)

Let τ ∈ Γ (E [u]) be a defining density of the boundary Σ and

τ := σ̃u =⇒ g̃ab = τ−
2
u gab, u < 0. (17)

Then equation (16) can be written as

−u − 1

u2
∇(aτ∇b)◦τ +

τ

u
∇(a∇b)◦τ + τ2P̊ab = τ2− v

u
χ̊ab

n − 2
. (18)

Regularity on Σ and ∇aτ ̸= 0
∣∣
Σ

implies

2 − v

u
= 0 =⇒ v = 2u =⇒ χab ∈ Γ

(
E(ab)[2u]

)
. (19)

Ultimately

−u − 1

u2
∇(aτ∇b)◦τ +

τ

u
∇(a∇b)◦τ + τ2P̊ab =

χ̊ab

n − 2
. (20)
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Einstein field equations and ISS

Trace part of the Einstein field equations

R̃ =
2

n − 2

(
nΛ − T̃c

c
)

(21)

equivalent to

I 2
τ =

2u2

(n + 2u − 2) (n − 1) (n − 2)

(
χ− nτ 2− 2

u Λ
)
, (22)

If
n + 2u − 2 = 0 ⇐⇒ u = 1 − n

2
(23)

then (21) implies

τ

[
∆τ +

(
2 − n

2

)
τJ

]
=

1

2 (n − 1)

(
χ− nτ

2n
n−2 Λ

)
(24)

and χ
Σ
= 0.
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Einstein field equations and ISS

Generically (u ̸= 1 − n
2 )

I 2
τ =

2u2

(n + 2u − 2) (n − 1) (n − 2)

(
χ− nτ2− 2

u Λ
)
, (25)

implies
g (n, n) = c1χ + O (τ) (26)

where
na := ∇aτ (27)

is the extension of the normal vector of Σ to M.

Consequences:

unlike in the case of asymptotically de Sitter spacetimes, the
sign of cosmological constant Λ does not control the causal
character of Σ

vanishing stress-energy tensor =⇒ Σ is a null hypersurface
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Einstein field equations and ISS

Summary

The Einstein field equations are equivalent to

∇T
a

(
I
τ

1
u

)
=

τ
1
u
−2

n − 2
χ̊, (28)

and

I 2
τ =

2u2

(n + 2u − 2) (n − 1) (n − 2)

(
χ− nτ2− 2

u Λ
)
. (29)

The canonical metric of isotropic singularity

Theorem

In any isotropic singularity spacetime the initial hypersurface Σ
has a canonical Riemannian metric gΣ.
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The canonical metric of isotropic singularity Σ

Proof.

gab∇aτ∇bτ < 0 has weight 2(u − 1) ̸= 0. Hence

gτ :=
(
gab∇aτ∇bτ

) 1
1−u

g (30)

and gΣ
Σ

:= gτ |TΣ.

Corollary

Given an isotropic singularity spacetime (M, gab, τ) with Σ =
τ−1 (0) closed, there is canonically a volume of initial singularity,

VΣ :=

∫
Σ

dVgΣ
. (31)
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Conformal fundamental forms of isotropic singularity Σ

Extension of the trace-free extrinsic curvature

Let
E τ := τ 2− 1

u q∗
(
∇T I

τ
1
u

)
, (32)

where q∗ extracts the middle slot from a tractor, i.e.

E τ
ab := −u − 1

u2
∇(aτ∇b)◦τ +

τ

u
∇(a∇b)◦τ + τ 2P̊ab. (33)

The trace-free part of the Einstein field equations implies

E τ
ab =

χ̊ab

n − 2
. (34)

E τ
ab and the extension of the unit normal vector pna

Let σ be a singular Yamabe scale corresponding to the isotropic
singularity Σ, i.e.

Σ = σ−1 (0) , ∇aσ|Σ ̸= 0 (35)

and
I 2
σ = −1 + O (σn) (36)
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Conformal fundamental forms of isotropic singularity Σ

Then
g (n̂, n̂) = −1 + O (σn) (37)

where
pna := ∇aσ (38)

is the extension of the unit normal vector.

Let κ ∈ Γ (E [1 − u]) such that

τ =
σ

κ
. (39)

Extracting conformal fundamental forms from E τ
ab:

a) replace τ by σκ−1 in E τ
ab to get

E τ
ab = −u − 1

u2κ2
pn(apnb)0

+
σ

uκ2
∇(apnb)0

+ O (σ) (40)
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Conformal fundamental forms of isotropic singularity Σ

b) apply δ = ∇n̂ + ... to have ∇(apnb)0
in the leading term in σ:

δE τ
ab = − 1

uκ2
∇(apnb)0

− δ

(
u − 1

u2κ2
pn(apnb)0

)
+ O (σ) (41)

b) apply standard definition of conformal fundamental forms
with respect to δE τ

ab:

K̊
(i+2)
ab := ⊤̊δi (δE τ

ab) (42)

Constraints relating conformal fundamental forms and the
stress-energy tensor density on isotropic singularity Σ

We have

E τ
ab =

χ̊ab

n − 2
(43)

so

K̊
(i+2)
ab

Σ
=

1

n − 2
⊤̊δi (δχ̊ab) . (44)
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Stress-energy tensor from geometry

Isotropic singularity spacetime

The metric of isotropic singularity spacetime g̃ab has the following
form,

g̃ab = τ−
2
u gab, τ ∈ Γ (E [u]) (45)

and initial singularity is a hypersurface Σ = τ−1 (0).

Singular Yamabe scale and κ

There is a canonical singular Yamabe scale σ corresponding to Σ,
i.e.

Σ = σ−1 (0) , I 2
σ = −1 + O (σn) . (46)

Hence, there exist κ ∈ Γ (E [1 − u]) such that

τ =
σ

κ
(47)

and κ ̸= 0 everywhere. Ultimately,

(κ, gab) −→ g̃ab
EFEs−−−−→ T̃ab (χab) . (48)
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Stress-energy tensor from geometry

Admissible stress-energy tensors: energy conditions

Generalizations of the statement ’the energy density of a region of
spacetime cannot be negative’

null energy condition

T̃abk
akb ≥ 0 for every null ka

weak energy condition

T̃abv
avb ≥ 0 for every timelike va

dominant energy condition

−T̃ a
bY

b is timelike or null for every timelike or null Y a

strong energy condition(
T̃ab −

1

n − 2
T̃ g̃ab

)
v avb ≥ 0 for every timelike v a (49)
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Conformal Cyclic Cosmology

Introduction

Observations of the Universe suggest that:

1 Universe started with a Big Bang

2 the cosmological constant Λ is positive

Implications:

1 initial state of the Universe can be modelled by the isotropic
singularity spacetime

2 the end state of the evolution of the Universe can be
modelled by the asymptotically de Sitter spacetime
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Conformal Cyclic Cosmology

Conformal extension (M, gab) of the Universe

Spacetime (physical) metric pgab satisfies the Einstein field equa-
tions

pRab −
1

2
pRpgab + pΛpgab = pTab, (50)

in the interior of M.
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Conformal Cyclic Cosmology

Conformal extension (M, gab) of the Universe

Moreover:

τ ∈ Γ (E [u]) is a defining density of Σ1 and

pgab = τ−
2
u gab, pTab = τ−2χab, u < 0 (51)

in a tubular neighbourhood of Σ1.
σ ∈ Γ (E [1]) is a defining density of Σ2 and

pgab = σ−2gab, pTab = σqτab, q ≥ 0 (52)

in a tubular neighbourhood of Σ2.
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Conformal Periodic Cosmology

Conformal Periodic Cosmology model

Glue Σ1 and Σ2 together (both spacelike hypersurfaces) identify-
ing them as a single hypersurface Σ
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Conformal Cyclic Cosmology

Conformal Cyclic Cosmology model

Identify Σ2 with the isotropic singularity Σ′
1 of the conformal ex-

tension (M ′, g′ab) corresponding to the other spacetime
(
qM, qgab

)

i.e. the end state of the evolution of our Universe (current aeon)
is identified with the initial state of the next Universe (next aeon).

21 / 30 Jaros law Kopiński Applications of Tractor Calculus in General Relativity



Conformal Cyclic Cosmology

P. Tod, The equations of Conformal Cyclic Cosmology, Gen.
Relativ. Gravit. 47, 17 (2015).

Geometric picture

We have three manifolds with metrics:

current aeon
(
pM, pgab

)
next aeon

(
qM, qgab

)
conformal extension of both (M, gab)
such that

pgab = pΩ2gab, qgab = qΩ2gab (53)

The metric gab is called the bridging metric, M = pM ∪ qM ∪ Σ and

Σ = {qΩ = 0} = {pΩ−1 = 0} (54)
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Conformal Cyclic Cosmology

Reciprocal hypothesis

We have

qgab = qΩ2gab = qΩ2

(
pgab
pΩ2

)
=

(
qΩ

pΩ

)2

pgab (55)

Let
qΩpΩ = −1. (56)

Then
qgab = pΩ−4

pgab (57)

i.e. the metric in the next aeon is determined by the metric in the
current aeon given a unique pΩ.

Equivalently – assume that we know pgab and pΩ. Then

gab = pΩ−2
pgab (58)

is known. If qΩ = pΩ−1 then

qgab = pΩ−2gab. (59)
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Conformal Cyclic Cosmology – example (n = 4)

Friedmann–Lemâıtre–Robertson–Walker metric

Let
pg = â2 (τ)

(
−dτ2 + dx2 + dy2 + dz2

)
(60)

with the perfect fluid stress-energy tensor with four-velocity pv =
∂t and radiation equation of state, pp = 1

3 pρ.

Einstein field equations reduce to pρ = pmpa−4, pm =const and(
dâ

dτ

)2

=
pm

3
+

Λ̂

3
â4 (61)

We have
pgab = pΩ2gab, (62)

so the obvious choice for pΩ is

pΩ = c1pa. (63)

24 / 30 Jaros law Kopiński Applications of Tractor Calculus in General Relativity



Conformal Cyclic Cosmology – example (n = 4)

We have

qg = pΩ−4
pg

= ǎ2
(
−dτ2 + dx2 + dy2 + dz2

) (64)

where

ǎ := − 1

c2
1 pa

(65)

If

c1 =
(

Λ̂/m̂
)1/4

(66)

then (
dǎ

dτ

)2

=
m̌

3
+

Λ̌

3
ǎ4 (67)

with m̌ = m̂ and Λ̌ = Λ̂, i.e. ǧ satisfies the same equation as ĝ
(aeons are diffeomorphic).
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Conformal Cyclic Cosmology – matching conditions

asymptotically de Sitter spacetime
(
pM, pgab

)
,

pgab = σ−2gab, pTab = σqτab, q ≥ 0, (68)

and σ is a defining density of Σ2

spacetime with isotropic singularity
(
qM, qgab

)
,

qgab = τ−
2
u g′ab, qTab = τ−2χab, u < 0, (69)

and τ is a defining density of Σ′
1.

When can Σ2 and Σ′
1 be identified?

What are the matching conditions?
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Matching conditions in GR: spherically symmetric stellar model

Simplest model of a spherically symmetric star:
A spherical cluster of matter in an empty spacetime

interior: homogeneous and isotropic distribution of matter →
perfect fluid spacetime

exterior: vacuum → Schwarzschild spacetime

We have
gint = −dt2 + a2 (t)

(
dr2 + sin2 r gS2

)
(70)

and

gext = −
(

1 − 2m

r ′

)
dt ′2 +

d(r ′)2

1 − 2m
r ′

+
(
r ′
)2

gS2 (71)
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Matching conditions in GR: spherically symmetric stellar model

Let t = t ′ and consider t =const hyperurface. Induced metrics are

g int = a2
(
dr2 + sin2 r gS2

)
,

g ext =
d(r ′)2

1 − 2m
r ′

+
(
r ′
)2

gS2 .
(72)

Let the boundary of a spherical cluster be located at

r = R1, r ′ = R2 > 2m (73)

(outside of the event horizon of a black hole).

Matching conditions

g int

∣∣
r=R1

= g ext

∣∣
r ′=R2

, Kint

∣∣
r=R1

= Kout

∣∣
r ′=R2

(74)

so

R2 = a sinR1, sinR1 =

√
2
m

R2
(75)

which implies m = a sin3 R1
2 .
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Matching spacetimes in the Conformal Cyclic Cosmology model

asymptotically de Sitter spacetime
(
pM, pgab

)
,

K̊
(i+2)
ab =

1

n − 2
⊤̊δi

(
σq+1τ̊ab

)
(76)

on Σ2

spacetime with isotropic singularity
(
qM, qgab

)
,

K̊
(i+2)
ab =

1

n − 2
⊤̊δi (δχ̊ab) . (77)

on Σ′
1
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Matching spacetimes in the Conformal Cyclic Cosmology model

Matching conditions

g
∣∣
Σ2

= g′
∣∣
Σ′1

, K̊
(j)
g

∣∣
Σ2

= K̊
(j)
g’

∣∣
Σ′

1
, j = 2, ..., n(?) (78)

Matching of conformal fundamental forms – matching stress-
energy tensor densities.

Thank you for your attention!

30 / 30 Jaros law Kopiński Applications of Tractor Calculus in General Relativity


