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Lecture 3

® Some examples from projective geometry
(References at the end)



Projective Structures

Projective structure on n-dimensional manifold M is an equivalence class
[V] of torsion-free connections sharing the same geodesics up to
reparametrization:

VA~V <= VxY =VxY+T(X)Y+T(Y)X

for a 1-form T. We shall assume M is oriented.



Projective Structures

Projective structure on n-dimensional manifold M is an equivalence class
[V] of torsion-free connections sharing the same geodesics up to
reparametrization:

VA~V <= VxY =VxY+T(X)Y+T(Y)X
for a 1-form T. We shall assume M is oriented.
Homogeneous model: projective sphere

G/P=S" =P (R"),

where G = SL(n+ 1,R) and
-1 t
p= {(det(g‘) i) :Ae GLy(n,R),Zt € R™}.

Geodesics are great circles (mapped to straight lines by central
projection).
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Associated with a projective structure (M, [V]) we have the normal
parabolic geometry

(G — M,w) weQYG,sl(n+1,R))

modeled on SL(n+ 1,R)/P.

For any representation p : SL(n+ 1,R) — End(V) we have an associated
tractor bundle
V= g Xp A\Y

and induced tractor connection VV.



A connection V from the projective class corresponds to a Gg-equivariant
section ¢ : Go — G, where Gy denotes the (oriented) frame bundle. Then

wo € QYGo,9-), wo € QYGo,90), twy € QYGo,04)

correspond to the soldering form 6, the connection V, and the projective

Schouten tensor P,, = meica[7 + Ricpa).



A connection V from the projective class corresponds to a Gg-equivariant
section ¢ : Go — G, where Gy denotes the (oriented) frame bundle. Then

wo € QYGo,9-), wo € QYGo,90), twy € QYGo,04)

correspond to the soldering form 6, the connection V, and the projective

Schouten tensor P,, = meica[7 + Ricpa).

Moreover, a choice of V determines an identification of the tractor bundle
V=GxpV=yGyxgV

with a sum of (weighted) tensor bundles



A connection V from the projective class corresponds to a Gg-equivariant
section ¢ : Go — G, where Gy denotes the (oriented) frame bundle. Then

wo € QYGo,9-), wo € QYGo,90), twy € QYGo,04)

correspond to the soldering form 6, the connection V, and the projective

Schouten tensor P,, = meica[7 + Ricpa).

Moreover, a choice of V determines an identification of the tractor bundle
V=GxpV=yGyxgV

with a sum of (weighted) tensor bundles and a formula for the tractor

connection via
VXS =VxS+XeS—P(X)eS,

where e is induced map from actions of g_ resp. g on V.



® We have w
E(w) := (AN"TM)nt+1

(bundle of projective densities of weight w). Then for connections V
and V projectively related by T,
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® We have w
E(w) := (AN"TM)nt+1

(bundle of projective densities of weight w). Then for connections V
and V projectively related by T,

Va0 =Vao+ w0

® A special class of connections in a projective class are those that
preserve a volume form. These are called special. For them

Pab = ﬁRiCab
and their curvature decomposes as
Rbcda = Wbcda + 25[dec]aa

where W9, is the projective Weyl tensor.



Cotractors T*

Cotractor bundle and connection

Consider the dual of the standard representation of sl(n+ 1,R).
Then p preserves an n-dimensional subspace in R"™1*. Under
go = gl(n, R) the representation decomposes
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Cotractors T*

Cotractor bundle and connection

Consider the dual of the standard representation of sl(n+ 1,R).
Then p preserves an n-dimensional subspace in R"™1*. Under
go = gl(n, R) the representation decomposes

R >0 Vo @ Vi 2, Vo (Vo ® g4)

Hence 7* O 7*! subbundle of co-rank 1, M :7* — T*/(T*)! = £(1).
Any choice of V gives identification

T* 2y Go xg R = g(1) @ T*M(1)
and explicit representation of tractor connection

V7 (o, 11) = (Vio — pi, Vip; + aPy),
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Splitting operator
We need the tractor connection

VT N(TY) = QUM T, VT (0u) = (Vio — i, Vi + 0Py)
and the Kostant codifferential 9* : Q1(M, T*) — [(T*) induced by

o : g+ ® R Rn_'_l*a a*(Qsa b2y (07 Mb)) =—¢a- (07 Mb) = (07 (bba)'

The BGG splitting operator is then characterized by
D:T(EQ)) = (T, NM(D(s))=0, V7 D(0)=0
To determine it explicitly we compute
(VT (o, 1)) = (0, Vio — i)

and thus
D(o) = (o,V,0).



First BGG operator

First we compute the homologies

Ho=E(1) (—e—8) and Hy=ST*M(1) (X—a—3)



First BGG operator
First we compute the homologies

Ho=E(1) (%—o—98) and Hi=ST*M1) (*—o—3)

From the splitting operator and the tractor connection
D(0) = (0,Via), V] (0,17) = (Vio — i, Vi + oPy),
we get for the first BGG operator

07" i T(&(1)) — M(S2T*M(1))

07 (o) =NM(V” D(c)) =N((0,V:V,o + Pjo))
= V,‘VJ'O' + PUO'



The tractor connection V7 is the prolongation connection for the BGG
equation V;V;o 4 Pjjo = 0. Hence, every solution o is normal and
corresponds to S € I(7*),V7T S = 0.



The tractor connection V7 is the prolongation connection for the BGG
equation V;V;o 4 Pjjo = 0. Hence, every solution o is normal and
corresponds to S € T(7*),V7T S =0.

Curved orbit decomposition (C-G-H)

e Homogeneous model: hyperplane through origin in R"*!
decomposes S"*1 into S” and two open hemispheres

® |n general
M=M;UMyUM_,

zero set My of o: is a separating hypersurface with an induced
projective structure

open M curved orbits: o is non-vanishing and determines Ricci-flat
connection characterized by Vo = 0 (then IAD,-J- = 0 and thus

RAic,-j =0) and Vio=Vo+ T;o, so V is related to V via

T = —%VO’.



The tractor connection V7 is the prolongation connection for the BGG
equation V;V;o 4 Pjjo = 0. Hence, every solution o is normal and
corresponds to S € T(7*),V7T S =0.

Curved orbit decomposition (C-G-H)

e Homogeneous model: hyperplane through origin in R"*!
decomposes S"*1 into S” and two open hemispheres

® |n general
M=M;UMyUM_,

zero set My of o: is a separating hypersurface with an induced
projective structure

open M curved orbits: o is non-vanishing and determines Ricci-flat
connection characterized by Vo = 0 (then IAD,-J- = 0 and thus

RAic,-j =0) and Vio=Vo+ T;o, so V is related to V via

T = —%VO’.

Remark: related to projective compactifications (Cap-Gover).
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Standard 7 and Adjoint A

Standard Tractors
Standard tractor bundle has distinguished line subbundle 7% C T
corresp. to line £ C R™! preserved by P, M : T — T/T* = TM(-1).

Tractor connection V7 is prolongation connection for the corresponding
BGG equation

V.XP —16,bV. X =0, X7el(TM(-1))

Adjoint Tractors

The first BBG operator for the adjoint tractor bundle
A =G xpsl(n+ 1,R) is related to the infinitesimal automorphism
operator for projective structures

Xd — (V(avb)XC + PabXC)o + Wd(acb) Xd
N——
first BGG proj Weyl




Killing-type operator A>T*

Consider
N2T* =G xp NPRM 2 T*M(2) @ A2T*M(2)

with tractor connection
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Killing-type operator A>T*

Consider
N2T* =G xp NPRM 2 T*M(2) @ A2T*M(2)
with tractor connection
grT (kb> _ ( Vaky — fab ) _
? Hbe Vative + 2Pk

Then 9*VNT" (:b> = 0 iff ppap) = Viakp), hence the splitting operator
bc

k
D(kb) = <V[j<b]> )

and we get as first BGG operator ON7" : T*M(2) — S2T*M(2)

ky — V(akb).



Prolongation
v(akb) =0 iff vakb = Hap for Hab skew.



Prolongation
V(akp) = 0 iff Vakp = pap for piap skew. Calculate with V special:

va,U'bc = Rbcdakd
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(using projective curvature decomposition for special connection).



Prolongation
V(akp) = 0 iff Vakp = pap for piap skew. Calculate with V special:

va,U'bc = Rbcdakd
= Wbcdakd =+ 26[dec]akd

(using projective curvature decomposition for special connection).

Prolongation connection is

kb /\27-* kb 0
vpro/ -V _
. <ﬂbc> a (/ch> (Wbcdakd>
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Tractor Metrics S27*

First BGG operator
Consider S2T* = G xp S?R"T1* then

Ho=% oo =E(2) and Hi= oo =S3T*M(2)

and the first BGG turns out to be

057 (0) = V(. VsV o0 + 4P (V)0 + 2(V(oPhc )0

Parallel tractor metric (C-G-H)

Now assume we have a non-degenerate parallel tractor h € [(S2T*) of
signature (p, g) with corresponding normal solution o = M(h) € F(£(2)).

® signature of h determines the G-type

® three P-types according to whether restriction of h to distinguished
line subbundle 71 C T is positive, zero, or negative ~~

M= M, UM UM-_
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Homogeneous Model
Consider H = SO(n, 1) preserving bilinear form of sig. (n,1) on R"*! and
H-orbit decomposition of the projective sphere G/P = P, (R"1) = S" :
® ray projectivization of null-cone consists of two closed orbits
SO(n,1)/P = S"~1 (conformal spheres)
® one open orbit of pos. rays isomorphic to SO(n,1)/SO(n—1,1)
with induced de Sitter metric
® two open orbits of negative rays isomorphic to SO(n,1)/S0(n) with
induced hyperbolic metric

Geometry on curved orbits
® Moy, the zero set of o, is embedded hypersurface with normal
conformal Cartan geometry of signature (p — 1,9 — 1)

® Einstein metrics of signature (p — 1, q) and (p, g — 1) on open
curved orbits (g = Pap of connection V determined by scale o).
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Metrizability S>7

Question: Is there a metric connection in the projective class?

A special connection V is projectively equivalent to a Levi-Civita
connection iff 3 non-degenerate solution to

trace-free part (V, ") =0, ¢ € T(S2TM)(-2)

(Sinjukov, Mikes)
This is first BGG operator corresponding to V = S2R"*1.

Prolongation connection (Eastwood, Matveev)
¢ ¢ 0
V?r /~Lj _ VIT ,uj + % VV’.le(bkl
p p =2V

Normal non-deg. solutions ¢/* correspond to Einstein metrics
(Armstrong, Cap-Gover-Macbeth)

Bij. correspondence between non-deg. sections of S>*T and of S>T*.
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