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Previously

Asymptotically de Sitter spacetimes

Einstein field equations

1
Rab - ERgab + /\gab = 7_abv (1)
with A > 0 and
8ab = 072g3b7 Tab = UqTaba q> 0. (2)

Characterized the geometry of conformal infinity ¥ (n = 4) in
terms of constraints relating conformal fundamental forms

. - Ty =
Kabs Waaba, VbAzs , TBap

and the stress-energy tensor density 7,p.
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Spacetimes with initial isotropic singularity

Example:
Friedmann—Lemaitre—Robertson—Walker (FLRW) metric

We want to solve (n =4,A =0)

1~
Rab - ERgab = Taba (3)
with
g = —dt* +2° (t) (dx* + dy? + dz?) (4)

and the perfect fluid stress-energy tensor:

Tap = (P + P) VaVp + pgab» (5)

where p = p(t) is the density, p = p(t) is the pressure and v = 0;
is the four-velocity.

Equation of state:

1
p=wp, —z<wsl (6)
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Spacetimes with initial isotropic singularity

Solution with initial singularity at t =0 — a(0) = 0:

2

a=qct3™m, p=ct 2 ¢, =const. (7)
so .
g = —dt? + Zt3 D (dx® + dy? + dz?). (8)
Introduce new time coordinate 7 defined by
dt
——— =dr (9)
C1t3(w+l)
Then
g= C3T3W;4+1 (—d7'2 + dx? + dy? + dz2)
=Q° (—d7'2 + dx? 4 dy? + dz2) o= 4 >0 (10)
’ 3w+ 1 ’

if (W #* —%) and the initial isotropic singularity can be defined as

a spacelike hypersurface where Q = 0.
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Conformal geometry of initial singularity

A. R. Gover, J. Kopiniski and A. Waldron, The geometry of an
isotropic Big Bang, coming soon.

Isotropic singularity spacetime (ISS): n-dimensional spacetime
(M, &) that arises as follows. There is a smooth manifold M
with equipped with

@ smooth conformal structure c of Lorentzian signature

@ spacelike boundary X

@ ascale 7 € I (€[u]) with u < 0 that is defining:
o Y =771 (0)
e VET #0on X

Then M := {x € M|7(x) > 0} and

8ab =T 8oy, = ——, (11)

i.e. the physical metric g,p is degenerate on X.
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Einstein field equations and ISS

Einstein field equations

Let (/\7I,§ab> satisfy the Einstein field equations with cosmological
constant A,

~ 1~_ _ ~
Rab — ERgab + /\gab = Taba (12)
where 7~—ab is the stress-energy tensor. After splitting into trace-
free and trace parts,
p L 7., R=_2 ( AT, C) (13)
= — = — n —
ab n_>o ab, n_>2 c

Let xap be the stress-energy tensor density of weight v,

Xab €T (5(ab)[v]) > (14)

Xab = oAl -T_aba (15)

where g, = G 2g,p.
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Einstein field equations and ISS

Trace-free part of the Einstein field equations

~1—v

o~ 1 ~ ~ .
VaVo +5Pap — —8ab (A5 +5)) =~ Xap.  (16)

Let 7 € I (£]u]) be a defining density of the boundary ¥ and
Ti=0" = gap= T*%gab, u<0. (17)

Then equation (16) can be written as

u— 1 T o _v )% b
— g VTV T+ V@V, T+ TPy = 7S50 (18)
Regularity on ¥ and V,7 # 0}2 implies
2*%:0 = v =2u — Xab € F(é‘(ab)[2u]). (19)
Ultimately
u—1 T 2 jzab
—— 7 VG Ve T+ ViV T+ T2 Pp = > (20)
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Einstein field equations and ISS

Trace part of the Einstein field equations

- 2 ~ .
R—n_2<n/\—Tc) (21)
equivalent to
2u2 2

12 = — nT?TuA 22
T ht2u—2)(n—1)(n—2) (X n ) (22)

If N
n—|—2u—2=0<:>u:1—5 (23)

then (21) implies

T[AT+ (t”) TJ} :ﬁoc—m'%/\) (24)

and XEO.
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Einstein field equations and ISS

Generically (v # 1 — 3)

202 .
/72:(n+2u—2)(n_1)(n_2) (X—n7-2 u/\), (25)
implies
g(n,n)=cax+0(7) (26)
where
ny, == VLt (27)

is the extension of the normal vector of ¥ to M.

Consequences:

@ unlike in the case of asymptotically de Sitter spacetimes, the
sign of cosmological constant A does not control the causal
character of &

@ vanishing stress-energy tensor = X is a null hypersurface
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Einstein field equations and ISS

Summary

The Einstein field equations are equivalent to

1o
T T
VI(1) =% (28)
and
2u? 2
2 _ 22
= =) (1) (n=2) (x=rin). 29)

The canonical metric of isotropic singularity

In any isotropic singularity spacetime the initial hypersurface
has a canonical Riemannian metric gs.
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The canonical metric of isotropic singularity X

g7’V ,7Vp7 < 0 has weight 2(u — 1) # 0. Hence

1

= (gabVaTVbT> g (30)

b
and g5 == g-|Tx. O

Corollary

Given an isotropic singularity spacetime (M, g,;,, 7) with ¥ =
771(0) closed, there is canonically a volume of initial singularity,

Vs = /dvgz. (31)
N
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Conformal fundamental forms of isotropic singularity 2

Extension of the trace-free extrinsic curvature

Let .
E™=12"ig" (VTIT%) , (32)
where g* extracts the middle slot from a tractor, i.e.
u—1 T o
aTb = —TV(QTvb)OT + EV(avb)oT + TzPab' (33)
The trace-free part of the Einstein field equations implies
T )2 b
El, = - = 5 (34)

E7, and the extension of the unit normal vector 7,
Let o be a singular Yamabe scale corresponding to the isotropic
singularity X, i.e.

Y=01(0), V.olz#0 (35)

and
?=-1+0(o") (36)
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Conformal fundamental forms of isotropic singularity 2

Then
g(A,n)=-14+0(c") (37)

where
na:=Vao (38)

is the extension of the unit normal vector.

Let k € [ (£[1 — u]) such that

o
T=—
K

(39)

Extracting conformal fundamental forms from E],:

a) replace 7 by o1 in EJ, to get

o N
ab =" 2,2 Mallb) + @V(a”b)o +0(0)  (40)
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Conformal fundamental forms of isotropic singularity 2

b) apply 6 = V5 + ... to have V(,npy, in the leading term in o:

- 1 . u—1_. .
ab = *ﬁv(a”b)o -0 (u2/{2n(anb)o> + O (o) (41)

b) apply standard definition of conformal fundamental forms
with respect to dE],:

o (i+2 i T
Rt — 15 (6E) (42)

Constraints relating conformal fundamental forms and the
stress-energy tensor density on isotropic singularity >

We have

o

T Xab
= 4
ab n— 2 ( 3)

SO
i+ £ 1 oo
R4 = T8 (0%ab) (44)
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Stress-energy tensor from geometry

Isotropic singularity spacetime

The metric of isotropic singularity spacetime g,5 has the following
form, ,

Bab =T "8, T ET(E[]) (45)
and initial singularity is a hypersurface ¥ = 771 (0).
Singular Yamabe scale and «

There is a canonical singular Yamabe scale o corresponding to ¥,

- S—o1(0), P=-140("). (46)

Hence, there exist k € ' (£[1 — u]) such that

and k # 0 everywhere. Ultimately,

(Fy 8ap) — Bab — Tap (Xab) - (48)
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Stress-energy tensor from geometry

Admissible stress-energy tensors: energy conditions

Generalizations of the statement "the energy density of a region of
spacetime cannot be negative'

@ null energy condition
T.pk?kP >0 for every null k?
@ weak energy condition
T'abvavb >0 for every timelike v?
@ dominant energy condition
—T2,Y" is timelike or null for every timelike or null Y

@ strong energy condition

~ 1~
(Tab - Tgab> vavP >0  for every timelike v? (49)
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Conformal Cyclic Cosmology

Introduction
Observations of the Universe suggest that:

@ Universe started with a Big Bang

@ the cosmological constant A is positive
Implications:

@ initial state of the Universe can be modelled by the isotropic
singularity spacetime

@ the end state of the evolution of the Universe can be
modelled by the asymptotically de Sitter spacetime
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Conformal Cyclic Cosmology

Conformal extension (M, g,,) of the Universe

Spacetime (physical) metric g5, satisfies the Einstein field equa-
tions

~

1~ ~ ~
Rab - ERgab + /\gab = Taba (50)

in the interior of M.
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Conformal Cyclic Cosmology

Conformal extension (M, g.,) of the Universe

Moreover:
o 7 €[ (&[u]) is a defining density of X1 and

~ _2 _
8ab =T “8,ps Tab =T 2Xab7 u<0 (51)

in a tubular neighbourhood of % ;.
e o € (&[1]) is a defining density of ¥, and

gab = U_2gab7 ?ab = JqTaba q > 0 (52)

in a tubular neighbourhood of %5.
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Conformal Periodic Cosmology

Conformal Periodic Cosmology model

Glue X7 and X, together (both spacelike hypersurfaces) identify-
ing them as a single hypersurface -
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Conformal Cyclic Cosmology

Conformal Cyclic Cosmology model
Identify X5 with the isotropic singularity ¥} of the conformal ex-

tension (M’, g’,) corresponding to the other spacetime <l\vﬂ,§ab)

i.e. the end state of the evolution of our Universe (current aeon)
is identified with the initial state of the next Universe (next aeon).
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Conformal Cyclic Cosmology

P. Tod, The equations of Conformal Cyclic Cosmology, Gen.
Relativ. Gravit. 47, 17 (2015). J

Geometric picture
We have three manifolds with metrics:
s @ current aeon <I\Aﬂ,§ab>
: | - @ next aeon (I\7I,§ab>

e conformal extension of both (M, gap)
such that

8ab = ﬁ2g.ab, 8ab = éanb (53)

(Mrgab)

The metric g,p is called the bridging metric, M = MUMUE and

y={Q=0}={Q'=0} (54)
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Conformal Cyclic Cosmology

Reciprocal hypothesis

We have
~ o 2
gab = QZgab = Q2 (%) = (A) é\-ab (55)
Q
Let .
QQ = —1. (56)
Then R
éab - Q_4§—ab (57)

i.e. the metric in the next aeon is determined by the metric in the
current aeon given a unique .

Equivalently — assume that we know g, and Q. Then
8ab = f\2_2§ab (58)
is known. If Q = Q=1 then

Eab = f\2_2gab- (59)
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Conformal Cyclic Cosmology — example (n = 4)
Friedmann—Lemaitre—Robertson—Walker metric

Let
g=8(7) (—dr? + & + dy? + dz°) (60)

with the perfect fluid stress-energy tensor with four-velocity v =
Or and radiation equation of state, p = %,3

Einstein field equations reduce to p = ma—*4, m =const and
93" _ + Ay (61)
dr) 3
We have R
8ab = ngaba (62)

so the obvious choice for Q is
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Conformal Cyclic Cosmology — example (n = 4)

We have
v:ﬁ,zp\
s (64)
=5 (—dT + dx* 4+ dy +dz)
where 1
= ——= 65
. c?a (65)
If Y
o= (/\/m) (66)
then

di\? m A,
with m = mand A = A, i.e. & satisfies the same equation as g
(aeons are diffeomorphic).
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Conformal Cyclic Cosmology — matching conditions

@ asymptotically de Sitter spacetime (I\?I,@ab),

g—ab = U_2gab7 ?ab = UqTaba q Z 07 (68)
and o is a defining density of X,
@ spacetime with isotropic singularity (I\/I,Eab),
Eab = T_%g;b; :,/-ab = T_2Xaba u <0, (69)
and 7 is a defining density of X/.

When can X, and X} be identified?
What are the matching conditions?
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Matching conditions in GR: spherically symmetric stellar model

Simplest model of a spherically symmetric star:
A spherical cluster of matter in an empty spacetime

@ interior: homogeneous and isotropic distribution of matter —
perfect fluid spacetime
@ exterior: vacuum — Schwarzschild spacetime
We have
gint = —dt* + a° (t) (dr* +sin’ r gs2) (70)

and

2m d(r')? 5
Gext = — <1 — r/> dt’? + (_ 2)m + (I’/) 852 (71)

r/
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Matching conditions in GR: spherically symmetric stellar model

Let t = t/ and consider t =const hyperurface. Induced metrics are

iy =a° (dr2 +sin?r gsz) )

_ d(r')? 2 (72)
Eext = 1_2m + (I’/) 8s2.
r/
Let the boundary of a spherical cluster be located at
r=Ry, r=Ry>2m (73)
(outside of the event horizon of a black hole).
Matching conditions
ginf‘r:Rl = geXt I’/:RQ’ Kint‘r:Rl = KOUt I”ZRQ (74)
so
: . m
R, =asinRy, sinRy=,/2— (75)
R>
which implies m = 23R,
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Matching spacetimes in the Conformal Cyclic Cosmology model

@ asymptotically de Sitter spacetime (I\Aﬂ,§3b>,

°

o (i 1
KT — 5 T8 (07" ) (76)

on 22
@ spacetime with isotropic singularity (I\7I Vab>,
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Matching spacetimes in the Conformal Cyclic Cosmology model

Matching conditions

T 20| _ ) _
gly, =l K lg, = K|z J=20n(?)  (78)

Matching of conformal fundamental forms — matching stress-
energy tensor densities.

Thank you for your attention!
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