Constructions with Parabolic Geometries

Katja Sagerschnig

Center for Theoretical Physics, Warsaw
October 1, 2021

This will be an introductory lecture

Plan for lecture 1

- Rewiew of parabolic geometries
- Tractor bundles and connections
(Some) literature
- Parabolic Geometries I (Čap-Slovák)
- Thomas's Structure Bundle for Conformal, Projective and Related Structures (Bailey, Eastwood, Gover)
- An introduction to conformal geometry and tractor calculus, with a view to applications in general relativity (Curry, Gover)
- Two constructions with parabolic geometries (Čap)

Example: conformal structures

Conformal structure of signature $(p, q)(p+q>2)$: equivalence class of (pseudo-)Riemannian metrics, where

$$
\hat{g} \sim g \Longleftrightarrow \hat{g}=\Omega^{2} g, \quad 0<\Omega \in C^{\infty}(M)
$$

Example: conformal structures

Conformal structure of signature $(p, q)(p+q>2)$: equivalence class of (pseudo-)Riemannian metrics, where

$$
\hat{g} \sim g \Longleftrightarrow \hat{g}=\Omega^{2} g, \quad 0<\Omega \in C^{\infty}(M)
$$

Homogeneous model: Consider \mathbb{R}^{n+2} with Lorentzian inner product and the null-cone

$$
\mathcal{N}=\left\{X \in \mathbb{R}^{n+2} \backslash\{0\}: \sum_{i=1}^{n+1}\left(x^{i}\right)^{2}-\left(x^{0}\right)^{2}=0\right\}
$$

The space of lines in \mathcal{N} can be identified with the sphere \mathbb{S}^{n},

$$
\begin{equation*}
\pi: \mathcal{N} \rightarrow \mathbb{P}(\mathcal{N}) \cong \mathbb{S}^{n} \tag{1}
\end{equation*}
$$

Then \mathbb{S}^{n} inherits a well-defined conformal structure $[g]$: any section of (1) determines a metric and different sections lead to conformally related metrics (the usual round metric arises from the section $x^{0}=1$).

Example: conformal structures

$S O(n+1,1)$ acts linearly on \mathbb{R}^{n+2} and by isometries, and descends to an action on $\mathbb{P}(\mathcal{N})$ by conformal transformations, which is transitive. This leads to an identification

$$
S O(n+1,1) / P \cong \mathbb{P}(\mathcal{N}) \cong \mathbb{S}^{n},
$$

where $P \subset S O(n+1,1)$ is the parabolic subgroup stabilizing a null-line in \mathbb{R}^{n+2}.

Example: conformal structures

$S O(n+1,1)$ acts linearly on \mathbb{R}^{n+2} and by isometries, and descends to an action on $\mathbb{P}(\mathcal{N})$ by conformal transformations, which is transitive. This leads to an identification

$$
S O(n+1,1) / P \cong \mathbb{P}(\mathcal{N}) \cong \mathbb{S}^{n},
$$

where $P \subset S O(n+1,1)$ is the parabolic subgroup stabilizing a null-line in \mathbb{R}^{n+2}.

For other signatures, the construction is analogous, one obtains

$$
S O(p+1, q+1) / P \cong \mathbb{P}(\mathcal{N}) \cong \mathbb{S}^{p} \times \mathbb{S}^{q} / \mathbb{Z}_{2}
$$

Example: $(2,3,5)$ distributions

A $(2,3,5)$ distribution is a rank 2-distribution $\mathcal{D} \subset T M$ on 5 -manifold such that
$[\mathcal{D}, \mathcal{D}]$ has constant rank 3 and $\quad[\mathcal{D},[\mathcal{D}, \mathcal{D}]]=T M$,
i.e., \mathcal{D} is bracket generating in a minimal number of steps.

Example: $(2,3,5)$ distributions

A $(2,3,5)$ distribution is a rank 2-distribution $\mathcal{D} \subset T M$ on 5-manifold such that
$[\mathcal{D}, \mathcal{D}]$ has constant rank 3 and $\quad[\mathcal{D},[\mathcal{D}, \mathcal{D}]]=T M$,
i.e., \mathcal{D} is bracket generating in a minimal number of steps.

The Lie algebra of infinitesimal symmetries of the rank 2 distribution associated with the Hilbert-Cartan equation $z^{\prime}=\left(y^{\prime \prime}\right)^{2}$,

$$
\mathcal{D}=\left\langle\partial_{x}+p \partial_{y}+q \partial_{p}+q^{2} \partial_{z}, \partial_{q}\right\rangle
$$

is the exceptional Lie algebra \mathfrak{g}_{2}

Example: $(2,3,5)$ distributions

$G L(7, \mathbb{R})$ has two open orbits in $\Lambda^{3} \mathbb{R}^{7 *}$ with isotropy subgroups compact G_{2}^{c} respectively split G_{2}.

Example: $(2,3,5)$ distributions

$\mathrm{GL}(7, \mathbb{R})$ has two open orbits in $\Lambda^{3} \mathbb{R}^{7 *}$ with isotropy subgroups compact G_{2}^{c} respectively split G_{2}.

Any $\Phi \in \Lambda^{3} \mathbb{R}^{7 *}$ determines bilinear form

$$
\left.\left.H_{\Phi}(X, Y) \mathrm{vol}=(X\lrcorner \Phi\right) \wedge(Y\lrcorner \Phi\right) \wedge \Phi
$$

which has split signature $(3,4)$ iff the isotropy subgroup is split G_{2}. In particular, we have an inclusion

$$
G_{2} \subset S O(3,4) .
$$

Example: $(2,3,5)$ distributions

$\operatorname{GL}(7, \mathbb{R})$ has two open orbits in $\Lambda^{3} \mathbb{R}^{7 *}$ with isotropy subgroups compact G_{2}^{c} respectively split G_{2}.
Any $\Phi \in \Lambda^{3} \mathbb{R}^{7 *}$ determines bilinear form

$$
\left.\left.H_{\Phi}(X, Y) \operatorname{vol}=(X\lrcorner \Phi\right) \wedge(Y\lrcorner \Phi\right) \wedge \Phi
$$

which has split signature $(3,4)$ iff the isotropy subgroup is split G_{2}. In particular, we have an inclusion

$$
G_{2} \subset S O(3,4) .
$$

Homogeneous model: G_{2} acts transitively on null-lines and

$$
G_{2} / P \cong \mathbb{P}(\mathcal{N}) \cong S^{2} \times S^{3} / \mathbb{Z}_{2},
$$

where $P \subset G_{2}$ is stabilizer of null-line $\ell \subset \mathbb{R}^{3,4}$.

Parabolic geometries

Consider a semisimple Lie algebra with a grading

$$
\mathfrak{g}=\underbrace{\mathfrak{g}_{-k} \oplus \cdots \oplus \mathfrak{g}_{-1}}_{\mathfrak{g}_{-}} \oplus \mathfrak{g}_{0} \oplus \underbrace{\mathfrak{g}_{1} \oplus \cdots \oplus \mathfrak{g}_{k}}_{\mathfrak{g}_{+}}
$$

compatible with the Lie bracket, i.e. $\left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right] \subset \mathfrak{g}_{i+j}$, and such that \mathfrak{g}_{-1} generates \mathfrak{g}_{-}. Then $\mathfrak{p}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{+}$is a parabolic subalgebra.

Parabolic geometries

Consider a semisimple Lie algebra with a grading

$$
\mathfrak{g}=\underbrace{\mathfrak{g}_{-k} \oplus \cdots \oplus \mathfrak{g}_{-1}}_{\mathfrak{g}_{-}} \oplus \mathfrak{g}_{0} \oplus \underbrace{\mathfrak{g}_{1} \oplus \cdots \oplus \mathfrak{g}_{k}}_{\mathfrak{g}_{+}}
$$

compatible with the Lie bracket, i.e. $\left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right] \subset \mathfrak{g}_{i+j}$, and such that \mathfrak{g}_{-1} generates \mathfrak{g}_{-}. Then $\mathfrak{p}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{+}$is a parabolic subalgebra.

Example: conformal grading

$$
\begin{array}{rlr}
\mathfrak{s o}(n+1,1) & =\left\{\left(\begin{array}{ccc}
\mu & Z^{t} & 0 \\
Y & M & -Z \\
0 & -Y^{t} & -\mu
\end{array}\right)\right\} & \\
& =\mathfrak{g}_{-1} \oplus \underbrace{\mathfrak{g}_{0} \oplus \mathfrak{g}_{1}} & {\left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right] \subset \mathfrak{g}_{i+j}}
\end{array}
$$

Parabolic Geometries

Let G be a Lie group and P a closed subgroup. A Cartan geometry (\mathcal{G}, ω) of type (G, P) is given by

- principal bundle $\mathcal{G} \rightarrow M$ with structure group P and
- Cartan connection, i.e., a P-equivariant 1 -form $\omega \in \Omega^{1}(\mathcal{G}, \mathfrak{g})$ that maps fundamental vector fields to its generators and defines an isomorphism $\omega: T_{u} \mathcal{G} \rightarrow \mathfrak{g} \forall u \in \mathcal{G}$

Homogeneous model: $G \rightarrow G / P$ equipped with Maurer Cartan form ω.
A parabolic geometry is a Cartan geometry of type (G, P), where G is semisimple and $P \subset G$ is parabolic.

Parabolic Geometries

Let G be a Lie group and P a closed subgroup. A Cartan geometry (\mathcal{G}, ω) of type (G, P) is given by

- principal bundle $\mathcal{G} \rightarrow M$ with structure group P and
- Cartan connection, i.e., a P-equivariant 1 -form $\omega \in \Omega^{1}(\mathcal{G}, \mathfrak{g})$ that maps fundamental vector fields to its generators and defines an isomorphism $\omega: T_{u} \mathcal{G} \rightarrow \mathfrak{g} \forall u \in \mathcal{G}$

Homogeneous model: $G \rightarrow G / P$ equipped with Maurer Cartan form ω.
A parabolic geometry is a Cartan geometry of type (G, P), where G is semisimple and $P \subset G$ is parabolic.

Remarks

- Parabolic geometries may have non-trivial automorphisms that equal the identity to first order in a point.
- They do not determine canonical linear connections on the tangent bundle of the manifold.

Parabolic Geometries

A Cartan connection induces an identification

$$
T M \cong \mathcal{G} \times p \mathfrak{g} / \mathfrak{p} .
$$

The Curvature of the Cartan connection is the 2-form

$$
\kappa=\mathrm{d} \omega+\frac{1}{2}[\omega, \omega] \in \Omega^{2}(\mathcal{G}, \mathfrak{g}) .
$$

P-equivariant and horizontal and can thus be equivalently viewed as

$$
\kappa: \mathcal{G} \rightarrow \Lambda^{2}(\mathfrak{g} / \mathfrak{p})^{*} \otimes \mathfrak{g}
$$

The curvature vanishes identically iff the geometry is locally equivalent to the homogeneous model.

Parabolic geometries

For $\mathfrak{p} \subset \mathfrak{g}$ parabolic, $(\mathfrak{g} / \mathfrak{p})^{*} \cong \mathfrak{g}_{+}$as P-modules. Define $\mathfrak{g}^{i}=\mathfrak{g}_{i} \oplus \mathfrak{g}_{i+1} \cdots \oplus \mathfrak{g}_{k}$. Then (\mathcal{G}, ω) is called

- regular if $\kappa\left(\mathfrak{g}^{i}, \mathfrak{g}^{j}\right) \subset \mathfrak{g}^{i+j+1}$ (homogeneity ≥ 1)
- normal if $\partial^{*} \kappa=0$, where $\partial^{*}: \Lambda^{2} \mathfrak{g}_{+} \otimes \mathfrak{g} \rightarrow \mathfrak{g}_{+} \otimes \mathfrak{g}$ denotes the Lie alg. homology differential (Kostant codifferential).

Theorem (Tanaka,...)
Equivalence of categories between
$\{$ "underlying structures" $\} \longleftrightarrow\{$ regular, normal parabolic geometries $\}$

- In most cases, the "underlying structures" admit description as filtered G_{0}-structures and these can be prolonged to Cartan geometries (see Dennis GRIEG lecture).

Parabolic geometries

- To pass from (\mathcal{G}, ω) to "underlying structures" form

$$
\mathcal{G}_{0}=\mathcal{G} / P_{+},
$$

which has structure group $G_{0} \cong P / P_{+}$, and descend the Cartan connection to a family of partially defined 1-forms. In the conformal case $G_{0}=C O(p, q)$ and one recovers the conformal frame bundle.

- A G_{0}-equivariant section ι of $\mathcal{G} \rightarrow \mathcal{G}_{0}$ is called Weyl structure. Then

$$
\iota^{*} \omega=\iota^{*} \omega_{-}+\iota^{*} \omega_{0}+\sigma^{*} \omega_{1} \in \Omega^{1}\left(\mathcal{G}_{0}, \mathfrak{g}_{-} \oplus \mathfrak{g}_{0} \oplus \mathfrak{g}_{+}\right) .
$$

Then $\iota^{*} \omega_{0}$ is a principal connection, called Weyl connection. In the conformal case it corresponds to a torsion-free connection ∇ compatible with $[g]$. In this case $\iota^{*} \omega_{-}$and $\iota^{*} \omega_{+}$correspond to the soldering form θ and Schouten tensor

$$
P_{i j}=\frac{1}{(n-2)}\left(R i c_{i j}-\frac{1}{2(n-1)} S g_{i j}\right) .
$$

Tractor bundles and connections

Given any P-representation $\rho: P \rightarrow \operatorname{End}(\mathbb{V})$, one can form associated vector bundles

$$
\mathcal{V}=\mathcal{G} \times p \mathbb{V}
$$

In general, these do not come with induced linear connections (e.g. $T M \cong \mathcal{G} \times p \mathfrak{g} / \mathfrak{p}$, and other tensor bundles).
However, if one starts with a G-representation, then there are such connections.

Examples

- ρ standard representation of matrix group $G \rightsquigarrow$ standard tractors \mathcal{T}
- ρ adjoint representation on $\mathfrak{g} \rightsquigarrow$ adjoint tractors \mathcal{A}

Tractor bundles and connections

Let $(\mathcal{G} \rightarrow M, \omega)$ be a Cartan geometry of type (G, P). Consider the extended principal G-bundle

$$
\tilde{\mathcal{G}}=\mathcal{G} \times_{P} G \rightarrow M .
$$

\exists unique extension of $\omega \in \Omega^{1}(\mathcal{G}, \mathfrak{g})$ to principal connection $\tilde{\omega} \in \Omega^{1}(\tilde{\mathcal{G}}, \mathfrak{g})$. Let $\rho: G \rightarrow \operatorname{End}(\mathbb{V})$ be a representation of G. Then

$$
\mathcal{V}=\mathcal{G} \times{ }_{P} \mathbb{V}=\tilde{\mathcal{G}} \times_{G} \mathbb{V} \rightarrow M
$$

is called a tractor bundle. The principal connection $\tilde{\omega}$ induces a linear connection $\nabla^{\mathcal{V}}$, called a tractor connection.

Tractor bundles and connections

Filtration

Any irred. G-representation admits a grading s.t. $\mathfrak{g}_{i} \cdot \mathbb{V}_{j} \subset \mathbb{V}_{i+j}$, and in particular a P-invariant filtration \rightsquigarrow filtration of the corr. tractor bundle:

$$
\mathcal{V} \supset \mathcal{V}^{0} \supset \cdots \supset \mathcal{V}^{N} \quad \text { projection } \Pi: \mathcal{V} \rightarrow \mathcal{V} / \mathcal{V}^{0}
$$

Example: Conformal standard tractors

Consider standard representation of $G=S O(n+1,1)$ on \mathbb{R}^{n+2}, and $\mathcal{T}=\mathcal{G} \times{ }_{P} \mathbb{R}^{n+2}$

- P-inv. filtration $\mathbb{R}^{n+2} \supset \ell^{\perp} \supset \ell \rightsquigarrow$ filtration of \mathcal{T} :

$$
\mathcal{T} \supset \mathcal{T}^{0}=\left(\mathcal{T}^{1}\right)^{\perp} \supset \mathcal{T}^{1}
$$

- G-inv. $\langle,\rangle \in S^{2}\left(\mathbb{R}^{n+2}\right)^{*} \rightsquigarrow$ tractor metric $h \in S^{2} \mathcal{T}^{*}$
- Cartan connection induces tractor connection $\nabla^{\mathcal{T}}$, and $\nabla^{\mathcal{T}} h=0$.

Tractor bundles and connections

To write $\left(\mathcal{T}, \nabla^{\mathcal{T}}\right)$ explicitly, choose a metric $g \in[g]$ with L.C. connection ∇ (or any Weyl connection). It determines a reduction $\sigma: \mathcal{G}_{0} \rightarrow \mathcal{G}$ from P to G_{0} and thus a splitting of the filtration into a direct sum of bundles associated to \mathcal{G}_{0} :

$$
\begin{aligned}
& \mathcal{T} \cong \mathcal{E}[1] \oplus T^{*} M[1] \oplus \mathcal{E}[-1] \\
& S \mapsto\left(\sigma, \mu_{j}, \rho\right)
\end{aligned}
$$

Changing the metric $\hat{g}=e^{2 f} g$ put $\Upsilon=d f$, then the identification changes explicitly as follows

$$
\left(\begin{array}{c}
\hat{\sigma} \\
\hat{\mu_{a}} \\
\hat{\rho}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\Upsilon_{a} & \delta_{a}^{b} & 0 \\
-\frac{1}{2} \Upsilon^{b} \Upsilon_{b} & -\Upsilon^{b} & 1
\end{array}\right)\left(\begin{array}{c}
\sigma \\
\mu_{b} \\
\rho
\end{array}\right)
$$

$\mathcal{E}[w]$ denotes bundle of conformal densities of weight w (choice of metric $g \in \mathrm{c}$ trivializes $\mathcal{E}[w]$ and allows to identify densities with functions; changing the metric, these transform as $\hat{f}=\Omega^{w} f$).

Tractor bundles and connections

In the splitting given by g, the tractor connection is

$$
\nabla_{i}^{\mathcal{T}}\left(\begin{array}{c}
\sigma \tag{2}\\
\mu_{j} \\
\rho
\end{array}\right)=\left(\begin{array}{c}
\nabla_{i} \sigma-\mu_{i} \\
\nabla_{i} \mu_{j}+\mathrm{g}_{i j} \rho+\mathrm{P}_{i j} \sigma \\
\nabla_{i} \rho+\mathrm{P}_{i j} \mu^{j}
\end{array}\right)
$$

∇ L.C. connection, $\mathrm{P}_{i j}$ Schouten tensor

Remark

- Can define $\left(\mathcal{T}, \nabla^{\top}\right)$ via (2) and transformation rules. One can recover (\mathcal{G}, ω) from $\left(\mathcal{T}, \nabla^{\mathcal{T}}\right)$.

Now suppose $S \in \Gamma(\mathcal{T})$ is a parallel tractor, $\nabla^{\mathcal{T}} S=0$. Then from (2) we see that

$$
S=\left(\sigma, \nabla_{i} \sigma,-\frac{1}{n}\left(\nabla^{j} \nabla_{j} \sigma-\mathrm{P}_{j}^{j} \sigma\right)\right)
$$

and σ is a solution to the equation

$$
\operatorname{trace} \text {-free } \operatorname{part}\left(\nabla_{a} \nabla_{b} \sigma+P_{a b} \sigma\right)=0
$$

Tractor bundles and connections

Conformal-to-Einstein operator

 linear confor. invariant operator $D: \Gamma(\mathcal{E}[1]) \rightarrow \Gamma\left(S^{2} T^{*} M \otimes \mathcal{E}[1]\right)$,$$
\Theta(\sigma)=\operatorname{trace} \text {-free } \operatorname{part}\left(\nabla_{a} \nabla_{b} \sigma+P_{a b} \sigma\right)
$$

Nowhere vanishing solutions $\sigma \in \mathcal{E}_{+}[1]$ to $\Theta(\sigma)=0$ correspond to Einstein metrics in the conformal class via $\sigma \mapsto \sigma^{-2} \mathrm{~g}$, where g denotes the conformal metric.

Conversely, prolonging the equation \rightsquigarrow

$$
\begin{aligned}
& \nabla_{a} \sigma-\mu_{a}=0 \\
& \nabla_{a} \mu_{b}+\mathrm{P}_{a b} \sigma+g_{a b} \rho=0 \\
& \nabla_{a} \rho
\end{aligned}
$$

Tractor bundles and connections

Conformal-to-Einstein operator

 linear confor. invariant operator $D: \Gamma(\mathcal{E}[1]) \rightarrow \Gamma\left(S^{2} T^{*} M \otimes \mathcal{E}[1]\right)$,$$
\Theta(\sigma)=\operatorname{trace} \text {-free } \operatorname{part}\left(\nabla_{a} \nabla_{b} \sigma+P_{a b} \sigma\right)
$$

Nowhere vanishing solutions $\sigma \in \mathcal{E}_{+}[1]$ to $\Theta(\sigma)=0$ correspond to Einstein metrics in the conformal class via $\sigma \mapsto \sigma^{-2} \mathrm{~g}$, where g denotes the conformal metric.

Conversely, prolonging the equation \rightsquigarrow

$$
\begin{aligned}
& \nabla_{a} \sigma-\mu_{a}=0 \\
& \nabla_{a} \mu_{b}+\mathrm{P}_{a b} \sigma+g_{a b} \rho=0 \\
& \nabla_{a} \rho-\mathrm{P}_{\mathrm{a}}{ }^{b} \mu_{b}=0
\end{aligned}
$$

Tractor bundles and connections

Conformal-to-Einstein operator

 linear confor. invariant operator $D: \Gamma(\mathcal{E}[1]) \rightarrow \Gamma\left(S^{2} T^{*} M \otimes \mathcal{E}[1]\right)$,$$
\Theta(\sigma)=\operatorname{trace} \text {-free } \operatorname{part}\left(\nabla_{a} \nabla_{b} \sigma+P_{a b} \sigma\right)
$$

Nowhere vanishing solutions $\sigma \in \mathcal{E}_{+}[1]$ to $\Theta(\sigma)=0$ correspond to Einstein metrics in the conformal class via $\sigma \mapsto \sigma^{-2} \mathrm{~g}$, where g denotes the conformal metric.

Conversely, prolonging the equation \rightsquigarrow

$$
\begin{aligned}
& \nabla_{a} \sigma-\mu_{a}=0 \\
& \nabla_{a} \mu_{b}+\mathrm{P}_{a b} \sigma+g_{a b} \rho=0 \\
& \nabla_{a} \rho-\mathrm{P}_{\mathrm{a}}{ }^{b} \mu_{b}=0
\end{aligned}
$$

$\{$ solutions σ to $\Theta(\sigma)=0\} \stackrel{1-1}{\longleftrightarrow}\left\{\right.$ parallel standard tractors $\left.\nabla^{\mathcal{T}} S=0\right\}$ via a differential splitting operator $\sigma \mapsto\left(\sigma, \nabla_{i} \sigma,-\frac{1}{n}\left(\nabla^{j} \nabla_{j} \sigma-\mathrm{P}_{j}^{j} \sigma\right)\right)$

