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Summary

Almost Einstein equation

Let (M, c) be a Lorentzian n−dimensional manifold with a confor-
mal class of metrics c of signature (n − 1, 1).
Let σ̂ ∈ Γ (E [1]) and

∇g
a∇

g
b σ̂ + Pg

abσ̂ + gabρ = 0, (1)

or with the use of the scale tractor Iσ̂ := 1
nDσ̂,

∇Ta Iσ̂ = 0. (2)

We have Iσ̂ → σ̂ = h (X , Iσ̂) and

h (Iσ̂, Iσ̂) = gab∇g
a σ̂∇

g
b σ̂ −

2
n
σ̂ (∆g + trPg ) σ̂ (3)

gives the conformally covariant notion of the scalar curvature.
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Geometry of the scale
Let (M, gab) be a manifold with the spacelike boundary Σ:

Let σ ∈ Γ (E [1]) be a defining density of Σ:

Σ : σ = 0, ∇g
aσ
∣∣
Σ
̸= 0. (4)

Define
na := ∇g

aσ (5)

as the extension of the normal vector of Σ to M.
3 / 26 Jarosław Kopiński Applications of Tractor Calculus in General Relativity



Geometry of the scale

Induced conformal metric on Σ:

gab
Σ
:= gab −

nanb
g (n, n)

. (6)

Normal tractor

Let

N := Iσ
∣∣
Σ
=

 0
na
−Hg

 (7)

where Hg is the mean curvature of Σ.

Singular Yamabe equation

A rescaled scale
σ → f σ, f > 0 (8)

is also a defining density of Σ.
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Singular Yamabe equation

To remove this ambiguity solve the singular Yamabe problem: find
f ∈ C∞+ (M) such that the singular metric

g0ab :=
gab
(f σ)2

(9)

has constant scalar curvature on M \ Σ, i.e.

Rg0 = n (n − 1) . (10)

Conformally covariant version of this equation

h (If σ, If σ) = −1 (11)

implies
g (n̂, n̂) = −1+O (f σ) (12)

where n̂a := ∇g
a (f σ) is the extension of the unit normal vector of

Σ to M.
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Singular Yamabe equation

Q: Can we solve singular Yamabe equation? Formally yes, up to
order n; First step:

σ0 −→ I 2σ0 = −1+O (σ0) (13)

Then
σ1 = σ0 + ασ

2
0 −→ I 2σ1 = −1+O

(
σ21

)
(14)

...

Last step:
σn−1 −→ I 2σn−1 = −1+O

(
σnn−1

)
(15)
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Singular Yamabe equation

Let σ be the singular Yamabe scale, i.e.

I 2σ = −1+O (σn) (16)

Define the extension of the normal tractor of the boundary Σ as

Ne := Iσ (17)

Then
h (Ne ,Ne) = −1+O (σn) (18)

We can use jets of Ne (jets of σ) to study the geometry of the
embedded hypersurface Σ:

S. Blitz, A. R. Gover and A. Waldron, Conformal
Fundamental Forms and the Asymptotically Poincaré–Einstein
Condition, arXiv:2107.10381, 2021.
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Geometry of the scale
First conformal fundamental form – induced conf. metric

gab
Σ
= gab + n̂an̂b. (19)

Second conformal fundamental form
We have

ga
b∇Tb Ne

∣∣
Σ
=

 0
K̊ab

− 1
n−2∇

g
b K̊c

b

 (20)

where K̊ab is the trace-free second fundamental form (extrinsic
curvature) of Σ – the second conformal fundamental form.
Higher order fundamental forms

Example – surface in R3

Third fundamental form K
(3)
ab can be defined as

K
(3)
ab := ⊤ (∇n̂∇an̂b) (21)
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Geometry of the scale

Extension of K̊ab

Let
Eab := q∗

(
∇Ta Ne

)
= ∇g

a n̂b + σPab + ρgab (22)

where q∗ extracts the ’tensorial’ slot in the conformally covariant
way – Eab ∈ Γ

(
E(ab)0 [1]

)
.

Higher order conformal fundamental forms
Let

K̊
(i)
ab := ⊤̊δiEab (23)

where δ is constructed with the use of h (Ne ,D), i.e.

δ = ∇n + ... (24)

and ⊤̊ denotes the trace-free projection on ∂M.
The leading terms in K̊ (3)

ab , K̊
(4)
ab and K̊

(5)
ab are projections of Weyl,

Cotton and Bach tensors.
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Asymptotically de Sitter spacetimes
Einstein field equations with positive Λ
Let (M̃, g̃ab) be a solution of the Einstein field equations,

R̃ab −
1
2
R̃g̃ab + Λg̃ab = T̃ab, (25)

where Λ > 0 is the cosmological constant and T̃ab is the physical
stress-energy tensor.
Asymptotically de Sitter spacetime
Conformal extension (M, gab) of a spacetime (M̃, g̃ab):

M is a manifold with a boundary Σ
M̃ ≡ M \ Σ
Ω is a smooth function such that:

Ω > 0 on M \ Σ
Ω = 0, dΩ ̸= 0 on Σ

g̃ab = Ω−2gab and T̃ab = ΩqTab, q ­ 0
Unphysical tensors gab,Tab regular on M

Σ – end state of the evolution of the spacetime (conf. ∞)
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Conformal infinity - de Sitter spacetime
4-dimensional de Sitter spacetime with Λ = 3

Hypersurface described by the equation

−t2 + x2 + y2 + z2 + w2 = 1 (26)

in 5-dimensional Minkowski space. Induced metric has the follo-
wing form

gdS = −dt2 + (cosh t)2 gS3 . (27)

Focus on t ∈ [0,∞). Introduce new coordinate τ such that

cosh t =
1

cos τ
. (28)

Then τ ∈ [0, π/2] and the metric reads

gdS =
1

cos2 τ

(
−dτ2 + gS3

)
. (29)

so Ω = cos τ and Ω = 0 ⇐⇒ τ = π/2 ⇐⇒ t =∞.
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Conformal Einstein field equations
Singular equation for the unphysical metric gab

We have
g̃ab = Ω−2gab, (30)

so

R̃ab = Rab +
n − 2
Ω
∇a∇bΩ+

1
Ω
gab

(
∆Ω− n − 1

Ω
∇cΩ∇cΩ

)
(31)

Consequences:

Einstein field equations (EFEs) are singular at Σ

multiplying by Ω2 does not help as the principal part vanishes
at Σ

Regularization – Conformal EFEs (n = 4, q ­ 1):
H. Friedrich, On the regular and the asymptotic characteristic ini-
tial value problem for Einstein’s vacuum field equations, Proc. Roy.
Soc. Lond. A, 375, 169, 1981.
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Conformal Einstein field equations in 4 dimensions

Conformal transformation rule for P̃ab and EFEs imply

∇a∇bΩ = −ΩPab + sgab +
1
2
Ω
˚̃
T ab, (32)

where

s :=
1
4
∆Ω+

1
24

RΩ (33)

is the Friedrich scalar. Promote the field s and Pab to the level of
unknowns and close the system.

Equation for s

Apply derivative to (32), commute, use Bianchi etc.

∇as = −Pab∇bΩ+
1
6
∇c

(
Ω
˚̃
T ab

)
(34)
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Conformal Einstein field equations in 4 dimensions

Equation for Pab – Bianchi identities lead to

2∇[bPc]a = wd
abc∇dΩ+ ΩQabc (35)

and
∇dw

d
abc = Qabc (36)

where
wabcd := Ω−1Wabcd , Qabc := Ω−1Ãabc (37)

are the rescaled Weyl and physical Cotton tensor.

Regularized conformal transformation rule for R

6Ωs − 3∇aΩ∇aΩ+
1
4
T̃ = Λ (38)
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Conformal Einstein field equations in 4 dimensions
Summary

R̃ab −
1
2
R̃g̃ab + Λg̃ab = T̃ab, (39)

with
g̃ab = Ω−2gab, T̃ab = ΩqTab (40)

in 4 dimensions is equivalent to

∇a∇bΩ = −ΩPab + sgab +
1
2
Ω
˚̃
T ab, (41)

∇as = −Pab∇bΩ+
1
6
∇c

(
Ω
˚̃
T ab

)
(42)

2∇[bPc]a = wd
abc∇dΩ+ ΩQabc (43)

∇dw
d
abc = Qabc (44)

Λ = 6Ωs − 3∇aΩ∇aΩ+
1
4
T̃ (45)

with solution in the form of

(Ω, gab, s,Pab,wabcd ,Tab) . (46)
15 / 26 Jarosław Kopiński Applications of Tractor Calculus in General Relativity



Conformal Einstein field equations in 4 dimensions

Constraints on Σ

Conformal EFEs induce 10 constraints on Σ. Analysis in vacuum
leads to

Theorem

Given a 3-dimensional metric gab and a divergence-free and
trace-free (with respect to gab) tensor dab there is a solution to
the vacuum conformal constraint equations on Σ.

Conformal covariance: θ2gab, θ
−1dab for some θ ∈ C∞ (Σ) also

give rise to a solution of constraints.

Goal: use tractor calculus to study the geometry of Σ in a
more efficient way
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Tractor calculus with stress-energy tensor
EFEs again (n dimensions)

˚̃
Rab =

˚̃
T ab, R̃ =

2
n − 2

(
nΛ− T̃c

c
)

(47)

Almost Einstein equation with stress-energy tensor

We have
˚̃
Pab =

1
n − 2

˚̃
T ab (48)

so

∇a∇bσ̃ + σ̃Pab −
1
n
gab (∆σ̃ + σ̃Pc

c) =
σ̃

n − 2
˚̃
T ab (49)

where σ̃ is the scale corresponding to the physical metric g̃ab.

Stress-energy tensor density Let

τab := σ̃−qT̃ab, τab ∈ Γ
(
E(ab)[−q]

)
. (50)

17 / 26 Jarosław Kopiński Applications of Tractor Calculus in General Relativity



Tractor calculus with stress-energy tensor

Weight −q and the decay rate of the stress-energy tensor
Previously

g̃ab = Ω−2gab (51)

but
g̃ab = σ̃−2gab, gab = σ−2g gab, (52)

so

Ω =
σ̃

σg
(53)

τab = σ̃−qT̃ab = σ−qg Tab (54)

where Tab is the unphysical stress-energy tensor, so

T̃ab =

(
σ̃

σg

)q

Tab = ΩqTab. (55)
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Tractor calculus with stress-energy tensor
Ultimately,

∇a∇bσ̃ + σ̃Pab −
1
n
gab (∆σ̃ + σ̃Pc

c) =
σ̃q+1

n − 2
τ̊ab (56)

Prolongation

∇Ta Iσ̃ =
σ̃q

(n − 1) (n − 2)

(
0

(n − 1) σ̃τ̊ab
− (q + 1) τ̊ab∇bσ̃ − σ̃∇b τ̊ab

)
, (57)

The I 2σ̃ equation and the scalar curvature

R̃ =
2

n − 2

(
nΛ− T̃c

c
)

(58)

leads to

I 2σ̃ = − 2Λ
(n − 1) (n − 2)

+
2σ̃q+2τ

n (n − 1) (n − 2)
. (59)

19 / 26 Jarosław Kopiński Applications of Tractor Calculus in General Relativity



Tractor calculus with stress-energy tensor
Almost Einstein vs. Almost Einstein with stress-energy tensor

∇Ta Iσ̃ = 0, I 2σ̃ = −1+O (σ̃n) (60)

and

∇Ta Iσ̃ = TaA, I 2σ̃ = − 2Λ
(n − 1) (n − 2)

+
2σ̃q+2τ

n (n − 1) (n − 2)
. (61)

Remark Conformally covariant equation

DA (Iσ̃)B = TAB (62)

Use construction of conformal fundamental forms to derive
constraints relating geometry of Σ with the stress-energy
tensor (in 4 dimensions)

First constraint

∇I 2σ̃ = 2h (Iσ̃,∇Iσ̃) =⇒ (q − 2) τan̂ + n̂aτ = −
√
3
Λ
σ̃∇bτa

b. (63)
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Conformal fundamental forms and matter fields
Extension of the second fundamental form

Eab = ∇g
a n̂b + σ̃Pab + ρgab =

1
2
σ̃q+1τ̊ab (64)

so if q ­ 0 (asymptotically de Sitter spacetime)

K̊ab = 0 on Σ (65)

i.e. ∂M is an umbilic hypersurface.
Third fundamental form We have

K̊
(3)
ab = ⊤̊δEab = W⊤n̂abn̂ (66)

on the other hand

⊤̊δ
(
1
2
σ̃q+1τ̊ab

)
= −1
2
(q + 1) σ̃q⊤̊ (τab)

∣∣
Σ

(67)

Hence for q = 0

W⊤n̂an̂b =
1
2
⊤̊ (τab) on Σ. (68)
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Conformal fundamental forms and matter fields
Fourth fundamental form We have

K̊
(4)
ab = ⊤̊δ2Eab = 0 on Σ (69)

if this hypersurface is umbilic. Hence

0 = ⊤̊δ2
(
1
2
σ̃q+1τ̊ab

)
=


∇g

n̂τ
⊤
ab +

2
3Hτ

⊤
ab for q = 0,

⊤̊ (τab) for q = 1,

0 for q ­ 2
(70)

on ∂M.
The Cotton tensor
Let q ­ 1. Then Gauss-Codazzi and K̊ (3)

ab constraint imply

Wabcd = 0 on Σ (71)

Let
Wabcd = σ̃wabcd +O

(
σ̃2
)

(72)
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Conformal fundamental forms and matter fields
Then

q∗
(
[∇Ta ,∇Tb ]Iσ̃

)
= σ̃ (Acab + wabcn̂) +O

(
σ̃2
)

= σ̃q+1
(
∇[aτb]c + ...

) (73)

Ultimately
A⊤an̂b = w⊤an̂bn̂ on Σ (74)

Divergence of the Cotton tensor
Use the relation between the Cotton tensor and wabcd to get

∇g
bA
⊤
an̂

b =


ja − 13∇

g
a τ for q = 1,

τ⊤an̂ for q = 2,

0 on for q > 2

(75)

on Σ, where ∇g
is the hypersurface connection and

ja = lim
σ̃→0

(
τ⊤an̂
σ̃

)
.
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Conformal fundamental forms and matter fields

The fifth fundamental form Let q ­ 1. Then

K̊
(5)
ab := ⊤̊δ3Eab = 6⊤̊ (Bab) on Σ. (76)

Ultimately

⊤̊ (Bab) =


1
3

(
9∇g

n̂τ
⊤
ab − 3gab∇

g
n̂τn̂n̂ + 8Hτ

⊤
ab − Hgabτn̂n̂

)
for q = 1,

−3⊤̊ (τab) for q = 2,

0 for q > 2
(77)

on Σ.
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Conformal fundamental forms and matter fields

Commutator of D operators and the Bach tensor

D[ADB] (Iσ̃)C = 2

√
Λ

3
XCX[AZB]

cBcn̂ (78)

on Σ. On the other hand,

D[ADB]Iσ̃ = −X[A (∆− Pc
c)
(
2ZB]

a∇aIσ̃ − XB]∇b∇bIσ̃
)
. (79)

Ultimately

Bn̂n̂ = 0, B⊤an̂ = ∇g
n̂τ
⊤
an̂ +
1
3
∇g

a τ for q = 1,

Bn̂n̂ = 0, B⊤an̂=− τ⊤an̂ for q = 2.
(80)

on Σ.
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Conclusion

Summary:

we applied the construction of conformal fundamental forms
to derive a constraint on the matter fields on asymptotically
de Sitter background

projected parts of Weyl and Bach tensors and the divergence
of Cotton are related to the stress-energy tensor on the
conformal boundary Σ

Thank you!
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