Characterizations of smooth projective horospherical varieties of Picard number one II

Jaehyun Hong

IBS Center for Complex Geometry

September 23, 2022
Joint work with T. Morimoto, S.-Y. Kim
arXiv: $2203.10313,2263.05182$

Main Theorem

Main Theorem (Hwang-Li, H.-Kim)

Let X be a smooth horospherical variety of Picard number one, and o be a general point in X.

Let M be a uniruled projective manifold of Picard number one with a family \mathcal{K} of minimal rational curves. Assume that $\left(\mathcal{C}_{x}(M) \subset \mathbb{P}\left(T_{x} M\right)\right)$ is projectively equivalent to $\left(\mathcal{C}_{o}(X) \subset \mathbb{P}\left(T_{o} X\right)\right)$ for general $x \in M$.

Then M is biholomorphic to X.
(Hwang-Li)

$$
\left(C_{n}, \varpi_{k}, \varpi_{k-1}\right), \quad\left(G_{2}, \varpi_{2}, \varpi_{1}\right)
$$

(H.-Kim)

$$
\left(B_{n}, \varpi_{n-1}, \varpi_{n}\right)(n \geq 3),\left(B_{3}, \varpi_{1}, \varpi_{3}\right),\left(F_{4}, \varpi_{2}, \varpi_{3}\right)
$$

Smooth horospherical varieties of Picard number one

(Kim)

$$
\begin{aligned}
& g=g_{-2}+g_{-1}+g_{0}+g_{1}+g_{2}+g_{3}+\cdots . g_{m} \\
& Q_{n}=Q_{-2} \pm l_{1}+l_{0} \pm Q_{1}+b_{2} \\
& u_{1}+u_{p}+d_{1}+u_{2}+u_{3}+\cdots
\end{aligned}
$$

Let X be a smooth non-hgmogeneous hgrospherical varieties of Picard number one. Let $\mathfrak{g}:=\operatorname{Lie} \operatorname{Aut}(X) \leftrightharpoons(\varphi \oplus \mathbb{C}) \ltimes U$.

Then there is a grading on \mathfrak{l} and U,

$$
\mathfrak{l}=\bigoplus_{k=-\mu}^{\mu} \mathfrak{l}_{k} \quad \text { and } \quad U=\bigoplus_{k=-1}^{\nu} U_{k}
$$

such that, with the grading on $\mathfrak{g}=(\mathfrak{l} \oplus \mathbb{C}) \ltimes U$ defined by

$$
\begin{aligned}
& \mathfrak{g}_{0}:=\left(\mathfrak{l}_{0} \oplus \mathbb{C}\right) \triangleright U_{0} \\
& \mathfrak{g}_{p}:=\mathfrak{l}_{p} \oplus U_{p} \text { for } p \neq 0,
\end{aligned}
$$

the negative part $\mathfrak{m}=\bigoplus_{p<0} \mathfrak{g}_{p}$ of \mathfrak{g} is identified with the tangent space of X at the base point o of X^{0}.

Smooth horospherical varieties of Picard number one

(Kim)

Furthermore,

- \mathfrak{g} is the prolongation of $\left(\mathfrak{g}_{-}, \mathfrak{g}_{0}\right)$;

$$
H^{\prime}\left(\underline{-}, g_{0}\right)_{k}=0 \quad \theta_{k} \geqslant 1
$$

- the variety of minimal rational tangents $\mathcal{C}_{o}(X)$ of X at the base point o is given by

$$
\mathcal{C}_{o}(X)=\left\{\begin{array}{l}
\mathrm{H}_{L_{0}}\left(U_{-1}\right) \text { if } X \text { is }\left(\frac{\left.C_{m}, \alpha_{i+1}, \alpha_{i}\right) \text { for } 1 \leq i<m}{\mathrm{H}_{-1}\left(U_{-1} \oplus \mathrm{I}_{-1}\right), \text { otherwise. } \subset\left(\mathbb{P}\left(9_{1}\right)\right.}\right.
\end{array}\right.
$$

cf. When $X=G / P$

$$
\mathcal{C}_{o}(X)= \begin{cases}\mathrm{H}_{G_{0}}\left(\mathfrak{g}_{-1} \oplus \mathfrak{g}_{-2}\right) & \text { if } P \text { is associated to a short root } \\ \mathrm{H}_{G_{0}}\left(\mathfrak{g}_{-1}\right) & \text { if } P \text { is associated to a long root }\end{cases}
$$

Geometric structures

Example

$\mathcal{C}_{0}(X) \subset \mathbb{P}\left(D_{o}\right) \subset \mathbb{P}\left(T_{o} X\right)$ and $[]:, \wedge^{2} \mathfrak{g}_{-1} \rightarrow \mathfrak{g}_{-2}$

- $\left(G_{2}, \varpi_{2}, \varpi_{1}\right)$

$$
\mathbb{P}\left\{c v+v^{3}: c \in \mathbb{C}, v \in V\right\} \subset \mathbb{P}\left(V \oplus \operatorname{Sym}^{3} V\right)=\mathbb{P}\left(\mathfrak{g}_{-1}\right)
$$

where $\operatorname{dim} V=2$ and $L_{0}=A_{1}$.

$$
\begin{aligned}
\wedge^{2} \mathfrak{g}_{-1} & =\wedge^{2} V \oplus\left(V \wedge \operatorname{Sym}^{3} V\right) \oplus\left(\wedge^{2}\left(\operatorname{Sym}^{3} V\right)\right) \\
& =\wedge^{2} V \oplus\left(V \wedge \operatorname{Sym}^{3} V\right) \oplus\left(\operatorname{Sym}^{4} V \oplus \mathbb{C}\right) \rightarrow \mathfrak{g}_{-2}=\mathbb{C}
\end{aligned}
$$

Geometric structures

Example

$\mathcal{C}_{0}(X) \subset \mathbb{P}\left(D_{o}\right) \subset \mathbb{P}\left(T_{o} X\right)$ and $[]:, \wedge^{2} \mathfrak{g}_{-1} \rightarrow \mathfrak{g}_{-2}$

- $\left(B_{n}, \varpi_{n-1}, \varpi_{n}\right)$
$\mathbb{P}\left\{c v+v^{2} \otimes w: c \in \mathbb{C}, v \in V, w \in W\right\} \subset \mathbb{P}\left(V \oplus\left(\operatorname{Sym}^{2} V \otimes W\right)\right)=\mathbb{P}(\mathfrak{g}$. where $\operatorname{dim} V=2$ and $\operatorname{dim} W=m-1$ and $L_{0}=A_{1} \times A_{m-2}$.

Geometric structures

Example

$$
g_{-}=g_{-1}+9_{-2}
$$

$\mathcal{C}_{0}(X) \subset \mathbb{P}\left(D_{o}\right) \subset \mathbb{P}\left(T_{o} X\right)$ and $[]:, \wedge^{2} \mathfrak{g}_{-1} \rightarrow \mathfrak{g}_{-2}$

- $\left(B_{n}, \varpi_{n-1}, \varpi_{n}\right)$
$\mathbb{P}\left\{c v+v^{2} \otimes w: c \in \mathbb{C}, v \in V, w \in W\right\} \subset \mathbb{P}\left(V \oplus\left(\operatorname{Sym}^{2} V \otimes W\right)\right)=\mathbb{P}(\mathfrak{g}$ where $\operatorname{dim} V=2$ and $\operatorname{dim} W=m-1$ and $L_{0}=A_{1} \times A_{m-2}$.

$$
\wedge^{2} \mathfrak{g}_{-1}=\wedge^{2} V \oplus\left(V \wedge\left(\operatorname{Sym}^{2} V \otimes W\right)\right) \oplus \wedge^{2}\left(\operatorname{Sym}^{2} V \otimes W\right) \rightarrow \mathfrak{g}_{-2}
$$

$$
\begin{aligned}
& \wedge^{2}\left(\operatorname{Sym}^{2} V \otimes W\right) \\
= & \left(\wedge^{2}\left(\operatorname{Sym}^{2} V\right) \otimes \operatorname{Sym}^{2} W\right) \oplus\left(\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} V\right) \otimes \wedge^{2} W\right) \\
= & \left(\wedge^{2}\left(\operatorname{Sym}^{2} V\right) \otimes \operatorname{Sym}^{2} W\right) \oplus\left(\left(\operatorname{Sym}^{4} V \oplus\left(\operatorname{Sym}^{4} V\right)^{\perp}\right) \otimes \wedge^{2} W\right) \\
& \rightarrow\left(\operatorname{Sym}^{4} V\right)^{\perp} \otimes \wedge^{2} W=\mathfrak{g}_{-2}
\end{aligned}
$$

Geometric structures

Example

$\mathcal{C}_{0}(X) \subset \mathbb{P}\left(D_{o}\right) \subset \mathbb{P}\left(T_{o} X\right)$ and $[]:, \wedge^{2} \mathfrak{g}_{-1} \rightarrow \mathfrak{g}_{-2}$

- $\left(B_{n}, \varpi_{n-1}, \varpi_{n}\right)\left(\left(F_{4}, \varpi_{2}, \varpi_{3}\right)\right.$, respectively $)$
$\mathbb{P}\left\{c v+v^{2} \otimes w: c \in \mathbb{C}, v \in V, w \in W\right\} \subset \mathbb{P}\left(V \oplus\left(\mathrm{Sym}^{2} V \otimes W\right)\right)=\mathbb{P}(\mathfrak{g}$. where $\operatorname{dim} V=2$ and $\operatorname{dim} W=m-1$ and $L_{0}=A_{1} \times A_{m-2}$. ($\operatorname{dim} V=3$ and $\operatorname{dim} W=2$ and $L_{0}=A_{2} \times A_{1}$, respectively) $\wedge^{2} \mathfrak{g}_{-1}=\wedge^{2} V \oplus\left(V \wedge\left(\operatorname{Sym}^{2} V \otimes W\right)\right) \oplus \wedge^{2}\left(\operatorname{Sym}^{2} V \otimes W\right) \rightarrow \mathfrak{g}_{-2}$

$$
\begin{aligned}
& \wedge^{2}\left(\operatorname{Sym}^{2} V \otimes W\right) \\
= & \left(\wedge^{2}\left(\operatorname{Sym}^{2} V\right) \otimes \operatorname{Sym}^{2} W\right) \oplus\left(\operatorname{Sym}^{2}\left(\operatorname{Sym}^{2} V\right) \otimes \wedge^{2} W\right) \\
= & \left(\wedge^{2}\left(\operatorname{Sym}^{2} V\right) \otimes \operatorname{Sym}^{2} W\right) \oplus\left(\left(\operatorname{Sym}^{4} V \oplus\left(\operatorname{Sym}^{4} V\right)^{\perp}\right) \otimes \wedge^{2} W\right) \\
& \rightarrow\left(\operatorname{Sym}^{4} V\right)^{\perp} \otimes \wedge^{2} W=\mathfrak{g}_{-2}
\end{aligned}
$$

Geometric structures

Let X be a smooth horospherical variety of Picard number one, one of the following types

- $\left(B_{n}, \varpi_{n-1}, \varpi_{n}\right)(n \geq 3)$
- $\left(B_{3}, \alpha_{1}, \alpha_{3}\right)$
- $\left(F_{4}, \varpi_{2}, \varpi_{3}\right)$ and o be a general point.

Let M be a uniruled projective manifold with a minimal rational component \mathcal{K}. Assume that $\left(\mathcal{C}_{x}(M) \subset \mathbb{P}\left(T_{x} M\right)\right)$ is projectively equivalent to $\left(\mathcal{C}_{o}(X) \subset \mathbb{P}\left(T_{o} X\right)\right)$ for general $x \in M$.

Geometric structures

Let X be a smooth horospherical variety of Picard number one, one of the following types

- $\left(B_{n}, \varpi_{n-1}, \varpi_{n}\right)(n \geq 3)$
- $\left(B_{3}, \alpha_{1}, \alpha_{3}\right)$
- $\left(F_{4}, \varpi_{2}, \varpi_{3}\right)$
and o be a general point.
Let M be a uniruled projective manifold with a minimal rational component \mathcal{K}. Assume that $\left(\mathcal{C}_{x}(M) \subset \mathbb{P}\left(T_{x} M\right)\right)$ is projectively equivalent to $\left(\mathcal{C}_{o}(X) \subset \mathbb{P}\left(T_{o} X\right)\right)$ for general $x \in M$.

$$
\left(\mathcal{C}_{x}(M) \subset \mathbb{P}\left(T_{x} M\right)\right) \stackrel{\text { proj.equiv. }}{\sim}\left(\mathcal{C}_{o}(X) \subset \mathbb{P}\left(T_{o} X\right)\right) \text { for general } x \in M
$$

Geometric structures

What we have:

$$
\begin{array}{cc}
\mathcal{C}(X) \subset \mathbb{P}(T X) & \mathcal{C}(M) \subset \mathbb{P}(T M) \\
\downarrow & \downarrow \\
X & M
\end{array}
$$

$\left(\mathcal{C}_{x}(M) \subset \mathbb{P}\left(T_{x} M\right)\right) \stackrel{\text { proj.equiv. }}{\simeq}\left(\mathcal{C}_{o}(X) \subset \mathbb{P}\left(T_{o} X\right)\right)$ for general $x \in M$

Geometric structures

What we have:

$$
\begin{array}{cc}
\mathcal{C}(X) \subset \mathbb{P}(T X) & \mathcal{C}(M) \subset \mathbb{P}(T M) \\
\downarrow & \downarrow \\
X & M
\end{array}
$$

$$
\left(\mathcal{C}_{x}(M) \subset \mathbb{P}\left(T_{x} M\right)\right) \stackrel{\text { proj.equiv. }}{\sim}\left(\mathcal{C}_{o}(X) \subset \mathbb{P}\left(T_{o} X\right)\right) \text { for general } x \in M
$$

Want to show: There exists connected open subsets $U \subset X$ and $V \subset M$ and a biholomorphism

$$
\varphi: U \rightarrow V
$$

whose differential $\varphi_{*}: \mathbb{P}\left(T_{x} X\right) \rightarrow \mathbb{P}\left(T_{\varphi(x)} M\right)$ sends $\mathcal{C}_{x}(X)$ to $\mathcal{C}_{x}(M)$ for all generic $x \in U$.

Geometric structures

What we have:

$$
\begin{array}{cc}
\mathcal{C}(X) \subset \mathbb{P}(T X) & \mathcal{C}(M) \subset \mathbb{P}(T M) \\
\downarrow & \downarrow \\
X & M
\end{array}
$$

$$
\left(\mathcal{C}_{x}(M) \subset \mathbb{P}\left(T_{x} M\right)\right) \stackrel{\text { proj.equiv. }}{\sim}\left(\mathcal{C}_{o}(X) \subset \mathbb{P}\left(T_{o} X\right)\right) \text { for general } x \in M
$$

Want to show: There exists connected open subsets $U \subset X$ and $V \subset M$ and a biholomorphism

$$
\varphi: U \rightarrow V
$$

whose differential $\varphi_{*}: \mathbb{P}\left(T_{x} X\right) \rightarrow \mathbb{P}\left(T_{\varphi(x)} M\right)$ sends $\mathcal{C}_{x}(X)$ to $\mathcal{C}_{x}(M)$ for all generic $x \in U$.
(Local equivalence problem)

Proof when X is G / P associated to a long root

Step. 1 There is a one-to-one correspondence

$$
\{\text { S-structures }\} \leftrightarrow\left\{G_{0} \text {-structures }\right\}
$$

such that $\mathcal{S}_{1} \stackrel{\text { equiv. }}{\simeq} \mathcal{S}_{2}$ if and only if $\mathscr{P}_{1}^{(0)} \stackrel{\text { equiv. }}{\simeq} \mathscr{P}_{2}^{(0)}$.

Proof when X is G / P associated to a long root

Step. 1 There is a one-to-one correspondence

$$
\{\mathbf{S} \text {-structures }\} \leftrightarrow\left\{G_{0} \text {-structures }\right\}
$$

such that $\mathcal{S}_{1} \stackrel{\text { equiv. }}{\sim} \mathcal{S}_{2}$ if and only if $\mathscr{P}_{1}^{(0)} \stackrel{\text { equiv. }}{\simeq} \mathscr{P}_{2}^{(0)}$.
Step. 2 (Tanaka) There is a one-to-one correspondence

$$
\left\{G_{0} \text {-structures }\right\} \leftrightarrow\{\text { Cartan connections of type } G / P\}
$$

such that $\mathscr{P}_{1}^{(0)} \stackrel{\text { equiv. }}{\simeq} \mathscr{P}_{2}^{(0)}$ if and only if $\mathscr{P}_{1} \stackrel{\text { equiv. }}{\sim} \mathscr{P}_{2}$.
Furthermore, if any section of $\mathcal{H}_{k}^{2}\left(\mathscr{P}^{(0)}\right):=\mathscr{P}^{(0)} \times{ }_{G_{0}} H^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)_{k}$ vanishes for all $k \geq 1$, then $\mathscr{P}^{(0)} \rightarrow M$ is flat.

Proof when X is G / P associated to a long root

Step. 1 There is a one-to-one correspondence

$$
\{\mathbf{S} \text {-structures }\} \leftrightarrow\left\{G_{0} \text {-structures }\right\}
$$

such that $\mathcal{S}_{1} \stackrel{\text { equiv. }}{\simeq} \mathcal{S}_{2}$ if and only if $\mathscr{P}_{1}^{(0)} \stackrel{\text { equiv. }}{\simeq} \mathscr{P}_{2}^{(0)}$.
Step. 2 (Tanaka) There is a one-to-one correspondence

$$
\left\{G_{0} \text {-structures }\right\} \leftrightarrow\{\text { Cartan connections of type } G / P\}
$$

such that $\mathscr{P}_{1}^{(0)} \stackrel{\text { equiv. }}{\simeq} \mathscr{P}_{2}^{(0)}$ if and only if $\mathscr{P}_{1} \stackrel{\text { equiv. }}{\sim} \mathscr{P}_{2}$.
Furthermore, if any section of $\mathcal{H}_{k}^{2}\left(\mathscr{P}^{(0)}\right):=\mathscr{P}^{(0)} \times{ }_{G_{0}} H^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)_{k}$ vanishes for all $k \geq 1$, then $\mathscr{P}^{(0)} \rightarrow M$ is flat.

Step. 3 Any section of $\mathcal{H}_{k}^{2}\left(\mathscr{P}^{(0)}\right) \rightarrow M$ vanishes for all $k \geq 1$.

Geometric structures

$$
\begin{aligned}
& o \in X=G / P \\
& \mathfrak{g}=\oplus_{i} \mathfrak{g}_{i}, \text { the Lie algebra of } G=\operatorname{Aut}^{0}(X) \text { with a grading } \\
& \mathfrak{g}_{-}=\oplus_{i<0} \mathfrak{g}_{i} \text { identified with } T_{o} X
\end{aligned}
$$

Geometric structures

$$
\begin{aligned}
& o \in X=G / P \quad\left(o \in X^{0}=G / G^{0} \subset X \text { when } X \text { is horospherical }\right) \\
& \mathfrak{g}=\oplus_{i} \mathfrak{g}_{i}, \text { the Lie algebra of } G=\operatorname{Aut}^{0}(X) \text { with a grading } \\
& \mathfrak{g}_{-}=\oplus_{i<0} \mathfrak{g}_{i} \text { identified with } T_{o} X
\end{aligned}
$$

Geometric structures

$o \in X=G / P \quad\left(o \in X^{0}=G / G^{0} \subset X\right.$ when X is horospherical)
$\mathfrak{g}=\oplus_{i} \mathfrak{g}_{i}$, the Lie algebra of $G=\operatorname{Aut}^{0}(X)$ with a grading
$\mathfrak{g}_{-}=\oplus_{i<0} \mathfrak{g}_{i}$ identified with $T_{o} X$
Denote by $H^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)$ the Lie algebra cohomology of the \mathfrak{g}_{-}-module \mathfrak{g}, the cohomology of the following complex:
$0 \rightarrow \mathfrak{g} \xrightarrow{\partial} C^{1}\left(\mathfrak{g}_{-}, \mathfrak{g}\right):=\operatorname{Hom}\left(\mathfrak{g}_{-}, \mathfrak{g}\right) \xrightarrow{\partial} C^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right):=\operatorname{Hom}\left(\wedge^{2} \mathfrak{g}_{-}, \mathfrak{g}\right) \xrightarrow{\partial} \ldots$.
Denote by $H^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)_{k}$ the cohomology of the following restriction:

$$
0 \rightarrow \mathfrak{g}_{k} \xrightarrow{\partial} C^{1}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)_{k} \xrightarrow{\partial} C^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)_{k} \xrightarrow{\partial} C^{3}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)_{k} \xrightarrow{\partial} \ldots,
$$

where $C^{1}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)_{k}:=\left\{\phi \in C^{1}\left(\mathfrak{g}_{-}, \mathfrak{g}\right): \phi\left(\mathfrak{g}_{p}\right) \subset \mathfrak{g}_{p+k}\right\}$, $C^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)_{k}:=\left\{\phi \in C^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right): \phi\left(\mathfrak{g}_{p_{1}} \wedge \mathfrak{g}_{p_{2}}\right) \subset \mathfrak{g}_{p_{1}+p_{2}+k}\right\}$, etc.

Geometric structures

$\mathbf{S}:=\mathcal{C}_{o}(X) \subset \mathbb{P}\left(\mathfrak{g}_{-1}\right)$ the variety of mrt of X at the base point o $\mathfrak{g}_{0} \subset \mathfrak{g}_{0}\left(\mathfrak{g}_{-}\right) \rightsquigarrow G_{0} \subset G_{0}\left(\mathfrak{g}_{-}\right)$where $G_{0}\left(\mathfrak{g}_{-}\right)$is the automorphism group of the graded Lie algebra \mathfrak{g}_{-}

A distribution D on a complex manifold M is a subbundle of the tangent bundle $T M$ of M. A distribution D is called of type \mathfrak{g}_{-}if for each $x \in M$ the symbol algebra $\operatorname{Symb}_{x}(D)$ is isomorphic to \mathfrak{g}_{-}as a graded Lie algebra. In this case, the pair (M, D) is called a filtered manifold of type \mathfrak{g}_{-}.

For each $x \in M$, let \mathscr{R}_{x} be the set of all isomorphisms $r: \mathfrak{g}_{-} \rightarrow \operatorname{Symb}_{x}(D)$ of graded Lie algebras. Then $\mathscr{R}(M):=\cup_{x \in M} \mathscr{R}_{x}$ is a principal $G_{0}\left(\mathfrak{g}_{-}\right)$-bundle on M. We call $\mathscr{R}(M)$ the frame bundle of (M, D).

Geometric structures

$$
G_{0} \text {-structures } \mathscr{P}^{(0)} \subset \mathscr{R}(M) \quad \leftrightarrow \quad \text { S-structures } \mathcal{S} \subset \mathbb{P}(D)
$$

Given a closed subgroup $G_{0} \subset G_{0}\left(\mathfrak{g}_{-}\right)$, a $G_{0 \text {-structure on }}(M, D)$ is a G_{0}-subbundle $\mathscr{P}^{(0)}$ of the frame bundle $\mathscr{R}(M)$ of (M, D). Two G_{0}-structures $\mathscr{P}_{1}^{(0)}$ on $\left(M_{1}, D_{1}\right)$ and $\mathscr{P}_{2}^{(0)}$ on $\left(M_{2}, D_{2}\right)$ are equivalent if there is a biholomorphism $\varphi: M_{1} \rightarrow M_{2}$ such that $d \varphi: T M_{1} \rightarrow T M_{2}$ induces an isomorphism from $\mathscr{P}_{1}^{(0)}$ onto $\mathscr{P}_{2}^{(0)}$.

A fiber subbundle $\mathcal{S} \subset \mathbb{P} D$ is called an S -structure on (M, D) if for each $x \in M$, the fiber $\mathcal{S}_{x} \subset \mathbb{P} D_{x}$ is isomorphic to $\mathbf{S} \subset \mathbb{P g}_{-1}$ under a graded Lie algebra isomorphism $\mathfrak{g}_{-} \rightarrow \operatorname{Symb}_{x}(D)$.
Two S-structures \mathcal{S}_{1} on $\left(M_{1}, D_{1}\right)$ and \mathcal{S}_{2} on $\left(M_{2}, D_{2}\right)$ are said to be equivalent if there exists a biholomorphism $\phi: M_{1} \rightarrow M_{2}$ such that $d \phi: \mathbb{P} T M_{1} \rightarrow \mathbb{P} T M_{2}$ sends $\mathcal{S}_{1} \subset \mathbb{P} T M_{1}$ to $\mathcal{S}_{2} \subset \mathbb{P} T M_{2}$.

Proof when X is $\left(G_{2}, \varpi_{2}, \varpi_{1}\right)$

Step. 1 There is a one-to-one correspondence

$$
\{\mathbf{S} \text {-structures }\} \leftrightarrow\left\{G_{0} \text {-structures }\right\}
$$

such that $\mathcal{S}_{1} \stackrel{\text { equiv. }}{\simeq} \mathcal{S}_{2}$ if and only if $\mathscr{P}_{1}^{(0)} \stackrel{\text { equiv. }}{\simeq} \mathscr{P}_{2}^{(0)}$.
Step. 2 (Hwang-Li) If any section of

$$
C^{2}\left(\mathscr{P}^{(0)}\right)_{k} / \partial C^{1}\left(\mathscr{P}^{(0)}\right)_{k}:=\mathscr{P}^{(0)} \times_{G_{0}}\left(C^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)_{k} / \partial C^{1}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)_{k}\right)
$$

vanishes for all $k \geq 1$, then there exists a Cartan connection of type G / G^{0} which is flat so that $\mathscr{P}^{(0)} \rightarrow M$ is flat.

Step. 3 Any section of $C^{2}\left(\mathscr{P}^{(0)}\right)_{k} / \partial C^{1}\left(\mathscr{P}^{(0)}\right)_{k} \rightarrow M$ vanishes for all $k \geq 1$.

Proof of Main Theorem

Step. 1 There is a one-to-one correspondence

$$
\{\mathbf{S} \text {-structures }\} \leftrightarrow\left\{G_{0} \text {-structures }\right\}
$$

such that $\mathcal{S}_{1} \stackrel{\text { equiv. }}{\simeq} \mathcal{S}_{2}$ if and only if $\mathscr{P}_{1}^{(0)} \stackrel{\text { equiv. }}{\simeq} \mathscr{P}_{2}^{(0)}$.
Step. 2 (H.-Morimoto) There is a one-to-one correspondence
$\left\{G_{0}\right.$-structures $\} \leftrightarrow\left\{\right.$ step prolongations of type $\left.\left(G_{0}, G_{1}, \ldots, G_{\nu}\right)\right\}$
such that $\mathscr{P}_{1}^{(0)} \stackrel{\text { equiv. }}{\simeq} \mathscr{P}_{2}^{(0)}$ if and only if $\mathscr{P}_{1} \stackrel{\text { equiv. }}{\sim} \mathscr{P}_{2}$.
Furthermore, if any section of $\mathcal{H}_{k}^{2}\left(\mathscr{P}^{(0)}\right):=\mathscr{P}^{(0)} \times{ }_{G_{0}} H^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)_{k}$ vanishes for all $k \geq 1$, then the corresponding $\mathscr{P} \rightarrow M$ is a Cartan connection of type G / G^{0} which is flat so that $\mathscr{P}^{(0)} \rightarrow M$ is flat.

Step. 3 Any section of $\mathcal{H}_{k}^{2}\left(\mathscr{P}^{(0)}\right) \rightarrow M$ vanishes for all $k \geq 1$.

Geometric structures

Fix a set of subspaces $W=\left\{W_{\ell}^{1}, W_{\ell+1}^{2}\right\}_{\ell \geq 0}$ such that

$$
\begin{aligned}
\operatorname{Hom}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)_{\ell} & =W_{\ell}^{1} \oplus \partial \mathfrak{g}_{\ell} \\
\operatorname{Hom}\left(\wedge^{2} \mathfrak{g}_{-}, \mathfrak{g}\right)_{\ell+1} & =W_{\ell+1}^{2} \oplus \partial \operatorname{Hom}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)_{\ell+1}
\end{aligned}
$$

(H.-Morimoto)

Let $\mathscr{P}^{(0)}$ be a G_{0}-structure on a filtered manifold M of type \mathfrak{g}_{-}. Then for each $\ell \geq 1$, there is a step prolongation

$$
\mathscr{S}_{W}^{(\ell)} \mathscr{P}^{(0)} \xrightarrow{G_{\ell}} \mathscr{S}_{W}^{(\ell-1)} \mathscr{P}^{(0)} \longrightarrow \cdots \longrightarrow \mathscr{S}_{W}^{(1)} \mathscr{P}^{(0)} \xrightarrow{G_{1}} \mathscr{P}^{(0)} \xrightarrow{G_{0}} M
$$

of type $\left(\mathfrak{g}_{-}, G_{0}, \cdots, G_{\ell}\right)$.
(We call the limit $\mathscr{S}_{W} \mathscr{P}=\lim _{\ell} \mathscr{S}_{W}^{(\ell)} \mathscr{P}$ the W-normal complete step prolongation of \mathscr{P}.)

Geometric structures

If, furthermore, $H^{0}\left(M, \mathcal{H}_{k}^{0}\left(\mathscr{P}^{(0)}\right)\right)$ is zero for all $k \geq 1$, then the W-normal complete step prolongation $\mathscr{S}_{W} \mathscr{P}^{(0)}$ of $\mathscr{P}^{(0)}$ is a Cartan connection of type G / G^{0} which is flat, and $\mathscr{P}^{(0)}$ is locally isomorphic to the standard G_{0}-structure on G / G^{0}.

Geometric structures

Proof of Main Theorem (Step.3)

Recall

Let X be a smooth horospherical variety of Picard number one, one of the following type

- $\left(B_{n}, \varpi_{n-1}, \varpi_{n}\right)(n \geq 3)$
- $\left(B_{3}, \alpha_{1}, \alpha_{3}\right)$
- $\left(F_{4}, \varpi_{2}, \varpi_{3}\right)$
and o be a general point in X.
Let M be a uniruled projective manifold of Picard number one with a family \mathcal{K} of minimal rational curves. Assume that

$$
\left(\mathcal{C}_{x}(M) \subset \mathbb{P}\left(T_{x} M\right)\right) \stackrel{\text { proj.equiv. }}{\sim}\left(\mathcal{C}_{o}(X) \subset \mathbb{P}\left(T_{o} X\right)\right) \text { for general } x \in M .
$$

Want to show: M is biholomorphic to X.

Proof of Main Theorem (Step.3)

Enough to show: There is a connected open subset $M^{0} \subset M$ such that $\left.\mathcal{C}(M)\right|_{M^{0}}$ defines an S -structure on M^{0}, and for the corresponding G_{0}-structure $\mathscr{P}^{(0)}$ on M^{0},

$$
H^{0}\left(M^{0}, \mathcal{H}_{k}^{2}\left(\mathscr{P}^{(0)}\right)\right)=0 \text { for all } k \geq 1
$$

Proof of Main Theorem (Step.3)

$$
0 \rightarrow g \xrightarrow{\partial_{0}} \operatorname{Hom}\left(l_{-}, g\right)^{\gamma_{0}} \operatorname{Hom}_{\text {l }}\left(n^{2},, g\right) \xrightarrow{\partial_{0}} \ldots
$$

Step 3-1 Lie algebra cohomology.

$$
\left.\log _{0 \rightarrow} g^{J} \rightarrow \operatorname{Hos}_{\infty}(g, g)^{2} \rightarrow H_{\sin }(i), s\right)^{2} \rightarrow \ldots
$$

(1) If $\left(\mathfrak{g}_{-}, \mathfrak{g}_{0}\right)$ is of type $\left(B_{m}, \alpha_{m-1}, \alpha_{m}\right)$, where $m>3$, then $H^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)_{k}$ vanishes except for $k=1,2$, and

$$
g_{-}=l_{-}+u_{-}
$$

$\wedge^{2} \mathfrak{g}_{-}^{*} \otimes \mathfrak{g}>H^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)_{1} \subset \wedge^{2} \mathfrak{g}_{-1}^{*} \otimes U_{-1}$

$$
H^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)_{2} \subset \wedge^{2} \mathfrak{g}_{-1}^{*} \otimes U_{0} \subset\left(\wedge^{2} \mathfrak{g}_{-1} \otimes \mathfrak{g}_{-1}\right)^{*} \otimes U_{-1}
$$

(2) If $\left(\mathfrak{g}_{-}, \mathfrak{g}_{0}\right)$ is of type $\left(F_{4}, \alpha_{2}, \alpha_{3}\right)$, then $H^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)_{k}$ vanishes except for $k=1$, and

$$
H^{2}\left(\mathfrak{g}_{-}, \mathfrak{g}\right)_{1} \subset \wedge^{2} \mathfrak{g}_{-1}^{*} \otimes U_{-1}
$$

Remark. \mathfrak{g} is not reductive, so that we cannot apply Kostant's theory directly.

Proof of Main Theorem (Step.3)

$$
g=w_{w}^{u}+\mathbb{c}+l \underbrace{6=\phi_{n}+\psi_{l+\mathbb{4}}}
$$

Step 3-1 Lie algebra cohomology.

$$
\begin{aligned}
& \phi \in \operatorname{Hom}\left(n^{2} S_{-}, g\right)_{k} \quad \partial \phi=0 \\
& g_{-}=u_{-}+l_{-} \Rightarrow x=x^{-1}+x^{0} \\
& Y=y^{+}+y^{D} \\
& 0=\partial \phi(x, y, z)=[x, \phi(y, z)]-[y, \phi(x, z)]+(z, \phi(x, y)] \\
& -\phi([x, y), z)+\phi(c x, z), y)-\phi(c y, z), x)
\end{aligned}
$$

$$
\text { (7) } \left.\begin{array}{rl}
\ell & {\left[x^{0},\right.}
\end{array} \phi_{0+c}\left(y^{-1}+y^{0}, z^{-1}+t^{0}\right) y-C \cdots \cdot\right]
$$

(a) U

$$
F^{-1}=y^{-1}=z^{1}=0 \quad \frac{\partial_{0}\left(\phi l_{l_{-}}\right)}{}=0 \quad\left\{\begin{array}{l}
H^{\prime}\left(l_{-}, f\right)_{k}- \\
H^{2}\left(l_{-}, g\right)_{k}=0
\end{array}\right.
$$

Proof of Main Theorem (Step.3)

Step 3-2 Parallel transport of VMRT.
Let $\mathbf{S} \subset \mathbb{P}\left(\mathfrak{g}_{-1}\right)$ be the variety $\circ f$ minimal rational tangents of $\left(B_{m}, \alpha_{m-1}, \alpha_{m}\right), m \geq 3$ or $\left(F_{4}, \alpha_{2}, \alpha_{3}\right)$ at the base point. Let $\pi: \mathbb{P} E \rightarrow \mathbb{P}^{1}$ be the projectivization of a holomorphic vector bundle E over \mathbb{P}^{1} and let $\mathcal{C} \subset \mathbb{P} E$ be an irreducible subvariety. Denote by ϖ the restriction of π to \mathcal{C}. Assume that
(1) $\mathcal{C}_{t}:=\varpi^{-1}(t) \subset \mathbb{P} E_{t}:=\pi^{-1}(t)$ is projectively equivalent to $\mathbf{S \subset \mathbb { P } (\mathfrak { g } _ { - 1 })}$ for all $t \in \mathbb{P}^{1}-\left\{t_{1}, \ldots, t_{k}\right\}$;
(2) for a general sectior $\sigma \subset \mathcal{C}$ of ϖ, the relative second fundamental form and the relative third fundamental form of \mathcal{C} along σ are constants.
Then for any $t \in \mathbb{P}^{1}, \mathcal{C}_{t} \subset \mathbb{P}\left(E_{t}\right)$ is projectively equivalent to $\mathbf{S} \subset \mathbb{P}\left(\mathfrak{g}_{-1}\right)$.

Proof of Main Theorem (Step.3)

$$
1 u,\left.d \theta \quad 7 X\right|_{C}=\theta(2) \oplus \theta(1)^{P} \oplus \theta \theta
$$

Step 3-3 $H^{0}\left(M^{0},\left.\mathcal{H}_{k}^{2}\left(\mathscr{P}^{(0)}\right)\right|_{M^{0}}\right)=0$ for all $k \geq 1$
Proof. By Step 3-1 it suffices to show
(1) $H^{0}\left(M^{0}, \wedge^{2} D^{*} \otimes \mathcal{U}_{-1}\right)=0$ and $H^{0}\left(M^{0},\left(\wedge^{2} D \otimes D\right)^{*} \otimes \mathcal{U}_{-1}\right)=0$ when $\left(\mathfrak{m}, \mathfrak{g}_{0}\right)$ is of type $\left(B_{m}, \alpha_{m-1}, \alpha_{m}\right) ; \quad \mathrm{Ke} \rightarrow \Lambda^{2} \eta_{0} \rightarrow \Pi_{M_{0}} V_{0}$
(2) $H^{0}\left(M^{0}, \wedge^{2} D^{*} \otimes \mathcal{U}_{-1}\right)=0$ when $\left(\mathfrak{m}, \mathfrak{g}_{0}\right)$ is of type $\left(F_{4}, \alpha_{2}, \alpha_{3}\right)$.

Claim: For $C \subset M^{0} \subset M$, $\left.D\right|_{C},\left.\mathcal{U}_{-1}\right|_{C}$ have the same splitting type as those in X. (Use the projective geometry of $\left(\mathcal{C}_{x}(M) \subset \mathbb{P}\left(T_{x} M\right)\right)$.)

Then, the existence of a nontrivial bundle map $\varphi: \wedge^{2} D \rightarrow \mathcal{V}$ gives rise to a contradiction to the irreducibility of \mathcal{U}_{-1}.

Main Theorem (H.-Kim)

Let X be a smooth horospherical variety of Picard number one of the following type

- $\left(B_{n}, \varpi_{n-1}, \varpi_{n}\right)(n \geq 3)$
- $\left(B_{3}, \alpha_{1}, \alpha_{3}\right)$
- $\left(F_{4}, \varpi_{2}, \varpi_{3}\right)$
and o be a general point in X.
Let M be a uniruled projective manifold of Picard number one with a family \mathcal{K} of minimal rational curves. Assume that

$$
\left(\mathcal{C}_{x}(M) \subset \mathbb{P}\left(T_{x} M\right)\right) \stackrel{\text { proj.equiv. }}{\sim}\left(\mathcal{C}_{o}(X) \subset \mathbb{P}\left(T_{o} X\right)\right) \text { for general } x \in M .
$$

Then M is biholomorphic to X.

Applications

X, smooth horospherical variety of Picard number one

```
Fact pasquier - Perrin \(H^{1}(X, T X)=0\), i.e., \(X\) is locally rigid except for \(X=\left(G_{2}, \varpi_{2}, \varpi_{1}\right)\).
```


Question

Let $\pi: \mathfrak{X} \rightarrow \Delta$ be a smooth and projective morphism from a complex manifold \mathfrak{X} to the unit disc Δ. Assume that for any $t \in \Delta-\{0\}$, $X_{t}:=\pi^{-1}(t)$ is biholomorphic to X, then is $X_{0}:=\pi^{-1}(0)$ also biholomorphic to X ?

Assume $X_{t}:=\pi^{-1}(t)$ is biholomorphic to X for any $t \in \Delta-\{0\}$
Show: there is a minimal rational component \mathcal{K}_{0} on X_{0} such that $\mathcal{C}_{x}\left(X_{0}\right) \subset \mathbb{P}\left(T_{x} X_{0}\right)$ is projectively equivalent to $\mathcal{C}_{o}(X) \subset \mathbb{P}\left(T_{o} X\right)$ Then by our characterization theorem, X_{0} is biholomorphic to X.

Thank you!

