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This will be an introductory lecture

Plan for lecture 1
• Rewiew of parabolic geometries

• Tractor bundles and connections

(Some) literature

• Parabolic Geometries I (Čap-Slovák)

• Thomas’s Structure Bundle for Conformal, Projective and Related
Structures (Bailey, Eastwood, Gover)

• An introduction to conformal geometry and tractor calculus, with a
view to applications in general relativity (Curry, Gover)

• Two constructions with parabolic geometries (Čap)



Example: conformal structures

Conformal structure of signature (p, q) (p + q > 2): equivalence class of
(pseudo-)Riemannian metrics, where

ĝ ∼ g ⇐⇒ ĝ = Ω2g , 0 < Ω ∈ C∞(M).

Homogeneous model: Consider Rn+2 with Lorentzian inner product and
the null-cone

N = {X ∈ Rn+2 \ {0} :
n+1∑
i=1

(x i )2 − (x0)2 = 0}.

The space of lines in N can be identified with the sphere Sn,

π : N → P(N ) ∼= Sn. (1)

Then Sn inherits a well-defined conformal structure [g ]: any section of
(1) determines a metric and different sections lead to conformally related
metrics (the usual round metric arises from the section x0 = 1).
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Example: conformal structures

SO(n + 1, 1) acts linearly on Rn+2 and by isometries, and descends to an
action on P(N ) by conformal transformations, which is transitive. This
leads to an identification

SO(n + 1, 1)/P ∼= P(N ) ∼= Sn,

where P ⊂ SO(n + 1, 1) is the parabolic subgroup stabilizing a null-line
in Rn+2.

For other signatures, the construction is analogous, one obtains

SO(p + 1, q + 1)/P ∼= P(N ) ∼= Sp × Sq/Z2
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Example: (2,3,5) distributions

A (2,3,5) distribution is a rank 2-distribution D ⊂ TM on 5-manifold
such that

[D,D] has constant rank 3 and [D, [D,D]] = TM,

i.e., D is bracket generating in a minimal number of steps.

The Lie algebra of infinitesimal symmetries of the rank 2 distribution
associated with the Hilbert-Cartan equation z ′ = (y ′′)2,

D =
〈
∂x + p∂y + q∂p + q2∂z , ∂q

〉
,

is the exceptional Lie algebra g2
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Example: (2,3,5) distributions

GL(7,R) has two open orbits in Λ3R7∗ with isotropy subgroups compact
G c

2 respectively split G2.

Any Φ ∈ Λ3R7∗ determines bilinear form

HΦ(X ,Y )vol = (XyΦ) ∧ (Y yΦ) ∧ Φ,

which has split signature (3, 4) iff the isotropy subgroup is split G2.
In particular, we have an inclusion

G2 ⊂ SO(3, 4).

Homogeneous model: G2 acts transitively on null-lines and

G2/P ∼= P(N ) ∼= S2 × S3/Z2,

where P ⊂ G2 is stabilizer of null-line ` ⊂ R3,4.
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Parabolic geometries

Consider a semisimple Lie algebra with a grading

g = g−k ⊕ · · · ⊕ g−1︸ ︷︷ ︸
g−

⊕ g0 ⊕ g1 ⊕ · · · ⊕ gk︸ ︷︷ ︸
g+

compatible with the Lie bracket, i.e. [gi , gj ] ⊂ gi+j , and such that g−1

generates g−. Then p = g0 ⊕ g+ is a parabolic subalgebra.

Example: conformal grading

so(n + 1, 1) =


µ Z t 0

Y M −Z
0 −Y t −µ


= g−1 ⊕ g0 ⊕ g1︸ ︷︷ ︸

p

[gi , gj ] ⊂ gi+j
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Parabolic Geometries

Let G be a Lie group and P a closed subgroup. A Cartan geometry
(G, ω) of type (G ,P) is given by

• principal bundle G → M with structure group P and

• Cartan connection, i.e., a P-equivariant 1-form ω ∈ Ω1(G, g) that
maps fundamental vector fields to its generators and defines an
isomorphism ω : TuG → g ∀u ∈ G

Homogeneous model: G → G/P equipped with Maurer Cartan form ω.

A parabolic geometry is a Cartan geometry of type (G ,P), where G is
semisimple and P ⊂ G is parabolic.

Remarks
• Parabolic geometries may have non-trivial automorphisms that equal

the identity to first order in a point.

• They do not determine canonical linear connections on the tangent
bundle of the manifold.
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Parabolic Geometries

A Cartan connection induces an identification

TM ∼= G ×P g/p.

The Curvature of the Cartan connection is the 2-form

κ = dω + 1
2 [ω, ω] ∈ Ω2(G, g).

P-equivariant and horizontal and can thus be equivalently viewed as

κ : G → Λ2(g/p)∗ ⊗ g

The curvature vanishes identically iff the geometry is locally equivalent to
the homogeneous model.



Parabolic geometries

For p ⊂ g parabolic, (g/p)∗ ∼= g+ as P-modules. Define
gi = gi ⊕ gi+1 · · · ⊕ gk . Then (G, ω) is called

• regular if κ(gi , gj) ⊂ gi+j+1 (homogeneity ≥ 1)

• normal if ∂∗κ = 0, where ∂∗ : Λ2g+ ⊗ g→ g+ ⊗ g denotes the Lie
alg. homology differential (Kostant codifferential).

Theorem (Tanaka,...)
Equivalence of categories between{

”underlying structures”
}
←→

{
regular, normal parabolic geometries

}
• In most cases, the ”underlying structures” admit description as

filtered G0-structures and these can be prolonged to Cartan
geometries (see Dennis GRIEG lecture).



Parabolic geometries

• To pass from (G, ω) to ”underlying structures” form

G0 = G/P+,

which has structure group G0
∼= P/P+, and descend the Cartan

connection to a family of partially defined 1-forms. In the conformal
case G0 = CO(p, q) and one recovers the conformal frame bundle.

• A G0-equivariant section ι of G → G0 is called Weyl structure. Then

ι∗ω = ι∗ω− + ι∗ω0 + σ∗ω1 ∈ Ω1(G0, g− ⊕ g0 ⊕ g+).

Then ι∗ω0 is a principal connection, called Weyl connection. In the
conformal case it corresponds to a torsion-free connection ∇
compatible with [g ]. In this case ι∗ω− and ι∗ω+ correspond to the
soldering form θ and Schouten tensor

Pij = 1
(n−2) (Ricij − 1

2(n−1) S gij).



Tractor bundles and connections

Given any P-representation ρ : P → End(V), one can form associated
vector bundles

V = G ×P V.

In general, these do not come with induced linear connections (e.g.
TM ∼= G ×P g/p, and other tensor bundles).

However, if one starts with a G -representation, then there are such
connections.

Examples

• ρ standard representation of matrix group G  standard tractors T
• ρ adjoint representation on g  adjoint tractors A



Tractor bundles and connections

Let (G → M, ω) be a Cartan geometry of type (G ,P). Consider the
extended principal G-bundle

G̃ = G ×P G → M.

∃ unique extension of ω ∈ Ω1(G, g) to principal connection ω̃ ∈ Ω1(G̃, g).

Let ρ : G → End(V) be a representation of G . Then

V = G ×P V = G̃ ×G V→ M

is called a tractor bundle. The principal connection ω̃ induces a linear
connection ∇V , called a tractor connection.



Tractor bundles and connections

Filtration
Any irred. G -representation admits a grading s.t. gi · Vj ⊂ Vi+j , and in
particular a P-invariant filtration  filtration of the corr. tractor bundle:

V ⊃ V0 ⊃ · · · ⊃ VN projection Π : V → V/V0

Example: Conformal standard tractors
Consider standard representation of G = SO(n + 1, 1) on Rn+2, and
T = G ×P Rn+2

• P-inv. filtration Rn+2 ⊃ `⊥ ⊃ `  filtration of T :

T ⊃ T 0 = (T 1)⊥ ⊃ T 1,

• G -inv. 〈, 〉 ∈ S2(Rn+2)∗  tractor metric h ∈ S2T ∗

• Cartan connection induces tractor connection ∇T , and ∇T h = 0.



Tractor bundles and connections

To write (T ,∇T ) explicitly, choose a metric g ∈ [g ] with L.C. connection
∇ (or any Weyl connection). It determines a reduction σ : G0 → G from
P to G0 and thus a splitting of the filtration into a direct sum of bundles
associated to G0:

T ∼= E [1]⊕ T ∗M[1]⊕ E [−1]

S 7→ (σ, µj , ρ)

Changing the metric ĝ = e2f g put Υ = df , then the identification
changes explicitly as follows σ̂

µ̂a

ρ̂

 =

 1 0 0
Υa δba 0

− 1
2 ΥbΥb −Υb 1

 σ
µb

ρ


E [w ] denotes bundle of conformal densities of weight w (choice of metric
g ∈ c trivializes E [w ] and allows to identify densities with functions;
changing the metric, these transform as f̂ = Ωw f ).



Tractor bundles and connections

In the splitting given by g , the tractor connection is

∇Ti

σ
µj

ρ

 =

 ∇iσ − µi

∇iµj + gijρ+ Pijσ
∇iρ+ Pijµ

j

 (2)

∇ L.C. connection, Pij Schouten tensor

Remark
• Can define (T ,∇T ) via (2) and transformation rules. One can

recover (G, ω) from (T ,∇T ).

Now suppose S ∈ Γ(T ) is a parallel tractor, ∇T S = 0. Then from (2) we
see that

S = (σ,∇iσ,− 1
n (∇j∇jσ − Pj

jσ))

and σ is a solution to the equation

trace-free part(∇a∇bσ + Pabσ) = 0.



Tractor bundles and connections

Conformal-to-Einstein operator
linear confor. invariant operator D : Γ(E [1])→ Γ(S2T ∗M ⊗ E [1]),

Θ(σ) = trace-free part(∇a∇bσ + Pabσ)

Nowhere vanishing solutions σ ∈ E+[1] to Θ(σ) = 0 correspond to
Einstein metrics in the conformal class via σ 7→ σ−2g, where g denotes
the conformal metric.

Conversely, prolonging the equation  

∇aσ − µa = 0

∇aµb + Pabσ + gabρ = 0

∇aρ

− Pa
bµb = 0

{
solutions σ to Θ(σ) = 0

} 1−1←→
{

parallel standard tractors ∇T S = 0
}

via a differential splitting operator σ 7→ (σ,∇iσ,− 1
n (∇j∇jσ − Pj

jσ))
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