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Almost Einstein equation

Let (M, c) be a Lorentzian n—dimensional manifold with a confor-
mal class of metrics c of signature (n—1,1).

Let 6 € ' (£[1]) and
VEVEG + P30 + 8app =0, (1)
or with the use of the scale tractor I; := %D&,
Vil =0. (2)
We have Iz — 6 = h(X, ;) and

2
h(ls,ls) = g*VE5VEG — ~6 (AF +trPE) & (3)

gives the conformally covariant notion of the scalar curvature.
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Geometry of the scale

Let (M, g_,) be a manifold with the spacelike boundary ¥:

Let o0 € T (€[1]) be a defining density of X:
Y:0=0, Vio|z#0. (4)

Define
ny:=Véo (5)

as the extension of the normal vector of ¥ to M.
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Geometry of the scale

Induced conformal metric on X:

_ > nang
= — . 6
gab gab g(n’ n) ( )
Normal tractor
Let
0
N:=l|s = n, (7)
_H&

where H& is the mean curvature of .
Singular Yamabe equation

A rescaled scale
o—fo, >0 (8)

is also a defining density of X.
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Singular Yamabe equation

To remove this ambiguity solve the singular Yamabe problem: find
f € C° (M) such that the singular metric

&= (po ©)

has constant scalar curvature on M\ ¥, i.e.

RE = n(n—1). (10)
Conformally covariant version of this equation

h(lfo, lrs) = —1 (11)

implies
g(n,n)=-1+0(fo) (12)

where ni, := V3§ (fo) is the extension of the unit normal vector of
> to M.
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Singular Yamabe equation

Q: Can we solve singular Yamabe equation? Formally yes, up to
order n; First step:

o9 — 130 =-1+ 0(0‘0) (13)
Then
o1 = 09 + ao} —>l§1 :—1+O<Uf> (14)
Last step:
op1— 12 =—1+0(00_4) (15)

Jarostaw Kopinski Applications of Tractor Calculus in General Relativity



Singular Yamabe equation

Let o be the singular Yamabe scale, i.e.
2=-1+0(c") (16)
Define the extension of the normal tractor of the boundary X as
N€ = I, (17)

Then

h(N€,N®)=—-1+0O(c") (18)
We can use jets of N€ (jets of o) to study the geometry of the
embedded hypersurface ¥:

e S. Blitz, A. R. Gover and A. Waldron, Conformal
Fundamental Forms and the Asymptotically Poincaré—Einstein
Condition, arXiv:2107.10381, 2021.
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Geometry of the scale

First conformal fundamental form — induced conf. metric

_ ¥ PN
8. = 8ap + Nallp. (19)
Second conformal fundamental form
We have
0
g8."ViN°|; = Kab (20)
— a3 VoK

where K.p, is the trace-free second fundamental form (extrinsic
curvature) of ¥ — the second conformal fundamental form.
Higher order fundamental forms

Example — surface in R3

Third fundamental form KS) can be defined as

KE) .= T (VaV.hs) (21)
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Geometry of the scale

Extension of kab
Let
E., :=q* (VaTNe> = VE&hp + 0Pap + pgap (22)

where g* extracts the 'tensorial’ slot in the conformally covariant
way — E;p €T (5(ab)0[1]).
Higher order conformal fundamental forms
Let _ _
KD .= T5'E,p (23)
where § is constructed with the use of h(N¢, D), i.e.
0=V,+ .. (24)

and T denotes the trace-free projection on OM.
The leading terms in !0(52), KE‘;) and &(’z) are projections of Weyl,
Cotton and Bach tensors.
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Asymptotically de Sitter spacetimes

Einstein field equations with positive A
Let (M, gap) be a solution of the Einstein field equations,

1~_ - ~
Rab - ERgab + Agab = Tabv (25)

where A > 0 is the cosmological constant and Tap is the physical
stress-energy tensor.

Asymptotically de Sitter spacetime -

Conformal extension (M, g,p) of a spacetime (M, gap):

@ M is a manifold with a boundary ¥
M=M\X
Q is a smooth function such that:
o Q>00n M\X
e 0=0,dQ2#00n X

gab = Q_2gab and 7~—ab = Q9 Tab» aq >0
Unphysical tensors g.p, T,y regular on M

Y — end state of the evolution of the spacetime (conf. o)
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Conformal infinity - de Sitter spacetime

4-dimensional de Sitter spacetime with A = 3

Hypersurface described by the equation
Xy 22wt =1 (26)

in 5-dimensional Minkowski space. Induced metric has the follo-
wing form
g4s = —dt? + (cosh t)? ggs. (27)

Focus on t € [0, 00). Introduce new coordinate 7 such that

ht = . 2
o8 cosT (28)
Then 7 € [0,7/2] and the metric reads
_ 2
gos = 5 (~dr +g55). (29)

soQ=cosTand Q=0 <= 7=7/2 <= t= .
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Conformal Einstein field equations

Singular equation for the unphysical metric g,

We have
gab = Q72gab7 (30)
so
~ -2 1 -1
Rab = Rab+ n Q vaVbQ+ ﬁgab (AQ — n VCQVCQ) (31)
Consequences:

e Einstein field equations (EFEs) are singular at &

e multiplying by Q2 does not help as the principal part vanishes
at x

Regularization — Conformal EFEs (n=4,q9 > 1):

H. Friedrich, On the regular and the asymptotic characteristic ini-
tial value problem for Einstein’s vacuum field equations, Proc. Roy.
Soc. Lond. A, 375, 169, 1981.
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Conformal Einstein field equations in 4 dimensions

Conformal transformation rule for P,, and EFEs imply

1 =
VaVbQ = _Q'Dab + Sgap + EQ Tab7 (32)
where 1 1
= -AQ+ —RQ
si= g + o (33)

is the Friedrich scalar. Promote the field s and P, to the level of
unknowns and close the system.
Equation for s

Apply derivative to (32), commute, use Bianchi etc.

1 2
Vas = —PapV*Q + (V° (Q Tab) (34)
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Conformal Einstein field equations in 4 dimensions

Equation for P,, — Bianchi identities lead to

2v[b'Dc]a = Wdabcde + QQabc (35)
and
vdeabc = Qabe (36)
where _
Wabed = Q! Wabcd, Qabe := Q_1Aabc (37)

are the rescaled Weyl and physical Cotton tensor.

Regularized conformal transformation rule for R

1~
605 —3V,QVQ+ T = A (38)
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Conformal Einstein field equations in 4 dimensions

Summary
~ 1~_ " ~
Rab - ERgab + /\gab = Tab; (39)
with B
gab = Qizgaby Tab =Qf Tab (40)
in 4 dimensions is equivalent to
1 =
vavbQ = _QPab + Sgab + EQ Tab7 (41)
1 ES
Vs = PV 4 SV° (Q Tab> (42)
2V[ch]a = Wdabcde + QQabc (43)
vdeabc - Qabc (44)
1~
A= 625 —3V,QV°Q+ T (45)

with solution in the form of

(Q7gab7 S, Pab; Wabcd s Ta ) . (46)
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Conformal Einstein field equations in 4 dimensions

Constraints on X

Conformal EFEs induce 10 constraints on ¥. Analysis in vacuum
leads to

Given a 3-dimensional metric g,, and a divergence-free and
trace-free (with respect to g,,) tensor d,p there is a solution to
the vacuum conformal constraint equations on X.

Conformal covariance: 6°g,,, §~1d,;, for some § € C>(X) also
give rise to a solution of constraints.

Goal: use tractor calculus to study the geometry of ¥ in a
more efficient way
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Tractor calculus with stress-energy tensor

EFEs again (n dimensions)

°

Rap = Tab7 'Ee =

(n/\ - TCC) (47)

n—2
Almost Einstein equation with stress-energy tensor
We have

Tab (48)
SO

o

-2

- 1 o 2
VaVpo + P — ;gab (A +P.c) = - T b (49)

where 7 is the scale corresponding to the physical metric g,p.

Stress-energy tensor density Let

Tab -= a1 7~_abv Tab €T (g(ab)[_q]) . (50)
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Tractor calculus with stress-energy tensor

Weight —g and the decay rate of the stress-energy tensor

Previously
gab = Q_zgab (51)
but
Eab = 5_2gab7 8ab = Jg_2gab? (52)
SO ~
g
Q=— 53
z (53)
Tap = 5.*q7:ab = O';q Tap (54)

where T,p, is the unphysical stress-energy tensor, so

~\9q

=~ g

7—ab = () 7—ab = QI Tab- (55)
Og
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Tractor calculus with stress-energy tensor

Ultimately,
o 1 o Fa+1
VaVpo +Pap — 8ab (A +0P.5) = - 27°'ab (56)
Prolongation
59 0
vip=—— (n—1)54, , 57
? (n—1)(n-2) ( (a4 1) 1P 5P > (57)
The /2 equation and the scalar curvature
Ro 2 (A~ T.%) (58)
n—2
leads to
2N 25912
12 = 7T (59)

ST T D=2 n(n=1)(n=2)
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Tractor calculus with stress-energy tensor

Almost Einstein vs. Almost Einstein with stress-energy tensor

VI, =0, I2=-14+0(") (60)
and
A 259+2;
T 2
/~ = 1,4, /.. = — o 1
Vals =T, b=— ot sm-nm=2 Y

Remark Conformally covariant equation
Da(lz)g = Tag (62)

Use construction of conformal fundamental forms to derive
constraints relating geometry of > with the stress-energy
tensor (in 4 dimensions)

First constraint

. 3.
VIZ2 =2h(l5,VIz) = (q—2)Tap + MaT = \/;gvbfab. (63)
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Conformal fundamental forms and matter fields

Extension of the second fundamental form
E.p = VEn, + 0Pap + pgap = %O'CH_Tb (64)

so if g > 0 (asymptotically de Sitter spacetime)
Rab =0 on X (65)

i.e. M is an umbilic hypersurface.
Third fundamental form We have

R;l?;) = —T—éEab - Wﬁabn (66)
on the other hand

16 < FIt1z b> % (g+1) 59T (Tab) |z (67)

Hence for g =0
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Conformal fundamental forms and matter fields

Fourth fundamental form We have
KD =T52E,=0 on ¥ (69)
if this hypersurface is umbilic. Hence

Vn ab+2H7' for gq=0,
0=T42 (20q+17 b) =T (ra) for g=1, (70)
0 for g>2

on OM.
The Cotton tensor
Let g > 1. Then Gauss-Codazzi and K‘gz) constraint imply

Wabcd:O on X (7]_)

Let
Wabed = 0Waped + O (52) (72)
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Conformal fundamental forms and matter fields

Then
" <[v VTl ) & (Acab + Wabes) + O ( ) -
— 5_q+1 (v[aTb]c + )
Ultimately
Aanb ;bn on X (74)

Divergence of the Cotton tensor
Use the relation between the Cotton tensor and w,pq to get

Ja— %ﬁff for g=1,
VEALL = Tl for q=2, (75)
0 on for g>2

on ¥, where V¥ is the hypersurface connection and

o [ Tan
Ja=lim [ 22 |.
50\ o
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Conformal fundamental forms and matter fields

The fifth fundamental form Let g > 1. Then

KO .= T6°E,, = 6T (Bsp) on X (76)
Ultimately
% <9v%7';; — 3§abV%Tﬁﬁ + 8H7'; — Hgabrﬁﬁ) for g=1,
T (Bap) = —3T (1a) for g=2,
0 for g>2
(77)
on X.
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Conformal fundamental forms and matter fields

Commutator of D operators and the Bach tensor

A
DiaDg, (Is)c = 2\/;XCX[AZB]CBC,3 (78)
on X. On the other hand,

DiaDgyls = —X(a (A = PeS) (225)°Vals — Xg V2Vl ) . (79)

Ultimately
B =0, Bl.=VErl + vg fo =1,
aTan T3 VaT 0T 4G (80)
Bis = 0, B;:—Ta—; for g=2.
on X.
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Conclusion

Summary:

@ we applied the construction of conformal fundamental forms
to derive a constraint on the matter fields on asymptotically
de Sitter background

@ projected parts of Weyl and Bach tensors and the divergence
of Cotton are related to the stress-energy tensor on the
conformal boundary ¥

Thank you!
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