Characterizations of smooth projective horospherical varieties of Picard number one II

Jaehyun Hong

IBS Center for Complex Geometry

September 23, 2022

Joint work with T. Morimoto, S.-Y. Kim arXiv: 2203. 10313, 2263. 05(82

Main Theorem (Hwang-Li, H.-Kim)

Let X be a smooth horospherical variety of Picard number one, and o be a general point in X.

Let M be a uniruled projective manifold of Picard number one with a family \mathcal{K} of minimal rational curves. Assume that $(\mathcal{C}_x(M) \subset \mathbb{P}(T_xM))$ is projectively equivalent to $(\mathcal{C}_o(X) \subset \mathbb{P}(T_oX))$ for general $x \in M$.

Then M is biholomorphic to X.

(Hwang-Li)

$$(C_n, \varpi_k, \varpi_{k-1}), \ (G_2, \varpi_2, \varpi_1)$$

(H.-Kim)

$$(B_n, \varpi_{n-1}, \varpi_n) (n \ge 3), \ (B_3, \varpi_1, \varpi_3), \ (F_4, \varpi_2, \varpi_3)$$

Smooth horospherical varieties of Picard number one

number one. Let $\mathfrak{g} := Lie \operatorname{Aut}(X) = (\mathfrak{l} \oplus \mathbb{C}) \ltimes U$.

Then there is a grading on \mathfrak{l} and U,

$$\mathfrak{l} = \bigoplus_{k=-\mu}^{\mu} \mathfrak{l}_k \text{ and } U = \bigoplus_{k=-1}^{\nu} U_k, \qquad (\exists_{\mu}, \emptyset_{\mu}, 0)$$

such that, with the grading on $\mathfrak{g} = (\mathfrak{l} \oplus \mathbb{C}) \ltimes U$ defined by

$$\begin{aligned} \mathfrak{g}_0 &:= & (\mathfrak{l}_0 \oplus \mathbb{C}) \rhd U_0 \\ \mathfrak{g}_p &:= & \mathfrak{l}_p \oplus U_p \text{ for } p \neq 0, \end{aligned}$$

the negative part $\mathfrak{m}=\bigoplus_{p<0}\mathfrak{g}_p$ of \mathfrak{g} is identified with the tangent space of X at the base point o of X^0 .

(Kim)

Furthermore,

- \mathfrak{g} is the prolongation of $(\mathfrak{g}_{-}, \mathfrak{g}_{0})$;
- the variety of minimal rational tangents $\mathcal{C}_o(X)$ of X at the base point o is given by

$$\mathcal{C}_o(X) = \begin{cases} \mathsf{H}_{L_0}(\underbrace{U_{-1} \oplus \mathfrak{l}_{-1}}_{\mathsf{H}_{L_0}}) \text{ if } X \text{ is } (\underbrace{C_m, \alpha_{i+1}, \alpha_i}) \text{ for } 1 \leq i < m \\ \mathsf{H}_{\underline{L}_0}(\underbrace{U_{-1} \oplus \mathfrak{l}_{-1}}_{\mathsf{H}_{-1}}), \text{ otherwise. } \subset (\underbrace{\mathsf{PCS}}_{\mathsf{H}}) \end{cases}$$

cf. When X = G/P

 $\mathcal{C}_o(X) = \begin{cases} \mathsf{H}_{G_0}(\mathfrak{g}_{-1} \oplus \mathfrak{g}_{-2}) & \text{if } P \text{ is associated to a short root} \\ \mathsf{H}_{G_0}(\mathfrak{g}_{-1}) & \text{if } P \text{ is associated to a long root} \end{cases}$

Example

- $\mathcal{C}_0(X) \subset \mathbb{P}(D_o) \subset \mathbb{P}(T_oX) \text{ and } [\,,\,]: \wedge^2 \mathfrak{g}_{-1} \to \mathfrak{g}_{-2}$
 - $(G_2, \varpi_2, \varpi_1)$

 $\mathbb{P}\{cv+v^3: c \in \mathbb{C}, v \in V\} \subset \mathbb{P}(V \oplus \mathrm{Sym}^3 V) = \mathbb{P}(\mathfrak{g}_{-1})$

where dim V = 2 and $L_0 = A_1$.

Example

 $\mathcal{C}_0(X) \subset \mathbb{P}(D_o) \subset \mathbb{P}(T_oX) \text{ and } [\,,\,]: \wedge^2 \mathfrak{g}_{-1} \to \mathfrak{g}_{-2}$

•
$$(B_n, \varpi_{n-1}, \varpi_n)$$

 $\mathbb{P}\{cv + v^2 \otimes w : c \in \mathbb{C}, v \in V, w \in W\} \subset \mathbb{P}(V \oplus (\mathrm{Sym}^2 V \otimes W)) = \mathbb{P}(\mathfrak{g})$

where dim V = 2 and dim W = m - 1 and $L_0 = A_1 \times A_{m-2}$.

Example

 $\mathcal{C}_0(X) \subset \mathbb{P}(D_o) \subset \mathbb{P}(T_oX) \text{ and } [\,,\,]: \wedge^2 \mathfrak{g}_{-1} \to \mathfrak{g}_{-2}$

• $(B_n, \varpi_{n-1}, \varpi_n)$ $((F_4, \varpi_2, \varpi_3), \text{ respectively})$

 $\mathbb{P}\{cv + v^2 \otimes w : c \in \mathbb{C}, v \in V, w \in W\} \subset \mathbb{P}(V \oplus (\mathrm{Sym}^2 V \otimes W)) = \mathbb{P}(\mathfrak{g})$

where dim V = 2 and dim W = m - 1 and $L_0 = A_1 \times A_{m-2}$. (dim V = 3 and dim W = 2 and $L_0 = A_2 \times A_1$, respectively) $\wedge^2 \mathfrak{g}_{-1} = \wedge^2 V \oplus (V \wedge (\operatorname{Sym}^2 V \otimes W)) \oplus \wedge^2 (\operatorname{Sym}^2 V \otimes W) \to \mathfrak{g}_{-2}$

Let X be a smooth horospherical variety of Picard number one, one of the following types (model)

- $(B_n, \varpi_{n-1}, \varpi_n)$ $(n \ge 3)$
- $(B_3, \alpha_1, \alpha_3)$
- $(F_4, \varpi_2, \varpi_3)$

and o be a general point.

Let M be a uniruled projective manifold with a minimal rational component \mathcal{K} . Assume that $(\mathcal{C}_x(M) \subset \mathbb{P}(T_xM))$ is projectively equivalent to $(\mathcal{C}_o(X) \subset \mathbb{P}(T_oX))$ for general $x \in M$.

≫€ }

Let X be a smooth horospherical variety of Picard number one, one of the following types (model)

- $(B_n, \varpi_{n-1}, \varpi_n)$ $(n \ge 3)$
- $(B_3, \alpha_1, \alpha_3)$
- $(F_4, \varpi_2, \varpi_3)$

and o be a general point.

Let M be a uniruled projective manifold with a minimal rational component \mathcal{K} . Assume that $(\mathcal{C}_x(M) \subset \mathbb{P}(T_xM))$ is projectively equivalent to $(\mathcal{C}_o(X) \subset \mathbb{P}(T_oX))$ for general $x \in M$.

$$\begin{array}{ccc}
\mathcal{C}(X) \subset \mathbb{P}(TX) & \mathcal{C}(M) \subset \mathbb{P}(TM) \\
\downarrow & \downarrow \\
X & M
\end{array}$$

 $(\mathcal{C}_x(M) \subset \mathbb{P}(T_xM)) \stackrel{\text{proj.equiv.}}{\simeq} (\mathcal{C}_o(X) \subset \mathbb{P}(T_oX))$ for general $x \in M$

What we have:

$$\begin{array}{ccc} \mathcal{C}(X) \subset \mathbb{P}(TX) & \quad \mathcal{C}(M) \subset \mathbb{P}(TM) \\ & & & \downarrow \\ & & & \downarrow \\ & X & & M \end{array}$$

 $(\mathcal{C}_x(M) \subset \mathbb{P}(T_xM)) \stackrel{\text{proj.equiv.}}{\simeq} (\mathcal{C}_o(X) \subset \mathbb{P}(T_oX))$ for general $x \in M$

What we have:

$$\begin{array}{ccc} \mathcal{C}(X) \subset \mathbb{P}(TX) & \quad \mathcal{C}(M) \subset \mathbb{P}(TM) \\ & & & \downarrow \\ & & & \downarrow \\ & X & & M \end{array}$$

$$(\mathcal{C}_x(M) \subset \mathbb{P}(T_xM)) \stackrel{\text{proj.equiv.}}{\simeq} (\mathcal{C}_o(X) \subset \mathbb{P}(T_oX))$$
 for general $x \in M$

<u>Want to show</u>: There exists connected open subsets $U \subset X$ and $V \subset M$ and a biholomorphism

$$\varphi:U\to V$$

whose differential $\varphi_* : \mathbb{P}(T_x X) \to \mathbb{P}(T_{\varphi(x)}M)$ sends $\mathcal{C}_x(X)$ to $\mathcal{C}_x(M)$ for all generic $x \in U$.

What we have:

$$\begin{array}{ccc} \mathcal{C}(X) \subset \mathbb{P}(TX) & \mathcal{C}(M) \subset \mathbb{P}(TM) \\ & & & \downarrow \\ & & & \downarrow \\ & & & M \end{array}$$

$$(\mathcal{C}_x(M) \subset \mathbb{P}(T_xM)) \stackrel{\text{proj.equiv.}}{\simeq} (\mathcal{C}_o(X) \subset \mathbb{P}(T_oX))$$
 for general $x \in M$

<u>Want to show</u>: There exists connected open subsets $U \subset X$ and $V \subset M$ and a biholomorphism

$$\varphi:U\to V$$

whose differential $\varphi_* : \mathbb{P}(T_x X) \to \mathbb{P}(T_{\varphi(x)}M)$ sends $\mathcal{C}_x(X)$ to $\mathcal{C}_x(M)$ for all generic $x \in U$.

(Local equivalence problem)

Proof when X is G/P associated to a long root

Step. 1 There is a one-to-one correspondence

 $\{\mathbf{S}\text{-structures}\} \leftrightarrow \{G_0\text{-structures}\}$

such that $\mathcal{S}_1 \stackrel{\text{equiv.}}{\simeq} \mathcal{S}_2$ if and only if $\mathscr{P}_1^{(0)} \stackrel{\text{equiv.}}{\simeq} \mathscr{P}_2^{(0)}$.

Proof when X is G/P associated to a long root

Step. 1 There is a one-to-one correspondence

 $\{\mathbf{S}\text{-structures}\} \leftrightarrow \{G_0\text{-structures}\}$

such that $\mathcal{S}_1 \stackrel{\text{equiv.}}{\simeq} \mathcal{S}_2$ if and only if $\mathscr{P}_1^{(0)} \stackrel{\text{equiv.}}{\simeq} \mathscr{P}_2^{(0)}$.

Step. 2 (Tanaka) There is a one-to-one correspondence

 $\{G_0$ -structures $\} \leftrightarrow \{$ Cartan connections of type $G/P\}$

such that $\mathscr{P}_1^{(0)} \stackrel{\text{equiv.}}{\simeq} \mathscr{P}_2^{(0)}$ if and only if $\mathscr{P}_1 \stackrel{\text{equiv.}}{\simeq} \mathscr{P}_2$. Furthermore, if any section of $\mathcal{H}_k^2(\mathscr{P}^{(0)}) := \mathscr{P}^{(0)} \times_{G_0} H^2(\mathfrak{g}_-, \mathfrak{g})_k$ vanishes for all $k \geq 1$, then $\mathscr{P}^{(0)} \to M$ is flat.

Proof when X is G/P associated to a long root

Step. 1 There is a one-to-one correspondence

 $\{\mathbf{S}\text{-structures}\} \leftrightarrow \{G_0\text{-structures}\}$

such that $\mathcal{S}_1 \stackrel{\text{equiv.}}{\simeq} \mathcal{S}_2$ if and only if $\mathscr{P}_1^{(0)} \stackrel{\text{equiv.}}{\simeq} \mathscr{P}_2^{(0)}$.

Step. 2 (Tanaka) There is a one-to-one correspondence

 $\{G_0$ -structures $\} \leftrightarrow \{$ Cartan connections of type $G/P\}$

such that $\mathscr{P}_1^{(0)} \stackrel{\text{equiv.}}{\simeq} \mathscr{P}_2^{(0)}$ if and only if $\mathscr{P}_1 \stackrel{\text{equiv.}}{\simeq} \mathscr{P}_2$. Furthermore, if any section of $\mathcal{H}_k^2(\mathscr{P}^{(0)}) := \mathscr{P}^{(0)} \times_{G_0} H^2(\mathfrak{g}_-, \mathfrak{g})_k$ vanishes for all $k \geq 1$, then $\mathscr{P}^{(0)} \to M$ is flat.

Step. 3 Any section of $\mathcal{H}^2_k(\mathscr{P}^{(0)}) \to M$ vanishes for all $k \ge 1$.

 $o\in X=G/P$

- $\mathfrak{g} = \oplus_i \mathfrak{g}_i$, the Lie algebra of $G = \operatorname{Aut}^0(X)$ with a grading
- $\mathfrak{g}_{-}=\oplus_{i<0}\mathfrak{g}_{i}$ identified with $T_{o}X$

 $o \in X = G/P$ ($o \in X^0 = G/G^0 \subset X$ when X is horospherical)

 $\mathfrak{g} = \oplus_i \mathfrak{g}_i$, the Lie algebra of $G = \operatorname{Aut}^0(X)$ with a grading

 $\mathfrak{g}_{-}=\oplus_{i<0}\mathfrak{g}_i$ identified with T_oX

 $o \in X = G/P$ ($o \in X^0 = G/G^0 \subset X$ when X is horospherical) $\mathfrak{g} = \bigoplus_i \mathfrak{g}_i$, the Lie algebra of $G = \operatorname{Aut}^0(X)$ with a grading $\mathfrak{g}_- = \bigoplus_{i < 0} \mathfrak{g}_i$ identified with $T_o X$

Denote by $H^2(\mathfrak{g}_-,\mathfrak{g})$ the Lie algebra cohomology of the \mathfrak{g}_- -module \mathfrak{g} , the cohomology of the following complex:

 $0 \to \mathfrak{g} \xrightarrow{\partial} C^1(\mathfrak{g}_-, \mathfrak{g}) := \operatorname{Hom}(\mathfrak{g}_-, \mathfrak{g}) \xrightarrow{\partial} C^2(\mathfrak{g}_-, \mathfrak{g}) := \operatorname{Hom}(\wedge^2 \mathfrak{g}_-, \mathfrak{g}) \xrightarrow{\partial} \dots$ Denote by $H^2(\mathfrak{g}_-, \mathfrak{g})_k$ the cohomology of the following restriction:

$$0 \to \mathfrak{g}_k \xrightarrow{\partial} C^1(\mathfrak{g}_-, \mathfrak{g})_k \xrightarrow{\partial} C^2(\mathfrak{g}_-, \mathfrak{g})_k \xrightarrow{\partial} C^3(\mathfrak{g}_-, \mathfrak{g})_k \xrightarrow{\partial} \dots,$$

where $C^1(\mathfrak{g}_-,\mathfrak{g})_k := \{\phi \in C^1(\mathfrak{g}_-,\mathfrak{g}) : \phi(\mathfrak{g}_p) \subset \mathfrak{g}_{p+k}\},\ C^2(\mathfrak{g}_-,\mathfrak{g})_k := \{\phi \in C^2(\mathfrak{g}_-,\mathfrak{g}) : \phi(\mathfrak{g}_{p_1} \wedge \mathfrak{g}_{p_2}) \subset \mathfrak{g}_{p_1+p_2+k}\}, \text{ etc.}$

 $\mathbf{S} := \mathcal{C}_o(X) \subset \mathbb{P}(\mathfrak{g}_{-1})$ the variety of mrt of X at the base point o $\mathfrak{g}_0 \subset \mathfrak{g}_0(\mathfrak{g}_-) \rightsquigarrow G_0 \subset G_0(\mathfrak{g}_-)$ where $G_0(\mathfrak{g}_-)$ is the automorphism group of the graded Lie algebra \mathfrak{g}_-

A distribution D on a complex manifold M is a subbundle of the tangent bundle TM of M. A distribution D is called of type \mathfrak{g}_{-} if for each $x \in M$ the symbol algebra $\operatorname{Symb}_{x}(D)$ is isomorphic to \mathfrak{g}_{-} as a graded Lie algebra. In this case, the pair (M, D) is called a *filtered manifold of type* \mathfrak{g}_{-} .

For each $x \in M$, let \mathscr{R}_x be the set of all isomorphisms $r: \mathfrak{g}_- \to \operatorname{Symb}_x(D)$ of graded Lie algebras. Then $\mathscr{R}(M) := \bigcup_{x \in M} \mathscr{R}_x$ is a principal $G_0(\mathfrak{g}_-)$ -bundle on M. We call $\mathscr{R}(M)$ the *frame bundle* of (M, D). G_0 -structures $\mathscr{P}^{(0)} \subset \mathscr{R}(M) \quad \leftrightarrow \quad \mathbf{S}$ -structures $\mathcal{S} \subset \mathbb{P}(D)$

Given a closed subgroup $G_0 \subset G_0(\mathfrak{g}_-)$, a G_0 -structure on (M, D) is a G_0 -subbundle $\mathscr{P}^{(0)}$ of the frame bundle $\mathscr{R}(M)$ of (M, D). Two G_0 -structures $\mathscr{P}_1^{(0)}$ on (M_1, D_1) and $\mathscr{P}_2^{(0)}$ on (M_2, D_2) are equivalent if there is a biholomorphism $\varphi : M_1 \to M_2$ such that $d\varphi : TM_1 \to TM_2$ induces an isomorphism from $\mathscr{P}_1^{(0)}$ onto $\mathscr{P}_2^{(0)}$.

A fiber subbundle $S \subset \mathbb{P}D$ is called an S-structure on (M, D) if for each $x \in M$, the fiber $S_x \subset \mathbb{P}D_x$ is isomorphic to $S \subset \mathbb{P}\mathfrak{g}_{-1}$ under a graded Lie algebra isomorphism $\mathfrak{g}_- \to \operatorname{Symb}_x(D)$.

Two S-structures S_1 on (M_1, D_1) and S_2 on (M_2, D_2) are said to be equivalent if there exists a biholomorphism $\phi \colon M_1 \to M_2$ such that $d\phi \colon \mathbb{P}TM_1 \to \mathbb{P}TM_2$ sends $S_1 \subset \mathbb{P}TM_1$ to $S_2 \subset \mathbb{P}TM_2$. **Step.** 1 There is a one-to-one correspondence

```
\{\mathbf{S}\text{-structures }\} \leftrightarrow \{G_0\text{-structures }\}
```

such that $\mathcal{S}_1 \stackrel{\text{equiv.}}{\simeq} \mathcal{S}_2$ if and only if $\mathscr{P}_1^{(0)} \stackrel{\text{equiv.}}{\simeq} \mathscr{P}_2^{(0)}$.

Step. 2 (Hwang-Li) If any section of

$$C^{2}(\mathscr{P}^{(0)})_{k}/\partial C^{1}(\mathscr{P}^{(0)})_{k} := \mathscr{P}^{(0)} \times_{G_{0}} (C^{2}(\mathfrak{g}_{-},\mathfrak{g})_{k}/\partial C^{1}(\mathfrak{g}_{-},\mathfrak{g})_{k})$$

vanishes for all $k \ge 1$, then there exists a Cartan connection of type G/G^0 which is flat so that $\mathscr{P}^{(0)} \to M$ is flat.

Step. 3 Any section of $C^2(\mathscr{P}^{(0)})_k/\partial C^1(\mathscr{P}^{(0)})_k\to M$ vanishes for all $k\geq 1.$

Proof of Main Theorem

Step. 1 There is a one-to-one correspondence

 $\{\mathbf{S}\text{-structures}\} \leftrightarrow \{G_0\text{-structures}\}$

such that $\mathcal{S}_1 \stackrel{\text{equiv.}}{\simeq} \mathcal{S}_2$ if and only if $\mathscr{P}_1^{(0)} \stackrel{\text{equiv.}}{\simeq} \mathscr{P}_2^{(0)}$.

Step. 2 (H.-Morimoto) There is a one-to-one correspondence

 $\{G_0\text{-structures }\} \leftrightarrow \{ \text{ step prolongations of type } (G_0, G_1, \dots, G_{\nu}) \}$

such that $\mathscr{P}_1^{(0)} \stackrel{\text{equiv.}}{\simeq} \mathscr{P}_2^{(0)}$ if and only if $\mathscr{P}_1 \stackrel{\text{equiv.}}{\simeq} \mathscr{P}_2$. Furthermore, if any section of $\mathcal{H}_k^2(\mathscr{P}^{(0)}) := \mathscr{P}^{(0)} \times_{G_0} H^2(\mathfrak{g}_-, \mathfrak{g})_k$ vanishes for all $k \geq 1$, then the corresponding $\mathscr{P} \to M$ is a Cartan connection of type G/G^0 which is flat so that $\mathscr{P}^{(0)} \to M$ is flat.

Step. 3 Any section of $\mathcal{H}^2_k(\mathscr{P}^{(0)}) \to M$ vanishes for all $k \ge 1$.

Fix a set of subspaces $W=\{W^1_\ell,W^2_{\ell+1}\}_{\ell\geq 0}$ such that

$$\operatorname{Hom}(\mathfrak{g}_{-},\mathfrak{g})_{\ell} = W_{\ell}^{1} \oplus \partial \mathfrak{g}_{\ell} \operatorname{Hom}(\wedge^{2}\mathfrak{g}_{-},\mathfrak{g})_{\ell+1} = W_{\ell+1}^{2} \oplus \partial \operatorname{Hom}(\mathfrak{g}_{-},\mathfrak{g})_{\ell+1}.$$

(H.-Morimoto)

Let $\mathscr{P}^{(0)}$ be a G_0 -structure on a filtered manifold M of type \mathfrak{g}_- . Then for each $\ell \geq 1$, there is a step prolongation

$$\mathscr{S}_{W}^{(\ell)}\mathscr{P}^{(0)} \xrightarrow{G_{\ell}} \mathscr{S}_{W}^{(\ell-1)}\mathscr{P}^{(0)} \longrightarrow \cdots \longrightarrow \mathscr{S}_{W}^{(1)}\mathscr{P}^{(0)} \xrightarrow{G_{1}} \mathscr{P}^{(0)} \xrightarrow{G_{0}} M$$

of type $(\mathfrak{g}_-, G_0, \cdots, G_\ell)$.

(We call the limit $\mathscr{S}_W \mathscr{P} = \lim_{\ell} \mathscr{S}_W^{(\ell)} \mathscr{P}$ the *W*-normal complete step prolongation of \mathscr{P} .)

If, furthermore, $H^0(M, \mathcal{H}^0_k(\mathscr{P}^{(0)}))$ is zero for all $k \geq 1$, then the W-normal complete step prolongation $\mathscr{S}_W \mathscr{P}^{(0)}$ of $\mathscr{P}^{(0)}$ is a Cartan connection of type G/G^0 which is flat, and $\mathscr{P}^{(0)}$ is locally isomorphic to the standard G_0 -structure on G/G^0 .

Recall

Let \boldsymbol{X} be a smooth horospherical variety of Picard number one, one of the following type

- $(B_n, \varpi_{n-1}, \varpi_n)$ $(n \ge 3)$
- $(B_3, \alpha_1, \alpha_3)$
- $(F_4, \varpi_2, \varpi_3)$

and o be a general point in X.

Let M be a uniruled projective manifold of Picard number one with a family ${\cal K}$ of minimal rational curves. Assume that

$$(\mathcal{C}_x(M) \subset \mathbb{P}(T_xM)) \stackrel{\text{proj.equiv.}}{\simeq} (\mathcal{C}_o(X) \subset \mathbb{P}(T_oX))$$
 for general $x \in M$.

Want to show: M is biholomorphic to X.

Enough to show: There is a connected open subset $M^0 \subset M$ such that $\mathcal{C}(M)|_{M^0}$ defines an S-structure on M^0 , and for the corresponding G_0 -structure $\mathscr{P}^{(0)}$ on M^0 ,

$$H^0(M^0,\mathcal{H}^2_k(\mathscr{P}^{(0)}))=0 \text{ for all } k\geq 1.$$

 $0 \rightarrow 3 \xrightarrow{2} Hom(l_{-}, 1) \xrightarrow{2} Hom(n_{l_{-}}, 2) \xrightarrow{2} \cdots$ Step 3-1 Lie algebra cohomology. $g \rightarrow g \rightarrow f \rightarrow (g, g) \rightarrow f \rightarrow (h \rightarrow (g, g) \rightarrow (h \rightarrow (g, g)) \rightarrow (h \rightarrow ($ If $(\mathfrak{g}_{-},\mathfrak{g}_{0})$ is of type $(B_{m},\alpha_{m-1},\alpha_{m})$, where m>3, then $H^{2}(\mathfrak{g}_{-},\mathfrak{g})_{k}$ vanishes except for k = 1, 2, and $9_{-} = l_{-} + u_{-}$ $\Lambda^{\mathfrak{g}} = \mathcal{F} > H^2(\mathfrak{q}_{-},\mathfrak{g})_1 \subset \Lambda^2 \mathfrak{g}_1^* \otimes U_{-1}$ $H^2(\mathfrak{a}_-,\mathfrak{a})_2 \subset \wedge^2 \mathfrak{a}^*_1 \otimes U_0 \subset (\wedge^2 \mathfrak{g}_{-1} \otimes \mathfrak{g}_{-1})^* \otimes U_{-1}.$ 2 If $(\mathfrak{g}_{-},\mathfrak{g}_{0})$ is of type $(F_{4},\alpha_{2},\alpha_{3})$, then $H^{2}(\mathfrak{g}_{-},\mathfrak{g})_{k}$ vanishes except for k=1, and

$$H^2(\mathfrak{g}_-,\mathfrak{g})_1 \subset \wedge^2 \mathfrak{g}_{-1}^* \otimes U_{-1}$$

 ${\bf Remark.}\ {\mathfrak g}$ is not reductive, so that we cannot apply Kostant's theory directly.

Step 3-2 Parallel transport of VMRT.

Let $\mathbf{S} \subset \mathbb{P}(\mathfrak{g}_{-1})$ be the variety of minimal rational tangents of $(B_m, \alpha_{m-1}, \alpha_m)$, $m \geq 3$ or $(F_4, \alpha_2, \alpha_3)$ at the base point. Let $\pi : \mathbb{P}E \to \mathbb{P}^1$ be the projectivization of a holomorphic vector bundle E over \mathbb{P}^1 and let $\mathcal{C} \subset \mathbb{P}E$ be an irreducible subvariety. Denote by ϖ the restriction of π to \mathcal{C} . Assume that

- $C_t := \varpi^{-1}(t) \subset \mathbb{P}E_t := \pi^{-1}(t)$ is projectively equivalent to $\mathbf{S} \subset \mathbb{P}(\mathfrak{g}_{-1})$ for all $t \in \mathbb{P}^1 \{t_1, \dots, t_k\}$;
- for a general section σ⊂ C of ∞, <u>the relative second fundamental form</u> and <u>the relative third fundamental form</u> of C along σ are constants.

Then for any $t \in \mathbb{P}^1$, $\mathcal{C}_t \subset \mathbb{P}(E_t)$ is projectively equivalent to $\mathbf{S} \subset \mathbb{P}(\mathfrak{g}_{-1})$.

Main Theorem (H.-Kim)

Let \boldsymbol{X} be a smooth horospherical variety of Picard number one of the following type

- $(B_n, \varpi_{n-1}, \varpi_n)$ $(n \ge 3)$
- $(B_3, \alpha_1, \alpha_3)$
- $(F_4, \varpi_2, \varpi_3)$

and o be a general point in X.

Let M be a uniruled projective manifold of Picard number one with a family ${\cal K}$ of minimal rational curves. Assume that

 $(\mathcal{C}_x(M) \subset \mathbb{P}(T_xM)) \stackrel{\text{proj.equiv.}}{\simeq} (\mathcal{C}_o(X) \subset \mathbb{P}(T_oX)) \text{ for general } x \in M.$

Then M is biholomorphic to X.

Applications

 \boldsymbol{X} , smooth horospherical variety of Picard number one

Fact $H^1(X,TX) = 0$, i.e., X is locally rigid except for $X = (G_2, \varpi_2, \varpi_1)$.

Question

Let $\pi : \mathfrak{X} \to \Delta$ be a smooth and projective morphism from a complex manifold \mathfrak{X} to the unit disc Δ . Assume that for any $t \in \Delta - \{0\}$, $X_t := \pi^{-1}(t)$ is biholomorphic to X, then is $X_0 := \pi^{-1}(0)$ also biholomorphic to X?

Assume $X_t := \pi^{-1}(t)$ is biholomorphic to X for any $t \in \Delta - \{0\}$ Show: there is a minimal rational component \mathcal{K}_0 on X_0 such that $\mathcal{C}_x(X_0) \subset \mathbb{P}(T_xX_0)$ is projectively equivalent to $\mathcal{C}_o(X) \subset \mathbb{P}(T_oX)$

Then by our characterization theorem, X_0 is biholomorphic to X.

Thank you!

•