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Lecture 3
• Some examples from projective geometry

(References at the end)



Projective Structures

Projective structure on n-dimensional manifold M is an equivalence class
[∇] of torsion-free connections sharing the same geodesics up to
reparametrization:

∇̂ ∼ ∇ ⇐⇒ ∇̂XY = ∇XY + Υ(X )Y + Υ(Y )X

for a 1-form Υ. We shall assume M is oriented.

Homogeneous model: projective sphere

G/P ∼= Sn = P+(Rn+1),

where G = SL(n + 1,R) and

P = {
(

det(A)−1 Z t

0 A

)
: A ∈ GL+(n,R),Z t ∈ Rn∗}.

Geodesics are great circles (mapped to straight lines by central
projection).
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The Lie algebra p of P is the non-neg. part in the grading

sl(n + 1,R) =

{(
−tr(A) φ

X A

)
,A ∈ gl(n,R),X ∈ Rn, φ ∈ Rn∗

}
= g−1 ⊕ g0 ⊕ g1︸ ︷︷ ︸

p

Associated with a projective structure (M, [∇]) we have the normal
parabolic geometry

(G → M, ω) ω ∈ Ω1(G, sl(n + 1,R))

modeled on SL(n + 1,R)/P.

For any representation ρ : SL(n + 1,R)→ End(V) we have an associated
tractor bundle

V = G ×P V

and induced tractor connection ∇V .
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A connection ∇ from the projective class corresponds to a G0-equivariant
section ι : G0 → G, where G0 denotes the (oriented) frame bundle. Then

ι∗ω− ∈ Ω1(G0, g−), ι∗ω0 ∈ Ω1(G0, g0), ι∗ω+ ∈ Ω1(G0, g+)

correspond to the soldering form θ, the connection ∇, and the projective
Schouten tensor Pab = 1

(n−1)(n+1) (nRicab + Ricba).

Moreover, a choice of ∇ determines an identification of the tractor bundle

V = G ×P V ∼=∇ G0 ×G0 V

with a sum of (weighted) tensor bundles and a formula for the tractor
connection via

∇VXS = ∇XS + X • S − P(X ) • S ,

where • is induced map from actions of g− resp. g+ on V.
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• We have

E(w) := (ΛnTM)
w

n+1

(bundle of projective densities of weight w). Then for connections ∇̂
and ∇ projectively related by Υ,

∇̂aσ = ∇aσ + wΥaσ

• A special class of connections in a projective class are those that
preserve a volume form. These are called special. For them

Pab = 1
n−1 Ricab

and their curvature decomposes as

Rbc
d
a = Wbc

d
a + 2δ[b

dPc]a,

where Wbc
d
a is the projective Weyl tensor.
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Cotractors T ∗

Cotractor bundle and connection
Consider the dual of the standard representation of sl(n + 1,R).
Then p preserves an n-dimensional subspace in Rn+1∗. Under
g0
∼= gl(n,R) the representation decomposes

Rn+1∗ ∼=g0 V0 ⊕ V1
∼=g0 V0 ⊕ (V0 ⊗ g+)

.

Hence T ∗ ⊃ T ∗1 subbundle of co-rank 1, Π : T ∗ → T ∗/(T ∗)1 ∼= E(1).
Any choice of ∇ gives identification

T ∗ ∼=∇ G0 ×G0 Rn+1∗ ∼= E(1)⊕ T ∗M(1)

and explicit representation of tractor connection

∇T
∗

i (σ, µj) = (∇iσ − µi ,∇iµj + σPij),
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Splitting operator
We need the tractor connection

∇T
∗

: Γ(T ∗)→ Ω1(M, T ∗), ∇T
∗

i (σ, µj) = (∇iσ − µi ,∇iµj + σPij)

and the Kostant codifferential ∂∗ : Ω1(M, T ∗)→ Γ(T ∗) induced by

∂∗ : g+ ⊗ Rn+1∗ → Rn+1∗, ∂∗(φa ⊗ (σ, µb)) = −φa · (σ, µb) = (0, φbσ).

The BGG splitting operator is then characterized by

D : Γ(E(1))→ Γ(T ∗), Π(D(σ)) = σ, ∂∗∇T
∗
D(σ) = 0

To determine it explicitly we compute

∂∗(∇T
∗
(σ, µi )) = (0,∇iσ − µi )

and thus
D(σ) = (σ,∇iσ).
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First BGG operator
First we compute the homologies

H0 = E(1) ( • •×1 0 0
) and H1 = S2T ∗M(1) ( • •×

−3 2 0
)

From the splitting operator and the tractor connection

D(σ) = (σ,∇iσ), ∇T
∗

i (σ, µj) = (∇iσ − µi ,∇iµj + σPij),

we get for the first BGG operator

ΘT
∗

: Γ(E(1))→ Γ(S2T ∗M(1))

ΘT
∗
(σ) = Π(∇T

∗
D(σ)) = Π ((0,∇i∇jσ + Pijσ))

= ∇i∇jσ + Pijσ
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The tractor connection ∇T ∗
is the prolongation connection for the BGG

equation ∇i∇jσ + Pijσ = 0. Hence, every solution σ is normal and
corresponds to S ∈ Γ(T ∗),∇T ∗

S = 0.

Curved orbit decomposition (Č-G-H)

• Homogeneous model: hyperplane through origin in Rn+1

decomposes Sn+1 into Sn and two open hemispheres

• In general
M = M+ ∪M0 ∪M−,

zero set M0 of σ: is a separating hypersurface with an induced
projective structure
open M± curved orbits: σ is non-vanishing and determines Ricci-flat
connection characterized by ∇̂σ = 0 (then P̂ij = 0 and thus

R̂ic ij = 0) and ∇̂iσ = ∇iσ + Υiσ, so ∇̂ is related to ∇ via
Υ = − 1

σ∇σ.

Remark: related to projective compactifications (Čap-Gover).
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Standard T and Adjoint A

Standard Tractors
Standard tractor bundle has distinguished line subbundle T 1 ⊂ T
corresp. to line ` ⊂ Rn+1 preserved by P, Π : T → T /T 1 ∼= TM(−1).

Tractor connection ∇T is prolongation connection for the corresponding
BGG equation

∇aX b − 1
nδa

b∇cX c = 0, X a ∈ Γ(TM(−1))

Adjoint Tractors
The first BBG operator for the adjoint tractor bundle
A = G ×P sl(n + 1,R) is related to the infinitesimal automorphism
operator for projective structures

X d 7→ (∇(a∇b)X
c + PabX c)o︸ ︷︷ ︸

first BGG

+ Wd(a
c
b)︸ ︷︷ ︸

proj Weyl

X d
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Killing-type operator Λ2T ∗

Consider

Λ2T ∗ = G ×P Λ2Rn+1∗ ∼=∇ T ∗M(2)⊕ Λ2T ∗M(2)

with tractor connection

∇Λ2T ∗

a

(
kb
µbc

)
=

(
∇akb − µab

∇aµbc + 2Pa[bkc]

)
.

Then ∂∗∇Λ2T ∗
(

kb
µbc

)
= 0 iff µ[ab] = ∇[akb], hence the splitting operator

D(kb) =

(
kb
∇[akb]

)
,

and we get as first BGG operator ΘΛ2T ∗
: T ∗M(2)→ S2T ∗M(2)

ka → ∇(akb).
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Prolongation
∇(akb) = 0 iff ∇akb = µab for µab skew.

Calculate with ∇ special:

∇aµbc = Rbc
d
akd

= Wbc
d
akd + 2δ[b

dPc]akd

(using projective curvature decomposition for special connection).

Prolongation connection is

∇prol
a

(
kb
µbc

)
= ∇Λ2T ∗

a

(
kb
µbc

)
−
(

0
Wbc

d
akd

)



Prolongation
∇(akb) = 0 iff ∇akb = µab for µab skew. Calculate with ∇ special:

∇aµbc = Rbc
d
akd

= Wbc
d
akd + 2δ[b

dPc]akd

(using projective curvature decomposition for special connection).

Prolongation connection is

∇prol
a

(
kb
µbc

)
= ∇Λ2T ∗

a

(
kb
µbc

)
−
(

0
Wbc

d
akd

)



Prolongation
∇(akb) = 0 iff ∇akb = µab for µab skew. Calculate with ∇ special:

∇aµbc = Rbc
d
akd

= Wbc
d
akd + 2δ[b

dPc]akd

(using projective curvature decomposition for special connection).

Prolongation connection is

∇prol
a

(
kb
µbc

)
= ∇Λ2T ∗

a

(
kb
µbc

)
−
(

0
Wbc

d
akd

)



Tractor Metrics S2T ∗

First BGG operator
Consider S2T ∗ = G ×P S2Rn+1∗, then

H0 = • •×2 0 0
= E(2) and H1 = • •×

−4 3 0
= S3T ∗M(2)

and the first BGG turns out to be

ΘS2T ∗
(σ) = ∇(a∇b∇c)σ + 4P(ab∇c)σ + 2(∇(aPbc)σ

Parallel tractor metric (Č-G-H)
Now assume we have a non-degenerate parallel tractor h ∈ Γ(S2T ∗) of
signature (p, q) with corresponding normal solution σ = Π(h) ∈ Γ(E(2)).

• signature of h determines the G -type

• three P-types according to whether restriction of h to distinguished
line subbundle T 1 ⊂ T is positive, zero, or negative  

M = M+ ∪M0 ∪M−
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Parallel tractor metric (Č-G-H)
Now assume we have a non-degenerate parallel tractor h ∈ Γ(S2T ∗) of
signature (p, q) with corresponding normal solution σ = Π(h) ∈ Γ(E(2)).

• signature of h determines the G -type

• three P-types according to whether restriction of h to distinguished
line subbundle T 1 ⊂ T is positive, zero, or negative  

M = M+ ∪M0 ∪M−



Homogeneous Model
Consider H = SO(n, 1) preserving bilinear form of sig. (n,1) on Rn+1 and
H-orbit decomposition of the projective sphere G/P ∼= P+(Rn+1) ∼= Sn :

• ray projectivization of null-cone consists of two closed orbits
SO(n, 1)/P̃ ∼= Sn−1 (conformal spheres)

• one open orbit of pos. rays isomorphic to SO(n, 1)/SO(n − 1, 1)
with induced de Sitter metric

• two open orbits of negative rays isomorphic to SO(n, 1)/SO(n) with
induced hyperbolic metric

Geometry on curved orbits

• M0, the zero set of σ, is embedded hypersurface with normal
conformal Cartan geometry of signature (p − 1, q − 1)

• Einstein metrics of signature (p − 1, q) and (p, q − 1) on open
curved orbits (gab = Pab of connection ∇ determined by scale σ).
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Metrizability S2T

• Question: Is there a metric connection in the projective class?

A special connection ∇ is projectively equivalent to a Levi-Civita
connection iff ∃ non-degenerate solution to

trace-free part (∇aφ
bc) = 0, φbc ∈ Γ(S2TM)(−2)

(Sinjukov, Mikes)

• This is first BGG operator corresponding to V = S2Rn+1.

• Prolongation connection (Eastwood, Matveev)

∇pr
i

φjkµj

ρ

 = ∇Ti

φjkµj

ρ

+ 1
n

 0
Wik

j
lφ

kl

−2Yijkφ
jk


• Normal non-deg. solutions φjk correspond to Einstein metrics

(Armstrong, Čap-Gover-Macbeth)

• Bij. correspondence between non-deg. sections of S2T and of S2T ∗.
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