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Lecture 2
• Short rewiev

• BGG equations and prolongations

• Fefferman-type constructions

• Holonomy and curved orbit decomposition



Review: Conformal standard tractors

(M, [g ]) conformal manifold. G = SO(p + 1, q + 1), P ⊂ G stabilizer of
null-line ` ∈ Rn+2, n = p + q.

1) Standard tractor bundle and connection
The normal conformal Cartan connection ω ∈ Ω1(G, g) induces a linear
connection ∇T on T = G ×P Rn+2. In the splitting given by choice of g ,

T ∼= E [1]⊕ T ∗M[1]⊕ E [−1]

and

∇Ti

σ
µj

ρ

 =

 ∇iσ − µi

∇iµj + gijρ+ Pijσ
∇iρ+ Pijµ

j

 (1)

Natural projection Π : T → T /T 0 ∼= E [1], (σ, µi , ρ)→ σ



2) Conformal-to-Einstein operator
Now suppose S ∈ Γ(T ) is a parallel tractor,

∇T S = ∇Ti

σ
µj

ρ

 =

 ∇iσ − µi

∇iµj + gijρ+ Pijσ
∇iρ+ Pijµ

j

 = 0.

From the first equ. and the trace of the second equ. we see that

S = (σ,∇iσ,− 1
n (∇j∇jσ − Pj

jσ)) =; D(σ)

Then

∇T D(σ) =

 0
∇i∇jσ + gij(− 1

n (∇k∇kσ − Pk
kσ)) + Pijσ

∗

 = 0.

and σ = Π(S) is a solution to the (conformally invariant) equation

trace-free part(∇a∇bσ + Pabσ) = 0.
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3) Prolonging the Conformal-to-Einstein equation
Conversely, suppose σ is a solution to the linear conformally invariant
operator Θ : Γ(E [1])→ Γ(S2

oT ∗M[1]),

Θ(σ) = trace-free part(∇a∇bσ + Pabσ)

Prolonging the equation  

∇aσ − µa = 0

∇aµb + Pabσ + gabρ = 0

∇aρ− Pa
bµb = 0

Theorem (Le Brun, Gover){
solutions σ to Θ(σ) = 0

} 1−1←→
{

parallel standard tractors ∇T S = 0
}
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Conformal Killing fields
If we start with the conformal adjoint tractor bundle

A = G ×P so(p + 1, q + 1) = TM ⊕ (R⊕ Λ2TM[−2])⊕ T ∗M,

we we are lead to the conformal Killing quation

tracefree part of ∇(akb) = 0

Prolongation  

∇akb − νgab − µab = 0

∇aν − ρa + Pabkb = 0

∇aµbc + 2Pa[bkc] + 2ga[bρc]−Wdabckd = 0

∇aρb + Pc
aµbc + Pabν+Ccabkc = 0

The tractor connection and differs from the prolongation connection by
the Cotton and Weyl terms in blue.



BGG operators

Consider semisimple graded Lie algebra g = g− ⊕ g0 ⊕ g+, p = g0 ⊕ g+
parabolic, and a G -representation on V. Recall that g+ ∼= (g/p)∗.

Let ∂∗ : Λkg+ ⊗ V→ Λk−1g+ ⊗ V, ∂∗ ◦ ∂∗ = 0, be the Lie algebra
homology differential (Kostant Codifferential)

∂∗(Z1 ∧ · · · ∧ Zk ⊗ v) :=
∑
i

(−1)iZ1 ∧ . . . Ẑi · · · ∧ Zk ⊗ Zi · v

+
∑
i,j

(−1)i+j [Zi ,Zj ] ∧ Z1 ∧ . . . Ẑi . . . Ẑj · · · ∧ Zk ⊗ v

The homologies Hk(g+,V) = ker(∂∗)/im(∂∗) are completely reducible
P-representations (P+ acting trivially). Their structure can be
determined using Kostant’s theorem.

H0(g+,V) = V/V0, where V0 = g+ · V is largest P-inv. filtrant.



One can turn the algebraic constructions to geometry:

• Via Cartan connection ΛkT ∗M ⊗ V ∼= G ×P Λkp+ ⊗ V,

• ∂∗ : ΛkT ∗M ⊗ V → Λk−1T ∗M ⊗ V induced bundle maps,

• bundle projections Π : ker(∂∗)→ ker(∂∗)/im(∂∗) := Hk , where

Hk
∼= G ×P Hk(g+,V)

BGG machinery yields sequence of inv. differential operators, called
(curved) BGG-sequences (Čap-Slovák-Souček, Calderbank-Diemer)

Γ(H0)→ Γ(H1)→ Γ(H2)→ . . .

1 Construct natural differential splitting operator characterized by

D : Γ(H0) = Γ(V/V0)→ Γ(V), Π(D(σ)) = σ and ∂∗◦∇V◦D = 0

2 Then define 1st BGG as as

Θ0 = Π ◦ ∇V ◦ D : Γ(H0)→ Γ(H1)
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Let g be complex simple Lie alg. and p ⊂ g a parabolic subalgebra
corresponding to a set of simple roots Σ ⊂ ∆0.

Associate to p is subset W p ⊂W of the Weyl group with induced graph
structure (Hasse diagram): W p ←→W · δp via w 7→ w−1(δp),
where δp is the sum of all fundamental weights corr. to Σ

Elements of length 1 in W p: sαi (λ) = λ− 2〈λ,αi 〉
〈αi ,αi 〉αi for αi ∈ Σ.

Example: g = sl(4,R), Σ = {α1, α2}

× •×1 1 0
× •×

−1 2 0

× •×2
−1 1

× •×1
−2 2

× •×
−2 1 1

× •×2 0 −1

× •×1 0 −2

× •×
−1 −1 2

× •×
−2 2 −1

× •×
−1 1 −2

× •×0
−2 1

× •×0
−1 −1
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Kostant’s Theorem
Let V be an irreducible g-representation (λ highest weight of V∗).

• The irreducible components of the g0-representation Hk(g+,V) are
in bijective correspondence with elements in W p of length k.

• Their highest weights can be determined using the affine Weyl group
action w • λ = w(λ+ δg)− δg (and dualizing).

Example: g = so(3, 4), Σ = {α1}, V = Λ3R7∗

• H0 = Λ2R5∗[3],
0 0 2

• H1 = R5∗ � Λ2R5∗[3],
−2 1 2

,
� denotes the highest weight component in

R5 ⊗ ΛkR5 ∼= Λk−1R5 ⊕ Λk+1R5 ⊕ R5 � ΛkR5

•  conformal Killing operator φab 7→ pr�(∇aφab)



BGG equations

The first operators in BGG sequences define linear overdetermined
systems of PDE.

Examples

• Conformal: conformal-to-Einstein, conformal Killing operators
twistor operator,...

• Projective: Killing type equations, metrizability equation for
projective structures,...

The PDEs are of finite type and can be prolonged to linear connections
on tractor bundles such that solutions to the equation are in bijective
correspondence with parallel sections of the connection.

There are general prolongation procedures (Branson-Čap-Eastwood
-Gover) and in particular one that produces invariant connections on the
associated tractor bundles (Hammerl-Silhan-Somberg-Souceck).



Prolongation Connection
We call the connection ∇pr = ∇V + Φ on the tractor bundle V such that{

solutions to 1st BGG
} 1−1←→

{
tractors S ∈ Γ(V) s.t. ∇prolS = 0

}
prolongation connection.

Normal BGG solutions
If S ∈ Γ(V) is parallel for the (normal) tractor connection, ∇VS = 0,,
then it projects to a solution σ = Π(S) of the 1st BGG equation.

BGG solutions corresponding to parallel tractors are called normal
solutions.

Example
Normal conformal Killing fields are those that in addition satisfy
Wdabckc = 0 and Cdabkd = 0.
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Fefferman-type constructions

Consider hom. spaces G/Q and G̃/P̃, a homomorphism i : G → G̃ s.t.
G -orbit of eP̃ ⊂ G̃/P̃ is open and Q = i−1(P̃).
Given Cartan geometry (G → M, ω) of type (G ,Q),

• extend the structure group G̃ = G ×Q P̃

• let ω̃ ∈ Ω1(G̃, g̃) be unique Cartan connection extending ω.

 Cartan geometry (G̃, ω̃) of type (G̃ , P̃)

Nurowski’s conformal structures
• Recall that G2 ⊂ SO(3, 4) and G2/P ∼= SO(3, 4)/P̃ ∼= P(N ).

• Apply construction to reg., normal parabolic geometry ass. with
(2, 3, 5) distribution  (2, 3, 5) distribution D ⊂ TM determines a
natural conformal structure [gD] of signature (2, 3) on M.

• Moreover, the so obtained conformal parabolic geometry (G̃, ω̃)
turns out to be normal.

• Hence the tractor connections induced by ω resp. ω̃ coincide.
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• Recall: G2 ⊂ SO(3, 4) is stabilizer of a generic 3-form Φ

• It follows that conformal structures associated with (2, 3, 5)
distributions admit tractor 3-form

Φ ∈ Γ(Λ3T ), ∇T Φ = 0,

and thus (decomposable) normal conf. Killing 2-form

φ = Π(Φ) ∈ Γ(Λ2T ∗M[3])

• Nurowski’s conformal structures admit twistor spinors. These
objects can be used to characterize the conformal structures

Fefferman spaces

• related to the inclusion i : SU(n + 1, 1)→ SO(2n + 2, 2).

• produces a Lorentzian conformal structure on a circle bundle over a
partially integrable CR structure of hypersurface type.

• induced conformal geometry is normal iff the original structure was
integrable, i.e., CR.
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Almost Einstein Structures

Let S ∈ Γ(T ), ∇T S = 0, be a conformal parallel standard tractor. Then

S =g (σ,∇aσ,− 1
n (∆σ + Pa

aσ)).

Let h denote the tractor metric,

h(S ,S) =g − 2
nσ(∆σ + Pa

aσ) + g ab∇aσ∇bσ

Then (Gover):

• M0 = {x |σ(x) 6= 0} open and dense and carries an Einstein metric
ĝ = 1

σ2 g whose Einstein constant is neg. multiple of h(S ,S).

• M1 = {x |σ(x) = 0}, h(S ,S) 6= 0: σ, is defining density and M1 an
embedded hypersurface with induced conformal structure.



Cartan holonomy

Recall: We extended the Cartan connection ω to a principal connection ω̃
on G̃ = G ×P G . For G -representation V we defined the tractor
connection ∇V as induced connection on V = G̃ ×G V.

Let H = ker(ω̃) ⊂ T G̃ be the horizontal subbundle. A curve
c̃ : [0, 1]→ G̃ is called horizontal if c̃ ′(t) ∈ Hc̃(t) for all t.

For any loop c : [0, 1]→ M in x ∈ M and point u ∈ G̃x in the fibre, the
horizontal lift c̃u : [0, 1]→ G̃ is the unique horizontal curve such that
π ◦ c̃u = c and c̃u(0) = u.

The holonomy group at u ∈ G̃ is defined as

Holu(ω) := Holu(ω̃) = {g ∈ G | ∃ loop in x such that c̃u(1) = u · g}

The conjugacy class of Holu in G is independent of the chosen point u.

Conjugation does not preserve the subgroup P and the relative position
matters.



Suppose you have a parallel tractor S ∈ Γ(V), ∇VS = 0. It corresponds
to a G -equivariant function f : G̃ → V, which is constant on horizontal
curves.

The image f (G̃) = O ∼= G/H ⊂ V is a G -orbit, called the G -type of S .
(Hol(ω) contained in H.)

For each x ∈ M, the image f (Gx) ⊂ O of the fibre of G is a P-orbit,
called the P-type of S at the point x .

Curved Orbit Decomposition (Čap-Gover-Hammerl)
The manifold M decomposes according to P-types M =

⋃
i∈P\OMi

• The decomposition M = ∪Mi is locally diffeomorphic to the H-orbit
decomposition of G/P.

• The Cartan geometry (G → M, ω) reduces to Cartan geometries
(Gi → Mi , ωi ) of the same type (H,H ∩ Pi ) as in the homogeneous
model (Pi a conjugate of P)
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V ⊃ V0 ⊃ ... ⊃ VN be the P-inv. filtration, proj. Π : V→ V/V0 = H0,
σ = Π(S). Then σ(x) = 0 iff the P-type of S at x is contained in V0 ∩O.
 zero set of σ = Π(S) is union of curved orbits.

Conformal Standard Tractors
G = SO(p + 1, q + 1), P stabilizer of null line `; filtration

T ⊃ T 0 = (T 1)⊥ ⊃ T 1.

Three essentially different G -types:

• h(S ,S) = 1, then H = StabG (s) = SO(p, q + 1),
two P-types: {x : Sx ∈ T 0} and {x : Sx /∈ T 0}

• h(S ,S) = −1, then H = StabG (s) = SO(p + 1, q),
two P-types: {x : Sx ∈ T 0} and {x : Sx /∈ T 0}

• h(S ,S) = 0 then H = StabG (s) = SO(p, q) nRp,q, three P-types:
{x : Sx ∈ T 1}, {x : Sx /∈ T 1 and Sx ∈ T 0} and {x : Sx /∈ T 0}
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Suppose h(S ,S) > 0. Geometric structure:

• On M0: Cartan geometry of type (SO(p, q + 1),SO(p, q)); from
normality of the initial Cartan connection one deduces that one
obtains Einstein metric.

• On M1: normal conformal Cartan geometry of type (SO(p, q + 1),P)

Conformal Tractor 3-form of type G2

Conformal manifold of signature (2, 3) with parallel Φ ∈ Λ3(T ∗) s.t.

H = StabSO(3,4)(Φ) = G2.

Since G2/P ∼= SO(3, 4)/P̃, there is only one P-type and so no non-trivial
curved orbit decomposition. One obtains a reg. normal parabolic
geometry of type (G2,P) on all of M.
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Almost Einstein (2,3,5) distributions
Suppose the conformal manifold is equipped with

• a parallel tractor 3-form Φ ∈ Λ3(T ∗) of type G2

• and a parallel standard tractor S ∈ Γ(T ).

Inserting S into Φ gives parallel tractor 2-form K = ιSΦ ∈ Γ(Λ2T ∗),
which corresponds to normal conformal Killing field ξ = Π(K) ∈ Γ(TM).

There are again three different G -types, and

H = StabG2(s) =

 SL(3,R) iff h(s, s) < 0
SU(1, 2) iff h(s, s) > 0
SL(2) n P+ iff h(s, s) = 0

Geometric structure for h(S ,S) 6= 0:

• open curved orbit M0: (g , ξ) defines a (para-) Sasaki-Einstein
structure of signature (2, 3) (g Einstein metric, ξ is Killing field
satisfying gabξ

aξb = 1 and ∇a∇bξ
c = ε(gabξ

c − δc aξb))

• hypersurface M1: (locally) Fefferman spaces over 3-dim. (para-) CR
manifolds
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