Characterizations of smooth projective horospherical varieties of Picard number one I

Jaehyun Hong

IBS Center for Complex Geometry

September 9, 2022

Joint work with T. Morimoto, S.-Y. Kim

It can be

- a *G*-reduction \mathscr{P} of the frame bundle $\mathscr{F}(M)$, where $\mathscr{F}(M) = \bigcup_{x \in M} \{z : \mathbb{C}^n \to T_x M$, linear isomorphism $\}$ and *G* is a subgroup of $GL(n, \mathbb{C})$;
- a subbundle S of $\mathbb{P}(TM)$ with typical fiber $\mathbf{S} \subset \mathbb{P}(V)$ where V is a vector space with $\dim V = \dim M$;

It can be

- a *G*-reduction \mathscr{P} of the frame bundle $\mathscr{F}(M)$, where $\mathscr{F}(M) = \bigcup_{x \in M} \{z : \mathbb{C}^n \to T_x M$, linear isomorphism $\}$ and *G* is a subgroup of $GL(n, \mathbb{C})$;
- a subbundle S of $\mathbb{P}(TM)$ with typical fiber $\mathbf{S} \subset \mathbb{P}(V)$ where V is a vector space with $\dim V = \dim M$;
- a G_0 -subbundle \mathscr{P} of the frame bundle $\mathscr{R}(M, F)$ of a filtered manifold (M, F) of type \mathfrak{g}_- , where G_0 is a subgroup of $G_0(\mathfrak{g}_-)$;
- a subbundle S of $\mathbb{P}(F^{-1})$ with typical fiber $\mathbf{S} \subset \mathbb{P}(\mathfrak{g}_{-1})$ such that $\mathbf{S} \subset \mathbb{P}(\mathfrak{g}_{-1})$ is isomorphic to $S_x \subset \mathbb{P}(F^{-1})$ under a graded Lie algebra isomorphism $\mathfrak{g}_- \to \operatorname{gr} F_x$, etc.

It can be

- a *G*-reduction \mathscr{P} of the frame bundle $\mathscr{F}(M)$, where $\mathscr{F}(M) = \bigcup_{x \in M} \{z : \mathbb{C}^n \to T_x M$, linear isomorphism $\}$ and *G* is a subgroup of $GL(n, \mathbb{C})$;
- a subbundle S of $\mathbb{P}(TM)$ with typical fiber $\mathbf{S} \subset \mathbb{P}(V)$ where V is a vector space with $\dim V = \dim M$;
- a G_0 -subbundle \mathscr{P} of the frame bundle $\mathscr{R}(M, F)$ of a filtered manifold (M, F) of type \mathfrak{g}_- , where G_0 is a subgroup of $G_0(\mathfrak{g}_-)$;
- a subbundle S of $\mathbb{P}(F^{-1})$ with typical fiber $\mathbf{S} \subset \mathbb{P}(\mathfrak{g}_{-1})$ such that $\mathbf{S} \subset \mathbb{P}(\mathfrak{g}_{-1})$ is isomorphic to $S_x \subset \mathbb{P}(F^{-1})$ under a graded Lie algebra isomorphism $\mathfrak{g}_- \to \operatorname{gr} F_x$, etc.

- Two geometric structures $\mathscr{P} \subset \mathscr{F}(M)$ and $\mathscr{Q} \subset \mathscr{F}(N)$ are locally equivalent if there is a local map $\varphi : U \subset M \to V \subset N$ such that the induced map $\mathscr{F}(\varphi) : \mathscr{F}(M)|_U \to \mathscr{F}(N)|_V$ sends $\mathscr{P}|_U$ to $\mathscr{Q}|_V$.
- Two geometric structures $S \subset \mathbb{P}(TM)$ and $\mathcal{T} \subset \mathbb{P}(TN)$ are locally equivalent if there is a local map $\varphi : U \subset M \to V \subset N$ such that the induced map $d\varphi : \mathbb{P}(TM)|_U \to \mathbb{P}(TN)|_V$ sends $S|_U$ to $\mathcal{T}|_V$.

•

- Two geometric structures $\mathscr{P} \subset \mathscr{F}(M)$ and $\mathscr{Q} \subset \mathscr{F}(N)$ are locally equivalent if there is a local map $\varphi : U \subset M \to V \subset N$ such that the induced map $\mathscr{F}(\varphi) : \mathscr{F}(M)|_U \to \mathscr{F}(N)|_V$ sends $\mathscr{P}|_U$ to $\mathscr{Q}|_V$.
- Two geometric structures $S \subset \mathbb{P}(TM)$ and $\mathcal{T} \subset \mathbb{P}(TN)$ are locally equivalent if there is a local map $\varphi : U \subset M \to V \subset N$ such that the induced map $d\varphi : \mathbb{P}(TM)|_U \to \mathbb{P}(TN)|_V$ sends $S|_U$ to $\mathcal{T}|_V$.

We will consider a geometric structure naturally defined on a projective manifold covered with rational curves and its local equivalence.

- § Varieties of minimal rational tangents
- § Main Theorem

- § Varieties of minimal rational tangents
- § Main Theorem
- \S Smooth horospherical varieties of Picard number one

- § Varieties of minimal rational tangents
- § Main Theorem
- \S Smooth horospherical varieties of Picard number one
- § Geometric structures

- § Varieties of minimal rational tangents
- § Main Theorem
- \S Smooth horospherical varieties of Picard number one
- § Geometric structures
- § Proof of Main Theorem

- § Varieties of minimal rational tangents
- § Main Theorem
- § Smooth horospherical varieties of Picard number one
- § Geometric structures
- § Proof of Main Theorem

In this talk, every vector space is a complex vector space and every manifold is a complex manifold, etc.

(X,L), a projective manifold with an ample (= positive) line bundle L

A nonconstant holomorphic map $f : \mathbb{P}^1 \to X$ is called a *rational curve*. A rational curve $f : \mathbb{P}^1 \to X$ is said to be *free* if f^*TX is semipositive, i.e., $f^*TX = \mathcal{O}(a_1) \oplus \cdots \oplus \mathcal{O}(a_n)$, all a_i are nonnegative. (Then deformations of f cover an open dense subset of X)

A free rational curve $f : \mathbb{P}^1 \to X$ such that the degree of f^*L is minimal among all free rational curve is called a minimal rational curve.

 $(\boldsymbol{X},\boldsymbol{L})$, a projective manifold with an ample (= positive) line bundle \boldsymbol{L}

A nonconstant holomorphic map $f : \mathbb{P}^1 \to X$ is called a *rational curve*. A rational curve $f : \mathbb{P}^1 \to X$ is said to be *free* if f^*TX is semipositive, i.e., $f^*TX = \mathcal{O}(a_1) \oplus \cdots \oplus \mathcal{O}(a_n)$, all a_i are nonnegative. (Then deformations of f cover an open dense subset of X)

A free rational curve $f : \mathbb{P}^1 \to X$ such that the degree of f^*L is minimal among all free rational curve is called a minimal rational curve.

Example

$$\begin{split} X &= Gr(r,V), \text{ the Grassmannian of } r\text{-subspaces of a vector space } V \\ \text{Fix } W_1 \subset W_2 \subset V \text{ with } \dim W_1 = r-1 \text{ and } \dim W_2 = r+1. \\ \text{Then} & (I \subset V) \quad \{ \forall V \in V \\ CW_1, W_2 := \{ [W] \in Gr(r,V) \quad W_1 \subset W \subset W_2 \} \simeq \{ W/W_1 \subset W_2/W_1 \} \\ \text{ is a line } \mathbb{P}^1 \text{ contained in } Gr(r,V) \subset \mathbb{P}(\wedge^r V) \text{ in Plücker embedding.} \end{split}$$

 $({\boldsymbol X},{\boldsymbol L}),$ a projective manifold with an ample (= positive) line bundle ${\boldsymbol L}$

A nonconstant holomorphic map $f : \mathbb{P}^1 \to X$ is called a *rational curve*. A rational curve $f : \mathbb{P}^1 \to X$ is said to be *free* if f^*TX is semipositive, i.e., $f^*TX = \mathcal{O}(a_1) \oplus \cdots \oplus \mathcal{O}(a_n)$, all a_i are nonnegative. (Then deformations of f cover an open dense subset of X)

A free rational curve $f : \mathbb{P}^1 \to X$ such that the degree of f^*L is minimal among all free rational curve is called a minimal rational curve.

 $\widehat{\mathcal{K}} \subset Hom(\mathbb{P}^1, X)$ a connected component containing a m.r.c. $\widehat{\mathcal{K}}^0 = \{ \text{ free and generically injective } \} \subset \widehat{\mathcal{K}}$ $\mathcal{K} := \widehat{\mathcal{K}}^0 / Aut(\mathbb{P}^1), \text{ called a$ *minimal rational component* $}$

Example

X = Gr(r, V), the Grassmannian of *r*-subspaces of *V* of dimension *n* Fix $W_1 \subset W_2 \subset V$ with dim $W_1 = r - 1$ and dim $W_2 = r + 1$.

Then

$$\begin{split} C_{W_1,W_2} &:= \{[W] \in Gr(r,V) : W_1 \subset W \subset W_2\} \simeq \{W/W_1 \subset W_2/W_1\} \\ \text{is a line } \mathbb{P}^1 \text{ contained in } Gr(r,V) \subset \mathbb{P}(\wedge^r V) \text{ in Plücker embedding,} \\ \text{and any such line } \mathbb{P}^1 \text{ is of this form.} \end{split}$$

Thus $\mathcal{K} = \{(W_1, W_2) : W_1 \subset W_2 \subset V, \dim W_1 = r - 1, \dim W_2 = r + 1\}$ is a minimal rational component of Gr(r, V).

 $x \in X$ a general point $\mathcal{K}_x := \{ \text{ minimal rational curves in } \mathcal{K} \text{ passing through } x \}$ Define $\Phi_x : \mathcal{K}_x \to \mathbb{P}(T_x X)$ by $\Phi_x(C) = [T_x C] \in \mathbb{P}(T_x X)$ the tangents direction The image $\mathcal{C}_x := \overline{\Phi_x(\mathcal{K}_x)} \subset \mathbb{P}(T_x X)$ is called the variety of minimal rational tangents of (X, \mathcal{K}) at x

 $=\{ \text{ tangent directions of minimal rational curves passing through } x \}$

Example = 91 (3)+ 31 X = Gr(r, V), the Grassmannian of r-subspaces of V of dimension n Any line \mathbb{P}^1 contained in $Gr(r, V) \subset \mathbb{P}(\wedge^r V)$ is of the form: $C_{W_1,W_2} := \{ [W] \in Gr(r,V) : W_1 \subset W \subset W_2 \} \simeq \{ W/W_1 \subset W_2/W_1 \}$ for some $W_1 \subset W_2 \subset V$ with dim $W_1 = r - 1$ and dim $W_2 = r + 1$. Thus $\mathcal{K} = \{(W_1, W_2) : W_1 \subset W_2 \subset V, \dim W_1 = r - 1, \dim W_2 = r + 1\}$ is a minimal rational component of Gr(r, V). -WI.W.

The tangent map is an embedding: $\Phi_{[W]}: \mathcal{K}_{[W]} \to \mathcal{C}_{[W]} \subset \mathbb{P}(T_{W}^{X}) = \mathbb{P}(W^{*} \otimes (V/W)) = \mathbb{P}(W^{*} \otimes (V/W) = \mathbb{P}(W^{*} \otimes (V/W)) =$ $\mathcal{K}_{[W]} = \{ (W_1, W_2) : W_1 \subset W \subset W_2 \subset V \} \simeq \mathbb{P}(W^*) \times \mathbb{P}(V/W) = \mathcal{C}_{[W]}.$ 5Go

the variety of minimal rational tangents of (X, \mathcal{K}) at [W]

For an irreducible L-representation space V let $H_L(V)$ denote the highest weight orbit $\subset \mathbb{P}(V)$. More generally, for a finitely many irreducible L-representation spaces V_i (i = 1, ..., r), let $\mathsf{H}_L(\oplus_{i=1}^r V_i)$ denote the closure of the *L*-orbit of the sum $\bigoplus_{i=1}^{r} v_i$ of highest weight vectors v_i of V_i in $\mathbb{P}(\bigoplus_{i=1}^{r} V_i)$. CA 0-0-0-x-660 & short nost.

Example

When X = G/P is a homogeneous variety associated with a maximal parabolic subgroup P, there is a grading $\mathfrak{g} = \bigoplus_{i=-\mu}^{\mu} \mathfrak{g}_i$ such that the tangent space T_oX at the base point $o \in X$ is the negative part $\bigoplus_{p < 0} \mathfrak{g}_p$.

Then $\widetilde{G_o}(V_1 + V_2)$ $\mathcal{C}_o(X) = \begin{cases} \mathsf{H}_{G_0}(\mathfrak{g}_{-1} \oplus \mathfrak{g}_{-2}) \\ \mathsf{H}_{G_0}(\mathfrak{g}_{-1}) \end{cases}$ if P is associated to a short root if P is associated to a long root $\varepsilon_{4} \sim \rho = \sqrt{-\rho}$

where G_0 is the subgroup of G with Lie algebra \mathfrak{g}_0 .

For an irreducible L-representation space V let $H_L(V)$ denote the highest weight orbit $\subset \mathbb{P}(V)$. More generally, for a finitely many irreducible *L*-representation spaces V_i (i = 1, ..., r), let $H_L(\bigoplus_{i=1}^r V_i)$ denote the closure of the *L*-orbit of the sum $\bigoplus_{i=1}^{r} v_i$ of highest weight vectors v_i of V_i in $\mathbb{P}(\bigoplus_{i=1}^{r} V_i)$.

Example

er PTxX tr When X = G/P is a homogeneous variety associated with a maximal parabolic subgroup P, there is a grading $\mathfrak{g} = \bigoplus_{i=-\mu}^{\mu} \mathfrak{g}_i$ such that the tangent space T_oX at the base point $o \in X$ is the negative part $\bigoplus_{p < 0} \mathfrak{g}_p$. $G/P \subset \mathbb{P}(V)$, G-equivariant embedding as the highest weight orbit $\mathcal{K}(X) = \{\mathbb{P}^1$'s in $G/P \subset \mathbb{P}(V)\}$, a minimal rational component. Then

$$\mathcal{C}_o(X) = \begin{cases} \mathsf{H}_{G_0}(\mathfrak{g}_{-1} \oplus \mathfrak{g}_{-2}) & \text{if } P \text{ is associated to a short root} \\ \mathsf{H}_{G_0}(\mathfrak{g}_{-1}) & \text{if } P \text{ is associated to a long root} \end{cases}$$

where G_0 is the subgroup of G with Lie algebra \mathfrak{g}_0 .

Cartan-Fubini type extension Theorem

(Hwang-Mok) KX is positive.

Let X be a Fano manifold of Picard number one. Suppose that there is a minimal rational component \mathcal{H} with $p(\mathcal{H}), q(\mathcal{H}) > 0$ such that for a general point $x \in X$, the Gauss map for each irreducible component of $\mathcal{C}_x(X)$ at x as a subvariety of $\mathbb{P}(T_xX)$ is generically finite.

(Hwang-Mok)

Let X be a Fano manifold of Picard number one. Suppose that there is a minimal rational component \mathcal{H} with $p(\mathcal{H}), q(\mathcal{H}) > 0$ such that for a general point $x \in X$, the Gauss map for each irreducible component of $\mathcal{C}_x(X)$ at x as a subvariety of $\mathbb{P}(T_xX)$ is generically finite.

Then for any choice of (M, \mathcal{K}) Fano manifold of Picard number one and a minimal rational component with $p(\mathcal{H}) = p(\mathcal{K})$, any local biholomorphism $\varphi: U \to V$ where $U \subset X$ and $V \subset M$ are connected open subset, extends to a biholomorphic map $X \to M$

Cartan-Fubini type extension Theorem

(Hwang-Mok)

Let X be a Fano manifold of Picard number one. Suppose that there is a minimal rational component \mathcal{H} with $p(\mathcal{H}), q(\mathcal{H}) > 0$ such that for a general point $x \in X$, the Gauss map for each irreducible component of $\mathcal{C}_x(X)$ at x as a subvariety of $\mathbb{P}(T_xX)$ is generically finite.

Then for any choice of (M, \mathcal{K}) Fano manifold of Picard number one and a minimal rational component with $p(\mathcal{H}) = p(\mathcal{K})$, any local biholomorphism $\varphi: U \to V$ where $U \subset X$ and $V \subset M$ are connected open subset, extends to a biholomorphic map $X \to M$ if the differential $\varphi_* : \mathbb{P}(T_x X) \to \mathbb{P}(T_{\varphi(x)}M)$ sends each irreducible component of $\mathcal{C}_x(X)$ to an irreducible component of $\mathcal{C}_{\varphi(x)}(M)$ for all

generic $x \in U$.

con 1

Question.

Let M be a uniruled projective manifold with a minimal rational component $\mathcal{K}.$

To what extent does the projective geometry of $C_x(M) \subset \mathbb{P}(TM)$ for a general point $x \in M$ determine the biholomorphic geometry of M?

Question.

Let M be a uniruled projective manifold with a minimal rational component $\mathcal{K}.$

To what extent does the projective geometry of $C_x(M) \subset \mathbb{P}(TM)$ for a general point $x \in M$ determine the biholomorphic geometry of M?

(Mok, H.-Hwang)

Let X = G/P be a rational homogeneous variety of Picard number one associated to a long root and let o be a base point. Let M be a uniruled projective manifold of Picard number one with a minimal rational component \mathcal{K} . Assume that $(\mathcal{C}_x(M) \subset \mathbb{P}(T_xM))$ is projectively equivalent to $(\mathcal{C}_o(X) \subset \mathbb{P}(T_oX))$ for general $x \in M$. Then Mis biholomorphic to X.

Question.

Let M be a uniruled projective manifold with a minimal rational component $\mathcal{K}.$

To what extent does the projective geometry of $C_x(M) \subset \mathbb{P}(TM)$ for a general point $x \in M$ determine the biholomorphic geometry of M?

(Mok, H.-Hwang)

Let X = G/P be a rational homogeneous variety of Picard number one associated to a long root and let o be a base point. (model) Let M be a uniruled projective manifold of Picard number one with a minimal rational component \mathcal{K} . Assume that $(\mathcal{C}_x(M) \subset \mathbb{P}(T_xM))$ is projectively equivalent to $(\mathcal{C}_o(X) \subset \mathbb{P}(T_oX))$ for general $x \in M$. Then Mis biholomorphic to X.

Characterization Problem.

Let X be a smooth Fano variety of Picard number one which is quasi-homogeneous and o be a general point. (model)

Characterization Problem.

Let X be a smooth Fano variety of Picard number one which is quasi-homogeneous and o be a general point. (model)

Let M be a uniruled projective manifold of Picard number one with a minimal rational component \mathcal{K} . Assume that $(\mathcal{C}_x(M) \subset \mathbb{P}(T_xM))$ is projectively equivalent to $(\mathcal{C}_o(X) \subset \mathbb{P}(T_oX))$ for general $x \in M$.

Characterization Problem.

Let X be a smooth Fano variety of Picard number one which is quasi-homogeneous and o be a general point. (model)

Let M be a uniruled projective manifold of Picard number one with a minimal rational component \mathcal{K} . Assume that $(\mathcal{C}_x(M) \subset \mathbb{P}(T_xM))$ is projectively equivalent to $(\mathcal{C}_o(X) \subset \mathbb{P}(T_oX))$ for general $x \in M$.

Is M biholomorphic to X?

Let X be a smooth Fano variety of Picard number one which is quasi-homogeneous and o be a general point. (model)

Let M be a uniruled projective manifold of Picard number one with a minimal rational component \mathcal{K} . Assume that $(\mathcal{C}_r(M) \subset \mathbb{P}(T_rM))$ is projectively equivalent to $(\mathcal{C}_o(X) \subset \mathbb{P}(T_oX))$ for general $x \in M$.

Is M biholomorphic to X?

(Hwang-Li)

The answer is yes for

- (C_n, ϖ_k) Symplectic Grassmannian (to a short root)
- $(C_n, \varpi_k, \varpi_{k-1})$ Odd symplectic Grassmannian
- $(G_2, \varpi_2, \varpi_1)$

Main Theorem (H.-Kim)

Let X be a smooth horospherical variety of Picard number one, one of the following types:

- $(B_n, \varpi_{n-1}, \varpi_n)$ $(n \ge 3)$
- $(B_3, \varpi_1, \varpi_3)$
- $(F_4, \varpi_2, \varpi_3)$

and o be a general point in X.

Let M be a uniruled projective manifold of Picard number one with a family \mathcal{K} of minimal rational curves. Assume that $(\mathcal{C}_x(M) \subset \mathbb{P}(T_xM))$ is projectively equivalent to $(\mathcal{C}_o(X) \subset \mathbb{P}(T_oX))$ for general $x \in M$.

Then M is biholomorphic to X.

Smooth horospherical varieties of Picard number one

Let \boldsymbol{L} be a simple algebraic group

 $\{\varpi_1,\ldots,\varpi_n\}$ be a system of fundamental weights.

 $v_{\varpi_i} \in V_{\varpi_i}$ highest weight vector in the irreducible representation,

 $P_{\varpi_i},$ the isotropy subgroup of $[v_{\varpi_i}] \in \mathbb{P}(V_{\varpi_i}).$

Smooth horospherical varieties of Picard number one

Let \boldsymbol{L} be a simple algebraic group

 $\{\varpi_1,\ldots,\varpi_n\}$ be a system of fundamental weights.

 $v_{\varpi_i} \in V_{\varpi_i}$ highest weight vector in the irreducible representation,

 P_{ϖ_i} , the isotropy subgroup of $[v_{\varpi_i}] \in \mathbb{P}(V_{\varpi_i})$. $\geq \bigcup_{i \in V_{\omega_i}} \mathbb{I} = \mathcal{P}_{v_i}$

 $X := \overline{L[v_{\varpi_i} \oplus v_{\varpi_j}]} \subset \mathbb{P}(V_{\varpi_i} \oplus V_{\varpi_j}), \text{ denoted by } (L, \varpi_i, \varpi_j)$

Smooth horospherical varieties of Picard number one

Let \boldsymbol{L} be a simple algebraic group

 $\{\varpi_1,\ldots,\varpi_n\}$ be a system of fundamental weights.

 $v_{\varpi_i} \in V_{\varpi_i}$ highest weight vector in the irreducible representation,

 $P_{\varpi_i}\text{, the isotropy subgroup of }[v_{\varpi_i}]\in\mathbb{P}(V_{\varpi_i}).$

$$\begin{split} X &:= \overline{L[v_{\varpi_i} \oplus v_{\varpi_j}]} \subset \mathbb{P}(V_{\varpi_i} \oplus V_{\varpi_j}) \text{, denoted by } (L, \varpi_i, \varpi_j) \\ Y &:= L.[v_{\varpi_i}], \ Z := L.[v_{\varpi_j}] \text{, two closed orbits in } X \\ X^0 &:= X \setminus (Y \cup Z) \subset X \text{, a unique open orbit in } X \end{split}$$

Let \boldsymbol{L} be a simple algebraic group

 $\{\varpi_1,\ldots,\varpi_n\}$ be a system of fundamental weights.

 $v_{\varpi_i} \in V_{\varpi_i}$ highest weight vector in the irreducible representation,

 P_{ϖ_i} , the isotropy subgroup of $[v_{\varpi_i}] \in \mathbb{P}(V_{\varpi_i})$.

$$\begin{split} X &:= \overline{L[v_{\varpi_i} \oplus v_{\varpi_j}]} \subset \mathbb{P}(V_{\varpi_i} \oplus V_{\varpi_j}), \text{ denoted by } (L, \varpi_i, \varpi_j) \\ Y &:= L.[v_{\varpi_i}], \ Z := L.[v_{\varpi_j}], \text{ two closed orbits in } X \\ X^0 &:= X \setminus (Y \cup Z) \subset X, \text{ a unique open orbit in } X \end{split}$$

$$\begin{array}{ccc} \mathcal{L}[V_{w_{i}} \otimes V_{w_{j}}] &\stackrel{\sim}{\searrow} & X^{0} = X \setminus (Y \cup Z) & \longleftrightarrow & X \subset |\mathbb{P}(V_{\overline{w_{i}}} \otimes V_{v_{j}}) \\ & & \downarrow^{\mathbb{C}^{*}} \\ \mathcal{L}[V_{w_{i}} \otimes \Psi_{v_{j}}] &\stackrel{\sim}{=} & L/(P_{\varpi_{i}} \cap P_{\varpi_{j}}) \\ & & \downarrow^{\mathbb{C}^{*}} & \subset |\mathbb{P}(V_{\overline{w_{i}}} \otimes V_{\overline{w_{j}}}) \\ \end{array}$$

For a reductive group L, a normal L-variety is said to be horospherical if it has an open L-orbit L/H whose isotropy group H contains the unipotent part of a Borel subgroup of L.

L(((*))) = L/P

(Pasquier)

Classification of non-homogeneous smooth horospherical varieties of Picard number one.

$$(B_n, \varpi_{n-1}, \varpi_n) \ (n \ge 3)$$

2
$$(B_3, \varpi_1, \varpi_3)$$

③
$$(C_n, \varpi_k, \varpi_{k-1})$$
 $(n ≥ 2, 2 ≤ k ≤ n)$

$$\bullet (F_4, \varpi_2, \varpi_3)$$

5
$$(G_2, \varpi_2, \varpi_1)$$

• (C_n, ϖ_k) is a symplectic Grassmannian

$$Gr_{\omega}(k,\mathbb{C}^{2n}) \hookrightarrow \mathbb{P}(\wedge^k \mathbb{C}^{2n}).$$

• $(C_n, \overline{\varpi_k}, \overline{\varpi_{k-1}})$ is an odd symplectic Grassmannian

 $Gr_{\omega'}(k, \mathbb{C}^{2n+1}) \hookrightarrow \mathbb{P}(\wedge^k \mathbb{C}^{2n+1}).$

Sp(21, () 0-0-X-0-0-00

• (C_n, ϖ_k) is a symplectic Grassmannian

$$Gr_{\omega}(k,\mathbb{C}^{2n}) \hookrightarrow \mathbb{P}(\wedge^k \mathbb{C}^{2n}).$$

• $(C_n, \varpi_k, \varpi_{k-1})$ is an odd symplectic Grassmannian

$$Gr_{\underline{\omega'}}(k, \mathbb{C}^{2n+1}) \hookrightarrow \mathbb{P}(\wedge^k \mathbb{C}^{2n+1}).$$
 Show symplet 2 h

$$\mathbb{P}(\bigwedge^{k-1}\mathbb{C}^{2n} \oplus \bigwedge^{k}\mathbb{C}^{2n}) \to \mathbb{P}(\bigwedge^{k}\mathbb{C}^{2n+1})$$

$$(e_1 \wedge \dots \wedge e_{k-1}, e_1 \wedge \dots e_{k-1} \wedge e_k) \mapsto e_1 \wedge \dots \wedge e_{k-1} \wedge \underline{e_0}$$

$$+e_1 \wedge \dots \wedge e_{k-1} \wedge (e_0 + e_k)$$

$$= e_1 \wedge \dots \wedge e_{k-1} \wedge (e_0 + e_k)$$

where $\{\underline{e_1, \ldots, e_{2n}}\}$ is a basis of $(\mathbb{C}^{2n}, \omega)$ with a symplectic form ω and $(\underline{e_0}, e_1, \ldots, e_{2n}\}$ is a basis of $(\mathbb{C}^{2n+1}, \omega')$ with a skew-sym form of max rk.

J. Hong (IBS CCG)

• (F_4, ϖ_4) is a hyperplane section of $\mathbb{OP}^2 = (E_6, \varpi_6)$

• $(B_3, \varpi_1, \varpi_3)$ is a hyperplane section of the spin variety $\mathbf{S}_5 = (D_5, \varpi_5)$

X

$$\operatorname{Aut}^0(X)$$

- $(B_n, \varpi_{n-1}, \varpi_n)$
- **2** $(B_3, \varpi_1, \varpi_3)$
- $(C_n, \varpi_k, \varpi_{k-1})$
- \bullet (*F*₄, ϖ_2, ϖ_3)
- **5** $(G_2, \varpi_2, \varpi_1)$

 $(SO(2n+1) \times \mathbb{C}^*) \ltimes V_{\varpi_n}$ $(SO(7) \times \mathbb{C}^*) \ltimes V_{\varpi_3}$ $((Sp(2n) \times \mathbb{C}^*)/\{\pm 1\}) \ltimes V_{\varpi_1}$ $(F_4 \times \mathbb{C}^*) \ltimes V_{\varpi_4}$ $(G_2 \times \mathbb{C}^*) \ltimes V_{\varpi_1}$

$$X \qquad \operatorname{Aut}^{0}(X)$$

$$(B_{n}, \varpi_{n-1}, \varpi_{n}) \qquad (SO(2n+1) \times \mathbb{C}^{*}) \ltimes V_{\varpi_{n}}$$

$$(B_{3}, \varpi_{1}, \varpi_{3}) \qquad (SO(7) \times \mathbb{C}^{*}) \ltimes V_{\varpi_{3}}$$

$$(C_{n}, \varpi_{k}, \varpi_{k-1}) \qquad ((Sp(2n) \times \mathbb{C}^{*})/\{\pm 1\}) \ltimes V_{\varpi_{1}}$$

$$(F_{4}, \varpi_{2}, \varpi_{3}) \qquad (F_{4} \times \mathbb{C}^{*}) \ltimes V_{\varpi_{4}}$$

$$(G_{2}, \varpi_{2}, \varpi_{1}) \qquad (G_{2} \times \mathbb{C}^{*}) \ltimes V_{\varpi_{1}}$$

$$(G_2 \times \mathbb{C}^*) \ltimes V_{\varpi_1}$$

Remark. $G := Aut^0(X)$ is not reductive.

3 (

4 (

$$X \qquad \operatorname{Aut}^{0}(X)$$

$$(B_{n}, \varpi_{n-1}, \varpi_{n}) \qquad (SO(2n+1) \times \mathbb{C}^{*}) \ltimes V_{\varpi_{n}}$$

$$(B_{3}, \varpi_{1}, \varpi_{3}) \qquad (SO(7) \times \mathbb{C}^{*}) \ltimes V_{\varpi_{3}}$$

$$(C_{n}, \varpi_{k}, \varpi_{k-1}) \qquad ((Sp(2n) \times \mathbb{C}^{*})/\{\pm 1\}) \ltimes V_{\varpi_{1}}$$

$$(F_{4}, \varpi_{2}, \varpi_{3}) \qquad (F_{4} \times \mathbb{C}^{*}) \ltimes V_{\varpi_{4}}$$

$$(G_{2}, \varpi_{2}, \varpi_{1}) \qquad (G_{2} \times \mathbb{C}^{*}) \ltimes V_{\varpi_{1}}$$

Remark. $G := Aut^0(X)$ is not reductive.

Put L := the semisimple part of Gand U := the unipotent part of G.

so that

$$G = (L \times \mathbb{C}^*) \ltimes U$$

and the Lie algebra \mathfrak{g} of G is $(\mathfrak{l} \oplus \mathbb{C}) \ltimes U$.

(Kim)

Let \boldsymbol{X} be a smooth non-homogeneous horospherical varieties of Picard number one.

Then there is a grading on l and U,

$$\mathfrak{l} = \bigoplus_{k=-\mu}^{\mu} \mathfrak{l}_k$$
 and $U = \bigoplus_{k=-1}^{\nu} U_k$,

such that the negative part $\mathfrak{m}=\bigoplus_{p<0}\mathfrak{g}_p$ of $\mathfrak{g},$ where the grading is defined by

$$\begin{aligned} \mathfrak{g}_0 &:= & (\mathfrak{l}_0 \oplus \mathbb{C}) \rhd U_0 \\ \mathfrak{g}_p &:= & \mathfrak{l}_p \oplus U_p \text{ for } p \neq 0, \end{aligned}$$

is identified with the tangent space of X at the base point o of X^0 .

(Kim)

Furthermore, the variety of minimal rational tangents $C_o(X)$ of X at the base point o is given by

$$\mathcal{C}_o(X) = \left\{ \begin{array}{l} \mathsf{H}_{L_0}(U_{-1} \oplus \mathfrak{l}_{-1} \oplus \mathfrak{l}_{-2}) \text{ if } X \text{ is } (C_m, \alpha_{i+1}, \alpha_i) \text{ for } 1 \leq i < m \\ \mathsf{H}_{L_0}(U_{-1} \oplus \mathfrak{l}_{-1}), \text{ otherwise.} \end{array} \right.$$

(Kim)

Furthermore, the variety of minimal rational tangents $C_o(X)$ of X at the base point o is given by

$$\mathcal{C}_o(X) = \left\{ \begin{array}{l} \mathsf{H}_{L_0}(U_{-1} \oplus \mathfrak{l}_{-1} \oplus \mathfrak{l}_{-2}) \text{ if } X \text{ is } (C_m, \alpha_{i+1}, \alpha_i) \text{ for } 1 \leq i < m \\ \mathsf{H}_{L_0}(U_{-1} \oplus \mathfrak{l}_{-1}), \text{ otherwise.} \end{array} \right.$$

cf. When X = G/P

 $\mathcal{C}_o(X) = \begin{cases} \mathsf{H}_{G_0}(\mathfrak{g}_{-1} \oplus \mathfrak{g}_{-2}) & \text{if } P \text{ is associated to a short root} \\ \mathsf{H}_{G_0}(\mathfrak{g}_{-1}) & \text{if } P \text{ is associated to a long root} \end{cases}$

Main Theorem (Hwang-Li, H.-Kim)

Let X be a smooth horospherical variety of Picard number one, and o be a general point in X.

Let M be a uniruled projective manifold of Picard number one with a family \mathcal{K} of minimal rational curves. Assume that $(\mathcal{C}_x(M) \subset \mathbb{P}(T_xM))$ is projectively equivalent to $(\mathcal{C}_o(X) \subset \mathbb{P}(T_oX))$ for general $x \in M$.

Then M is biholomorphic to X.

$$(\text{Hwang-Li}) \begin{array}{c} \overbrace{\mathcal{L}_{2}}^{\mathcal{L}_{2}} = \int d\mathcal{V} + \mathcal{V}^{\ast} : \mathcal{V} \in \mathcal{V} \quad \widehat{f} \quad \subset \quad |\mathbb{P}(\mathcal{V} \oplus \mathcal{L}_{2})^{\ast} | \mathcal{L} = |\mathbb{P}(\mathfrak{G}_{-1}) \subset |\mathbb{P}(\mathfrak{G}_{-1})^{\ast} | \mathcal{L} = |\mathbb{P}(\mathfrak{L$$

Let X be a smooth horospherical variety of Picard number one, one of the following types (model)

- $(B_n, \varpi_{n-1}, \varpi_n) \ (n \ge 3)$
- $(B_3, \alpha_1, \alpha_3)$
- $(F_4, \varpi_2, \varpi_3)$

and o be a general point.

Let M be a uniruled projective manifold with a family \mathcal{K} of minimal rational curves. Assume that $(\mathcal{C}_x(M) \subset \mathbb{P}(T_xM))$ is projectively equivalent to $(\mathcal{C}_o(X) \subset \mathbb{P}(T_oX))$ for general $x \in M$.

Let X be a smooth horospherical variety of Picard number one, one of the following types (model)

- $(B_n, \varpi_{n-1}, \varpi_n)$ $(n \ge 3)$
- $(B_3, \alpha_1, \alpha_3)$
- $(F_4, \varpi_2, \varpi_3)$

and o be a general point.

Let M be a uniruled projective manifold with a family \mathcal{K} of minimal rational curves. Assume that $(\mathcal{C}_x(M) \subset \mathbb{P}(T_xM))$ is projectively equivalent to $(\mathcal{C}_o(X) \subset \mathbb{P}(T_oX))$ for general $x \in M$.

$$\begin{array}{ccc}
\mathcal{C}(X) \subset \mathbb{P}(TX) & \mathcal{C}(M) \subset \mathbb{P}(TM) \\
\downarrow & \downarrow \\
X & M
\end{array}$$

 $(\mathcal{C}_x(M) \subset \mathbb{P}(T_xM)) \stackrel{\text{proj.equiv.}}{\simeq} (\mathcal{C}_o(X) \subset \mathbb{P}(T_oX))$ for general $x \in M$

What we have:

$$\begin{array}{ccc} \mathcal{C}(X) \subset \mathbb{P}(TX) & \quad \mathcal{C}(M) \subset \mathbb{P}(TM) \\ & & & \downarrow \\ & & & \downarrow \\ & X & & M \end{array}$$

 $(\mathcal{C}_x(M) \subset \mathbb{P}(T_xM)) \stackrel{\text{proj.equiv.}}{\simeq} (\mathcal{C}_o(X) \subset \mathbb{P}(T_oX))$ for general $x \in M$

What we have:

$$\begin{array}{ccc} \mathcal{C}(X) \subset \mathbb{P}(TX) & \mathcal{C}(M) \subset \mathbb{P}(TM) \\ & & & \downarrow \\ & & & \downarrow \\ & X & & M \end{array}$$

$$(\mathcal{C}_x(M) \subset \mathbb{P}(T_xM)) \stackrel{\text{proj.equiv.}}{\simeq} (\mathcal{C}_o(X) \subset \mathbb{P}(T_oX))$$
 for general $x \in M$

<u>Want to show</u>: There exists connected open subsets $U \subset X$ and $V \subset M$ and a biholomorphism

$$\varphi:U\to V$$

whose differential $\varphi_* : \mathbb{P}(T_x X) \to \mathbb{P}(T_{\varphi(x)}M)$ sends $\mathcal{C}_x(X)$ to $\mathcal{C}_x(M)$ for all generic $x \in U$.

What we have:

$$\begin{array}{ccc} \mathcal{C}(X) \subset \mathbb{P}(TX) & \mathcal{C}(M) \subset \mathbb{P}(TM) \\ & & & \downarrow \\ & & & \downarrow \\ & X & & M \end{array}$$

$$(\mathcal{C}_x(M) \subset \mathbb{P}(T_xM)) \stackrel{\text{proj.equiv.}}{\simeq} (\mathcal{C}_o(X) \subset \mathbb{P}(T_oX))$$
 for general $x \in M$

<u>Want to show</u>: There exists connected open subsets $U \subset X$ and $V \subset M$ and a biholomorphism

$$\varphi:U\to V$$

whose differential $\varphi_* : \mathbb{P}(T_x X) \to \mathbb{P}(T_{\varphi(x)}M)$ sends $\mathcal{C}_x(X)$ to $\mathcal{C}_x(M)$ for all generic $x \in U$.

(Local equivalence problem)

J. Hong (IBS CCG)

(Hwang-Mok) Cantan-Fubini type extension theorem

Let X be a Fano manifold of Picard number one. Then for any choice of (M, \mathcal{K}) Fano manifold of Picard number one and a minimal rational component with $p(\mathcal{H}) = p(\mathcal{K})$,

if the differential $\varphi_* : \mathbb{P}(T_x X) \to \mathbb{P}(T_{\varphi(x)}M)$ sends each irreducible component of $\mathcal{C}_x(X)$ to an irreducible component of $\mathcal{C}_{\varphi(x)}(M)$ for all generic $x \in U$,

then any local biholomorphism $\varphi: U \to V$ where $U \subset X$ and $V \subset M$ are connected open subset, extends to a biholomorphic map $X \to M$.

This will complete the proof of Main Theorem.

Thank you!