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SCREAM

Recall that the title of our GRIEG project is:

SCREAM

= Symmetry, Curvature Reduction, and EquivAlence Methods

My lecture series will focus on Cartan-geometric approaches to
classifying (locally) homogeneous geometric structures (with an
emphasis on “parabolic” geometries in low dimensions).

Today:

Examples of homogeneous geometric structures.

Motivate the notion of a (normalized) Cartan geometry.
(“Cartan equivalence method” details will be done elsewhere.)

Tanaka prolongation and its relevance.
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Examples of (homogeneous) geometric structures
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Some examples & basic questions

Structure Symmetry condition

Riemannian (M, g) LXg = 0

Conformal (M, [g ]) LXg = λ(X )g

(2, 3, 5)-distribution
(M5,D)

LXD ⊂ D

2nd order ODE
(M3,D = E ⊕ V )

LXE ⊂ E , LXV ⊂ V

Symmetries form a Lie algebra f ⊂ X(M). For a given structure:

1 What is the maximum M of dim(f)? (Assume dim(M) fixed.)

2 What is the “submaximal” (next realizable) sym dim S?

3 How can one classify (locally) homogeneous structures?

(Want: ∀p ∈ M, evp : f→ TpM is surjective. We’ll encode data
on f/f0, where f0 = isotropy subalg at a chosen p ∈ M.)
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Example: Riemannian geometry (M , g)

A symmetry (“Killing v.f.”) X ∈ X(M) satisfies LXg = 0.
Locally, g = gabdx

a ⊗ dxb, this is a linear PDE in X = X a∂xa :
X c∂xcgab + (∂xaX

c)gcb + (∂xbX
c)gac = 0.

sym. dim. ≤
(n+1

2

)
. Sharp on constant curvature spaces:

Rn ∼= E(n)/O(n).
Sn ∼= O(n + 1)/O(n).
Hn ∼= O(n, 1)/O(n).

n M S Citation

2 3 1 Darboux / Koenigs (∼1890)

3 6 4 Wang (1947)

4 10 8 Egorov (1955)

≥ 5
(n+1

2

) (n
2

)
+ 1 Wang (1947), Egorov (1949)

Dennis The Classifying homogeneous geometric structures 5/28



Example: 2nd order ODE

y ′′ = f (x , y , y ′). Point transformations (PT):

{
x̃ = x̃(x , y)

ỹ = ỹ(x , y)
.

Letting p = y ′ and q = y ′′, we can prolong:

p̃ =
ỹx + pỹy
x̃x + px̃y

, q̃ =
p̃x + pp̃y + qp̃p

x̃x + px̃y
.

Symmetries are v.f. on (x , y)-space whose prolongation to
(x , y , p, q)-space are tangent to q = f (x , y , p).

Structure M Example S Example

2nd order ODE 8 y ′′ = 0 3 y ′′ = exp(y ′)

y ′′ = 0 has symmetry alg sl3. S = 3 due to Tresse (1896).
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Example: 2nd order ODE continued

Reformulation: Consider (x , y , p, q)-space equipped with
〈dy − pdx , dp − qdx〉. On q = f (x , y , p), get a line field:

E = 〈∂x + p∂y + f ∂p〉.

Wrt (prolonged) PT, V = 〈∂p〉 is also distinguished.

Geometric structure: Let M be (x , y , p)-space with a contact
distribution D = ker{dy − pdx} = 〈∂x + p∂y , ∂p〉 ⊂ TM. A 2nd
order ODE ↔ splitting D = E ⊕ V . Note [D,D] = TM.

2nd order ODE and f = sl3? Consider p = f0 =

(
∗ ∗ ∗
0 ∗ ∗
0 0 ∗

)
⊂ f.

Then f/f0 admits an f0-invariant filtration:

f−1/f0 =

(
∗ ∗ ∗
∗ ∗ ∗
0 ∗ ∗

)
⊂ f/f0.

This corresponds to sl3-invariant data D = E ⊕ V on M = SL3/P.
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Example: (2, 3, 5)-distributions

Consider (M5,D ⊂ TM) with rank growth (2, 3, 5):

D ⊂ [D,D] ⊂ [D, [D,D]] = TM.

Monge form z ′ = f (x , y , y ′, y ′′, z): In (x , y , p, q, z)-space, let

D = ker{dy − pdx , dp − qdx , dz − fdx}
= span{∂x + p∂y + q∂p + f ∂z , ∂q}.

where f = f (x , y , p, q, z) satisfies fqq 6= 0.

Structure M Example S Example

(2, 3, 5)-distribution 14 z ′ = (y ′′)2 7 z ′ = exp(y ′′)

z ′ = (y ′′)2 has sym alg Lie(G2). S = 7 due to Cartan (1910).

D
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Rolling distributions and G2

Consider a 2-sphere rolling on another without twisting or slipping.

Configuration space M is 5-dimensional.

No twisting or slipping ⇒ constraints on velocity space TM.
Get rank 2 distribution D ⊂ TM of allowable directions.

Let ρ ≥ 1 be the ratio of the radii.
If ρ 6= 1, get (2, 3, 5)-geometry.

ρ 6= 3: so(3)× so(3) symmetry

ρ = 3: (split) Lie(G2) symmetry
(Bryant, Zelenko, Bor–Montgomery,

Baez–Huerta)
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Riemannian metrics (on surfaces)

Dennis The Classifying homogeneous geometric structures 10/28



(Local) equivalence of Riemannian metrics

Q: Does ∃ϕ : (Mn, g)→ (M̃n, g̃) s.t. ϕ∗g̃ = g?

Locally diagonalize, e.g. g = (θ1)2 + ...+ (θn)2, get o.n. coframes
{θi} and {θ̃i}. Reformulate Q as a Cartan equivalence problem:

Q: Does ∃ϕ : M → M̃ s.t. ϕ∗θ̃i = g i
j (x)θj for g : M → O(n)?

KEY IDEA: Build a bundle G that incorporates ambiguity, e.g. for
metrics, G = Fon(M) suffices. Find a canonical coframing (aka.
“connection”, “absolute parallelism”, etc.) there. This is the
“solution in the sense of Élie Cartan”.
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The orthonormal frame bundle

Frame at x ∈ Mn is u : Rn
∼=−→ TxM. Coframe: u−1.

Frame bundle π : F (M)→ M. (π−1(x) = all frames at x .)
This is a principal GL(n;R)-bundle; right action Ra(u) = u ◦ a.

Given (Mn, g), fix std metric (Rn, g0), restrict F (M) to Fon(M)
(isometric frames), a principal O(n)-bundle. O.n. coframing {θ̄i},
i.e. with g = (θ̄1)2 + ...+ (θ̄n)2, is a section of π : Fon(M)→ M.

Soldering form: Θ ∈ Ω1(F (M);Rn), Θu(ξ) = u−1π∗(ξ).

Principal connection: Υ ∈ Ω1(Fon(M); so(n)) s.t.:
1 R∗

a Υ = Ada−1 Υ, ∀a ∈ O(n).
2 Υ(ζX ) = X , ∀X ∈ so(n).

(ζX = fundamental vertical v.f.: ζX |u = d
dt

∣∣
t=0

Rexp(tX )u.)

Note: rank ker(Υ) = n, i.e. Υ is not a coframing of Fon(M).
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Local coframing on G = Fon(M) for (M2, g)

Let g = (θ̄1)2 + (θ̄2)2. Lift to G: Let
(
θ1

θ2

)
=
(

cos(t) sin(t)
− sin(t) cos(t)

)(
θ̄1

θ̄2

)
.

Exercise

Show

{
dθ1 = dt ∧ θ2 + Aθ1 ∧ θ2 = γ ∧ θ2

dθ2 = −dt ∧ θ1 + Bθ1 ∧ θ2 = −γ ∧ θ1
,

where
γ = dt + Aθ1 + Bθ2.

⇒


0 = d2θ1 = −dγ ∧ θ2

0 = d2θ2 = +dγ ∧ θ1

dγ = c θ1 ∧ θ2

, so


dθ1 = γ ∧ θ2

dθ2 = −γ ∧ θ1

dγ = c θ1 ∧ θ2

These “structure equations” uniquely determine ω = (θ1, θ2, γ),
i.e. a “canonical coframing”. Dual basis: (∂θ1 , ∂θ2 , ∂γ).

Exercise

Show that L∂γθ1 = θ2,L∂γθ2 = −θ1, L∂γγ = 0, and L∂γc = 0.
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Coframe rank and symmetry

We saw g  ∃!ω. Symmetries of g correspond to symmetries Φ of
the coframing ω, i.e. Φ∗ω = ω. Since d ◦ Φ∗ = Φ∗ ◦ d , then Φ
preserves structure functions γij

k , where dωk = 1
2γij

kωi ∧ ωj . For
metrics, we get Φ∗c = c . Rinse & repeat:

dc = c1θ
1 + c2θ

2 + c3γ.

Then Φ preserves c1, c2, c3. Keep going... The rank r of ω is the
number of indep. fcns obtained via this process. General thm:

Theorem (c.f. Olver, “Equivalence, Invariants, Symmetry”, Thm 8.22)

A coframe ω of rank r ≥ 0 on an m-mfld has dim(sym) = m − r .

Note: If r = 0, we get str. eqns for a Lie alg/grp:

dωk = −1

2
Cij

kωi ∧ ωj ⇐⇒ [ei , ej ] = Cij
kek ,

where {ei} is the dual basis to {ωi}.
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Symmetry gap for surface metrics

Thm: Any (M2, g) cannot have precisely 2 Killing vectors.

Proof: On G = Fon(M), we saw ∃! coframing ω = (θ1, θ2, γ) with:
dθ1 = γ ∧ θ2

dθ2 = −γ ∧ θ1

dγ = c θ1 ∧ θ2

⇒


0 = d2θ1 = d2θ2

0 = d2γ = dc ∧ θ1 ∧ θ2

dc = f θ1 + gθ2

Assuming dim(sym) = 2, then rank(ω) = 1, so c is nonconstant,
and f , g are fcns of c . Then{

0 = d2c ∧ θ1 = f γ ∧ θ2 ∧ θ1

0 = d2c ∧ θ2 = gγ ∧ θ2 ∧ θ1
⇒ f = g = 0⇒ c constant ××××
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Cartan geometry
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Towards Cartan geometry

Klein
geometry

(G → G/P, ωG )

(curvature)
 

Cartan
geometry

(G → M, ω)

  

Euclidean
geometry
(Rn, g0)

(curvature)
 

Riemannian
geometry
(Mn, g)
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Cartan geometries

Let G be a Lie group, P ≤ G a closed subgroup.

Definition

A Cartan geometry (G → M, ω) of type (G ,P) consists of a (right)
principal P-bundle G → M with a Cartan connection ω ∈ Ω1(G; g):

1 ω is a coframing: ωu : TuG → g linear iso ∀u ∈ G;

2 ω is P-equivariant: R∗pω = Adp−1 ◦ ω, ∀p ∈ P;

3 ω reproduces fund. vertical v.f.: ω(ζA) = A, ∀A ∈ p.

TG ∼= G × g and TM ∼= G ×P (g/p).

Symmetry algebra: inf(G, ω) = {ξ ∈ X(G)P : Lξω = 0}.

Example

Flat model: (G → G/P, ωG ), where ωG is the Maurer–Cartan
form on G , i.e. ωG (g) = (Lg−1)∗. MC eqn: dωG + 1

2 [ωG , ωG ] = 0.
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Curvature

Curvature: K = dω + 1
2 [ω, ω] ∈ Ω2(G; g), i.e.

K (ξ, η) = dω(ξ, η) + [ω(ξ), ω(η)].

K = 0 (“flat”) ↔ locally equiv. to (G → G/P, ωG ).

K is P-equivariant: R∗pK = Adp−1 ◦ K , ∀p ∈ P.

K is horizontal, i.e. K (ζA, ·) = 0, ∀A ∈ p. (Axiom 2 for ω
implies −adA ◦ ω = LζAω = ιζAdω.)

Definition (Curvature function)

κ : G →
∧2(g/p)∗ ⊗ g via κ(x , y) = K (ω−1(x), ω−1(y)).

κ is P-equivariant, and codomain is a P-module. Ideally, impose
P-inv. normalization conditions on κ to pin down ω uniquely.

Example

(G → M, ω) is torsion-free if κ is valued in
∧2(g/p)∗ ⊗ p.

Dennis The Classifying homogeneous geometric structures 19/28



Fundamental theorem of Riemannian geometry

Let (G ,P) = (E(n),O(n)) with Lie algebras (g, p) = (e(n), so(n)).
We have g =

{(
A b
0 0

)
: A ∈ so(n), b ∈ Rn

}
.

Theorem

There is an equivalence of categories btw Riemannian metrics and
torsion-free Cartan geometries of type (E(n),O(n)).

Write ω = Υ + Θ ∈ Ω1(G, so(n)⊕ Rn). Then Υ is the Levi-Civita
(principal) connection and Θ is the soldering form.

Example (n = 2 case)

ω =

(
0 −γ θ1

γ 0 θ2

0 0 0

)
, K =

(
0 −dγ dθ1−γ∧θ2

dγ 0 dθ2+γ∧θ1

0 0 0

)
=

(
0 −cθ1∧θ2 0

cθ1∧θ2 0 0
0 0 0

)
by torsion-freeness and horizontality. Thus,

dθ1 = γ ∧ θ2

dθ2 = −γ ∧ θ1

dγ = c θ1 ∧ θ2

.
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Cartan’s equivalence method and refinements

Beyond metrics, i.e. “O(n)-structures”, one can consider other
G0-structures G0 ⊂ F (M), where G0 ≤ GL(n,R). In general, @
distinguished coframing on G0, e.g. G0 = CO(n).

Strategy: Build a new bundle... In general, get a tower of bundles...

This process is known as Cartan’s equivalence method, e.g. for (2, 3, 5),
see Cartan’s 1910 “5-variables” paper for a tour-de-force application.

≥ 1960’s: Tanaka, Morimoto, Yamaguchi  further refinements:

Study of filtered manifolds / filtered G0-structures.

Tanaka prolongation (upper bound on sym dim)

Harmonic theory & fundamental (harmonic) curvature.

Suggested reading:

Olver, “Equivalence, invariants, symmetry” (2009).

Zelenko, “On Tanaka’s prolongation procedure for filtered structures of
constant type” (2009).

Čap, “On canonical Cartan connections associated to filtered
G-structures” (2017).
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Tanaka theory
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Distributions & symbol algebras

Let D−1 := D ( TM a distribution, form the weak-derived flag,
i.e. D i = [D,D i+1] for i < 0 (assume constant rank). Suppose
D−ν = TM, ∃ν > 0, i.e. “bracket-generating”. Get a filtration

D =: D−1 ⊂ D−2 ⊂ ... ⊂ D−ν = TM.

Fix x ∈ M, take associated-graded: Let gi (x) := D i (x)/D i+1(x),

m(x) := g−1(x)⊕ g−2(x)⊕ ...⊕ g−ν(x).

The Lie bracket of v.f. induces a tensorial (“Levi”) bracket on each
m(x), turning it into a nilpotent graded Lie algebra (NGLA) called
the symbol algebra. We’ll assume m(x) ∼= m, ∀x ∈ M as NGLA.

Example

Let X ,Y ∈ D−1. Then [fX , gY ] = fX (g)Y − gY (f )X + fg [X ,Y ],
so [fX , gY ] ≡ fg [X ,Y ] mod D−1.
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Filtered G0-structures

Given (M,D) as before, one has a natural (graded) frame bundle:

Fgr (M) =
⋃
x∈M

{
u : m

∼=−→ m(x) NGLA iso.
}

Structure group: Autgr (m). Structure algebra: dergr (m).
Note: dergr (m) ↪→ gl(g−1) since g−1 generates m = g−.

Can specify reduction: G0 ≤ Autgr (m), so g0 ≤ dergr (m).

Analogous to O(n)-structure (metrics) being an O(n)-reduction of
F (M), a filtered G0-structure is a G0-reduction G0 ⊂ Fgr (M).

We have a vertical distribution to G0 → M. Try to choose a
horizontal complement canonically. (We phrased this dually
earlier.) If not, build a new bundle: i.e. “geometrically prolong” to
G1, then G2 if necessary, etc.
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Symbol algebra examples

Example (Riemannian geometry)

m = g−1
∼= Rn (abelian) and g0 = O(n) ≤ Autgr (m) ∼= GL(n;R).

Example (2nd order ODE: D = 〈∂x + p∂y + f ∂p〉 ⊕ 〈∂p〉)
m = g−1 ⊕ g−2 = 〈e1, e2〉 ⊕ 〈e3〉 with [e1, e2] = e3 (Heisenberg).
Have splitting g−1 = L1 ⊕ L2 and g0 = rescalings along L1 and L2

(2-dim). (Here, g0 ↪→ dergr (m) ∼= gl(2,R).)

Example ((2, 3, 5)-dist. D = 〈Dx := ∂x + p∂y + q∂p + f ∂z , ∂q〉)

T := [∂q,Dx ] = ∂p + fq∂z 6= 0, [∂q,T ] = fqq∂z ,

[T ,Dx ] = ∂y + S∂z , S = fp + fqfz − Dx(fq).

Thus, m = g−1 ⊕ g−2 ⊕ g−3 = 〈e1, e2〉 ⊕ 〈e3〉 ⊕ 〈e4, e5〉, where:

[e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5.
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Tanaka prolongation

Given NGLA m and g0 ≤ dergr (m), let pr(m, g0) be the GLA s.t.

1 pr≤0(m, g0) = m⊕ g0.

2 If X ∈ pr+(m, g0) s.t. [X , g−1] = 0, then X = 0.

3 pr(m, g0) is maximal among all GLA satisfying (1) and (2).

Special case: When g0 = dergr (m), we just write pr(m).

Theorem (Tanaka 1970)

pr(m, g0) is unique up to isomorphism.

dim(pr(m, g0)) is an upper bound for the symmetry algebra of
a filtered G0-structure.

IDEA: Positive parts of this algebraic prolongation correspond to
the geometric tower of bundles: ...→ G2 → G1 → G0 → M.

Also: Kruglikov, “Finite-dimensionality in Tanaka theory” (2011).
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Examples of Tanaka prolongation

The height of pr(m, g0) is the maximal k ≥ 0 s.t. prk(m, g0) 6= 0.

Structure m g0 pr(m, g0) Height

Metrics g−1 = Rn so(n) e(n) 0
Conformal g−1 = Rn co(n) so(1, n + 1) +1

2nd order ODE g−2 ⊕ g−1

(
a 0
0 b

)
sl3 +2

(2, 3, 5) g−3 ⊕ g−2 ⊕ g−1 gl(g−1) Lie(G2) +3

p =

(
0 1 2

-1 0 1

-2 -1 0

)
⊂ sl3, p1 = ⊂ Lie(G2)

Definition

A parabolic geometry is a Cartan geometry of type (G ,P), where
G is a semisimple Lie group and P is a parabolic subgroup.
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Upshot: Cartan geometry is:

a “nice” soln of the Cartan equivalence problem.

a unifying “upstairs” framework, despite a zoo of
“downstairs” structures.

Next lecture:

Normalization conditions for parabolic geometries (to get
categorical equivalence to underlying structures).

Kostant’s theorem and harmonic curvature.

Cartan reduction method for classifying (homogeneous)
geometric structures.
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