Applications of Tractor Calculus in General Relativity

Jarosław Kopiński
Center for Theoretical Physics PAS

GRIEG seminar
 12/05/2023

Almost Einstein equation

Let (M, \mathbf{c}) be a Lorentzian n-dimensional manifold with a conformal class of metrics \mathbf{c} of signature $(n-1,1)$.
Let $\hat{\sigma} \in \Gamma(\mathcal{E}[1])$ and

$$
\begin{equation*}
\nabla_{a}^{g} \nabla_{b}^{g} \hat{\sigma}+P_{a b}^{g} \hat{\sigma}+\mathbf{g}_{a b} \rho=0 \tag{1}
\end{equation*}
$$

or with the use of the scale tractor $\left.\right|_{\hat{\sigma}}:=\frac{1}{n} D \hat{\sigma}$,

$$
\begin{equation*}
\nabla_{a}^{\mathcal{T}} l_{\hat{\sigma}}=0 \tag{2}
\end{equation*}
$$

We have $I_{\hat{\sigma}} \rightarrow \hat{\sigma}=h\left(X, I_{\hat{\sigma}}\right)$ and

$$
\begin{equation*}
h\left(l_{\hat{\sigma}}, l_{\hat{\sigma}}\right)=\mathbf{g}^{a b} \nabla_{a}^{g} \hat{\sigma} \nabla_{b}^{g} \hat{\sigma}-\frac{2}{n} \hat{\sigma}\left(\Delta^{g}+\operatorname{tr} P^{g}\right) \hat{\sigma} \tag{3}
\end{equation*}
$$

gives the conformally covariant notion of the scalar curvature.

Geometry of the scale

Let $\left(M, \mathbf{g}_{a b}\right)$ be a manifold with the spacelike boundary Σ :

Let $\sigma \in \Gamma(\mathcal{E}[1])$ be a defining density of Σ :

$$
\begin{equation*}
\Sigma: \sigma=0,\left.\quad \nabla_{a}^{g} \sigma\right|_{\Sigma} \neq 0 \tag{4}
\end{equation*}
$$

Define

$$
\begin{equation*}
n_{a}:=\nabla_{a}^{g} \sigma \tag{5}
\end{equation*}
$$

as the extension of the normal vector of Σ to M.

Geometry of the scale

Induced conformal metric on Σ :

$$
\begin{equation*}
\overline{\mathbf{g}}_{a b}: \stackrel{\Sigma}{=} \mathbf{g}_{a b}-\frac{n_{a} n_{b}}{\mathbf{g}(n, n)} \tag{6}
\end{equation*}
$$

Normal tractor

Let

$$
N:=\left.I_{\sigma}\right|_{\Sigma}=\left(\begin{array}{c}
0 \tag{7}\\
n_{a} \\
-H^{g}
\end{array}\right)
$$

where H^{g} is the mean curvature of Σ.

Singular Yamabe equation

A rescaled scale

$$
\begin{equation*}
\sigma \rightarrow f \sigma, \quad f>0 \tag{8}
\end{equation*}
$$

is also a defining density of Σ.

Singular Yamabe equation

To remove this ambiguity solve the singular Yamabe problem: find $f \in C_{+}^{\infty}(M)$ such that the singular metric

$$
\begin{equation*}
g_{a b}^{0}:=\frac{\mathbf{g}_{a b}}{(f \sigma)^{2}} \tag{9}
\end{equation*}
$$

has constant scalar curvature on $M \backslash \Sigma$, i.e.

$$
\begin{equation*}
R^{g^{0}}=n(n-1) \tag{10}
\end{equation*}
$$

Conformally covariant version of this equation

$$
\begin{equation*}
h\left(I_{f \sigma}, I_{f \sigma}\right)=-1 \tag{11}
\end{equation*}
$$

implies

$$
\begin{equation*}
\mathbf{g}(\widehat{n}, \widehat{n})=-1+\mathcal{O}(f \sigma) \tag{12}
\end{equation*}
$$

where $\widehat{n}_{a}:=\nabla_{a}^{g}(f \sigma)$ is the extension of the unit normal vector of Σ to M.

Singular Yamabe equation

Q: Can we solve singular Yamabe equation? Formally yes, up to order n; First step:

$$
\begin{equation*}
\sigma_{0} \longrightarrow I_{\sigma_{0}}^{2}=-1+\mathcal{O}\left(\sigma_{0}\right) \tag{13}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sigma_{1}=\sigma_{0}+\alpha \sigma_{0}^{2} \longrightarrow I_{\sigma_{1}}^{2}=-1+\mathcal{O}\left(\sigma_{1}^{2}\right) \tag{14}
\end{equation*}
$$

Last step:

$$
\begin{equation*}
\sigma_{n-1} \longrightarrow I_{\sigma_{n-1}}^{2}=-1+\mathcal{O}\left(\sigma_{n-1}^{n}\right) \tag{15}
\end{equation*}
$$

Singular Yamabe equation

Let σ be the singular Yamabe scale, i.e.

$$
\begin{equation*}
I_{\sigma}^{2}=-1+\mathcal{O}\left(\sigma^{n}\right) \tag{16}
\end{equation*}
$$

Define the extension of the normal tractor of the boundary Σ as

$$
\begin{equation*}
N^{e}:=I_{\sigma} \tag{17}
\end{equation*}
$$

Then

$$
\begin{equation*}
h\left(N^{e}, N^{e}\right)=-1+\mathcal{O}\left(\sigma^{n}\right) \tag{18}
\end{equation*}
$$

We can use jets of N^{e} (jets of σ) to study the geometry of the embedded hypersurface Σ :

- S. Blitz, A. R. Gover and A. Waldron, Conformal Fundamental Forms and the Asymptotically Poincaré-Einstein Condition, arXiv:2107.10381, 2021.

Geometry of the scale

First conformal fundamental form - induced conf. metric

$$
\begin{equation*}
\overline{\mathbf{g}}_{a b} \stackrel{\Sigma}{=} \mathbf{g}_{a b}+\widehat{n}_{a} \widehat{n}_{b} \tag{19}
\end{equation*}
$$

Second conformal fundamental form
We have

$$
\left.\overline{\mathbf{g}}_{a}{ }^{b} \nabla_{b}^{\mathcal{T}} N^{e}\right|_{\Sigma}=\left(\begin{array}{c}
0 \tag{20}\\
\stackrel{\dot{K}_{a b}}{ } \\
-\frac{1}{n-2} \bar{\nabla}_{b}^{\bar{g}} \dot{K}_{c}{ }^{b}
\end{array}\right)
$$

where $\stackrel{\circ}{K}_{a b}$ is the trace-free second fundamental form (extrinsic curvature) of Σ - the second conformal fundamental form.
Higher order fundamental forms
Example - surface in \mathbb{R}^{3}
Third fundamental form $K_{a b}^{(3)}$ can be defined as

$$
\begin{equation*}
K_{a b}^{(3)}:=\top\left(\nabla_{\hat{n}} \nabla_{a} \hat{n}_{b}\right) \tag{21}
\end{equation*}
$$

Geometry of the scale

Extension of $\stackrel{\circ}{K}_{a b}$
Let

$$
\begin{equation*}
E_{a b}:=q^{*}\left(\nabla_{a}^{\mathcal{T}} N^{e}\right)=\nabla_{a}^{g} \widehat{n}_{b}+\sigma P_{a b}+\rho \mathbf{g}_{a b} \tag{22}
\end{equation*}
$$

where q^{*} extracts the 'tensorial' slot in the conformally covariant way $-E_{a b} \in \Gamma\left(\mathcal{E}_{(a b)_{0}}[1]\right)$.
Higher order conformal fundamental forms
Let

$$
\begin{equation*}
\dot{K}_{a b}^{(i)}:=\stackrel{\circ}{\top} \delta^{i} E_{a b} \tag{23}
\end{equation*}
$$

where δ is constructed with the use of $h\left(N^{e}, D\right)$, i.e.

$$
\begin{equation*}
\delta=\nabla_{n}+\ldots \tag{24}
\end{equation*}
$$

and ${ }^{\circ}$ denotes the trace-free projection on ∂M.
The leading terms in $\check{K}_{a b}^{(3)}, \dot{K}_{a b}^{(4)}$ and $\check{K}_{a b}^{(5)}$ are projections of Weyl, Cotton and Bach tensors.

Asymptotically de Sitter spacetimes

Einstein field equations with positive Λ
Let $\left(\widetilde{M}, \widetilde{g}_{a b}\right)$ be a solution of the Einstein field equations,

$$
\begin{equation*}
\widetilde{R}_{a b}-\frac{1}{2} \widetilde{R} \widetilde{g}_{a b}+\Lambda \widetilde{g}_{a b}=\widetilde{T}_{a b}, \tag{25}
\end{equation*}
$$

where $\Lambda>0$ is the cosmological constant and $\widetilde{T}_{a b}$ is the physical stress-energy tensor.

Asymptotically de Sitter spacetime

Conformal extension $\left(M, g_{a b}\right)$ of a spacetime $\left(\widetilde{M}, \widetilde{g}_{a b}\right)$:

- M is a manifold with a boundary Σ
- $\widetilde{M} \equiv M \backslash \Sigma$
- Ω is a smooth function such that:
- $\Omega>0$ on $M \backslash \Sigma$
- $\Omega=0, d \Omega \neq 0$ on Σ
- $\tilde{g}_{a b}=\Omega^{-2} g_{a b}$ and $\tilde{T}_{a b}=\Omega^{q} T_{a b}, q \geqslant 0$
- Unphysical tensors $g_{a b}, T_{a b}$ regular on M
Σ - end state of the evolution of the spacetime (conf. ∞)

Conformal infinity - de Sitter spacetime

4-dimensional de Sitter spacetime with $\Lambda=3$
Hypersurface described by the equation

$$
\begin{equation*}
-t^{2}+x^{2}+y^{2}+z^{2}+w^{2}=1 \tag{26}
\end{equation*}
$$

in 5-dimensional Minkowski space. Induced metric has the following form

$$
\begin{equation*}
g_{d S}=-d t^{2}+(\cosh t)^{2} g_{S^{3}} . \tag{27}
\end{equation*}
$$

Focus on $t \in[0, \infty)$. Introduce new coordinate τ such that

$$
\begin{equation*}
\cosh t=\frac{1}{\cos \tau} \tag{28}
\end{equation*}
$$

Then $\tau \in[0, \pi / 2]$ and the metric reads

$$
\begin{equation*}
g_{d S}=\frac{1}{\cos ^{2} \tau}\left(-d \tau^{2}+g_{S^{3}}\right) \tag{29}
\end{equation*}
$$

so $\Omega=\cos \tau$ and $\Omega=0 \Longleftrightarrow \tau=\pi / 2 \Longleftrightarrow t=\infty$.

Conformal Einstein field equations

Singular equation for the unphysical metric $g_{a b}$
We have

$$
\begin{equation*}
\tilde{g}_{a b}=\Omega^{-2} g_{a b} \tag{30}
\end{equation*}
$$

so

$$
\begin{equation*}
\widetilde{R}_{a b}=R_{a b}+\frac{n-2}{\Omega} \nabla_{a} \nabla_{b} \Omega+\frac{1}{\Omega} g_{a b}\left(\Delta \Omega-\frac{n-1}{\Omega} \nabla_{c} \Omega \nabla^{c} \Omega\right) \tag{31}
\end{equation*}
$$

Consequences:

- Einstein field equations (EFEs) are singular at Σ
- multiplying by Ω^{2} does not help as the principal part vanishes at Σ

Regularization - Conformal EFEs ($n=4, q \geqslant 1$):
H. Friedrich, On the regular and the asymptotic characteristic initial value problem for Einstein's vacuum field equations, Proc. Roy. Soc. Lond. A, 375, 169, 1981.

Conformal Einstein field equations in 4 dimensions

Conformal transformation rule for $\widetilde{P}_{a b}$ and EFEs imply

$$
\begin{equation*}
\nabla_{a} \nabla_{b} \Omega=-\Omega P_{a b}+s g_{a b}+\frac{1}{2} \Omega \stackrel{\tilde{T}}{a b} \tag{32}
\end{equation*}
$$

where

$$
\begin{equation*}
s:=\frac{1}{4} \Delta \Omega+\frac{1}{24} R \Omega \tag{33}
\end{equation*}
$$

is the Friedrich scalar. Promote the field s and $P_{a b}$ to the level of unknowns and close the system.
Equation for s
Apply derivative to (32), commute, use Bianchi etc.

$$
\begin{equation*}
\nabla_{a} s=-P_{a b} \nabla^{b} \Omega+\frac{1}{6} \nabla^{c}\left(\Omega \tilde{T}_{a b}\right) \tag{34}
\end{equation*}
$$

Conformal Einstein field equations in 4 dimensions

Equation for $P_{a b}$ - Bianchi identities lead to

$$
\begin{equation*}
2 \nabla_{[b} P_{c] a}=w^{d}{ }_{a b c} \nabla_{d} \Omega+\Omega Q_{a b c} \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{d} w^{d}{ }_{a b c}=Q_{a b c} \tag{36}
\end{equation*}
$$

where

$$
\begin{equation*}
w_{a b c d}:=\Omega^{-1} W_{a b c d}, \quad Q_{a b c}:=\Omega^{-1} \widetilde{A}_{a b c} \tag{37}
\end{equation*}
$$

are the rescaled Weyl and physical Cotton tensor.
Regularized conformal transformation rule for R

$$
\begin{equation*}
6 \Omega s-3 \nabla_{a} \Omega \nabla^{a} \Omega+\frac{1}{4} \tilde{T}=\Lambda \tag{38}
\end{equation*}
$$

Conformal Einstein field equations in 4 dimensions

Summary

$$
\begin{equation*}
\tilde{R}_{a b}-\frac{1}{2} \widetilde{R} \widetilde{g}_{a b}+\Lambda \widetilde{g}_{a b}=\tilde{T}_{a b}, \tag{39}
\end{equation*}
$$

with

$$
\begin{equation*}
\tilde{g}_{a b}=\Omega^{-2} g_{a b}, \quad \tilde{T}_{a b}=\Omega^{q} T_{a b} \tag{40}
\end{equation*}
$$

in 4 dimensions is equivalent to

$$
\begin{align*}
\nabla_{a} \nabla_{b} \Omega & =-\Omega P_{a b}+s g_{a b}+\frac{1}{2} \Omega \stackrel{\tilde{T}}{a b}, \tag{41}\\
\nabla_{a} s & =-P_{a b} \nabla^{b} \Omega+\frac{1}{6} \nabla^{c}\left(\Omega \widetilde{T}_{a b}\right) \tag{42}\\
2 \nabla_{[b} P_{c] a} & =w^{d}{ }_{a b c} \nabla_{d} \Omega+\Omega Q_{a b c} \tag{43}\\
\nabla_{d} w^{d}{ }_{a b c} & =Q_{a b c} \tag{44}\\
\Lambda & =6 \Omega s-3 \nabla_{a} \Omega \nabla^{a} \Omega+\frac{1}{4} \widetilde{T} \tag{45}
\end{align*}
$$

with solution in the form of

$$
\begin{equation*}
\left(\Omega, g_{a b}, s, P_{a b}, w_{a b c d}, T_{a b}\right) \tag{46}
\end{equation*}
$$

Conformal Einstein field equations in 4 dimensions

Constraints on Σ
Conformal EFEs induce 10 constraints on Σ. Analysis in vacuum leads to

Theorem

Given a 3-dimensional metric $\bar{g}_{a b}$ and a divergence-free and trace-free (with respect to $\bar{g}_{a b}$) tensor $d_{a b}$ there is a solution to the vacuum conformal constraint equations on Σ.

Conformal covariance: $\theta^{2} \bar{g}_{a b}, \theta^{-1} d_{a b}$ for some $\theta \in C^{\infty}(\Sigma)$ also give rise to a solution of constraints.

Goal: use tractor calculus to study the geometry of Σ in a more efficient way

Tractor calculus with stress-energy tensor

EFEs again (n dimensions)

$$
\begin{equation*}
\stackrel{\circ}{R}_{a b}=\stackrel{\widetilde{T}}{a b}, \quad \widetilde{R}=\frac{2}{n-2}\left(n \Lambda-\widetilde{T}_{c}^{c}\right) \tag{47}
\end{equation*}
$$

Almost Einstein equation with stress-energy tensor
We have

$$
\begin{equation*}
\stackrel{\check{P}}{a b}=\frac{1}{n-2} \check{T}_{a b} \tag{48}
\end{equation*}
$$

so

$$
\begin{equation*}
\nabla_{a} \nabla_{b} \tilde{\sigma}+\tilde{\sigma} P_{a b}-\frac{1}{n} \mathbf{g}_{a b}\left(\Delta \tilde{\sigma}+\tilde{\sigma} P_{c}^{c}\right)=\frac{\tilde{\sigma}}{n-2} \stackrel{\widetilde{T}}{a b} \tag{49}
\end{equation*}
$$

where $\widetilde{\sigma}$ is the scale corresponding to the physical metric $\widetilde{g}_{a b}$.
Stress-energy tensor density Let

$$
\begin{equation*}
\tau_{a b}:=\tilde{\sigma}^{-q} \widetilde{T}_{a b}, \quad \tau_{a b} \in \Gamma\left(\mathcal{E}_{(a b)}[-q]\right) \tag{50}
\end{equation*}
$$

Tractor calculus with stress-energy tensor

Weight $-q$ and the decay rate of the stress-energy tensor Previously

$$
\begin{equation*}
\tilde{g}_{a b}=\Omega^{-2} g_{a b} \tag{51}
\end{equation*}
$$

but

$$
\begin{equation*}
\tilde{g}_{a b}=\tilde{\sigma}^{-2} \mathbf{g}_{a b}, \quad g_{a b}=\sigma_{g}^{-2} \mathbf{g}_{a b} \tag{52}
\end{equation*}
$$

so

$$
\begin{gather*}
\Omega=\frac{\widetilde{\sigma}}{\sigma_{g}} \tag{53}\\
\tau_{a b}=\widetilde{\sigma}^{-q} \widetilde{T}_{a b}=\sigma_{g}^{-q} T_{a b} \tag{54}
\end{gather*}
$$

where $T_{a b}$ is the unphysical stress-energy tensor, so

$$
\begin{equation*}
\widetilde{T}_{a b}=\left(\frac{\tilde{\sigma}}{\sigma_{g}}\right)^{q} T_{a b}=\Omega^{q} T_{a b} \tag{55}
\end{equation*}
$$

Tractor calculus with stress-energy tensor

Ultimately,

$$
\begin{equation*}
\nabla_{a} \nabla_{b} \widetilde{\sigma}+\widetilde{\sigma} P_{a b}-\frac{1}{n} \mathbf{g}_{a b}\left(\Delta \widetilde{\sigma}+\widetilde{\sigma} P_{c}^{c}\right)=\frac{\tilde{\sigma}^{q+1}}{n-2}{ }_{\tau}^{a b} \tag{56}
\end{equation*}
$$

Prolongation

$$
\nabla_{a}^{\mathcal{T}} I_{\tilde{\sigma}}=\frac{\tilde{\sigma}^{q}}{(n-1)(n-2)}\left(\begin{array}{c}
0 \tag{57}\\
(n-1) \tilde{\sigma}_{a b}^{\circ} \\
-(q+1) \tau_{a b} \nabla^{b} \tilde{\sigma}-\tilde{\sigma} \nabla^{b} \tau_{a b}
\end{array}\right),
$$

The $l_{\tilde{\sigma}}^{2}$ equation and the scalar curvature

$$
\begin{equation*}
\widetilde{R}=\frac{2}{n-2}\left(n \Lambda-\widetilde{T}_{c}{ }^{c}\right) \tag{58}
\end{equation*}
$$

leads to

$$
\begin{equation*}
I_{\tilde{\sigma}}^{2}=-\frac{2 \Lambda}{(n-1)(n-2)}+\frac{2 \widetilde{\sigma}^{q+2} \tau}{n(n-1)(n-2)} . \tag{59}
\end{equation*}
$$

Tractor calculus with stress-energy tensor

Almost Einstein vs. Almost Einstein with stress-energy tensor

$$
\begin{equation*}
\nabla_{a}^{\mathcal{T}} I_{\tilde{\sigma}}=0, \quad l_{\tilde{\sigma}}^{2}=-1+\mathcal{O}\left(\widetilde{\sigma}^{n}\right) \tag{60}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla_{a}^{\mathcal{T}} I_{\tilde{\sigma}}=T_{a A}, \quad I_{\tilde{\sigma}}^{2}=-\frac{2 \Lambda}{(n-1)(n-2)}+\frac{2 \widetilde{\sigma}^{q+2} \tau}{n(n-1)(n-2)} . \tag{61}
\end{equation*}
$$

Remark Conformally covariant equation

$$
\begin{equation*}
D_{A}\left(l_{\tilde{\sigma}}\right)_{B}=T_{A B} \tag{62}
\end{equation*}
$$

Use construction of conformal fundamental forms to derive constraints relating geometry of Σ with the stress-energy tensor (in 4 dimensions)

First constraint

$$
\begin{equation*}
\nabla I_{\tilde{\sigma}}^{2}=2 h\left(I_{\tilde{\sigma}}, \nabla I_{\tilde{\sigma}}\right) \Longrightarrow(q-2) \tau_{a \hat{n}}+\widehat{n}_{a} \tau=-\sqrt{\frac{3}{\Lambda}} \widetilde{\sigma} \nabla_{b} \tau_{a}^{b} . \tag{63}
\end{equation*}
$$

Conformal fundamental forms and matter fields

Extension of the second fundamental form

$$
\begin{equation*}
E_{a b}=\nabla_{a}^{g} \widehat{n}_{b}+\tilde{\sigma} P_{a b}+\rho \mathbf{g}_{a b}=\frac{1}{2} \tilde{\sigma}^{q+1} \check{\tau}_{a b} \tag{64}
\end{equation*}
$$

so if $q \geqslant 0$ (asymptotically de Sitter spacetime)

$$
\begin{equation*}
\stackrel{\circ}{K}_{a b}=0 \quad \text { on } \quad \Sigma \tag{65}
\end{equation*}
$$

i.e. ∂M is an umbilic hypersurface.

Third fundamental form We have

$$
\begin{equation*}
\dot{K}_{a b}^{(3)}=\stackrel{\circ}{\top} \delta E_{a b}=W_{\hat{n} a b \hat{n}}^{\top} \tag{66}
\end{equation*}
$$

on the other hand

$$
\begin{equation*}
\stackrel{\circ}{\top} \delta\left(\frac{1}{2} \widetilde{\sigma}^{q+1} \stackrel{\tau}{\tau}_{a b}\right)=-\left.\frac{1}{2}(q+1) \widetilde{\sigma}^{q}{ }^{\circ}\left(\tau_{a b}\right)\right|_{\Sigma} \tag{67}
\end{equation*}
$$

Hence for $q=0$

$$
\begin{equation*}
W_{\hat{n} a \hat{a} b}^{\top}=\frac{1}{2} \stackrel{\circ}{\top}\left(\tau_{a b}\right) \quad \text { on } \quad \Sigma . \tag{68}
\end{equation*}
$$

Conformal fundamental forms and matter fields

Fourth fundamental form We have

$$
\begin{equation*}
\dot{K}_{a b}^{(4)}=\stackrel{\circ}{\top} \delta^{2} E_{a b}=0 \quad \text { on } \quad \Sigma \tag{69}
\end{equation*}
$$

if this hypersurface is umbilic. Hence

$$
0=\stackrel{\circ}{\top} \delta^{2}\left(\frac{1}{2} \widetilde{\sigma}^{q+1} \stackrel{\circ}{\tau}_{a b}\right)=\left\{\begin{array}{l}
\nabla_{\hat{n}}^{g} \tau_{a b}^{\top}+\frac{2}{3} H \tau_{a b}^{\top} \text { for } q=0, \tag{70}\\
\dot{\top}\left(\tau_{a b}\right) \text { for } q=1, \\
0 \text { for } q \geqslant 2
\end{array}\right.
$$

on ∂M.
The Cotton tensor
Let $q \geqslant 1$. Then Gauss-Codazzi and $\check{K}_{a b}^{(3)}$ constraint imply

$$
\begin{equation*}
W_{a b c d}=0 \quad \text { on } \quad \Sigma \tag{71}
\end{equation*}
$$

Let

$$
\begin{equation*}
W_{a b c d}=\tilde{\sigma} w_{a b c d}+\mathcal{O}\left(\tilde{\sigma}^{2}\right) \tag{72}
\end{equation*}
$$

Conformal fundamental forms and matter fields

Then

$$
\begin{align*}
q^{*}\left(\left[\nabla_{a}^{\mathcal{T}}, \nabla_{b}^{\mathcal{T}}\right] l_{\tilde{\sigma}}\right) & =\widetilde{\sigma}\left(A_{c a b}+w_{a b c \hat{n}}\right)+\mathcal{O}\left(\widetilde{\sigma}^{2}\right) \tag{73}\\
& =\widetilde{\sigma}^{q+1}\left(\nabla_{[a} \tau_{b] c}+\ldots\right)
\end{align*}
$$

Ultimately

$$
\begin{equation*}
A_{a \hat{n} b}^{\top}=w_{a \hat{n} b \hat{n}}^{\top} \quad \text { on } \quad \Sigma \tag{74}
\end{equation*}
$$

Divergence of the Cotton tensor
Use the relation between the Cotton tensor and $w_{\text {abcd }}$ to get

$$
\bar{\nabla}_{b}^{g} A_{a n}^{\top} b=\left\{\begin{array}{l}
j_{a}-\frac{1}{3} \bar{\nabla}_{a}^{g} \tau \text { for } q=1 \tag{75}\\
\tau_{a \hat{n}}^{\top} \text { for } q=2 \\
0 \text { on for } q>2
\end{array}\right.
$$

on Σ, where $\bar{\nabla}^{g}$ is the hypersurface connection and

$$
j_{a}=\lim _{\tilde{\sigma} \rightarrow 0}\left(\frac{\tau_{a \hat{n}}^{\top}}{\widetilde{\sigma}}\right)
$$

Conformal fundamental forms and matter fields

The fifth fundamental form Let $q \geqslant 1$. Then

$$
\begin{equation*}
\dot{K}_{a b}^{(5)}:=\stackrel{\circ}{\top} \delta^{3} E_{a b}=6{ }^{\circ}\left(B_{a b}\right) \quad \text { on } \quad \Sigma \text {. } \tag{76}
\end{equation*}
$$

Ultimately
$\stackrel{\circ}{\top}\left(B_{a b}\right)=\left\{\begin{array}{l}\frac{1}{3}\left(9 \nabla_{\hat{n}}^{g} \tau_{a b}^{\top}-3 \bar{g}_{a b} \nabla_{\hat{n}}^{g} \tau_{\hat{n} \hat{n}}+8 H \tau_{a b}^{\top}-H \bar{g}_{a b} \tau_{\hat{n} \hat{n}}\right) \text { for } q=1, \\ -3 \dot{\top}\left(\tau_{a b}\right) \quad \text { for } \quad q=2, \\ 0 \quad \text { for } \quad q>2\end{array}\right.$
on Σ.

Conformal fundamental forms and matter fields

Commutator of D operators and the Bach tensor

$$
\begin{equation*}
D_{[A} D_{B]}\left(l_{\tilde{\sigma}}\right)_{C}=2 \sqrt{\frac{\Lambda}{3}} X_{C} X_{[A} Z_{B]}^{c} B_{C \hat{n}} \tag{78}
\end{equation*}
$$

on Σ. On the other hand,

$$
\begin{equation*}
D_{[A} D_{B]} I_{\tilde{\sigma}}=-X_{[A}\left(\Delta-P_{c}^{c}\right)\left(2 Z_{B]}^{a} \nabla_{a} I_{\tilde{\sigma}}-X_{B]} \nabla^{b} \nabla_{b} I_{\tilde{\sigma}}\right) . \tag{79}
\end{equation*}
$$

Ultimately

$$
\begin{array}{ll}
B_{\hat{n} \hat{n}}=0, & B_{a \hat{n}}^{\top}=\nabla_{\hat{n}}^{g} \tau_{a \hat{n}}^{\top}+\frac{1}{3} \bar{\nabla}_{a}^{g} \tau \quad \text { for } \quad q=1 \tag{80}\\
B_{\hat{n} \hat{n}}=0, & B_{a \hat{n}}^{\top}=-\tau_{a \hat{n}}^{\top} \quad \text { for } \quad q=2
\end{array}
$$

on Σ.

Conclusion

Summary:

- we applied the construction of conformal fundamental forms to derive a constraint on the matter fields on asymptotically de Sitter background
- projected parts of Weyl and Bach tensors and the divergence of Cotton are related to the stress-energy tensor on the conformal boundary Σ

Thank you!

