Classifying homogeneous geometric structures (Lecture 1)

Dennis The

Department of Mathematics \& Statistics
UiT The Arctic University of Norway

26 January 2021
GRIEG project 2019/34/H/ST1/00636

SCREAM

Recall that the title of our GRIEG project is:

SCREAM

$=$ Symmetry, Curvature Reduction, and EquivAlence Methods

My lecture series will focus on Cartan-geometric approaches to classifying (locally) homogeneous geometric structures (with an emphasis on "parabolic" geometries in low dimensions).

Today:

- Examples of homogeneous geometric structures.
- Motivate the notion of a (normalized) Cartan geometry. ("Cartan equivalence method" details will be done elsewhere.)
- Tanaka prolongation and its relevance.

Examples of (homogeneous) geometric structures

Some examples \& basic questions

Structure	Symmetry condition
Riemannian (M, g)	$\mathcal{L}_{X} g=0$
Conformal $(M,[g])$	$\mathcal{L}_{X} g=\lambda(X) g$
$(2,3,5)$-distribution $\left(M^{5}, D\right)$	$\mathcal{L}_{X} D \subset D$
2nd order ODE $\left(M^{3}, D=E \oplus V\right)$	$\mathcal{L}_{X} E \subset E, \mathcal{L}_{X} V \subset V$

Symmetries form a Lie algebra $\mathfrak{f} \subset \mathfrak{X}(M)$. For a given structure:
(1) What is the maximum \mathfrak{M} of $\operatorname{dim}(\mathfrak{f})$? (Assume $\operatorname{dim}(M)$ fixed.)
(2) What is the "submaximal" (next realizable) sym dim \mathfrak{S} ?
(3) How can one classify (locally) homogeneous structures?
(Want: $\forall p \in M, e v_{p}: \mathfrak{f} \rightarrow T_{p} M$ is surjective. We'll encode data on $\mathfrak{f} / \mathfrak{f}^{0}$, where $\mathfrak{f}^{0}=$ isotropy subalg at a chosen $p \in M$.)

Example: Riemannian geometry (M, g)

- A symmetry ("Killing v.f.") $X \in \mathfrak{X}(M)$ satisfies $\mathcal{L}_{X} g=0$. Locally, $g=g_{a b} d x^{a} \otimes d x^{b}$, this is a linear PDE in $X=X^{a} \partial_{x^{a}}$: $X^{c} \partial_{x^{c}} g_{a b}+\left(\partial_{x^{a}} X^{c}\right) g_{c b}+\left(\partial_{x^{b}} X^{c}\right) g_{a c}=0$.
- sym. dim. $\leq\binom{ n+1}{2}$. Sharp on constant curvature spaces:
- $\mathbb{R}^{n} \cong \mathbb{E}(n) / O(n)$.
- $S^{n} \cong \mathrm{O}(n+1) / \mathrm{O}(n)$.
- $H^{n} \cong O(n, 1) / O(n)$.

n	\mathfrak{M}	\mathfrak{S}	Citation
2	3	1	Darboux / Koenigs (~1890)
3	6	4	Wang (1947)
4	10	8	Egorov (1955)
≥ 5	$\binom{n+1}{2}$	$\binom{n}{2}+1$	Wang (1947), Egorov (1949)

Example: 2nd order ODE

$y^{\prime \prime}=f\left(x, y, y^{\prime}\right)$. Point transformations (PT): $\left\{\begin{array}{l}\tilde{x}=\tilde{x}(x, y) \\ \tilde{y}=\tilde{y}(x, y)\end{array}\right.$
Letting $p=y^{\prime}$ and $q=y^{\prime \prime}$, we can prolong:

$$
\tilde{p}=\frac{\tilde{y}_{x}+p \tilde{p}_{y}}{\tilde{x}_{x}+p \tilde{x}_{y}}, \quad \tilde{q}=\frac{\tilde{p}_{x}+p \tilde{p}_{y}+q \tilde{p}_{p}}{\tilde{x}_{x}+p \tilde{x}_{y}} .
$$

Symmetries are v.f. on (x, y)-space whose prolongation to (x, y, p, q)-space are tangent to $q=f(x, y, p)$.

Structure	\mathfrak{M}	Example	\mathfrak{S}	Example
2nd order ODE	8	$y^{\prime \prime}=0$	3	$y^{\prime \prime}=\exp \left(y^{\prime}\right)$

$y^{\prime \prime}=0$ has symmetry alg $\mathfrak{s l}_{3} . \mathfrak{S}=3$ due to Tresse (1896).

Example: 2nd order ODE continued

Reformulation: Consider (x, y, p, q)-space equipped with $\langle d y-p d x, d p-q d x\rangle$. On $q=f(x, y, p)$, get a line field:

$$
E=\left\langle\partial_{x}+p \partial_{y}+f \partial_{p}\right\rangle .
$$

Wrt (prolonged) PT, $V=\left\langle\partial_{p}\right\rangle$ is also distinguished.
Geometric structure: Let M be (x, y, p)-space with a contact distribution $D=\operatorname{ker}\{d y-p d x\}=\left\langle\partial_{x}+p \partial_{y}, \partial_{p}\right\rangle \subset T M$. A 2nd order ODE \leftrightarrow splitting $D=E \oplus V$. Note $[D, D]=T M$.
2nd order ODE and $\mathfrak{f}=\mathfrak{s l}_{3}$? Consider $\mathfrak{p}=\mathfrak{f}^{0}=\left(\begin{array}{c|c|c}* & * & * \\ \hline 0 & * & * \\ \hline 0 & 0 & *\end{array}\right) \subset \mathfrak{f}$.
Then $\mathfrak{f} / \mathfrak{f}^{0}$ admits an \mathfrak{f}^{0}-invariant filtration:

$$
\mathfrak{f}^{-1} / \mathfrak{f}^{0}=\left(\frac{*}{0 * *}\right) \subset \quad \mathfrak{f} / \mathfrak{f}^{0} .
$$

This corresponds to $\mathfrak{s l}_{3}$-invariant data $D=E \oplus V$ on $M=S L_{3} / P$.

Example: (2, 3, 5)-distributions

Consider ($\left.M^{5}, D \subset T M\right)$ with rank growth $(2,3,5)$:

$$
D \subset[D, D] \subset[D,[D, D]]=T M .
$$

Monge form $z^{\prime}=f\left(x, y, y^{\prime}, y^{\prime \prime}, z\right)$: $\ln (x, y, p, q, z)$-space, let

$$
\begin{aligned}
D & =\operatorname{ker}\{d y-p d x, d p-q d x, d z-f d x\} \\
& =\operatorname{span}\left\{\partial_{x}+p \partial_{y}+q \partial_{p}+f \partial_{z}, \partial_{q}\right\} .
\end{aligned}
$$

where $f=f(x, y, p, q, z)$ satisfies $f_{q q} \neq 0$.

Structure	\mathfrak{M}	Example	\mathfrak{S}	Example
$(2,3,5)$-distribution	14	$z^{\prime}=\left(y^{\prime \prime}\right)^{2}$	7	$z^{\prime}=\exp \left(y^{\prime \prime}\right)$

$z^{\prime}=\left(y^{\prime \prime}\right)^{2}$ has sym alg $\operatorname{Lie}\left(G_{2}\right) . \mathfrak{S}=7$ due to Cartan (1910).

Rolling distributions and G_{2}

Consider a 2-sphere rolling on another without twisting or slipping.

- Configuration space M is 5 -dimensional.
- No twisting or slipping \Rightarrow constraints on velocity space TM. Get rank 2 distribution $D \subset T M$ of allowable directions.

Let $\rho \geq 1$ be the ratio of the radii.
If $\rho \neq 1$, get $(2,3,5)$-geometry.

- $\rho \neq 3: \mathfrak{s o}(3) \times \mathfrak{s o}(3)$ symmetry
- $\rho=3$: (split) Lie $\left(G_{2}\right)$ symmetry (Bryant, Zelenko, Bor-Montgomery, Baez-Huerta)

Riemannian metrics (on surfaces)

(Local) equivalence of Riemannian metrics

$$
\text { Q: Does } \exists \varphi:\left(M^{n}, g\right) \rightarrow\left(\tilde{M}^{n}, \tilde{g}\right) \text { s.t. } \varphi^{*} \tilde{g}=g \text { ? }
$$

Locally diagonalize, e.g. $g=\left(\theta^{1}\right)^{2}+\ldots+\left(\theta^{n}\right)^{2}$, get o.n. coframes $\left\{\theta^{i}\right\}$ and $\left\{\tilde{\theta}^{i}\right\}$. Reformulate Q as a Cartan equivalence problem:

$$
\text { Q: Does } \exists \varphi: M \rightarrow \tilde{M} \text { s.t. } \varphi^{*} \tilde{\theta}^{i}=g_{j}^{i}(x) \theta^{j} \text { for } g: M \rightarrow O(n) ?
$$

KEY IDEA: Build a bundle \mathcal{G} that incorporates ambiguity, e.g. for metrics, $\mathcal{G}=F_{o n}(M)$ suffices. Find a canonical coframing (aka. "connection", "absolute parallelism", etc.) there. This is the "solution in the sense of Élie Cartan".

The orthonormal frame bundle

- Frame at $x \in M^{n}$ is $u: \mathbb{R}^{n} \xrightarrow{\cong} T_{x} M$. Coframe: u^{-1}.
- Frame bundle $\pi: F(M) \rightarrow M .\left(\pi^{-1}(x)=\right.$ all frames at x.) This is a principal $\mathrm{GL}(n ; \mathbb{R})$-bundle; right action $R_{a}(u)=u \circ a$.

Given $\left(M^{n}, g\right)$, fix std metric $\left(\mathbb{R}^{n}, g_{0}\right)$, restrict $F(M)$ to $F_{\text {on }}(M)$ (isometric frames), a principal $\mathrm{O}(n)$-bundle. O.n. coframing $\left\{\bar{\theta}^{i}\right\}$, i.e. with $g=\left(\bar{\theta}^{1}\right)^{2}+\ldots+\left(\bar{\theta}^{n}\right)^{2}$, is a section of $\pi: F_{\text {on }}(M) \rightarrow M$.

- Soldering form: $\Theta \in \Omega^{1}\left(F(M) ; \mathbb{R}^{n}\right), \Theta_{u}(\xi)=u^{-1} \pi_{*}(\xi)$.
- Principal connection: $\Upsilon \in \Omega^{1}\left(F_{o n}(M) ; \mathfrak{s o}(n)\right)$ s.t.:
(1) $R_{a}^{*} \Upsilon=\operatorname{Ad}_{a^{-1}} \Upsilon, \forall a \in O(n)$.
(2) $\Upsilon\left(\zeta_{x}\right)=X, \forall X \in \mathfrak{s o}(n)$.
$\left(\zeta_{X}=\right.$ fundamental vertical v.f.: $\left.\left.\quad \zeta_{X}\right|_{u}=\left.\frac{d}{d t}\right|_{t=0} R_{\exp (t X)} u.\right)$
Note: $\operatorname{rank} \operatorname{ker}(\Upsilon)=n$, i.e. Υ is not a coframing of $F_{o n}(M)$.

Local coframing on $\mathcal{G}=F_{\text {on }}(M)$ for $\left(M^{2}, g\right)$

Let $g=\left(\bar{\theta}^{1}\right)^{2}+\left(\bar{\theta}^{2}\right)^{2}$. Lift to \mathcal{G} : Let $\binom{\theta^{1}}{\theta^{2}}=\left(\begin{array}{cc}\cos (t) & \sin (t) \\ -\sin (t) & \cos (t)\end{array}\right)\binom{\bar{\theta}^{1}}{\bar{\theta}^{2}}$.

Exercise

Show $\begin{cases}d \theta^{1}=d t \wedge \theta^{2}+A \theta^{1} \wedge \theta^{2}=\gamma \wedge \theta^{2} & \text { where } \\ d \theta^{2}=-d t \wedge \theta^{1}+B \theta^{1} \wedge \theta^{2}=-\gamma \wedge \theta^{1} & \gamma=d t+A \theta^{1}+B \theta^{2} .\end{cases}$

$$
\Rightarrow \quad\left\{\begin{array}{l}
0=d^{2} \theta^{1}=-d \gamma \wedge \theta^{2} \\
0=d^{2} \theta^{2}=+d \gamma \wedge \theta^{1} \\
d \gamma=c \theta^{1} \wedge \theta^{2}
\end{array} \quad, \text { so } \quad \sqrt{\left\{\begin{array}{l}
d \theta^{1}=\gamma \wedge \theta^{2} \\
d \theta^{2}=-\gamma \wedge \theta^{1} \\
d \gamma=c \theta^{1} \wedge \theta^{2}
\end{array}\right.}\right.
$$

These "structure equations" uniquely determine $\omega=\left(\theta^{1}, \theta^{2}, \gamma\right)$, i.e. a "canonical coframing". Dual basis: $\left(\partial_{\theta^{1}}, \partial_{\theta^{2}}, \partial_{\gamma}\right)$.

Exercise

Show that $\mathcal{L}_{\partial_{\gamma}} \theta^{1}=\theta^{2}, \mathcal{L}_{\partial_{\gamma}} \theta^{2}=-\theta^{1}, \mathcal{L}_{\partial_{\gamma}} \gamma=0$, and $\mathcal{L}_{\partial_{\gamma}} c=0$.

Coframe rank and symmetry

We saw $g \rightsquigarrow \exists!\omega$. Symmetries of g correspond to symmetries Φ of the coframing ω, i.e. $\Phi^{*} \omega=\omega$. Since $d \circ \Phi^{*}=\Phi^{*} \circ d$, then Φ preserves structure functions $\gamma_{i j}{ }^{k}$, where $d \omega^{k}=\frac{1}{2} \gamma_{i j}{ }^{k} \omega^{i} \wedge \omega^{j}$. For metrics, we get $\Phi^{*} c=c$. Rinse \& repeat:

$$
d c=c_{1} \theta^{1}+c_{2} \theta^{2}+c_{3} \gamma
$$

Then Φ preserves c_{1}, c_{2}, c_{3}. Keep going... The rank r of ω is the number of indep. fcns obtained via this process. General thm:

Theorem (c.f. Olver, "Equivalence, Invariants, Symmetry", Thm 8.22)

A coframe ω of rank $r \geq 0$ on an m-mfld has $\operatorname{dim}(s y m)=m-r$.
Note: If $r=0$, we get str. eqns for a Lie alg/grp:

$$
d \omega^{k}=-\frac{1}{2} C_{i j}^{k} \omega^{i} \wedge \omega^{j} \quad \Longleftrightarrow \quad\left[e_{i}, e_{j}\right]=C_{i j}^{k} e_{k}
$$

where $\left\{e_{i}\right\}$ is the dual basis to $\left\{\omega^{i}\right\}$.

Symmetry gap for surface metrics

Thm: Any $\left(M^{2}, g\right)$ cannot have precisely 2 Killing vectors.
Proof: On $\mathcal{G}=F_{\text {on }}(M)$, we saw \exists ! coframing $\omega=\left(\theta^{1}, \theta^{2}, \gamma\right)$ with:

$$
\left\{\begin{array} { l }
{ d \theta ^ { 1 } = \gamma \wedge \theta ^ { 2 } } \\
{ d \theta ^ { 2 } = - \gamma \wedge \theta ^ { 1 } } \\
{ d \gamma = c \theta ^ { 1 } \wedge \theta ^ { 2 } }
\end{array} \quad \Rightarrow \left\{\begin{array}{l}
0=d^{2} \theta^{1}=d^{2} \theta^{2} \\
0=d^{2} \gamma=d c \wedge \theta^{1} \wedge \theta^{2} \\
d c=f \theta^{1}+g \theta^{2}
\end{array}\right.\right.
$$

Assuming $\operatorname{dim}(\operatorname{sym})=2$, then $\operatorname{rank}(\omega)=1$, so c is nonconstant, and f, g are fcns of c. Then
$\left\{\begin{array}{l}0=d^{2} c \wedge \theta^{1}=f \gamma \wedge \theta^{2} \wedge \theta^{1} \\ 0=d^{2} c \wedge \theta^{2}=g \gamma \wedge \theta^{2} \wedge \theta^{1}\end{array} \quad \Rightarrow f=g=0 \Rightarrow c\right.$ constant

Cartan geometry

Towards Cartan geometry

> Klein geometry

Cartan geometry $(\mathcal{G} \rightarrow M, \omega)$

Euclidean geometry

(curvature)

 \leadsto $\left(\mathbb{R}^{n}, g_{0}\right)$

Riemannian geometry $\left(M^{n}, g\right)$

Cartan geometries

Let G be a Lie group, $P \leq G$ a closed subgroup.

Definition

A Cartan geometry $(\mathcal{G} \rightarrow M, \omega)$ of type (G, P) consists of a (right) principal P-bundle $\mathcal{G} \rightarrow M$ with a Cartan connection $\omega \in \Omega^{1}(\mathcal{G} ; \mathfrak{g})$:
(1) ω is a coframing: $\omega_{u}: T_{u} \mathcal{G} \rightarrow \mathfrak{g}$ linear iso $\forall u \in \mathcal{G}$;
(2) ω is P-equivariant: $R_{p}^{*} \omega=\operatorname{Ad}_{p^{-1}} \circ \omega, \forall p \in P$;
(3) ω reproduces fund. vertical v.f.: $\omega\left(\zeta_{A}\right)=A, \forall A \in \mathfrak{p}$.

- $T \mathcal{G} \cong \mathcal{G} \times \mathfrak{g}$ and $T M \cong \mathcal{G} \times{ }_{P}(\mathfrak{g} / \mathfrak{p})$.
- Symmetry algebra: $\mathfrak{i n f}(\mathcal{G}, \omega)=\left\{\xi \in \mathfrak{X}(\mathcal{G})^{P}: \mathcal{L}_{\xi} \omega=0\right\}$.

Example

Flat model: $\left(G \rightarrow G / P, \omega_{G}\right)$, where ω_{G} is the Maurer-Cartan form on G, i.e. $\omega_{G}(g)=\left(L_{g^{-1}}\right)_{*}$. MC eqn: $d \omega_{G}+\frac{1}{2}\left[\omega_{G}, \omega_{G}\right]=0$.

Curvature

Curvature: $K=d \omega+\frac{1}{2}[\omega, \omega] \in \Omega^{2}(\mathcal{G} ; \mathfrak{g})$, i.e.

$$
K(\xi, \eta)=d \omega(\xi, \eta)+[\omega(\xi), \omega(\eta)]
$$

- $K=0$ ("flat") \leftrightarrow locally equiv. to $\left(G \rightarrow G / P, \omega_{G}\right)$.
- K is P-equivariant: $R_{p}^{*} K=\operatorname{Ad}_{p^{-1}} \circ K, \forall p \in P$.
- K is horizontal, i.e. $K\left(\zeta_{A}, \cdot\right)=0, \forall A \in \mathfrak{p}$. (Axiom 2 for ω implies $-\operatorname{ad}_{A} \circ \omega=\mathcal{L}_{\zeta_{A}} \omega=\iota_{\zeta_{A}} d \omega$.)

Definition (Curvature function)

$\kappa: \mathcal{G} \rightarrow \bigwedge^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g}$ via $\kappa(x, y)=K\left(\omega^{-1}(x), \omega^{-1}(y)\right)$.
κ is P-equivariant, and codomain is a P-module. Ideally, impose P-inv. normalization conditions on κ to pin down ω uniquely.

Example

$(\mathcal{G} \rightarrow M, \omega)$ is torsion-free if κ is valued in $\bigwedge^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{p}$.

Fundamental theorem of Riemannian geometry

Let $(G, P)=(\mathbb{E}(n), O(n))$ with Lie algebras $(\mathfrak{g}, \mathfrak{p})=(\mathfrak{e}(n), \mathfrak{s o}(n))$. We have $\mathfrak{g}=\left\{\left(\begin{array}{cc}A & b \\ 0 & 0\end{array}\right): A \in \mathfrak{s o}(n), b \in \mathbb{R}^{n}\right\}$.

Theorem

There is an equivalence of categories btw Riemannian metrics and torsion-free Cartan geometries of type $(\mathbb{E}(n), O(n))$.

Write $\omega=\Upsilon+\Theta \in \Omega^{1}\left(\mathcal{G}, \mathfrak{s o}(n) \oplus \mathbb{R}^{n}\right)$. Then Υ is the Levi-Civita (principal) connection and Θ is the soldering form.

Example ($n=2$ case)
$\omega=\left(\begin{array}{ccc}0 & -\gamma & \theta^{1} \\ \gamma & 0 & \theta^{2} \\ 0 & 0 & 0\end{array}\right), K=\left(\begin{array}{ccc}0 & -d \gamma & d \theta^{1}-\gamma \wedge \theta^{2} \\ d \gamma & 0 & d \theta^{2}+\gamma \wedge \theta^{1} \\ 0 & 0 & 0\end{array}\right)=\left(\begin{array}{ccc}0 & -c \theta^{1} \wedge \theta^{2} & 0 \\ c \theta^{1} \wedge \theta^{2} & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
by torsion-freeness and horizontality. Thus, $\left\{\begin{array}{l}d \theta^{1}=\gamma \wedge \theta^{2} \\ d \theta^{2}=-\gamma \wedge \theta^{1} \\ d \gamma=c \theta^{1} \wedge \theta^{2}\end{array}\right.$.

Cartan's equivalence method and refinements

Beyond metrics, i.e. "O(n)-structures", one can consider other G_{0}-structures $\mathcal{G}_{0} \subset F(M)$, where $G_{0} \leq G L(n, \mathbb{R})$. In general, \nexists distinguished coframing on \mathcal{G}_{0}, e.g. $G_{0}=\mathrm{CO}(n)$.

Strategy: Build a new bundle... In general, get a tower of bundles...
This process is known as Cartan's equivalence method, e.g. for ($2,3,5$), see Cartan's 1910 " 5 -variables" paper for a tour-de-force application.
≥ 1960 's: Tanaka, Morimoto, Yamaguchi \rightsquigarrow further refinements:

- Study of filtered manifolds / filtered G_{0}-structures.
- Tanaka prolongation (upper bound on sym dim)
- Harmonic theory \& fundamental (harmonic) curvature.

Suggested reading:

- Olver, "Equivalence, invariants, symmetry" (2009).
- Zelenko, "On Tanaka's prolongation procedure for filtered structures of constant type" (2009).
- Čap, "On canonical Cartan connections associated to filtered G-structures" (2017).

Tanaka theory

Dennis The

Distributions \& symbol algebras

Let $D^{-1}:=D \subsetneq T M$ a distribution, form the weak-derived flag, i.e. $D^{i}=\left[D, D^{i+1}\right]$ for $i<0$ (assume constant rank). Suppose $D^{-\nu}=T M, \exists \nu>0$, i.e. "bracket-generating". Get a filtration

$$
D=: D^{-1} \subset D^{-2} \subset \ldots \subset D^{-\nu}=T M
$$

Fix $x \in M$, take associated-graded: Let $\mathfrak{g}_{i}(x):=D^{i}(x) / D^{i+1}(x)$,

$$
\mathfrak{m}(x):=\mathfrak{g}_{-1}(x) \oplus \mathfrak{g}_{-2}(x) \oplus \ldots \oplus \mathfrak{g}_{-\nu}(x)
$$

The Lie bracket of v.f. induces a tensorial ("Levi") bracket on each $\mathfrak{m}(x)$, turning it into a nilpotent graded Lie algebra (NGLA) called the symbol algebra. We'll assume $\mathfrak{m}(x) \cong \mathfrak{m}, \forall x \in M$ as NGLA.

Example

Let $X, Y \in D^{-1}$. Then $[f X, g Y]=f X(g) Y-g Y(f) X+f g[X, Y]$, so $[f X, g Y] \equiv f g[X, Y] \bmod D^{-1}$.

Filtered G_{0}-structures

Given (M, D) as before, one has a natural (graded) frame bundle:

$$
F_{g r}(M)=\bigcup_{x \in M}\{u: \mathfrak{m} \xrightarrow{\cong} \mathfrak{m}(x) \text { NGLA iso. }\}
$$

Structure group: $\operatorname{Aut}_{g r}(\mathfrak{m})$. Structure algebra: $\mathfrak{d e r}_{g r}(\mathfrak{m})$. Note: $\mathfrak{d e r}_{g r}(\mathfrak{m}) \hookrightarrow \mathfrak{g l}\left(\mathfrak{g}_{-1}\right)$ since \mathfrak{g}_{-1} generates $\mathfrak{m}=\mathfrak{g}_{-}$.

Can specify reduction: $G_{0} \leq \operatorname{Aut} \operatorname{grg}^{(\mathfrak{m})}$, so $\mathfrak{g}_{0} \leq \mathfrak{d e r}_{g r}(\mathfrak{m})$.
Analogous to $O(n)$-structure (metrics) being an $O(n)$-reduction of $F(M)$, a filtered G_{0}-structure is a G_{0}-reduction $\mathcal{G}_{0} \subset F_{g r}(M)$.

We have a vertical distribution to $\mathcal{G}_{0} \rightarrow M$. Try to choose a horizontal complement canonically. (We phrased this dually earlier.) If not, build a new bundle: i.e. "geometrically prolong" to \mathcal{G}_{1}, then \mathcal{G}_{2} if necessary, etc.

Symbol algebra examples

Example (Riemannian geometry)

$$
\mathfrak{m}=\mathfrak{g}_{-1} \cong \mathbb{R}^{n}(\text { abelian }) \text { and } \mathfrak{g}_{0}=O(n) \leq \operatorname{Aut}_{g r}(\mathfrak{m}) \cong G L(n ; \mathbb{R})
$$

Example (2nd order ODE: $D=\left\langle\partial_{x}+p \partial_{y}+f \partial_{p}\right\rangle \oplus\left\langle\partial_{p}\right\rangle$)
$\mathfrak{m}=\mathfrak{g}_{-1} \oplus \mathfrak{g}_{-2}=\left\langle e_{1}, e_{2}\right\rangle \oplus\left\langle e_{3}\right\rangle$ with $\left[e_{1}, e_{2}\right]=e_{3}$ (Heisenberg). Have splitting $\mathfrak{g}_{-1}=L_{1} \oplus L_{2}$ and $\mathfrak{g}_{0}=$ rescalings along L_{1} and L_{2} (2-dim). (Here, $\mathfrak{g}_{0} \hookrightarrow \mathfrak{d e r}_{g r}(\mathfrak{m}) \cong \mathfrak{g l}(2, \mathbb{R})$.)

Example $\left((2,3,5)\right.$-dist. $\left.D=\left\langle D_{x}:=\partial_{x}+p \partial_{y}+q \partial_{p}+f \partial_{z}, \partial_{q}\right\rangle\right)$

$$
\begin{aligned}
& T:=\left[\partial_{q}, D_{x}\right]=\partial_{p}+f_{q} \partial_{z} \neq 0, \quad\left[\partial_{q}, T\right]=f_{q q} \partial_{z} \\
& {\left[T, D_{x}\right]=\partial_{y}+S \partial_{z}, \quad S=f_{p}+f_{q} f_{z}-D_{x}\left(f_{q}\right)}
\end{aligned}
$$

Thus, $\mathfrak{m}=\mathfrak{g}_{-1} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-3}=\left\langle e_{1}, e_{2}\right\rangle \oplus\left\langle e_{3}\right\rangle \oplus\left\langle e_{4}, e_{5}\right\rangle$, where:

$$
\left[e_{1}, e_{2}\right]=e_{3}, \quad\left[e_{1}, e_{3}\right]=e_{4}, \quad\left[e_{2}, e_{3}\right]=e_{5}
$$

Tanaka prolongation

Given NGLA \mathfrak{m} and $\mathfrak{g}_{0} \leq \mathfrak{d e r}_{g r}(\mathfrak{m})$, let $\operatorname{pr}\left(\mathfrak{m}, \mathfrak{g}_{0}\right)$ be the GLA s.t.
(1) $\operatorname{pr}_{\leq 0}\left(\mathfrak{m}, \mathfrak{g}_{0}\right)=\mathfrak{m} \oplus \mathfrak{g}_{0}$.
(2) If $X \in \operatorname{pr}_{+}\left(\mathfrak{m}, \mathfrak{g}_{0}\right)$ s.t. $\left[X, \mathfrak{g}_{-1}\right]=0$, then $X=0$.
(3) $\operatorname{pr}\left(\mathfrak{m}, \mathfrak{g}_{0}\right)$ is maximal among all GLA satisfying (1) and (2).

Special case: When $\mathfrak{g}_{0}=\mathfrak{d e r}_{g r}(\mathfrak{m})$, we just write $\operatorname{pr}(\mathfrak{m})$.

Theorem (Tanaka 1970)

- $\operatorname{pr}\left(\mathfrak{m}, \mathfrak{g}_{0}\right)$ is unique up to isomorphism.
- $\operatorname{dim}\left(\operatorname{pr}\left(\mathfrak{m}, \mathfrak{g}_{0}\right)\right)$ is an upper bound for the symmetry algebra of a filtered G_{0}-structure.

IDEA: Positive parts of this algebraic prolongation correspond to the geometric tower of bundles: $\ldots \rightarrow \mathcal{G}_{2} \rightarrow \mathcal{G}_{1} \rightarrow \mathcal{G}_{0} \rightarrow M$.

Also: Kruglikov, "Finite-dimensionality in Tanaka theory" (2011).

Examples of Tanaka prolongation

The height of $\operatorname{pr}\left(\mathfrak{m}, \mathfrak{g}_{0}\right)$ is the maximal $k \geq 0$ s.t. $\operatorname{pr}_{k}\left(\mathfrak{m}, \mathfrak{g}_{0}\right) \neq 0$.

Structure	\mathfrak{m}	\mathfrak{g}_{0}	$\operatorname{pr}\left(\mathfrak{m}, \mathfrak{g}_{0}\right)$	Height
Metrics	$\mathfrak{g}_{-1}=\mathbb{R}^{n}$	$\mathfrak{s o}(n)$	$\mathfrak{e}(n)$	0
Conformal	$\mathfrak{g}_{-1}=\mathbb{R}^{n}$	$\mathfrak{c o}(n)$	$\mathfrak{s o}(1, n+1)$	+1
2nd order ODE	$\mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}$	$\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$	$\mathfrak{s l}_{3}$	+2
$(2,3,5)$	$\mathfrak{g}_{-3} \oplus \mathfrak{g}_{-2} \oplus \mathfrak{g}_{-1}$	${\mathfrak{g l}\left(\mathfrak{g}_{-1}\right)}^{\operatorname{Lie}\left(G_{2}\right)}$	+3	

$$
\mathfrak{p}=\left(\begin{array}{ccc}
0 & 1 & 2 \\
-1 & 0 & 1 \\
\hline-2 & -1 & 0
\end{array}\right) \subset \mathfrak{S H}_{3},
$$

Definition

A parabolic geometry is a Cartan geometry of type (G, P), where G is a semisimple Lie group and P is a parabolic subgroup.

Upshot: Cartan geometry is:

- a "nice" soln of the Cartan equivalence problem.
- a unifying "upstairs" framework, despite a zoo of "downstairs" structures.

Next lecture:

- Normalization conditions for parabolic geometries (to get categorical equivalence to underlying structures).
- Kostant's theorem and harmonic curvature.
- Cartan reduction method for classifying (homogeneous) geometric structures.

