Applications of Tractor Calculus in General Relativity

Jarosław Kopiński
Centre for Theoretical Physics PAS
dxdx dxdxdx dxdxdxdx dxdxpandx
dxdxdxdx
dxdxdx dx dx $d x$ $d x$ $d f$

GRIEG seminar
21/04/2023

- Introduction to tractor calculus
- Asymptotically de Sitter spacetimes
- Spacetimes with initial isotropic singularities
- Conformal Cyclic Cosmology

Based on

- S. Curry and R. Gover, An introduction to conformal geometry and tractor calculus, with a view to applications in general relativity, arXiv:1412.7559;
- R. Gover, J. Kopiński, Higher fundamental forms of the conformal boundary of asymptotically de Sitter spacetimes, Class. Quantum Grav. 40015001 2023;
- R. Gover, J. Kopiński and A. Waldron, The geometry of an isotropic Big Bang, In prep.;

Notation and conventions

Let $\left(M, g_{a b}\right)$ be a Lorentzian n-dimensional manifold with a metric $g_{a b}$ of signature $(n-1,1)$.

Abstract index notation:

- tangent bundle of $M: \mathcal{E}^{a}$
- cotangent bundle of $M: \mathcal{E}_{a}$
e.g. $g_{a b} \in \Gamma\left(\mathcal{E}_{(a b)}\right)$, where $\mathcal{E}_{(a b)}$ is a subbundle of symmetric 2tensors.
The (anti)symmetrization brackets Let $T_{a b c \ldots} \in \Gamma\left(\mathcal{E}_{a b c \ldots .}\right)$.

$$
\begin{align*}
& T_{(a b) c \ldots}=\frac{1}{2}\left(T_{a b c \ldots}+T_{b a c \ldots}\right), \\
& T_{[a b] c \ldots}=\frac{1}{2}\left(T_{a b c \ldots}-T_{b a c \ldots}\right) \tag{1}
\end{align*}
$$

Lowercase letters a,b,c, ... - tensor labels
Uppercase letters A, B, C, \ldots - tractor labels

Notation and conventions

Levi-Civita connection ∇_{a}

$$
\begin{align*}
& \nabla_{a} g_{b c}=0, \quad \text { metric compatible } \tag{2}\\
& \Gamma_{b c}^{a}-\Gamma_{c b}^{a}=0 \quad \text { torsion - free } \tag{3}
\end{align*}
$$

where $\Gamma_{b c}^{a}$ - Christoffel symbols.

Riemann tensor

$$
\begin{equation*}
2 \nabla_{[a} \nabla_{b]} v_{c}=: R_{a b c}{ }^{d} v_{d}, \quad \text { for any } v_{a} \in \Gamma\left(\mathcal{E}_{a}\right) \tag{4}
\end{equation*}
$$

Weyl and Schouten tensors Decomposition of Riemann tensor

$$
\begin{equation*}
R_{a b c d}=W_{a b c d}+2 g_{c[a} P_{b] d}+2 g_{d[b} P_{a] c} \tag{5}
\end{equation*}
$$

where $W_{a b c d}$ - Weyl tensor and $P_{a b}$ - Schouten tensor,

$$
\begin{equation*}
P_{a b}:=\frac{1}{n-2}\left(R_{a b}-\frac{R}{2(n-1)} g_{a b}\right) . \tag{6}
\end{equation*}
$$

Conformal invariance and covariance

Conformal transformations
Let $\widehat{g}_{a b}=\Omega^{2} g_{a b}$ and $\psi_{a}:=\partial_{a} \log \Omega$. Then for $v_{a} \in \Gamma\left(\mathcal{E}_{a}\right)$

$$
\begin{equation*}
\hat{\nabla}_{a} v_{b}=\nabla_{a} v_{b}-\psi_{a} v_{b}-v_{a} \psi_{b}+g_{a b} v_{c} \psi^{c}, \tag{7}
\end{equation*}
$$

e.g. $(d v)_{a b}=\nabla_{[a} v_{b]}$ is conformally invariant,

$$
\begin{equation*}
\hat{\nabla}_{[a} v_{b]}=\nabla_{[a} v_{b]} . \tag{8}
\end{equation*}
$$

Let $F_{a b} \in \Gamma\left(\mathcal{E}_{[a b]}\right)$. Then

$$
\begin{equation*}
\hat{\nabla}^{a} F_{a b}=\Omega^{-2}\left[\nabla^{a}+(n-4) \psi^{a}\right] F_{a b} \tag{9}
\end{equation*}
$$

i.e. Div: $\Gamma\left(\mathcal{E}_{[a b]}\right) \rightarrow \Gamma\left(\mathcal{E}_{a}\right)$ given by

$$
\begin{equation*}
\text { Div : } F_{a b} \rightarrow \nabla^{b} F_{a b} \tag{10}
\end{equation*}
$$

is conformally covariant in dimension 4.

Conformal invariance and covariance

Conformal wave operator
Let $f \in \Gamma(\mathcal{E})$. We have

$$
\begin{equation*}
\widehat{\Delta} f=\Omega^{-2}\left[\Delta+(n-2) \psi^{c} \nabla_{c}\right] f \tag{11}
\end{equation*}
$$

Assume that f changes with the metric, i.e.

$$
\begin{equation*}
f \rightarrow \widehat{f}=\Omega^{1-\frac{n}{2}} f \quad \text { when } \quad g_{a b} \rightarrow \widehat{g}_{a b}=\Omega^{2} g_{a b} \tag{12}
\end{equation*}
$$

Then

$$
\begin{equation*}
\overbrace{\left(\widehat{\Delta}-\frac{n-2}{4(n-1)} \widehat{R}\right)}^{\widehat{Y}} \widehat{f}=\Omega^{-1-\frac{n}{2}} \overbrace{\left(\Delta-\frac{n-2}{4(n-1)} R\right)}^{Y} f \tag{13}
\end{equation*}
$$

is conformally covariant in the sense that

$$
\begin{equation*}
\widehat{Y}\left(\Omega^{1-\frac{n}{2}} f\right)=\Omega^{-1-\frac{n}{2}} Y f \tag{14}
\end{equation*}
$$

for every $f \in \Gamma(\mathcal{E})$.

Conformal invariance and covariance

Transformation rules for parts of Riemann tensor,

$$
\begin{equation*}
\widehat{W}^{a}{ }_{b c d}=W^{a}{ }_{b c d}, \quad \widehat{P}_{a b}=P_{a b}-\nabla_{a} \psi_{b}+\psi_{a} \psi_{b}-\frac{1}{2} g_{a b} \psi_{c} \psi^{c}, \tag{15}
\end{equation*}
$$

e.g.

$$
\begin{equation*}
\widehat{W}_{a b c d} \widehat{W}^{a b c d}=\Omega^{-6} W_{a b c d} W^{a b c d} \tag{16}
\end{equation*}
$$

is conformally covariant.

Construction of conformally covariant tensors

Take derivatives of curvature etc. add lower order terms with undetermined coefficients to find conformal covariants and invariants, e.g. the Bach tensor

$$
\begin{equation*}
B_{a b}:=\Delta P_{a b}-\nabla^{c} \nabla_{a} P_{b c}+P^{c d} W_{a c b d} \tag{17}
\end{equation*}
$$

transforms in the following way,

$$
\begin{equation*}
\widehat{B}_{a b}=\Omega^{-2}\left(B_{a b}+(n-4) \psi^{c} \psi^{d} W_{d a b c}\right) . \tag{18}
\end{equation*}
$$

Conformal geometry

Conformal manifold

Let (M, \mathbf{c}) be a manifold with a conformal class \mathbf{c} :

$$
\begin{equation*}
g_{a b},\left.\widehat{g}_{a b} \in \mathbf{c} \Longleftrightarrow \widehat{g}_{a b}\right|_{x \in M}=\left.s^{2} g_{a b}\right|_{x \in M} \tag{19}
\end{equation*}
$$

for every $x \in M$ with $s(x)>0$. Thus, the conformal class \mathbf{c} is a ray subbundle $\mathcal{Q} \subset \mathcal{E}_{(a b)}$.
Alternative view: \mathcal{Q} is a principal \mathbb{R}_{+}-bundle with projection

$$
\begin{equation*}
\pi: \mathcal{Q} \rightarrow M \tag{20}
\end{equation*}
$$

and principal action

$$
\begin{equation*}
\rho_{s}\left(x, g_{x}\right)=\left(x, s^{2} g_{x}\right), \quad x \in M, s \in \mathbb{R}_{+} \tag{21}
\end{equation*}
$$

Conformal geometry

Bundle of conformal densities of weight w
Define $\mathcal{E}[w]$ as an associated bundle to \mathcal{Q} with respect to the action of \mathbb{R}_{+}on \mathbb{R}. A section $\Gamma(\mathcal{E}[w])$ can be identified with a function F :

$$
\begin{equation*}
\Gamma(\mathcal{E}[w]) \longleftrightarrow F: \mathcal{Q} \rightarrow \mathbb{R} \tag{22}
\end{equation*}
$$

such that

$$
\begin{equation*}
F\left(\rho_{s}\left(x, g_{x}\right)\right)=F\left(x, s^{2} g_{x}\right)=s^{w} F\left(x, g_{x}\right) \tag{23}
\end{equation*}
$$

Let $\widehat{g}_{a b}$ and $g_{a b}$ be two sections of \mathcal{Q} such that $\widehat{g}_{a b}=\Omega^{2} g_{a b}$. We can pullback F via this sections to get functions on M such that

$$
\begin{equation*}
\widehat{f}=\Omega^{w} f, \tag{24}
\end{equation*}
$$

e.g. the conformal wave operator is an operator on $\mathcal{E}\left[1-\frac{n}{2}\right]$.

Bundle of conformally weighted tensors Let $\mathcal{E}_{\text {a... }}^{b \ldots}[w]:=\mathcal{E}_{\text {a... }}^{b \ldots \ldots} \otimes \mathcal{E}[w]$ for any tensor bundle $\mathcal{E}_{a \ldots \ldots}^{b \ldots}$.

Conformal geometry

Conformal metric

Tautological inclusion $\tilde{g}: \mathcal{Q} \rightarrow \pi^{*} \mathcal{E}_{(a b)}$,

$$
\begin{equation*}
\tilde{g}\left(x, s^{2} g_{x}\right)=\left(x, s^{2} g_{x}\right) \tag{25}
\end{equation*}
$$

may be identified with a canonical section $\mathbf{g}_{a b} \in \Gamma\left(\mathcal{E}_{(a b)}[2]\right)$.
The choice of specific $g_{a b} \in \mathbf{c}$ is equivalent to the choice of scale $\sigma_{g} \in \Gamma(\mathcal{E}[1])$, i.e.

$$
\begin{equation*}
g_{a b}=\sigma_{g}^{-2} \mathbf{g}_{a b} \in \Gamma\left(\mathcal{E}_{(a b)}[0]\right), \tag{26}
\end{equation*}
$$

with the property that the corresponding function $\tilde{\sigma}_{g}$ on \mathcal{Q} takes value 1 along the section $g_{a b}$.

Conformal geometry

Calculus with conformal densities
Choice of scale σ_{g} (choice of metric $g_{a b} \in \mathbf{c}$) determines a connection on $\mathcal{E}[w]$,

$$
\begin{equation*}
\nabla_{a}^{g} \tau=\sigma_{g}^{w} \partial_{a}\left(\sigma_{g}^{-w} \tau\right), \quad \tau \in \mathcal{E}[w] \tag{27}
\end{equation*}
$$

with the immediate generalizations to weighted tensor bundles. Consequences:

$$
\begin{gather*}
\nabla_{a}^{g} \sigma_{g}=0 \tag{28}\\
\nabla_{a}^{g} \mathbf{g}_{b c}=\nabla_{a}^{g}\left(\sigma_{g}^{2} g_{b c}\right)=0 \tag{29}
\end{gather*}
$$

so we can use $\mathbf{g}_{a b}$ instead of $g_{a b}$ to raise and lower indices.
Conformal transformation rule
If $\widehat{g}_{a b}=\Omega^{2} g_{a b}, \tau \in \mathcal{E}[w]$ then

$$
\begin{equation*}
\nabla^{\hat{\mathrm{g}}} \tau=\nabla^{g} \tau+w \psi_{a} \tau \tag{30}
\end{equation*}
$$

Almost Einstein equation and tractors

Let $g_{a b}, \widehat{g}_{a b} \in \mathbf{c}$ with $\widehat{g}_{a b}=\Omega^{2} g_{a b}$ and $\widehat{g}_{a b}$ be the Einstein metric, i.e.

$$
\begin{equation*}
\widehat{R}_{a b}=\lambda \widehat{g}_{a b}, \quad \lambda=\text { const } \tag{31}
\end{equation*}
$$

or

$$
\begin{equation*}
\widehat{P}_{a b}-\frac{1}{n} \widehat{g}_{a b} \widehat{P}_{c}^{c}=0 . \tag{32}
\end{equation*}
$$

In terms of $g_{a b}$ this reads

$$
\begin{equation*}
P_{a b}-\nabla_{a} \psi_{b}+\psi_{a} \psi_{b}-g_{a b}(\ldots)=0 \tag{33}
\end{equation*}
$$

Alternative look - $g_{a b}$ and $\widehat{g}_{a b}$ are determined by scales. Let

$$
\begin{equation*}
\widehat{g}_{a b}=\sigma_{\hat{g}}^{-2} \mathbf{g}_{a b} \tag{34}
\end{equation*}
$$

Then $\Omega=\frac{\sigma_{g}}{\sigma_{\hat{\mathrm{g}}}}$ and

$$
\begin{equation*}
\nabla_{a}^{g} \nabla_{b}^{g} \sigma_{\hat{g}}=\sigma_{\hat{\mathrm{g}}}\left(-\nabla_{a} \psi_{b}+\psi_{a} \psi_{b}\right) \tag{35}
\end{equation*}
$$

Almost Einstein equation and tractors

The conformal-to-Einstein equation is then

$$
\begin{equation*}
A_{a b}^{g} \sigma_{\hat{\mathrm{g}}}=0 \tag{36}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{a b}^{g}:=\nabla_{a}^{g} \nabla_{b}^{g}+P_{a b}-\frac{1}{n} g_{a b}\left(\Delta^{g}+P_{c}^{c}\right) \tag{37}
\end{equation*}
$$

Operator $A_{a b}$ is conformally covariant,

$$
\begin{equation*}
A_{a b}: \mathcal{E}[1] \rightarrow \mathcal{E}_{(a b)_{0}}[1] . \tag{38}
\end{equation*}
$$

Einstein metric - evaluate (36) in the scale $\sigma_{\hat{g}}$.
Since $\nabla^{\hat{\mathrm{g}}} \sigma_{\hat{\mathrm{g}}}=0$,

$$
\begin{equation*}
\widehat{P}_{a b}-\frac{1}{n} \widehat{g}_{a b} \widehat{P}_{c}^{c}=0 \tag{39}
\end{equation*}
$$

Almost Einstein equation and tractors

Almost Einstein equation

$$
\begin{equation*}
\nabla_{a}^{g} \nabla_{b}^{g} \sigma+P_{a b}^{g} \sigma+\mathbf{g}_{a b} \rho=0 \tag{40}
\end{equation*}
$$

where the trace terms are absorbed by $\rho \in \Gamma(\mathcal{E}[-1])$.
Prolongation
Let $\mu_{a} \in \Gamma\left(\mathcal{E}_{a}[1]\right)$ and

$$
\begin{equation*}
\mu_{\mathrm{a}}:=\nabla_{a}^{g} \sigma \tag{41}
\end{equation*}
$$

Equation (40) reads

$$
\begin{equation*}
\nabla_{a}^{g} \mu_{b}+P_{a b}^{g} \sigma+\mathbf{g}_{a b} \rho=0 \tag{42}
\end{equation*}
$$

Apply derivative, contract with $\mathbf{g}_{a b}$, use the Bianchi identity to get

$$
\begin{equation*}
\nabla_{a}^{g} \rho-P_{a b}^{g} \mu^{b}=0 \tag{43}
\end{equation*}
$$

On a conformal manifold (M, \mathbf{c}) define pre-tractor bundle $[\mathcal{T}]_{g}$ as a pair consisting of a direct sum bundle and $g \in \mathbf{c}$,

$$
\begin{equation*}
[\mathcal{T}]_{g}:=\left(\mathcal{E}[1] \oplus \mathcal{E}_{a}[1] \oplus \mathcal{E}[-1], g\right) \tag{44}
\end{equation*}
$$

where $V^{A}=\left(\sigma, \mu_{a}, \rho\right) \in \Gamma\left(\mathcal{E}[1] \oplus \mathcal{E}_{a}[1] \oplus \mathcal{E}[-1]\right)$.
Connection on $[\mathcal{T}]_{g}$

$$
\nabla_{a}^{\mathcal{T}} V^{A}=\nabla_{a}^{\mathcal{T}}\left(\begin{array}{c}
\sigma \tag{45}\\
\mu_{b} \\
\rho
\end{array}\right):=\left(\begin{array}{c}
\nabla_{a}^{g} \sigma-\mu_{a} \\
\nabla_{a}^{g} \mu_{b}+P_{a b}^{g} \sigma+\mathbf{g}_{a b} \rho \\
\nabla_{a}^{g} \rho-P_{a b}^{g} \mu^{b}
\end{array}\right) .
$$

Parallel sections of $\nabla_{a}^{\mathcal{T}} \Longleftrightarrow$ solutions of the almost Einstein equation.

Equivalence relations among the direct sum bundles $[\mathcal{T}]_{g}$ In the prolongation procedure

$$
\begin{equation*}
\mu_{a}=\nabla_{a}^{g} \sigma, \quad \rho=-\frac{1}{n}\left(\Delta^{g} \sigma+\left(\operatorname{tr} P^{g}\right) \sigma\right) \tag{46}
\end{equation*}
$$

Under the conformal change with $\widehat{g}_{a b}=\Omega^{2} g_{a b}$,

$$
\begin{equation*}
\nabla_{a}^{\hat{g}} \sigma=\nabla_{a}^{g} \sigma+\psi_{a} \sigma \tag{47}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta^{\hat{g}} \sigma+\left(\widehat{\operatorname{tr}} P^{\hat{g}}\right) \sigma=\Delta^{g} \sigma+\left(\operatorname{tr} P^{g}\right) \sigma+n \psi^{b} \nabla_{b}^{g} \sigma+\frac{n}{2} \sigma \psi^{a} \psi_{a} \tag{48}
\end{equation*}
$$

Thus, we decree that

$$
\begin{equation*}
\widehat{\sigma}=\sigma, \quad \widehat{\mu}_{a}=\mu_{a}+\psi_{a} \sigma, \quad \widehat{\rho}=\rho-\psi^{b} \mu_{b}-\frac{1}{2} \sigma \psi^{a} \psi_{\mathrm{a}} \tag{49}
\end{equation*}
$$

In the matrix form

$$
[\mathcal{T}]_{\hat{g}} \ni\left(\begin{array}{c}
\widehat{\sigma} \tag{50}\\
\widehat{\mu}_{b} \\
\widehat{\rho}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\psi_{b} & \delta_{b}^{c} & 0 \\
-\frac{1}{2} \psi^{a} \psi_{a} & -\psi^{c} & 1
\end{array}\right)\left(\begin{array}{c}
\sigma \\
\mu_{c} \\
\rho
\end{array}\right) .
$$

The transformation is by a group action. This defines the equivalence relation $\left(\widehat{\sigma}, \widehat{\mu}_{a}, \widehat{\rho}\right) \sim\left(\sigma, \mu_{a}, \rho\right)$ and

$$
\begin{equation*}
\mathcal{T}=\bigsqcup_{g \in \mathbf{c}}[\mathcal{T}]_{g} / \sim \tag{51}
\end{equation*}
$$

is the tractor bundle on (M, \mathbf{c}) with and since $\nabla_{a}^{\mathcal{T}}\left(\sigma, \mu_{\mathrm{a}}, \rho\right)$ transforms in accordance with (50) it determines a connection on \mathcal{T}.

Tractor metric The formula

$$
\begin{equation*}
V^{A}=\left(\sigma, \mu_{a}, \rho\right) \rightarrow 2 \sigma \rho+\mathbf{g}^{a b} \mu_{a} \mu_{b}=: h(V, V) \tag{52}
\end{equation*}
$$

defines a tractor metric $h_{A B}$ which is preserved by $\nabla_{a}^{\mathcal{T}}$. We have

$$
\begin{equation*}
V_{A}=h_{A B} V^{B}, \quad V^{A}=h^{A B} V_{B} \tag{53}
\end{equation*}
$$

Tractor curvature Since the tractor connection is coupled with the Levi-Civita connection

$$
\begin{equation*}
\left(\nabla_{a}^{\mathcal{T}} \nabla_{b}^{\mathcal{T}}-\nabla_{b}^{\mathcal{T}} \nabla_{a}^{\mathcal{T}}\right) V^{C}=\kappa_{a b}{ }^{C}{ }_{D} V^{D} \tag{54}
\end{equation*}
$$

Since $\nabla_{a}^{\mathcal{T}} h_{B C}=0$

$$
\begin{equation*}
\kappa_{a b} C D=-\kappa_{a b} D C . \tag{55}
\end{equation*}
$$

Invariant D operator

In the scale $g_{a b}$,

$$
\kappa_{a b}^{g} c^{c}{ }_{D}=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{56}\\
-A_{a b}{ }^{c} & W_{a b}{ }^{c}{ }_{d} & 0 \\
0 & A_{a b d} & 0
\end{array}\right),
$$

where $A_{a b c}:=2 \nabla_{[a} P_{b] c}$ is the Cotton tensor. In particular,

$$
\kappa_{a b}^{g} C_{D} \equiv 0 \Longleftrightarrow W_{a b}{ }^{c}{ }_{d}=0 .
$$

Thomas-D operator Let $V_{A} \in \Gamma(\mathcal{T}[w])$. The expression

$$
D_{A} V_{B}: \stackrel{g}{=}\left(\begin{array}{c}
(n+2 w-2) w V \tag{57}\\
(n+2 w-2) \nabla_{a}^{\mathcal{T}} V \\
-\left[\Delta^{g}+w\left(\operatorname{tr} P^{g}\right)\right] V
\end{array}\right)
$$

transforms as an element of $\Gamma\left(\mathcal{E}_{A B}[w]\right)$.

Scale tractor

Scale tractor and almost Einstein equation
Let

$$
\begin{equation*}
I_{\sigma}:=\frac{1}{n} D \sigma \tag{58}
\end{equation*}
$$

be the scale tractor associated to the scale σ. The AE eq. reads

$$
\begin{equation*}
\nabla_{a}^{\mathcal{T}} I_{\sigma}=0, \tag{59}
\end{equation*}
$$

i.e. conformal to Einstein - there exists a parallel tractor I_{σ}. How to recover scale σ from I_{σ} ?

Tractor projectors Let

$$
\begin{equation*}
X^{A}: \mathcal{E}[-1] \rightarrow \mathcal{E}^{A}, \quad Z^{A a}: \mathcal{E}_{a}[1] \rightarrow \mathcal{E}^{A}, \quad Y^{A}: \mathcal{E}[-1] \rightarrow \mathcal{E}^{A} \tag{60}
\end{equation*}
$$

such that any tractor U^{A} can be decomposed as

$$
\begin{equation*}
U^{A}=Y^{A} \sigma+Z^{A a} \mu_{a}+X^{a} \rho, \tag{61}
\end{equation*}
$$

e.g. the tractor metric $h_{A B}=2 X_{(A} Y_{B)}+Z_{A}{ }^{c} Z_{B c}$ and

$$
\begin{equation*}
\sigma=X_{A} I_{\sigma}^{A} \tag{62}
\end{equation*}
$$

The I_{σ}^{2} and scalar curvature

The I_{σ}^{2} It can be checked that

$$
\begin{equation*}
h\left(l_{\sigma}, l_{\sigma}\right) \stackrel{g}{=} \mathbf{g}^{a b} \nabla_{a}^{g} \sigma \nabla_{b}^{g} \sigma-\frac{2}{n} \sigma\left(\Delta^{g}+\operatorname{tr} P^{g}\right) \sigma \tag{63}
\end{equation*}
$$

In particular for $g_{\sigma}=\sigma^{-2} \mathbf{g}$

$$
\begin{equation*}
h\left(I_{\sigma}, l_{\sigma}\right) \stackrel{g_{\sigma}}{=}-\frac{1}{n(n-1)} R^{g_{\sigma}} \tag{64}
\end{equation*}
$$

i.e. I^{2} is a conformally covariant notion of the scalar curvature.

Example - conformal sphere

Simplest model - conformal geometry of S^{2}
Consider Minkowski spacetime with a metric $\eta_{a b}$ and the set of its null vectors. They form a null cone \mathcal{N}. Let \mathcal{N}_{+}be a part of $\mathcal{N} \backslash\{0\}$ generated by the future-pointing null vectors:

Let \mathbb{P}_{+}be a map which takes $x \in \mathcal{N}_{+}$to its equivalence class with the following equivalence relation,

$$
\begin{equation*}
x \sim x^{\prime} \quad \text { iff } \quad x^{\prime}=\alpha x \quad \text { for } \quad \alpha>0 \tag{65}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathbb{P}_{+}\left(\mathcal{N}_{+}\right) \equiv S^{2} \tag{66}
\end{equation*}
$$

Example - conformal sphere

Let π be the submersion,

$$
\begin{equation*}
\pi: \mathcal{N}_{+} \rightarrow S^{2} \tag{67}
\end{equation*}
$$

Each $x \in \mathcal{N}_{+}$determines a positive metric g_{x} on S^{2} via

$$
\begin{equation*}
g_{x}(y, z)=\eta\left(y^{\prime}, z^{\prime}\right), \quad y:=\pi\left(y^{\prime}\right), \quad z:=\pi\left(z^{\prime}\right) \tag{68}
\end{equation*}
$$

which is independent of the choices of lifts y^{\prime} and z^{\prime}.
The conformal metric $\mathbf{g}_{a b}$ of S^{2} can be defined as restriction of $\eta_{a b}$ to the vector fields in $T \mathcal{N}_{+}$which are lifts of the vector fields from S^{2}.

Alternative 'definition' of $\mathbf{g}_{a b}$ - Minkowski metric in spherical coordinates

$$
\begin{equation*}
\eta=-d t^{2}+d r^{2}+r^{2} g_{S^{2}} \tag{69}
\end{equation*}
$$

Example - conformal sphere

Introduce null coordinates u, v,

$$
\begin{equation*}
u:=t+r, \quad v:=t-r \tag{70}
\end{equation*}
$$

Then

$$
\begin{equation*}
\eta=-d u d v+\left(\frac{u-v}{2}\right)^{2} g_{S^{2}} \tag{71}
\end{equation*}
$$

Metric on a null cone $(v=0)$ is degenerate with signature $(0,+,+)$. Restriction to the vectors tangent to S^{2} reads

$$
\begin{equation*}
\mathbf{g}=\frac{u^{2}}{4} g_{S^{2}} \tag{72}
\end{equation*}
$$

e.g. $u=2$ corresponds to the standard round sphere metric.

Example - conformal sphere

Tractor bundle

Equivalence relation on $T \mathcal{N}_{+}$coming from equivalence relation on \mathcal{N}_{+}:
$U_{x} \sim V_{y} \quad$ iff $\quad x, y \in \pi^{-1}\left(x^{\prime}\right), x^{\prime} \in S^{2} \quad$ and $\quad U_{x}$ and V_{y} parallel
Then $T \mathcal{N}_{+} / \sim$ is the standard tractor bundle of $\left(S^{2}, \mathrm{c}\right)$.

