Constructions with Parabolic Geometries

Katja Sagerschnig

Center for Theoretical Physics, Warsaw

October 22, 2021

Lecture 3

• Some examples from projective geometry (References at the end)

Projective Structures

Projective structure on *n*-dimensional manifold M is an equivalence class $[\nabla]$ of torsion-free connections sharing the same geodesics up to reparametrization:

$$\hat{
abla}\sim
abla \iff \hat{
abla}_XY=
abla_XY+\Upsilon(X)Y+\Upsilon(Y)X$$

for a 1-form Υ . We shall assume *M* is oriented.

Projective Structures

Projective structure on *n*-dimensional manifold *M* is an equivalence class $[\nabla]$ of torsion-free connections sharing the same geodesics up to reparametrization:

$$\hat{
abla}\sim
abla \iff \hat{
abla}_XY=
abla_XY+\Upsilon(X)Y+\Upsilon(Y)X$$

for a 1-form Υ . We shall assume M is oriented.

Homogeneous model: projective sphere

$$G/P \cong \mathbb{S}^n = \mathbb{P}_+(\mathbb{R}^{n+1}),$$

where $G = SL(n+1, \mathbb{R})$ and

$$\mathsf{P} = \{ \begin{pmatrix} \mathsf{det}(\mathsf{A})^{-1} & Z^t \\ 0 & \mathsf{A} \end{pmatrix} : \mathsf{A} \in \mathsf{GL}_+(n,\mathbb{R}), Z^t \in \mathbb{R}^{n*} \}.$$

Geodesics are great circles (mapped to straight lines by central projection).

The Lie algebra p of P is the non-neg. part in the grading

$$\mathfrak{sl}(n+1,\mathbb{R}) = \left\{ \begin{pmatrix} -tr(A) & \phi \\ X & A \end{pmatrix}, A \in \mathfrak{gl}(n,\mathbb{R}), X \in \mathbb{R}^n, \phi \in \mathbb{R}^{n*} \right\}$$
$$= \mathfrak{g}_{-1} \oplus \underbrace{\mathfrak{g}_0 \oplus \mathfrak{g}_1}_{\mathfrak{p}}$$

The Lie algebra p of P is the non-neg. part in the grading

$$\mathfrak{sl}(n+1,\mathbb{R}) = \left\{ \begin{pmatrix} -tr(A) & \phi \\ X & A \end{pmatrix}, A \in \mathfrak{gl}(n,\mathbb{R}), X \in \mathbb{R}^n, \phi \in \mathbb{R}^{n*} \right\}$$
$$= \mathfrak{g}_{-1} \oplus \underbrace{\mathfrak{g}_0 \oplus \mathfrak{g}_1}_{\mathfrak{p}}$$

Associated with a projective structure $(M, [\nabla])$ we have the normal parabolic geometry

$$(\mathcal{G} o M, \omega) \quad \omega \in \Omega^1(\mathcal{G}, \mathfrak{sl}(n+1,\mathbb{R}))$$

modeled on $SL(n+1, \mathbb{R})/P$.

The Lie algebra p of P is the non-neg. part in the grading

$$\mathfrak{sl}(n+1,\mathbb{R}) = \left\{ \begin{pmatrix} -tr(A) & \phi \\ X & A \end{pmatrix}, A \in \mathfrak{gl}(n,\mathbb{R}), X \in \mathbb{R}^n, \phi \in \mathbb{R}^{n*} \right\}$$
$$= \mathfrak{g}_{-1} \oplus \underbrace{\mathfrak{g}_0 \oplus \mathfrak{g}_1}_{\mathfrak{p}}$$

Associated with a projective structure $(M, [\nabla])$ we have the normal parabolic geometry

$$(\mathcal{G} o M, \omega) \quad \omega \in \Omega^1(\mathcal{G}, \mathfrak{sl}(n+1,\mathbb{R}))$$

modeled on $SL(n+1,\mathbb{R})/P$.

For any representation $\rho: SL(n+1,\mathbb{R}) \to End(\mathbb{V})$ we have an associated tractor bundle

$$\mathcal{V} = \mathcal{G} imes_P \mathbb{V}$$

and induced tractor connection $\nabla^{\mathcal{V}}$.

A connection ∇ from the projective class corresponds to a G_0 -equivariant section $\iota : \mathcal{G}_0 \to \mathcal{G}$, where \mathcal{G}_0 denotes the (oriented) frame bundle. Then

$$\iota^*\omega_-\in \Omega^1(\mathcal{G}_0,\mathfrak{g}_-),\quad \iota^*\omega_0\in \Omega^1(\mathcal{G}_0,\mathfrak{g}_0),\quad \iota^*\omega_+\in \Omega^1(\mathcal{G}_0,\mathfrak{g}_+)$$

correspond to the soldering form θ , the connection ∇ , and the projective Schouten tensor $P_{ab} = \frac{1}{(n-1)(n+1)} (n \operatorname{Ric}_{ab} + \operatorname{Ric}_{ba}).$

A connection ∇ from the projective class corresponds to a G_0 -equivariant section $\iota : \mathcal{G}_0 \to \mathcal{G}$, where \mathcal{G}_0 denotes the (oriented) frame bundle. Then

$$\iota^*\omega_-\in \Omega^1(\mathcal{G}_0,\mathfrak{g}_-),\quad \iota^*\omega_0\in \Omega^1(\mathcal{G}_0,\mathfrak{g}_0),\quad \iota^*\omega_+\in \Omega^1(\mathcal{G}_0,\mathfrak{g}_+)$$

correspond to the soldering form θ , the connection ∇ , and the projective Schouten tensor $P_{ab} = \frac{1}{(n-1)(n+1)} (n \operatorname{Ric}_{ab} + \operatorname{Ric}_{ba}).$

Moreover, a choice of ∇ determines an identification of the tractor bundle

$$\mathcal{V} = \mathcal{G} \times_P \mathbb{V} \cong_{\nabla} \mathcal{G}_0 \times_{\mathcal{G}_0} \mathbb{V}$$

with a sum of (weighted) tensor bundles

A connection ∇ from the projective class corresponds to a G_0 -equivariant section $\iota : \mathcal{G}_0 \to \mathcal{G}$, where \mathcal{G}_0 denotes the (oriented) frame bundle. Then

$$\iota^*\omega_-\in \Omega^1(\mathcal{G}_0,\mathfrak{g}_-), \quad \iota^*\omega_0\in \Omega^1(\mathcal{G}_0,\mathfrak{g}_0), \quad \iota^*\omega_+\in \Omega^1(\mathcal{G}_0,\mathfrak{g}_+)$$

correspond to the soldering form θ , the connection ∇ , and the projective Schouten tensor $P_{ab} = \frac{1}{(n-1)(n+1)} (n \operatorname{Ric}_{ab} + \operatorname{Ric}_{ba}).$

Moreover, a choice of abla determines an identification of the tractor bundle

$$\mathcal{V} = \mathcal{G} \times_P \mathbb{V} \cong_{\nabla} \mathcal{G}_0 \times_{\mathcal{G}_0} \mathbb{V}$$

with a sum of (weighted) tensor bundles and a formula for the tractor connection via

$$\nabla_X^{\mathcal{V}}S = \nabla_XS + X \bullet S - \mathsf{P}(X) \bullet S,$$

where \bullet is induced map from actions of \mathfrak{g}_- resp. \mathfrak{g}_+ on $\mathbb{V}.$

• We have

$$\mathcal{E}(w) := (\Lambda^n TM)^{\frac{w}{n+1}}$$

(bundle of projective densities of weight w). Then for connections $\hat{\nabla}$ and ∇ projectively related by Υ ,

$$\hat{\nabla}_{a}\sigma = \nabla_{a}\sigma + w\Upsilon_{a}\sigma$$

We have

$$\mathcal{E}(w) := (\Lambda^n TM)^{\frac{w}{n+1}}$$

(bundle of projective densities of weight w). Then for connections $\hat{\nabla}$ and ∇ projectively related by Υ ,

$$\hat{\nabla}_{a}\sigma = \nabla_{a}\sigma + w\Upsilon_{a}\sigma$$

• A special class of connections in a projective class are those that preserve a volume form. These are called special.

We have

$$\mathcal{E}(w) := (\Lambda^n T M)^{\frac{w}{n+1}}$$

(bundle of projective densities of weight w). Then for connections $\hat{\nabla}$ and ∇ projectively related by Υ ,

$$\hat{\nabla}_{a}\sigma = \nabla_{a}\sigma + w\Upsilon_{a}\sigma$$

• A special class of connections in a projective class are those that preserve a volume form. These are called special. For them

$$P_{ab} = \frac{1}{n-1} \operatorname{Ric}_{ab}$$

and their curvature decomposes as

$$R_{bc}{}^{d}{}_{a} = W_{bc}{}^{d}{}_{a} + 2\delta_{[b}{}^{d}\mathsf{P}_{c]a},$$

where $W_{bc}{}^{d}{}_{a}$ is the projective Weyl tensor.

Cotractors \mathcal{T}^{\ast}

Cotractor bundle and connection

Consider the dual of the standard representation of $\mathfrak{sl}(n+1,\mathbb{R})$. Then \mathfrak{p} preserves an *n*-dimensional subspace in \mathbb{R}^{n+1*} . Under $\mathfrak{g}_0 \cong \mathfrak{gl}(n,\mathbb{R})$ the representation decomposes

$$\mathbb{R}^{n+1*}\cong_{\mathfrak{g}_0}\mathbb{V}_0\oplus\mathbb{V}_1\cong_{\mathfrak{g}_0}\mathbb{V}_0\oplus(\mathbb{V}_0\otimes\mathfrak{g}_+)$$

Cotractors \mathcal{T}^*

Cotractor bundle and connection

Consider the dual of the standard representation of $\mathfrak{sl}(n+1,\mathbb{R})$. Then \mathfrak{p} preserves an *n*-dimensional subspace in \mathbb{R}^{n+1*} . Under $\mathfrak{g}_0 \cong \mathfrak{gl}(n,\mathbb{R})$ the representation decomposes

$$\mathbb{R}^{n+1*}\cong_{\mathfrak{g}_0}\mathbb{V}_0\oplus\mathbb{V}_1\cong_{\mathfrak{g}_0}\mathbb{V}_0\oplus(\mathbb{V}_0\otimes\mathfrak{g}_+)$$

Hence $\mathcal{T}^* \supset \mathcal{T}^{*1}$ subbundle of co-rank 1, $\Pi: \mathcal{T}^* \to \mathcal{T}^*/(\mathcal{T}^*)^1 \cong \mathcal{E}(1).$

Cotractors \mathcal{T}^*

Cotractor bundle and connection

Consider the dual of the standard representation of $\mathfrak{sl}(n+1,\mathbb{R})$. Then \mathfrak{p} preserves an *n*-dimensional subspace in \mathbb{R}^{n+1*} . Under $\mathfrak{g}_0 \cong \mathfrak{gl}(n,\mathbb{R})$ the representation decomposes

$$\mathbb{R}^{n+1*}\cong_{\mathfrak{g}_0}\mathbb{V}_0\oplus\mathbb{V}_1\cong_{\mathfrak{g}_0}\mathbb{V}_0\oplus(\mathbb{V}_0\otimes\mathfrak{g}_+)$$

Hence $\mathcal{T}^* \supset \mathcal{T}^{*1}$ subbundle of co-rank 1, $\Pi : \mathcal{T}^* \to \mathcal{T}^*/(\mathcal{T}^*)^1 \cong \mathcal{E}(1)$. Any choice of ∇ gives identification

$$\mathcal{T}^* \cong_{\nabla} \mathcal{G}_0 imes_{\mathcal{G}_0} \mathbb{R}^{n+1*} \cong \mathcal{E}(1) \oplus \mathcal{T}^* \mathcal{M}(1)$$

and explicit representation of tractor connection

$$abla_i^{\mathcal{T}^*}(\sigma,\mu_j) = (
abla_i\sigma - \mu_i,
abla_i\mu_j + \sigma\mathsf{P}_{ij}),$$

We need the tractor connection

$$\nabla^{\mathcal{T}^*}: \Gamma(\mathcal{T}^*) \to \Omega^1(\mathcal{M}, \mathcal{T}^*), \ \nabla_i^{\mathcal{T}^*}(\sigma, \mu_j) = (\nabla_i \sigma - \mu_i, \nabla_i \mu_j + \sigma \mathsf{P}_{ij})$$

We need the tractor connection

$$\nabla^{\mathcal{T}^*}: \Gamma(\mathcal{T}^*) \to \Omega^1(\mathcal{M}, \mathcal{T}^*), \ \nabla_i^{\mathcal{T}^*}(\sigma, \mu_j) = (\nabla_i \sigma - \mu_i, \nabla_i \mu_j + \sigma \mathsf{P}_{ij})$$

and the Kostant codifferential $\partial^*: \Omega^1(M, \mathcal{T}^*) \to \Gamma(\mathcal{T}^*)$ induced by

 $\partial^*:\mathfrak{g}_+\otimes\mathbb{R}^{n+1*}\to\mathbb{R}^{n+1*},\ \partial^*(\phi_{a}\otimes(\sigma,\mu_{b}))=-\phi_{a}\cdot(\sigma,\mu_{b})=(0,\phi_{b}\sigma).$

We need the tractor connection

$$\nabla^{\mathcal{T}^*}: \Gamma(\mathcal{T}^*) \to \Omega^1(\mathcal{M}, \mathcal{T}^*), \ \nabla_i^{\mathcal{T}^*}(\sigma, \mu_j) = (\nabla_i \sigma - \mu_i, \nabla_i \mu_j + \sigma \mathsf{P}_{ij})$$

and the Kostant codifferential $\partial^*: \Omega^1(M, \mathcal{T}^*) \to \Gamma(\mathcal{T}^*)$ induced by

$$\partial^*:\mathfrak{g}_+\otimes\mathbb{R}^{n+1*}\to\mathbb{R}^{n+1*},\ \partial^*(\phi_a\otimes(\sigma,\mu_b))=-\phi_a\cdot(\sigma,\mu_b)=(0,\phi_b\sigma).$$

The BGG splitting operator is then characterized by

 $D: \Gamma(\mathcal{E}(1)) \to \Gamma(\mathcal{T}^*), \quad \Pi(D(\sigma)) = \sigma, \quad \partial^* \nabla^{\mathcal{T}^*} D(\sigma) = 0$

We need the tractor connection

$$\nabla^{\mathcal{T}^*}: \Gamma(\mathcal{T}^*) \to \Omega^1(\mathcal{M}, \mathcal{T}^*), \ \nabla_i^{\mathcal{T}^*}(\sigma, \mu_j) = (\nabla_i \sigma - \mu_i, \nabla_i \mu_j + \sigma \mathsf{P}_{ij})$$

and the Kostant codifferential $\partial^*: \Omega^1(M, \mathcal{T}^*) \to \Gamma(\mathcal{T}^*)$ induced by

$$\partial^*: \mathfrak{g}_+ \otimes \mathbb{R}^{n+1*} \to \mathbb{R}^{n+1*}, \ \partial^*(\phi_a \otimes (\sigma, \mu_b)) = -\phi_a \cdot (\sigma, \mu_b) = (0, \phi_b \sigma).$$

The BGG splitting operator is then characterized by

$$D: \Gamma(\mathcal{E}(1)) o \Gamma(\mathcal{T}^*), \quad \Pi(D(\sigma)) = \sigma, \quad \partial^*
abla^{\mathcal{T}^*} D(\sigma) = 0$$

To determine it explicitly we compute

$$\partial^*(\nabla^{\mathcal{T}^*}(\sigma,\mu_i)) = (0,\nabla_i\sigma-\mu_i)$$

and thus

$$D(\sigma) = (\sigma, \nabla_i \sigma).$$

First BGG operator

First we compute the homologies

$$\mathcal{H}_0 = \mathcal{E}(1) \quad (\stackrel{1}{\times} \stackrel{0}{\longrightarrow} \stackrel{0}{\bullet}) \quad \text{and} \quad \mathcal{H}_1 = S^2 T^* M(1) \quad (\stackrel{-3}{\times} \stackrel{2}{\longrightarrow} \stackrel{0}{\bullet})$$

First BGG operator

First we compute the homologies

$$\mathcal{H}_0 = \mathcal{E}(1) \quad (\stackrel{1}{\times} \stackrel{0}{\longrightarrow} \stackrel{0}{\bullet}) \quad \text{and} \quad \mathcal{H}_1 = S^2 T^* M(1) \quad (\stackrel{-3}{\times} \stackrel{2}{\longrightarrow} \stackrel{0}{\bullet})$$

From the splitting operator and the tractor connection

$$D(\sigma) = (\sigma, \nabla_i \sigma), \quad \nabla_i^{\mathcal{T}^*}(\sigma, \mu_j) = (\nabla_i \sigma - \mu_i, \nabla_i \mu_j + \sigma \mathsf{P}_{ij}),$$

we get for the first BGG operator

$$\Theta^{\mathcal{T}^*}: \Gamma(\mathcal{E}(1)) o \Gamma(S^2 T^* M(1))$$

$$\Theta^{\mathcal{T}^*}(\sigma) = \Pi(\nabla^{\mathcal{T}^*} D(\sigma)) = \Pi((0, \nabla_i \nabla_j \sigma + \mathsf{P}_{ij} \sigma))$$
$$= \nabla_i \nabla_j \sigma + \mathsf{P}_{ij} \sigma$$

The tractor connection $\nabla^{\mathcal{T}^*}$ is the prolongation connection for the BGG equation $\nabla_i \nabla_j \sigma + \mathsf{P}_{ij} \sigma = 0$. Hence, every solution σ is normal and corresponds to $S \in \Gamma(\mathcal{T}^*), \nabla^{\mathcal{T}^*} S = 0$.

The tractor connection $\nabla^{\mathcal{T}^*}$ is the prolongation connection for the BGG equation $\nabla_i \nabla_j \sigma + \mathsf{P}_{ij} \sigma = 0$. Hence, every solution σ is normal and corresponds to $S \in \Gamma(\mathcal{T}^*), \nabla^{\mathcal{T}^*} S = 0$.

Curved orbit decomposition (Č-G-H)

 Homogeneous model: hyperplane through origin in ℝⁿ⁺¹ decomposes Sⁿ⁺¹ into Sⁿ and two open hemispheres

• In general

$$M=M_+\cup M_0\cup M_-,$$

zero set M_0 of σ : is a separating hypersurface with an induced projective structure

open M_{\pm} curved orbits: σ is non-vanishing and determines Ricci-flat connection characterized by $\hat{\nabla}\sigma = 0$ (then $\hat{P}_{ij} = 0$ and thus $\hat{Ric}_{ij} = 0$) and $\hat{\nabla}_i \sigma = \nabla_i \sigma + \Upsilon_i \sigma$, so $\hat{\nabla}$ is related to ∇ via $\Upsilon = -\frac{1}{\sigma} \nabla \sigma$.

The tractor connection $\nabla^{\mathcal{T}^*}$ is the prolongation connection for the BGG equation $\nabla_i \nabla_j \sigma + \mathsf{P}_{ij} \sigma = 0$. Hence, every solution σ is normal and corresponds to $S \in \Gamma(\mathcal{T}^*), \nabla^{\mathcal{T}^*} S = 0$.

Curved orbit decomposition (Č-G-H)

 Homogeneous model: hyperplane through origin in ℝⁿ⁺¹ decomposes Sⁿ⁺¹ into Sⁿ and two open hemispheres

• In general

$$M=M_+\cup M_0\cup M_-,$$

zero set M_0 of σ : is a separating hypersurface with an induced projective structure open M_{\pm} curved orbits: σ is non-vanishing and determines Ricci-flat connection characterized by $\hat{\nabla}\sigma = 0$ (then $\hat{P}_{ij} = 0$ and thus $\hat{Ric}_{ij} = 0$) and $\hat{\nabla}_i \sigma = \nabla_i \sigma + \Upsilon_i \sigma$, so $\hat{\nabla}$ is related to ∇ via $\Upsilon = -\frac{1}{2}\nabla\sigma$.

Remark: related to projective compactifications (Čap-Gover).

Standard ${\mathcal T}$ and Adjoint ${\mathcal A}$

Standard Tractors

Standard tractor bundle has distinguished line subbundle $\mathcal{T}^1 \subset \mathcal{T}$ corresp. to line $\ell \subset \mathbb{R}^{n+1}$ preserved by P, $\Pi : \mathcal{T} \to \mathcal{T}/\mathcal{T}^1 \cong TM(-1)$.

Standard ${\mathcal T}$ and Adjoint ${\mathcal A}$

Standard Tractors

Standard tractor bundle has distinguished line subbundle $\mathcal{T}^1 \subset \mathcal{T}$ corresp. to line $\ell \subset \mathbb{R}^{n+1}$ preserved by P, $\Pi : \mathcal{T} \to \mathcal{T}/\mathcal{T}^1 \cong TM(-1)$. Tractor connection $\nabla^{\mathcal{T}}$ is prolongation connection for the corresponding BGG equation

$$\nabla_{a}X^{b} - \frac{1}{n}\delta_{a}{}^{b}\nabla_{c}X^{c} = 0, \quad X^{a} \in \Gamma(TM(-1))$$

Standard ${\mathcal T}$ and Adjoint ${\mathcal A}$

Standard Tractors

Standard tractor bundle has distinguished line subbundle $\mathcal{T}^1 \subset \mathcal{T}$ corresp. to line $\ell \subset \mathbb{R}^{n+1}$ preserved by P, $\Pi : \mathcal{T} \to \mathcal{T}/\mathcal{T}^1 \cong TM(-1)$. Tractor connection $\nabla^{\mathcal{T}}$ is prolongation connection for the corresponding BGG equation

$$abla_{a}X^{b} - \frac{1}{n}\delta_{a}{}^{b}\nabla_{c}X^{c} = 0, \quad X^{a} \in \Gamma(TM(-1))$$

Adjoint Tractors

The first BBG operator for the adjoint tractor bundle $\mathcal{A} = \mathcal{G} \times_P \mathfrak{sl}(n+1, \mathbb{R})$ is related to the infinitesimal automorphism operator for projective structures

$$X^{d} \mapsto \underbrace{(\nabla_{(a} \nabla_{b)} X^{c} + \mathsf{P}_{ab} X^{c})_{o}}_{\text{first BGG}} + \underbrace{W_{d(a}{}^{c}{}_{b)}}_{\text{proj Weyl}} X^{d}$$

Killing-type operator $\Lambda^2 \mathcal{T}^*$

Consider

$$\Lambda^{2}\mathcal{T}^{*} = \mathcal{G} \times_{P} \Lambda^{2}\mathbb{R}^{n+1*} \cong_{\nabla} \mathcal{T}^{*}\mathcal{M}(2) \oplus \Lambda^{2}\mathcal{T}^{*}\mathcal{M}(2)$$

with tractor connection

$$\nabla_{a}^{\Lambda^{2}\mathcal{T}^{*}} \begin{pmatrix} k_{b} \\ \mu_{bc} \end{pmatrix} = \begin{pmatrix} \nabla_{a}k_{b} - \mu_{ab} \\ \nabla_{a}\mu_{bc} + 2\mathsf{P}_{a[b}k_{c]} \end{pmatrix}.$$

Killing-type operator $\Lambda^2 \mathcal{T}^*$

Consider

$$\Lambda^{2}\mathcal{T}^{*} = \mathcal{G} \times_{P} \Lambda^{2}\mathbb{R}^{n+1*} \cong_{\nabla} \mathcal{T}^{*}\mathcal{M}(2) \oplus \Lambda^{2}\mathcal{T}^{*}\mathcal{M}(2)$$

with tractor connection

$$\nabla_{\mathbf{a}}^{\Lambda^{2}\mathcal{T}^{*}} \begin{pmatrix} k_{b} \\ \mu_{bc} \end{pmatrix} = \begin{pmatrix} \nabla_{\mathbf{a}}k_{b} - \mu_{\mathbf{a}b} \\ \nabla_{\mathbf{a}}\mu_{bc} + 2\mathsf{P}_{\mathbf{a}[b}k_{c]} \end{pmatrix}.$$

Then $\partial^* \nabla^{\Lambda^2 \mathcal{T}^*} \begin{pmatrix} k_b \\ \mu_{bc} \end{pmatrix} = 0$ iff $\mu_{[ab]} = \nabla_{[a} k_{b]}$, hence the splitting operator

$$D(k_b) = \begin{pmatrix} k_b \\ \nabla_{[a}k_{b]} \end{pmatrix},$$

Killing-type operator $\Lambda^2 \mathcal{T}^*$

Consider

$$\Lambda^{2}\mathcal{T}^{*} = \mathcal{G} \times_{P} \Lambda^{2}\mathbb{R}^{n+1*} \cong_{\nabla} \mathcal{T}^{*}\mathcal{M}(2) \oplus \Lambda^{2}\mathcal{T}^{*}\mathcal{M}(2)$$

with tractor connection

$$\nabla_{\mathbf{a}}^{\Lambda^{2}\mathcal{T}^{*}} \begin{pmatrix} k_{b} \\ \mu_{bc} \end{pmatrix} = \begin{pmatrix} \nabla_{\mathbf{a}}k_{b} - \mu_{\mathbf{a}b} \\ \nabla_{\mathbf{a}}\mu_{bc} + 2\mathsf{P}_{\mathbf{a}[b}k_{c]} \end{pmatrix}.$$

Then $\partial^* \nabla^{\Lambda^2 \mathcal{T}^*} \begin{pmatrix} k_b \\ \mu_{bc} \end{pmatrix} = 0$ iff $\mu_{[ab]} = \nabla_{[a} k_{b]}$, hence the splitting operator

$$D(k_b) = \begin{pmatrix} k_b \\ \nabla_{[a} k_{b]} \end{pmatrix},$$

and we get as first BGG operator $\ \Theta^{\Lambda^2\mathcal{T}^*}$: $\mathcal{T}^*M(2) \to S^2\mathcal{T}^*M(2)$

$$k_a \rightarrow \nabla_{(a}k_{b)}.$$

Prolongation $\nabla_{(a}k_{b)} = 0$ iff $\nabla_{a}k_{b} = \mu_{ab}$ for μ_{ab} skew.

Prolongation

 $\nabla_{(a}k_{b)} = 0$ iff $\nabla_{a}k_{b} = \mu_{ab}$ for μ_{ab} skew. Calculate with ∇ special:

$$\nabla_{a}\mu_{bc} = R_{bc}{}^{d}{}_{a}k_{d}$$
$$= W_{bc}{}^{d}{}_{a}k_{d} + 2\delta_{[b}{}^{d}\mathsf{P}_{c]a}k_{d}$$

(using projective curvature decomposition for special connection).

Prolongation

 $\nabla_{(a}k_{b)} = 0$ iff $\nabla_{a}k_{b} = \mu_{ab}$ for μ_{ab} skew. Calculate with ∇ special:

$$\nabla_a \mu_{bc} = R_{bc}{}^d{}_a k_d$$
$$= W_{bc}{}^d{}_a k_d + 2\delta_{[b}{}^d \mathsf{P}_{c]a} k_d$$

(using projective curvature decomposition for special connection). Prolongation connection is

$$\nabla_{a}^{prol} \begin{pmatrix} k_{b} \\ \mu_{bc} \end{pmatrix} = \nabla_{a}^{\Lambda^{2} \mathcal{T}^{*}} \begin{pmatrix} k_{b} \\ \mu_{bc} \end{pmatrix} - \begin{pmatrix} 0 \\ W_{bc}{}^{d}{}_{a}k_{d} \end{pmatrix}$$

First BGG operator

Consider $S^2\mathcal{T}^*=\mathcal{G} imes_P S^2\mathbb{R}^{n+1*}$, then

$$\mathcal{H}_0 = \overset{2}{\times} \overset{0}{\longrightarrow} \overset{0}{\bullet} = \mathcal{E}(2) \quad \text{and} \quad \mathcal{H}_1 = \overset{-4}{\times} \overset{3}{\longrightarrow} \overset{0}{\bullet} = S^3 T^* M(2)$$

First BGG operator

Consider $S^2\mathcal{T}^*=\mathcal{G} imes_P S^2\mathbb{R}^{n+1*}$, then

$$\mathcal{H}_0 = \overset{2}{\times} \overset{0}{\longrightarrow} \overset{0}{\bullet} = \mathcal{E}(2) \quad \text{and} \quad \mathcal{H}_1 = \overset{-4}{\times} \overset{3}{\longrightarrow} \overset{0}{\bullet} = S^3 T^* M(2)$$

and the first BGG turns out to be

$$\Theta^{S^2\mathcal{T}^*}(\sigma) = \nabla_{(a}\nabla_b\nabla_c)\sigma + 4\mathsf{P}_{(ab}\nabla_c)\sigma + 2(\nabla_{(a}\mathsf{P}_{bc})\sigma)$$

First BGG operator

Consider $S^2\mathcal{T}^*=\mathcal{G} imes_P S^2\mathbb{R}^{n+1*}$, then

$$\mathcal{H}_0 = \overset{2}{\times} \overset{0}{\bullet} \overset{0}{\bullet} = \mathcal{E}(2) \quad \text{and} \quad \mathcal{H}_1 = \overset{-4}{\times} \overset{3}{\bullet} \overset{0}{\bullet} = S^3 T^* M(2)$$

and the first BGG turns out to be

$$\Theta^{S^2\mathcal{T}^*}(\sigma) = \nabla_{(a}\nabla_b\nabla_c)\sigma + 4\mathsf{P}_{(ab}\nabla_c)\sigma + 2(\nabla_{(a}\mathsf{P}_{bc})\sigma)$$

Parallel tractor metric (Č-G-H)

Now assume we have a non-degenerate parallel tractor $h \in \Gamma(S^2 \mathcal{T}^*)$ of signature (p, q) with corresponding normal solution $\sigma = \Pi(h) \in \Gamma(\mathcal{E}(2))$.

First BGG operator

Consider $S^2\mathcal{T}^*=\mathcal{G} imes_P S^2\mathbb{R}^{n+1*}$, then

$$\mathcal{H}_0 = \overset{2}{\times} \overset{0}{\bullet} \overset{0}{\bullet} = \mathcal{E}(2) \quad \text{and} \quad \mathcal{H}_1 = \overset{-4}{\times} \overset{3}{\bullet} \overset{0}{\bullet} = S^3 T^* M(2)$$

and the first BGG turns out to be

$$\Theta^{S^2\mathcal{T}^*}(\sigma) = \nabla_{(a}\nabla_b\nabla_c)\sigma + 4\mathsf{P}_{(ab}\nabla_c)\sigma + 2(\nabla_{(a}\mathsf{P}_{bc})\sigma$$

Parallel tractor metric (Č-G-H)

Now assume we have a non-degenerate parallel tractor $h \in \Gamma(S^2 \mathcal{T}^*)$ of signature (p, q) with corresponding normal solution $\sigma = \Pi(h) \in \Gamma(\mathcal{E}(2))$.

- signature of *h* determines the *G*-type
- three P-types according to whether restriction of h to distinguished line subbundle T¹ ⊂ T is positive, zero, or negative ~→

$$M = M_+ \cup M_0 \cup M_-$$

Consider H = SO(n, 1) preserving bilinear form of sig. (n,1) on \mathbb{R}^{n+1} and H-orbit decomposition of the projective sphere $G/P \cong \mathbb{P}_+(\mathbb{R}^{n+1}) \cong \mathbb{S}^n$:

Consider H = SO(n, 1) preserving bilinear form of sig. (n,1) on \mathbb{R}^{n+1} and H-orbit decomposition of the projective sphere $G/P \cong \mathbb{P}_+(\mathbb{R}^{n+1}) \cong \mathbb{S}^n$:

• ray projectivization of null-cone consists of two closed orbits $SO(n,1)/\tilde{P} \cong \mathbb{S}^{n-1}$ (conformal spheres)

Consider H = SO(n, 1) preserving bilinear form of sig. (n,1) on \mathbb{R}^{n+1} and H-orbit decomposition of the projective sphere $G/P \cong \mathbb{P}_+(\mathbb{R}^{n+1}) \cong \mathbb{S}^n$:

- ray projectivization of null-cone consists of two closed orbits $SO(n,1)/\tilde{P} \cong \mathbb{S}^{n-1}$ (conformal spheres)
- one open orbit of pos. rays isomorphic to SO(n, 1)/SO(n 1, 1) with induced de Sitter metric
- two open orbits of negative rays isomorphic to SO(n, 1)/SO(n) with induced hyperbolic metric

Consider H = SO(n, 1) preserving bilinear form of sig. (n,1) on \mathbb{R}^{n+1} and H-orbit decomposition of the projective sphere $G/P \cong \mathbb{P}_+(\mathbb{R}^{n+1}) \cong \mathbb{S}^n$:

- ray projectivization of null-cone consists of two closed orbits $SO(n,1)/\tilde{P} \cong \mathbb{S}^{n-1}$ (conformal spheres)
- one open orbit of pos. rays isomorphic to SO(n, 1)/SO(n 1, 1) with induced de Sitter metric
- two open orbits of negative rays isomorphic to SO(n, 1)/SO(n) with induced hyperbolic metric

Geometry on curved orbits

*M*₀, the zero set of *σ*, is embedded hypersurface with normal conformal Cartan geometry of signature (*p* - 1, *q* - 1)

Consider H = SO(n, 1) preserving bilinear form of sig. (n,1) on \mathbb{R}^{n+1} and H-orbit decomposition of the projective sphere $G/P \cong \mathbb{P}_+(\mathbb{R}^{n+1}) \cong \mathbb{S}^n$:

- ray projectivization of null-cone consists of two closed orbits $SO(n,1)/\tilde{P} \cong \mathbb{S}^{n-1}$ (conformal spheres)
- one open orbit of pos. rays isomorphic to SO(n, 1)/SO(n 1, 1) with induced de Sitter metric
- two open orbits of negative rays isomorphic to SO(n, 1)/SO(n) with induced hyperbolic metric

Geometry on curved orbits

- *M*₀, the zero set of *σ*, is embedded hypersurface with normal conformal Cartan geometry of signature (*p* 1, *q* 1)
- Einstein metrics of signature (p − 1, q) and (p, q − 1) on open curved orbits (g_{ab} = P_{ab} of connection ∇ determined by scale σ).

Metrizability $S^2 T$

• Question: Is there a metric connection in the projective class?

Metrizability $S^2 \mathcal{T}$

Question: Is there a metric connection in the projective class?
 A special connection ∇ is projectively equivalent to a Levi-Civita connection iff ∃ non-degenerate solution to

trace-free part $(
abla_a\phi^{bc})=0, \quad \phi^{bc}\in \Gamma(S^2TM)(-2)$

(Sinjukov, Mikes)

Metrizability $S^2 \mathcal{T}$

Question: Is there a metric connection in the projective class?
 A special connection ∇ is projectively equivalent to a Levi-Civita connection iff ∃ non-degenerate solution to

trace-free part
$$(
abla_a \phi^{bc}) = 0$$
, $\phi^{bc} \in \Gamma(S^2 TM)(-2)$

(Sinjukov, Mikes)

• This is first BGG operator corresponding to $\mathbb{V} = S^2 \mathbb{R}^{n+1}$.

Metrizability $S^2 T$

Question: Is there a metric connection in the projective class?
 A special connection ∇ is projectively equivalent to a Levi-Civita connection iff ∃ non-degenerate solution to

trace-free part
$$(
abla_a\phi^{bc})=0, \quad \phi^{bc}\in \Gamma(S^2TM)(-2)$$

(Sinjukov, Mikes)

- This is first BGG operator corresponding to $\mathbb{V} = S^2 \mathbb{R}^{n+1}$.
- Prolongation connection (Eastwood, Matveev)

$$\nabla_{i}^{pr} \begin{pmatrix} \phi^{jk} \\ \mu^{j} \\ \rho \end{pmatrix} = \nabla_{i}^{\mathcal{T}} \begin{pmatrix} \phi^{jk} \\ \mu^{j} \\ \rho \end{pmatrix} + \frac{1}{n} \begin{pmatrix} 0 \\ W_{ik}{}^{j}{}_{l}\phi^{kl} \\ -2Y_{ijk}\phi^{jk} \end{pmatrix}$$

Metrizability $S^2 T$

Question: Is there a metric connection in the projective class?
 A special connection ∇ is projectively equivalent to a Levi-Civita connection iff ∃ non-degenerate solution to

trace-free part
$$(
abla_a\phi^{bc})=0, \quad \phi^{bc}\in \Gamma(S^2TM)(-2)$$

(Sinjukov, Mikes)

- This is first BGG operator corresponding to $\mathbb{V} = S^2 \mathbb{R}^{n+1}$.
- Prolongation connection (Eastwood, Matveev)

$$\nabla_{i}^{pr} \begin{pmatrix} \phi^{jk} \\ \mu^{j} \\ \rho \end{pmatrix} = \nabla_{i}^{\mathcal{T}} \begin{pmatrix} \phi^{jk} \\ \mu^{j} \\ \rho \end{pmatrix} + \frac{1}{n} \begin{pmatrix} 0 \\ W_{ik}{}^{j}{}_{l}\phi^{kl} \\ -2Y_{ijk}\phi^{jk} \end{pmatrix}$$

- Normal non-deg. solutions ϕ^{jk} correspond to Einstein metrics (Armstrong, Čap-Gover-Macbeth)
- Bij. correspondence between *non-deg. sections* of S^2T and of S^2T^* .

Some References

- Eastwood, Notes on projective differential geometry
- Eastwood, Matveev, *Metric connections in projective differential* geometry
- Nurowski, Projective versus metric structures
- Hammerl, Natural Prolongations of BGG Operators, PhD thesis
- Čap, Gover, Hammerl, *Holonomy reductions of Cartan geometries* and curved orbit decompositions
- Čap, Gover, Projective Compactifications and Einstein metrics
- Armstrong, Projective Holonomy I and II
- Gover, Neusser, Willse, *Projective geometry of sasaki-Einstein structures and their compactifications*
- Čap, Gover, Macbeth, Einstein metrics in projective geometry
- Flood, Gover, Metrics in projective differential geometry: the geometry of solutions to the metrizability equation