Classifying homogeneous geometric structures (Lecture 1)

Dennis The

Department of Mathematics & Statistics UIT The Arctic University of Norway

26 January 2021

GRIEG project 2019/34/H/ST1/00636

Recall that the title of our GRIEG project is:

SCREAM

= Symmetry, Curvature Reduction, and EquivAlence Methods

My lecture series will focus on Cartan-geometric approaches to classifying (locally) homogeneous geometric structures (with an emphasis on "parabolic" geometries in low dimensions).

Today:

- Examples of homogeneous geometric structures.
- Motivate the notion of a (normalized) Cartan geometry.
 ("Cartan equivalence method" details will be done elsewhere.)
- Tanaka prolongation and its relevance.

Examples of (homogeneous) geometric structures

Structure	Symmetry condition
Riemannian (M,g)	$\mathcal{L}_X g = 0$
Conformal $(M, [g])$	$\mathcal{L}_X g = \lambda(X) g$
(2,3,5)-distribution (M^5,D)	$\mathcal{L}_X D \subset D$
2nd order ODE $(M^3, D = E \oplus V)$	$\mathcal{L}_X E \subset E, \mathcal{L}_X V \subset V$

Symmetries form a Lie algebra $\mathfrak{f} \subset \mathfrak{X}(M)$. For a given structure:

- **1** What is the maximum \mathfrak{M} of dim(\mathfrak{f})? (Assume dim(M) fixed.)
- What is the "submaximal" (next realizable) sym dim G?
- I how can one classify (locally) homogeneous structures?
 (Want: ∀p ∈ M, ev_p : f → T_pM is surjective. We'll encode data

on f/f^0 , where f^0 = isotropy subalg at a chosen $p \in M$.)

Example: Riemannian geometry (M, g)

• A symmetry ("Killing v.f.") $X \in \mathfrak{X}(M)$ satisfies $\mathcal{L}_{\chi g} = 0$. Locally, $g = g_{ab} dx^a \otimes dx^b$, this is a linear PDE in $X = X^a \partial_{x^a}$: $X^c \partial_{x^c} g_{ab} + (\partial_{x^a} X^c) g_{cb} + (\partial_{x^b} X^c) g_{ac} = 0$.

• sym. dim. $\leq \binom{n+1}{2}$. Sharp on constant curvature spaces:

•
$$\mathbb{R}^n \cong \mathbb{E}(n)/\mathcal{O}(n)$$
.

۵

•
$$S^n \cong O(n+1)/O(n)$$
.

•
$$H^n \cong \mathcal{O}(n,1)/\mathcal{O}(n)$$
.

	n	M	S	Citation
-	2	3	1	Darboux / Koenigs (\sim 1890)
	3	6	4	Wang (1947)
	4	10	8	Egorov (1955)
	\geq 5	$\binom{n+1}{2}$	$\binom{n}{2} + 1$	Wang (1947), Egorov (1949)

Example: 2nd order ODE

y'' = f(x, y, y'). Point transformations (PT): $\begin{cases} \tilde{x} = \tilde{x}(x, y) \\ \tilde{y} = \tilde{y}(x, y) \end{cases}$.

Letting p = y' and q = y'', we can prolong:

$$ilde{p} = rac{ ilde{y}_x + p ilde{y}_y}{ ilde{x}_x + p ilde{x}_y}, \quad ilde{q} = rac{ ilde{p}_x + p ilde{p}_y + q ilde{p}_p}{ ilde{x}_x + p ilde{x}_y}.$$

Symmetries are v.f. on (x, y)-space whose prolongation to (x, y, p, q)-space are tangent to q = f(x, y, p).

Structure	M	Example	\mathfrak{S}	Example
2nd order ODE	8	y''=0	3	$y'' = \exp(y')$

y'' = 0 has symmetry alg \mathfrak{sl}_3 . $\mathfrak{S} = 3$ due to Tresse (1896).

Example: 2nd order ODE continued

Reformulation: Consider (x, y, p, q)-space equipped with $\langle dy - pdx, dp - qdx \rangle$. On q = f(x, y, p), get a line field:

$$\mathsf{E}=\langle\partial_x+p\partial_y+f\partial_p\rangle.$$

Wrt (prolonged) PT, $V = \langle \partial_p \rangle$ is also distinguished.

Geometric structure: Let M be (x, y, p)-space with a contact distribution $D = \ker\{dy - pdx\} = \langle \partial_x + p\partial_y, \partial_p \rangle \subset TM$. A 2nd order ODE \leftrightarrow splitting $D = E \oplus V$. Note [D, D] = TM.

2nd order ODE and $f = \mathfrak{sl}_3$? Consider $\mathfrak{p} = \mathfrak{f}^0 = \begin{pmatrix} \bullet & \bullet & \bullet \\ \hline 0 & \bullet & \bullet \\ \hline 0 & \bullet & \bullet \end{pmatrix} \subset \mathfrak{f}$. Then $\mathfrak{f}/\mathfrak{f}^0$ admits an \mathfrak{f}^0 invariant filtration:

Then f/f^0 admits an f^0 -invariant filtration:

$$\mathfrak{f}^{-1}/\mathfrak{f}^0 = \left(\begin{smallmatrix} \bullet & \\ \bullet & \bullet \end{smallmatrix} \right) \quad \subset \quad \mathfrak{f}/\mathfrak{f}^0.$$

This corresponds to \mathfrak{sl}_3 -invariant data $D = E \oplus V$ on $M = SL_3/P$.

Example: (2, 3, 5)-distributions

Consider $(M^5, D \subset TM)$ with rank growth (2, 3, 5): $D \subset [D, D] \subset [D, [D, D]] = TM.$ Monge form z' = f(x, y, y', y'', z): In (x, y, p, q, z)-space, let $D = \ker\{dy - pdx, dp - qdx, dz - fdx\}$ $= span\{\partial_x + p\partial_y + q\partial_p + f\partial_z, \partial_q\}.$

where f = f(x, y, p, q, z) satisfies $f_{qq} \neq 0$.

Structure	M	Example	\mathfrak{S}	Example
(2,3,5)-distribution	14	$z' = (y'')^2$	7	$z' = \exp(y'')$

 $z' = (y'')^2$ has sym alg $Lie(G_2)$. $\mathfrak{S} = 7$ due to Cartan (1910).

Rolling distributions and G_2

Consider a 2-sphere rolling on another without twisting or slipping.

- Configuration space *M* is 5-dimensional.
- No twisting or slipping ⇒ constraints on velocity space *TM*. Get rank 2 distribution *D* ⊂ *TM* of allowable directions.

- Let $\rho \ge 1$ be the ratio of the radii. If $\rho \ne 1$, get (2, 3, 5)-geometry.
 - $\rho \neq 3$: $\mathfrak{so}(3) \times \mathfrak{so}(3)$ symmetry
 - ρ = 3: (split) Lie(G₂) symmetry (Bryant, Zelenko, Bor–Montgomery, Baez–Huerta)

Riemannian metrics (on surfaces)

(Local) equivalence of Riemannian metrics

Q: Does
$$\exists \varphi : (M^n, g) \to (\tilde{M}^n, \tilde{g}) \text{ s.t. } \varphi^* \tilde{g} = g?$$

Locally diagonalize, e.g. $g = (\theta^1)^2 + ... + (\theta^n)^2$, get o.n. coframes $\{\theta^i\}$ and $\{\tilde{\theta}^i\}$. Reformulate Q as a Cartan equivalence problem:

Q: Does
$$\exists \varphi: M \to \tilde{M} \text{ s.t. } \varphi^* \tilde{\theta}^i = g_i^i(x) \theta^j \text{ for } g: M \to O(n)$$
?

KEY IDEA: Build a bundle \mathcal{G} that incorporates ambiguity, e.g. for metrics, $\mathcal{G} = F_{on}(M)$ suffices. Find a canonical coframing (aka. "connection", "absolute parallelism", etc.) there. This is the "solution in the sense of Élie Cartan".

The orthonormal frame bundle

- Frame at $x \in M^n$ is $u : \mathbb{R}^n \xrightarrow{\cong} T_x M$. Coframe: u^{-1} .
- Frame bundle π : F(M) → M. (π⁻¹(x) = all frames at x.) This is a principal GL(n; ℝ)-bundle; right action R_a(u) = u ∘ a.

Given (M^n, g) , fix std metric (\mathbb{R}^n, g_0) , restrict F(M) to $F_{on}(M)$ (isometric frames), a principal O(n)-bundle. O.n. coframing $\{\bar{\theta}^i\}$, i.e. with $g = (\bar{\theta}^1)^2 + \ldots + (\bar{\theta}^n)^2$, is a section of $\pi : F_{on}(M) \to M$.

- Soldering form: $\Theta \in \Omega^1(F(M); \mathbb{R}^n)$, $\Theta_u(\xi) = u^{-1}\pi_*(\xi)$.
- Principal connection: $\Upsilon \in \Omega^1(F_{on}(M); \mathfrak{so}(n))$ s.t.:

Local coframing on $\mathcal{G} = F_{on}(M)$ for (M^2, g)

Let
$$g = (\bar{\theta}^1)^2 + (\bar{\theta}^2)^2$$
. Lift to \mathcal{G} : Let $\begin{pmatrix} \theta^1 \\ \theta^2 \end{pmatrix} = \begin{pmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{pmatrix} \begin{pmatrix} \bar{\theta}^1 \\ \bar{\theta}^2 \end{pmatrix}$.

Exercise

Show
$$\begin{cases} d\theta^{1} = dt \wedge \theta^{2} + A\theta^{1} \wedge \theta^{2} = \gamma \wedge \theta^{2} & \text{where} \\ d\theta^{2} = -dt \wedge \theta^{1} + B\theta^{1} \wedge \theta^{2} = -\gamma \wedge \theta^{1} & \text{'} & \gamma = dt + A\theta^{1} + B\theta^{2}. \end{cases}$$

$$\Rightarrow \begin{cases} 0 = d^2 \theta^1 = -d\gamma \wedge \theta^2 \\ 0 = d^2 \theta^2 = +d\gamma \wedge \theta^1 \\ d\gamma = \boldsymbol{c} \, \theta^1 \wedge \theta^2 \end{cases} \text{, so} \begin{cases} d\theta^1 = \gamma \wedge \theta^2 \\ d\theta^2 = -\gamma \wedge \theta^1 \\ d\gamma = \boldsymbol{c} \, \theta^1 \wedge \theta^2 \end{cases}$$

These "structure equations" uniquely determine $\omega = (\theta^1, \theta^2, \gamma)$, i.e. a "canonical coframing". Dual basis: $(\partial_{\theta^1}, \partial_{\theta^2}, \partial_{\gamma})$.

Exercise

Show that
$$\mathcal{L}_{\partial_{\gamma}}\theta^{1} = \theta^{2}, \mathcal{L}_{\partial_{\gamma}}\theta^{2} = -\theta^{1}$$
, $\mathcal{L}_{\partial_{\gamma}}\gamma = 0$, and $\mathcal{L}_{\partial_{\gamma}}c = 0$.

Coframe rank and symmetry

We saw $g \rightsquigarrow \exists ! \omega$. Symmetries of g correspond to symmetries Φ of the coframing ω , i.e. $\Phi^* \omega = \omega$. Since $d \circ \Phi^* = \Phi^* \circ d$, then Φ preserves structure functions $\gamma_{ij}{}^k$, where $d\omega^k = \frac{1}{2}\gamma_{ij}{}^k\omega^i \wedge \omega^j$. For metrics, we get $\Phi^* c = c$. Rinse & repeat:

$$dc = c_1\theta^1 + c_2\theta^2 + c_3\gamma.$$

Then Φ preserves c_1, c_2, c_3 . Keep going... The rank *r* of ω is the number of indep. fcns obtained via this process. General thm:

Theorem (c.f. Olver, "Equivalence, Invariants, Symmetry", Thm 8.22) A coframe ω of rank $r \ge 0$ on an m-mfld has dim(sym) = m - r.

Note: If r = 0, we get str. eqns for a Lie alg/grp:

$$d\omega^k = -rac{1}{2} C_{ij}{}^k \omega^i \wedge \omega^j \quad \Longleftrightarrow \quad [e_i, e_j] = C_{ij}{}^k e_k,$$

where $\{e_i\}$ is the dual basis to $\{\omega^i\}$.

Symmetry gap for surface metrics

Thm: Any (M^2, g) cannot have precisely 2 Killing vectors.

Proof: On $\mathcal{G} = \mathcal{F}_{on}(M)$, we saw $\exists !$ coframing $\omega = (\theta^1, \theta^2, \gamma)$ with:

$$\begin{cases} d\theta^1 = \gamma \wedge \theta^2 \\ d\theta^2 = -\gamma \wedge \theta^1 \\ d\gamma = \boldsymbol{c} \, \theta^1 \wedge \theta^2 \end{cases} \Rightarrow \begin{cases} 0 = d^2 \theta^1 = d^2 \theta^2 \\ 0 = d^2 \gamma = d\boldsymbol{c} \wedge \theta^1 \wedge \theta^2 \\ d\boldsymbol{c} = \boldsymbol{f} \theta^1 + \boldsymbol{g} \theta^2 \end{cases}$$

Assuming dim(sym) = 2, then rank(ω) = 1, so c is nonconstant, and f, g are fcns of c. Then

$$\begin{cases} 0 = d^2 \mathbf{c} \wedge \theta^1 = \mathbf{f} \gamma \wedge \theta^2 \wedge \theta^1 \\ 0 = d^2 \mathbf{c} \wedge \theta^2 = \mathbf{g} \gamma \wedge \theta^2 \wedge \theta^1 \end{cases} \Rightarrow \mathbf{f} = \mathbf{g} = 0 \Rightarrow \mathbf{c} \text{ constant} \quad \bigstar$$

Cartan geometry

Towards Cartan geometry

Klein geometry $(G \rightarrow G/P, \omega_G)$

(curvature)

Cartan geometry $(\mathcal{G} \rightarrow M, \omega)$

\$

Ş

Euclidean geometry (\mathbb{R}^n, g_0)

 $\stackrel{(\text{curvature})}{\rightsquigarrow}$

Riemannian geometry (*Mⁿ*, g)

Cartan geometries

Let G be a Lie group, $P \leq G$ a closed subgroup.

Definition

A Cartan geometry $(\mathcal{G} \to M, \omega)$ of type (\mathcal{G}, P) consists of a (right) principal P-bundle $\mathcal{G} \to M$ with a Cartan connection $\omega \in \Omega^1(\mathcal{G}; \mathfrak{g})$: • ω is a coframing: $\omega_{\mu} : T_{\mu}\mathcal{G} \to \mathfrak{g}$ linear iso $\forall u \in \mathcal{G}$;

- 2 ω is *P*-equivariant: $R_p^*\omega = \operatorname{Ad}_{p^{-1}} \circ \omega, \forall p \in P$;
- **③** ω reproduces fund. vertical v.f.: $\omega(\zeta_A) = A, \forall A \in \mathfrak{p}$.
 - $T\mathcal{G} \cong \mathcal{G} \times \mathfrak{g}$ and $TM \cong \mathcal{G} \times_P (\mathfrak{g}/\mathfrak{p})$.
 - Symmetry algebra: $\inf(\mathcal{G}, \omega) = \{\xi \in \mathfrak{X}(\mathcal{G})^{P} : \mathcal{L}_{\xi}\omega = 0\}.$

Example

Flat model: $(G \to G/P, \omega_G)$, where ω_G is the Maurer-Cartan form on G, i.e. $\omega_G(g) = (L_{g^{-1}})_*$. MC eqn: $d\omega_G + \frac{1}{2}[\omega_G, \omega_G] = 0$.

Curvature

- Curvature: $K = d\omega + \frac{1}{2}[\omega, \omega] \in \Omega^2(\mathcal{G}; \mathfrak{g})$, i.e. $K(\xi, \eta) = d\omega(\xi, \eta) + [\omega(\xi), \omega(\eta)].$
 - K = 0 ("flat") \leftrightarrow locally equiv. to $(G \rightarrow G/P, \omega_G)$.
 - K is P-equivariant: $R_p^*K = \operatorname{Ad}_{p^{-1}} \circ K$, $\forall p \in P$.
 - K is horizontal, i.e. K(ζ_A, ·) = 0, ∀A ∈ p. (Axiom 2 for ω implies -ad_A ∘ ω = L_{ζ_A}ω = ι_{ζ_A}dω.)

Definition (Curvature function)

$$\kappa: \mathcal{G} \to \bigwedge^2 (\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g} \text{ via } \kappa(x,y) = K(\omega^{-1}(x), \omega^{-1}(y)).$$

 κ is P-equivariant, and codomain is a P-module. Ideally, impose P-inv. normalization conditions on κ to pin down ω uniquely.

Example

 $(\mathcal{G} \to M, \omega)$ is torsion-free if κ is valued in $\bigwedge^2 (\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{p}$.

Fundamental theorem of Riemannian geometry

Let $(G, P) = (\mathbb{E}(n), O(n))$ with Lie algebras $(\mathfrak{g}, \mathfrak{p}) = (\mathfrak{e}(n), \mathfrak{so}(n))$. We have $\mathfrak{g} = \{ \begin{pmatrix} A & b \\ 0 & 0 \end{pmatrix} : A \in \mathfrak{so}(n), b \in \mathbb{R}^n \}.$

Theorem

There is an equivalence of categories btw Riemannian metrics and torsion-free Cartan geometries of type $(\mathbb{E}(n), O(n))$.

Write $\omega = \Upsilon + \Theta \in \Omega^1(\mathcal{G}, \mathfrak{so}(n) \oplus \mathbb{R}^n)$. Then Υ is the Levi-Civita (principal) connection and Θ is the soldering form.

Example (n = 2 case)

$$\omega = \begin{pmatrix} 0 & -\gamma & \theta^{1} \\ \gamma & 0 & \theta^{2} \\ 0 & 0 & 0 \end{pmatrix}, \ \mathcal{K} = \begin{pmatrix} 0 & -d\gamma & d\theta^{1} - \gamma \wedge \theta^{2} \\ d\gamma & 0 & d\theta^{2} + \gamma \wedge \theta^{1} \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -c\theta^{1} \wedge \theta^{2} & 0 \\ c\theta^{1} \wedge \theta^{2} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

by torsion-freeness and horizontality. Thus,
$$\begin{cases} d\theta^{1} = \gamma \wedge \theta^{2} \\ d\theta^{2} = -\gamma \wedge \theta^{1} \\ d\gamma = c \theta^{1} \wedge \theta^{2} \end{cases}$$

Cartan's equivalence method and refinements

Beyond metrics, i.e. "O(*n*)-structures", one can consider other G_0 -structures $\mathcal{G}_0 \subset F(M)$, where $G_0 \leq GL(n, \mathbb{R})$. In general, \nexists distinguished coframing on \mathcal{G}_0 , e.g. $G_0 = CO(n)$.

Strategy: Build a new bundle... In general, get a tower of bundles...

This process is known as Cartan's equivalence method, e.g. for (2, 3, 5), see Cartan's 1910 "5-variables" paper for a tour-de-force application.

 \geq 1960's: Tanaka, Morimoto, Yamaguchi \rightsquigarrow further refinements:

- Study of filtered manifolds / filtered G₀-structures.
- Tanaka prolongation (upper bound on sym dim)
- Harmonic theory & fundamental (harmonic) curvature.

Suggested reading:

- Olver, "Equivalence, invariants, symmetry" (2009).
- Zelenko, "On Tanaka's prolongation procedure for filtered structures of constant type" (2009).
- Čap, "On canonical Cartan connections associated to filtered G-structures" (2017).

Tanaka theory

Distributions & symbol algebras

Let $D^{-1} := D \subsetneq TM$ a distribution, form the weak-derived flag, i.e. $D^i = [D, D^{i+1}]$ for i < 0 (assume constant rank). Suppose $D^{-\nu} = TM$, $\exists \nu > 0$, i.e. "bracket-generating". Get a filtration

$$D =: D^{-1} \subset D^{-2} \subset ... \subset D^{-\nu} = TM.$$

Fix $x \in M$, take associated-graded: Let $\mathfrak{g}_i(x) := D^i(x)/D^{i+1}(x)$,

$$\mathfrak{m}(x):=\mathfrak{g}_{-1}(x)\oplus\mathfrak{g}_{-2}(x)\oplus...\oplus\mathfrak{g}_{-
u}(x).$$

The Lie bracket of v.f. induces a tensorial ("Levi") bracket on each $\mathfrak{m}(x)$, turning it into a nilpotent graded Lie algebra (NGLA) called the symbol algebra. We'll assume $\mathfrak{m}(x) \cong \mathfrak{m}, \forall x \in M$ as NGLA.

Example

Let $X, Y \in D^{-1}$. Then [fX, gY] = fX(g)Y - gY(f)X + fg[X, Y], so $[fX, gY] \equiv fg[X, Y] \mod D^{-1}$.

Filtered *G*₀-structures

Given (M, D) as before, one has a natural (graded) frame bundle:

$$F_{gr}(M) = \bigcup_{x \in M} \left\{ u : \mathfrak{m} \xrightarrow{\cong} \mathfrak{m}(x) \text{ NGLA iso.} \right\}$$

Structure group: $\operatorname{Aut}_{gr}(\mathfrak{m})$. Structure algebra: $\mathfrak{der}_{gr}(\mathfrak{m})$. Note: $\mathfrak{der}_{gr}(\mathfrak{m}) \hookrightarrow \mathfrak{gl}(\mathfrak{g}_{-1})$ since \mathfrak{g}_{-1} generates $\mathfrak{m} = \mathfrak{g}_{-}$.

 $\text{Can specify reduction: } G_0 \leq \text{Aut}_{gr}(\mathfrak{m}) \text{, so } \mathfrak{g}_0 \leq \mathfrak{der}_{gr}(\mathfrak{m}).$

Analogous to O(n)-structure (metrics) being an O(n)-reduction of F(M), a filtered G_0 -structure is a G_0 -reduction $\mathcal{G}_0 \subset F_{gr}(M)$.

We have a vertical distribution to $\mathcal{G}_0 \to M$. Try to choose a horizontal complement canonically. (We phrased this dually earlier.) If not, build a new bundle: i.e. "geometrically prolong" to \mathcal{G}_1 , then \mathcal{G}_2 if necessary, etc.

Example (Riemannian geometry)

 $\mathfrak{m} = \mathfrak{g}_{-1} \cong \mathbb{R}^n$ (abelian) and $\mathfrak{g}_0 = O(n) \leq \operatorname{Aut}_{gr}(\mathfrak{m}) \cong \operatorname{GL}(n; \mathbb{R}).$

Example (2nd order ODE: $D = \langle \partial_x + p \partial_y + f \partial_p \rangle \oplus \langle \partial_p \rangle$)

$$\begin{split} \mathfrak{m} &= \mathfrak{g}_{-1} \oplus \mathfrak{g}_{-2} = \langle e_1, e_2 \rangle \oplus \langle e_3 \rangle \text{ with } [e_1, e_2] = e_3 \text{ (Heisenberg).} \\ \text{Have splitting } \mathfrak{g}_{-1} &= L_1 \oplus L_2 \text{ and } \mathfrak{g}_0 = \text{rescalings along } L_1 \text{ and } L_2 \\ \text{(2-dim). (Here, } \mathfrak{g}_0 \hookrightarrow \mathfrak{der}_{gr}(\mathfrak{m}) \cong \mathfrak{gl}(2, \mathbb{R}).) \end{split}$$

Example ((2,3,5)-dist. $D = \langle D_x := \partial_x + p \partial_y + q \partial_p + f \partial_z, \partial_q \rangle$)

$$T := [\partial_q, D_x] = \partial_p + f_q \partial_z \neq 0, \quad [\partial_q, T] = f_{qq} \partial_z, [T, D_x] = \partial_y + S \partial_z, \quad S = f_p + f_q f_z - D_x(f_q).$$

Thus, $\mathfrak{m} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-3} = \langle e_1, e_2 \rangle \oplus \langle e_3 \rangle \oplus \langle e_4, e_5 \rangle$, where:

$$[e_1, e_2] = e_3, \quad [e_1, e_3] = e_4, \quad [e_2, e_3] = e_5.$$

Tanaka prolongation

Given NGLA \mathfrak{m} and $\mathfrak{g}_0 \leq \mathfrak{der}_{gr}(\mathfrak{m})$, let $pr(\mathfrak{m},\mathfrak{g}_0)$ be the GLA s.t.

3 If
$$X \in pr_+(\mathfrak{m},\mathfrak{g}_0)$$
 s.t. $[X,\mathfrak{g}_{-1}] = 0$, then $X = 0$.

• $pr(\mathfrak{m},\mathfrak{g}_0)$ is maximal among all GLA satisfying (1) and (2).

Special case: When $\mathfrak{g}_0 = \mathfrak{der}_{gr}(\mathfrak{m})$, we just write $pr(\mathfrak{m})$.

Theorem (Tanaka 1970)

- $pr(\mathfrak{m},\mathfrak{g}_0)$ is unique up to isomorphism.
- dim(pr(m, g₀)) is an upper bound for the symmetry algebra of a filtered G₀-structure.

IDEA: Positive parts of this algebraic prolongation correspond to the geometric tower of bundles: $... \rightarrow \mathcal{G}_2 \rightarrow \mathcal{G}_1 \rightarrow \mathcal{G}_0 \rightarrow M$.

Also: Kruglikov, "Finite-dimensionality in Tanaka theory" (2011).

Examples of Tanaka prolongation

The height of $pr(\mathfrak{m},\mathfrak{g}_0)$ is the maximal $k \ge 0$ s.t. $pr_k(\mathfrak{m},\mathfrak{g}_0) \ne 0$.

Structure	m	g o	$pr(\mathfrak{m},\mathfrak{g}_0)$	Height
Metrics	$\mathfrak{g}_{-1}=\mathbb{R}^n$	$\mathfrak{so}(n)$	$\mathfrak{e}(n)$	0
Conformal	$\mathfrak{g}_{-1}=\mathbb{R}^n$	$\mathfrak{co}(n)$	$\mathfrak{so}(1, n+1)$	+1
2nd order ODE	$\mathfrak{g}_{-2}\oplus\mathfrak{g}_{-1}$	$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$	\mathfrak{sl}_3	+2
(2, 3, 5)	$\mathfrak{g}_{-3}\oplus\mathfrak{g}_{-2}\oplus\mathfrak{g}_{-1}$	$\mathfrak{gl}(\mathfrak{g}_{-1})$	$Lie(G_2)$	+3

Definition

A parabolic geometry is a Cartan geometry of type (G, P), where G is a semisimple Lie group and P is a parabolic subgroup.

Upshot: Cartan geometry is:

- a "nice" soln of the Cartan equivalence problem.
- a unifying "upstairs" framework, despite a zoo of "downstairs" structures.

Next lecture:

- Normalization conditions for parabolic geometries (to get categorical equivalence to underlying structures).
- Kostant's theorem and harmonic curvature.
- Cartan reduction method for classifying (homogeneous) geometric structures.