Frobenius integrability and Cartan geometries

Omid Makhmali

Center for Theoretical Physics
Polish Academy of Sciences
Warsaw

March 7, 2022

GRIEG seminar

Outline of lectures

Lecture one:
(1) Frobenius integrability in 4D conformal structures
(2) Frobenius integrability in 3D conformal structures

Lecture two:
(1) Frobenius integrability in (2,3,5)-geometries
(2) Integrable $(2,3,5)$-geometries from scalar 4th order ODEs

Lecture three:
(1) Parabolic quasi-contact cone structures and quasi-contactification
(2) Frobenius integrability in quasi-contactified structures

Pfaffian systems and Frobenius integrability

Given a subring $I \subset \wedge T^{*} M$, on a manifold M, I is called an (algebraic) ideal if it is closed under wedge product:

$$
\alpha \in I \Rightarrow \alpha \wedge \beta \in I \quad \text { for all } \beta \in \wedge T^{*} M
$$

I is called a differential ideal, or an exterior differential system (EDS), if it is closed under exterior derivative

$$
\mathrm{d} I \subset I
$$

Finding the differential ideal:

$$
I=\langle S\rangle_{a l g} \Rightarrow I_{\text {diff }}=\langle S, \mathrm{~d} S\rangle_{\text {alg }}
$$

An integral manifold of I is a submanifold $f: S \rightarrow M$ s.t. $f^{*} I=0$.
Example : Solutions $y^{\prime \prime}=F\left(x, y, y^{\prime}\right)$ in the space $\left(x, y, y^{\prime}\right)$ are integ curves of
$I=\left\langle\mathrm{d} y-y^{\prime} \mathrm{d} x, \mathrm{~d} y^{\prime}-F\left(x, y, y^{\prime}\right) \mathrm{d} x\right\rangle$ i.e. integral curves of $V=\frac{\partial}{\partial x}+y^{\prime} \frac{\partial}{\partial y}+F \frac{\partial}{\partial y^{\prime}}$

Pfaffian systems and Frobenius Integrability

A Pfaffian system is a diff ideal generated by finitely many 1 -forms. The notation "mod I " or "modulo I " means modulo the ideal I, e.g.

$$
\mathrm{d} I \equiv 0 \bmod I \Longrightarrow I \text { is a differential ideal. }
$$

Theorem (The Frobenius theorem): Let I be a Pfaffian system on an n-dimensional manifold M, s.t I is Frobenius/completely integrable i.e.

$$
I=\left\langle\theta^{1}, \cdots, \theta^{n-k}\right\rangle_{a l g}
$$

for some constant k in a neighborhood of a point $p \in M$. Then there is a local coordinate (x^{1}, \cdots, x^{n}) around p such that

$$
I=\left\langle\mathrm{d} x^{k+1}, \cdots, \mathrm{~d} x^{n}\right\rangle_{\text {alg }} .
$$

The maximal k-dimensional integral manifolds of I are given by

$$
x^{k+1}=\text { const }, \quad \cdots, \quad x^{n}=\text { const. }
$$

4D conformal geometry of signature $(2,2)$

Let $[g]$ be the conformal class of $g=\eta^{0} \eta^{3}-\eta^{1} \eta^{2}$ with sign (2,2).
The solution of the equivalence problem for [g] can be given as
Cartan (parabolic) geometries $(\pi: \mathscr{G} \rightarrow M, \psi)$ of type (SO(3,3) P_{1}) $P_{1}=\mathrm{CO}(2,2) \ltimes \mathrm{N}^{4}$: Stabilizer of a null line in \mathbb{R}^{6} (parabolic subgroup).
\mathscr{G} is the prolongation of the $\operatorname{CO}(2,2)$-bundle of frames on M.
The Cartan connection ψ is $\mathfrak{s p}(3,3)$-valued 1 -form expressed as follows.

4D conformal geometry: structure equations

$$
\psi=\left(\begin{array}{cccccc}
-\phi_{0} & -\xi_{0} & -\xi_{1} & -\xi_{2} & -\xi_{3} & 0 \\
\omega^{0} & -\phi_{1} & \gamma_{1} & \gamma_{2} & 0 & \xi_{3} \\
\omega^{1} & \theta^{1} & -\phi_{2} & 0 & \gamma_{2} & -\xi_{2} \\
\omega^{2} & \theta^{2} & 0 & \phi_{2} & \gamma_{1} & -\xi_{1} \\
\omega^{3} & 0 & \theta^{2} & \theta^{1} & \phi_{1} & \xi_{0} \\
0 & -\omega^{3} & \omega^{2} & \omega^{1} & -\omega^{0} & \phi_{0}
\end{array}\right)
$$

which is $\mathfrak{s v}(3,3)$-valued wrt to

$$
\langle u, w\rangle=u_{1} w_{6}+w_{1} u_{6}+u_{2} w_{5}+w_{2} u_{5}-u_{3} w_{4}-w_{3} u_{4}
$$

The conformal class $[\mathbf{g}]$ of $\mathbf{g}=\omega^{0} \omega^{3}-\omega^{1} \omega^{2} \in S^{2} T^{*} \mathscr{G}$ is well-defined.
For any section $s: M \rightarrow \mathscr{G}$, one has $s^{*} \mathbf{g} \in[g]$.
ω^{i} 's are the lifted coframe i.e. at $u \in \mathscr{G}$ with $u_{0}=h \in \operatorname{CO}(2,2)$

$$
\omega_{u}^{i}=\left(h^{-1}\right)_{j}^{i} \pi^{*} \eta^{j}
$$

4D conformal geometry: structure equations

The curvature 2 -form of the Cartan connection is given by

$$
\Psi:=\mathrm{d} \psi+\psi \wedge \psi=\left(\begin{array}{cccccc}
0 & -\Xi_{0} & -\Xi_{1} & -\Xi_{2} & -\Xi_{3} & 0 \\
0 & -\Phi_{1} & \Gamma_{1} & \Gamma_{2} & 0 & \Xi_{3} \\
0 & \Theta^{1} & -\Phi_{2} & 0 & \Gamma_{2} & -\Xi_{2} \\
0 & \Theta^{2} & 0 & \Phi_{2} & \Gamma_{1} & -\Xi_{1} \\
0 & 0 & \Theta^{2} & \Theta^{1} & \Phi_{1} & \Xi_{0} \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The Weyl curvature and Cotton-York "tensor" of [g] are given by

$$
\begin{aligned}
\Theta^{1} & =-a_{4} \omega^{0} \wedge \omega^{2}-a_{3} \omega^{0} \wedge \omega^{3}-a_{3} \omega^{1} \wedge \omega^{3}-a_{2} \omega^{1} \wedge \omega^{3} \\
\frac{1}{2}\left(\Phi_{2}-\Phi_{1}\right) & =a_{3} \omega^{0} \wedge \omega^{2}+a_{2} \omega^{0} \wedge \omega^{3}+a_{2} \omega^{1} \wedge \omega^{2}+a_{1} \omega^{1} \wedge \omega^{3} \\
\Gamma_{1} & =a_{2} \omega^{0} \wedge \omega^{2}+a_{1} \omega^{0} \wedge \omega^{3}+a_{1} \omega^{1} \wedge \omega^{2}+a_{0} \omega^{1} \wedge \omega^{3} \\
\Theta^{2} & =-b_{4} \omega^{0} \wedge \omega^{1}-b_{3} \omega^{0} \wedge \omega^{3}+b_{3} \omega^{1} \wedge \omega^{2}-b_{2} \omega^{2} \wedge \omega^{3} \\
-\frac{1}{2}\left(\Phi_{1}+\Phi_{2}\right) & =b_{3} \omega^{0} \wedge \omega^{1}+b_{2} \omega^{0} \wedge \omega^{3}-b_{2} \omega^{1} \wedge \omega^{2}+b_{1} \omega^{2} \wedge \omega^{3} \\
\Gamma_{2} & =b_{2} \omega^{0} \wedge \omega^{1}+b_{1} \omega^{0} \wedge \omega^{3}-b_{1} \omega^{1} \wedge \omega^{2}+b_{0} \omega^{2} \wedge \omega^{3} \\
\Xi_{i} & =\frac{1}{2} C_{i j k} \omega^{j} \wedge \omega^{k}, \quad C_{[i j k]}=C_{i j}^{i}=0, C_{i j k}=-C_{i k j}
\end{aligned}
$$

Twistor bundles: \mathbb{S}^{1}-bundles of null planes

A 2-plane $p \subset T_{x} M$ is called null if $\left.g\right|_{p}=0$.

$$
\left.g\right|_{p}=0 \Rightarrow \eta^{0} \eta^{3}-\eta^{1} \eta^{2}=0 \Rightarrow \eta^{0} \eta^{3}=\eta^{1} \eta^{2}
$$

The null cone of g is the indefinite quadric which is doubly ruled. More explicitly, there are two families of null planes
α-planes (ASD) $: \frac{\eta^{0}}{\eta^{1}}=\frac{\eta^{2}}{\eta^{3}}=\alpha \in \mathbb{R} \cup\{\infty\} \Rightarrow p_{\alpha}=\operatorname{ker} I_{\alpha}, I_{\alpha}:=\left\{\eta^{0}-\alpha \eta^{1}, \eta^{2}-\alpha \eta^{3}\right\}$ β-planes (SD): $\frac{\eta^{0}}{\eta^{2}}=\frac{\eta^{1}}{\eta^{3}}=\beta \in \mathbb{R} \cup\{\infty\} \Rightarrow p_{\beta}=\operatorname{ker} I_{\beta}, I_{\beta}:=\left\{\eta^{0}-\beta \eta^{2}, \eta^{1}-\beta \eta^{3}\right\}$.
Similarly, on \mathscr{G} defining

$$
\bar{I}_{\alpha}:=\left\{\omega^{0}-\alpha \omega^{1}, \omega^{2}-\alpha \omega^{3}\right\}, \quad \bar{I}_{\beta}:=\left\{\omega^{0}-\beta \omega^{2}, \omega^{1}-\beta \omega^{3}\right\},
$$

one can regard I_{α} and I_{β} and $s^{*} \bar{I}_{\alpha}$ and $s^{*} \bar{I}_{\beta}$ for some section $s: M \rightarrow \mathscr{G}$. i.e. p_{α}, p_{β} are the projection of corank 2 planes $\bar{p}_{\alpha}=\operatorname{ker} \bar{I}_{\alpha}, \bar{p}_{\beta}=\operatorname{ker} \bar{I}_{\beta}$.

The twistor bundles $\mathscr{N}_{\alpha}\left(\mathscr{N}_{\beta}\right)$ are the \mathbb{S}^{1}-bundles of α-planes(β-planes). We will switch between I and \bar{I} as they will be interchangeable for us.

Twistor bundles from the structure bundle

Affine parameters α and β represent two parameters in $G_{0}=\operatorname{CO}(2,2)$:

$$
G_{0}=\left(\begin{array}{cccc}
\frac{f_{0}}{f_{1}} & g_{1} & g_{2} & g_{1} g_{2} \frac{f_{1}}{f_{1}} \\
t_{1} & \frac{f_{0}}{f_{2}} & t_{1} g_{2} \frac{f_{1}}{f_{0}} & g_{2} \frac{f_{0}}{f_{2}} \\
t_{2} & g_{1} t_{2} \frac{f_{1}}{f_{0}} & f_{0} f_{2} & g_{1} f_{1} f_{2} \\
t_{1} t_{2} \frac{f_{7}}{f_{0}} & t_{2} \frac{f_{2}}{f_{2}} & t_{1} f_{1} f_{2} & f_{0} f_{1}
\end{array}\right)
$$

with Lie algebra

$$
\mathfrak{g}_{0}=\left(\begin{array}{cccc}
\phi_{0}-\phi_{1} & \gamma_{1} & \gamma_{2} & 0 \\
\theta^{1} & \phi_{0}-\phi_{2} & 0 & \gamma_{2} \\
\theta^{2} & 0 & \phi_{0}+\phi_{2} & \gamma_{1} \\
0 & \theta^{2} & \theta^{1} & \phi_{0}+\phi_{1}
\end{array}\right)
$$

Let $A_{g_{1}}$ be the 1 -dimensional subgroup parameterized by g_{1}.
$A_{g_{1}}$ acts on \mathscr{G} and $\psi \rightarrow A_{g_{1}}^{-1} \psi A_{g_{1}}$

$$
\left(\omega^{0}, \omega^{2}\right) \rightarrow\left(\omega^{0}-g_{1} \omega^{1}, \omega^{2}-g_{1} \omega^{3}\right), \quad\left(\omega^{1}, \omega^{3}\right) \rightarrow\left(\omega^{1}, \omega^{3}\right)
$$

So g_{1} parameterizes α-planes. Similarly, g_{2} parameterizes β-planes.

Projective structure on the fibers of the twistor bundles

Consequently, \mathscr{N}_{α} and \mathscr{N}_{β} can be regarded as the leaf space of $\left\langle\omega^{0}, \cdots, \omega^{3}, \gamma_{1}\right\rangle$ and $\left\langle\omega^{0}, \cdots, \omega^{3}, \gamma_{2}\right\rangle$, respectively.

If $1 / \alpha$ and $1 / \beta$ are taken as parameters, one can identify $\mathscr{N}_{1 / \alpha}$ and $\mathscr{N}_{1 / \beta}$ as the leaf space of $\left\langle\omega^{0}, \cdots, \omega^{3}, \theta^{1}\right\rangle$ and $\left\langle\omega^{0}, \cdots, \omega^{3}, \theta^{2}\right\rangle$.

The \mathbb{S}^{1} fibers of \mathscr{N}_{α} and \mathscr{N}_{β} are the integral curves of $I_{\omega}=\left\{\omega^{0}, \cdots, \omega^{3}\right\}$ over which γ_{1} and γ_{2} are a differential.
Using the structure equations modulo I_{ω} one obtains

$$
\mathrm{d} \gamma_{1} \equiv-\left(\phi_{2}-\phi_{1}\right) \wedge \gamma_{1}, \quad \mathrm{~d}\left(\phi_{2}-\phi_{1}\right) \equiv-\gamma_{1} \wedge \theta^{1}, \quad \mathrm{~d} \theta_{1} \equiv\left(\phi_{2}-\phi_{1}\right) \wedge \theta^{1}
$$

i.e. each fiber has a projective structure $\left(\begin{array}{cc}\frac{1}{2}\left(\phi_{1}-\phi_{2}\right) & \theta^{1} \\ \gamma_{1} & -\frac{1}{2}\left(\phi_{1}-\phi_{2}\right)\end{array}\right)$

Simiarly, fibers of \mathscr{N}_{β} have projective structure $\left(\begin{array}{cc}\frac{1}{2}\left(\phi_{1}+\phi_{2}\right) & \theta^{2} \\ \gamma_{2} & -\frac{1}{2}\left(\phi_{1}+\phi_{2}\right)\end{array}\right)$

Tautological rank 2 distribution on the twistor bundles

 \mathscr{N}_{α} has a tautologically induced rank 2 distribution \mathscr{D}.At $p \in \mathscr{N}_{\alpha}, \mathscr{D}_{p}:=$ The horizontal lift of $p \subset T_{x} M$ wrt any Weyl connection.
A coframe $\left\{\zeta^{1}, \zeta^{2}, \zeta^{3}, \eta^{1}, \eta^{3}\right\}$ on \mathscr{N}_{α} adapted to \mathscr{D} is

$$
\zeta^{1}=\eta^{0}-\alpha \eta^{1}, \quad \zeta^{2}=\eta^{2}-\alpha \eta^{3}, \quad \zeta^{3}=\mathrm{d} \alpha-\alpha^{2} \theta^{1}-\alpha\left(\phi_{1}-\phi_{2}\right)+\gamma_{1}
$$

where $\mathscr{D}=\operatorname{ker} I_{\zeta}, I_{\zeta}=\left\langle\zeta^{1}, \zeta^{2}, \zeta^{3}\right\rangle, \mathrm{d} \zeta^{1} \equiv \eta^{1} \wedge \zeta^{3}, \mathrm{~d} \zeta^{2} \equiv \eta^{3} \wedge \zeta^{3} \bmod \left\langle\zeta^{1}, \zeta^{2}\right\rangle$

$$
\mathrm{d} \zeta^{3} \equiv\left(a_{4} \alpha^{4}+4 a_{3} \alpha^{3}+6 a_{2} \alpha^{2}+4 a_{1} \alpha+a_{0}\right) \eta^{1} \wedge \eta^{3} \bmod I_{\zeta}
$$

Wherever $C_{\alpha}=a_{4} \alpha^{4}+4 a_{3} \alpha^{3}+6 a_{2} \alpha^{2}+4 a_{1} \alpha+a_{0} \neq 0, \mathscr{D}$ is $(2,3,5)$.
Alternatively, viewing \mathscr{N}_{α} as leaf space of $\left\langle\omega^{0}, \omega^{1}, \omega^{2}, \omega^{3}, \gamma_{1}\right\rangle$, one has

$$
\mathrm{d} \omega^{0}, \mathrm{~d} \omega^{2} \equiv 0 \quad \mathrm{~d} \gamma_{1} \equiv a_{0} \omega^{1} \wedge \omega^{3}, \quad \bmod \left\langle\omega^{0}, \omega^{2}, \gamma_{1}\right\rangle
$$

$\mathscr{D}:=\operatorname{ker}\left\{\omega^{0}, \omega^{2}, \gamma_{1}\right\}$ is $(2,3,5)$ when $a_{0} \neq 0$ i.e. $\alpha=0$ is not a root of C_{α}. The structure group acts transitively on the roots of C_{α}. The condition $a_{0}=0$ gives additional coframe adaptation $\left.C_{\alpha}\right|_{\alpha=0}=0$.

Coframe on \mathscr{N}_{α} arise from $\psi \rightarrow A_{g_{1}}^{-1} \psi A_{g_{1}}+A_{g_{1}}^{-1} \mathrm{~d} A_{g_{1}}$ using $s: M \rightarrow \mathscr{G}$.

Principal null planes and self-duality

 $p \in \mathscr{N}_{\alpha}$ is principal null plane if \mathscr{D} is not bracket generating at p. Alternatively, $p \in \mathscr{N}_{\alpha}$ is principal if $s^{*} W^{-}\left(\mathscr{D}_{p}\right)=0$, where $s: \mathscr{N}_{\alpha} \rightarrow \mathscr{G}$$$
W^{-}=a_{0}\left(\omega^{1}\right)^{4}+4 a_{1}\left(\omega^{0}\right)\left(\omega^{1}\right)^{3}+6 a_{2}\left(\omega^{0}\right)^{2}\left(\omega^{1}\right)^{2}+4 a_{3}\left(\omega^{0}\right)^{3} \omega^{1}+a_{4}\left(\omega^{0}\right)^{4}
$$

Exercise: W^{-}is not well-defined on \mathscr{N}_{α} but its vanishing set on \mathscr{D} is. Moreover, W^{-}is an invariant weighted quartic on \mathscr{N}_{β}. More explicitly, let

$$
V=f_{0} \partial_{\phi_{0}}+f_{1} \partial_{\phi_{1}}+f_{2} \partial_{\phi_{2}}+g_{2} \partial_{\gamma_{2}}+t_{1} \partial_{\theta^{1}}+t_{2} \partial_{\theta^{2}}+x^{i} \partial_{\xi_{i}}
$$

be an infinitesimal generator of a fiber action in $\mathscr{G} \rightarrow \mathscr{N}_{\alpha}$, then

$$
\mathscr{L}_{V} W^{-}\left(\mathscr{D}_{\alpha}\right)=\left(2\left(f_{2}+f_{1}-f_{0}\right) v_{1}^{4}-4 g_{2} v_{1}^{3} v_{2}\right) C_{\alpha} .
$$

where $\mathscr{D}_{\alpha}=\operatorname{span}\left\{V_{1}, V_{2}\right\}$ with $V_{1}=\nu_{1}\left(\alpha \partial_{\omega^{0}}+\partial_{\omega^{1}}\right), V_{2}=v_{2}\left(\alpha \partial_{\omega^{2}}+\partial_{\omega^{3}}\right)$
[g] is self-dual if $W^{-}=0 \Leftrightarrow$ all α-planes are principal $\Leftrightarrow \mathscr{D}$ is integrable.
Then \mathscr{N}_{α} is foliated by null surfaces parametrized by g_{1}. The quartic W^{+}gives the curvature of the resulting torsion-free path geometry.

Integrability by null surfaces: necessary condition

The existence of an integrable distribution of α-planes means $I_{\alpha_{0}}$ is Frobenius integrable for some $\alpha_{0}: M \rightarrow \mathscr{N}_{\alpha}$. Let us find $\left\langle I_{\alpha_{0}}\right\rangle_{\text {diff }}$:

$$
\begin{equation*}
\mathrm{d} I_{\alpha_{0}} \equiv 0 \bmod I_{\alpha_{0}}=\left\langle\eta^{0}-\alpha_{0} \eta^{2}, \eta^{1}-\alpha_{0} \eta^{3}\right\rangle \Rightarrow \mathrm{d} \alpha_{0} \equiv \alpha_{0}^{2} \theta^{1}+\alpha_{0}\left(\phi_{1}-\phi_{2}\right)-\gamma_{1} \tag{1}
\end{equation*}
$$

$\bmod I_{\alpha_{0}}$. Identify α_{0} with some g_{1} and use $\psi \rightarrow A_{g_{1}}^{-1} \psi A_{g_{1}}+A_{g_{1}}^{-1} \mathrm{~d} A_{g_{1}}$ to get

$$
\gamma_{1} \rightarrow \mathrm{~d} \alpha_{0}-\alpha_{0}^{2} \theta^{1}-\alpha_{0}\left(\phi_{1}-\phi_{2}\right)+\gamma_{1}
$$

i.e. (1) simply means a reduction of γ_{1} for some further adaptation. Another differentiation gives

$$
\left(a_{4} \alpha_{0}^{4}+4 a_{3} \alpha_{0}^{3}+6 a_{2} \alpha_{0}^{2}+4 a_{1} \alpha_{0}+a_{0}\right) \eta^{1} \wedge \eta^{3}=0
$$

Similarly, the existence of a foliation of M by β-surface implies

$$
\begin{aligned}
& \mathrm{d} \beta_{0} \equiv \beta_{0}^{2} \theta^{2}+\beta_{0}\left(\phi_{1}+\phi_{2}\right)-\gamma_{2}, \quad \bmod I_{\beta_{0}} \\
& \left(b_{4} \beta_{0}^{4}+4 b_{3} \beta_{0}^{3}+6 b_{2} \beta_{0}^{2}+4 b_{1} \beta_{0}+b_{0}\right) \eta^{2} \wedge \eta^{3}=0
\end{aligned}
$$

for a section $\beta_{0}: M \rightarrow \mathscr{N}_{\beta}$.

Integrability by null surfaces: sufficient conditions

 Let $\alpha_{0}: \mathscr{G} \rightarrow \mathscr{N}_{\alpha}$ be a principal α-plane s.t. α_{0} is a double root of C_{α}. Define $\mathscr{G}_{1} \subset \mathscr{G}$ such that $\alpha_{0}=0$ i.e.$$
\mathscr{G}_{1}=\left\{u \in \mathscr{G} \mid a_{0}(u)=a_{1}(u)=0\right\}
$$

α-plane for $\alpha=0$ is $\operatorname{ker}\left\{\omega^{0}, \omega^{2}\right\}$ and preserved by $G_{1} \subset G_{0}$ where $g_{1}=0$. We have an $\{e\}$-structure $\left(\pi: \mathscr{G}_{1} \rightarrow M, \psi_{1}\right)$ where $\psi_{1}=\left.\psi\right|_{\gamma_{1}=0}$. To obtain the structure equations find γ_{1} :

$$
\begin{aligned}
& \mathrm{d} a_{0}=a_{0}\left(2 \phi_{0}+2 \phi_{1}-2 \phi_{2}\right)+4 a_{1} \gamma_{1}+a_{0 ; i} \omega^{i} \\
& \mathrm{~d} a_{1}=a_{0} \theta^{1}+a_{1}\left(2 \phi_{0}+\phi_{1}-\phi_{2}\right)+3 a_{2} \gamma_{1}+a_{1 ; i} \omega^{i}
\end{aligned}
$$

Restrict to \mathscr{G}_{1}

$$
\gamma_{1}=-\frac{1}{3 a_{2}} a_{1 ; i} \omega^{i} \equiv \frac{1}{3 a_{2}}\left(C_{113} \omega^{1}+C_{313} \omega^{3}\right) \quad \bmod \left\{\omega^{0}, \omega^{2}\right\}
$$

where $\Xi_{i}=\frac{1}{2} C_{i j k} \omega^{j} \wedge \omega^{k}$.

$$
\Rightarrow \mathrm{d} \omega^{0} \equiv \frac{1}{3 a_{2}} C_{313} \omega^{1} \wedge \omega^{3}, \quad \mathrm{~d} \omega^{2} \equiv-\frac{1}{3 a_{2}} C_{113} \omega^{1} \wedge \omega^{3} \quad \bmod \left\{\omega^{0}, \omega^{2}\right\}
$$

Conformal Goldberg-Sachs theorem

The Cotton-York "tensor" is the \mathbb{R}^{4}-valued 2-form $Y:=\left(\Xi_{0}, \cdots, \Xi_{3}\right)$ and

$$
Y\left(\frac{\partial}{\partial \omega^{1}}, \frac{\partial}{\partial \omega^{3}}\right)=\left(C_{013}, C_{113}, C_{213}, C_{313}\right) .
$$

Restricted to \mathscr{G}_{1} the vanishing of $\left(C_{113}, C_{313}\right)$ is invariantly defined.

Also, there is a unique co-dim 2 subbdle $\mathscr{G}_{3} \subset \mathscr{G}_{1}$ s.t. (C_{013}, C_{213}) is zero.
Theorem (Conformal GS theorem): If $\alpha_{0}: M \rightarrow \mathcal{N}_{\alpha}$ is principal null plane, any two of the following conditions implies the third.
(1) α_{0} is a repeated root of C_{α}.
(2) The Cotton-York tensor is degenerate on α_{0} for some $g \in[g]$.
(3) α_{0} is integrable.

One only needs to show (2) + (3) \rightarrow (1). Proof goes by contradiction. Assume α_{0} is not repeated. Define

$$
\mathscr{G}_{1}=\left\{u \in \mathscr{G} \mid a_{0}(u)=0\right\}
$$

The integrability implies $\gamma_{1} \equiv 0$ modulo $\left\langle\omega^{0}, \omega^{2}\right\rangle$.

Conformal Goldberg-Sachs theorem

Requiring that the Cotton tensor vanishes on $p_{\alpha_{0}}$ results in a unique 4D reduction to $\mathscr{G}_{5} \subset \mathscr{G}_{1}$ in which

$$
\xi_{0}, \xi_{1}, \xi_{2}, \xi_{3} \equiv 0 \bmod \left\langle\omega^{0}, \cdots, \omega^{3}\right\rangle .
$$

Thus one obtains a Weyl structure ($[g]$, , $)$ for which

$$
\operatorname{Ric}_{i j}=\operatorname{Ric}_{(i j)}+\operatorname{Ric}_{[i j]}, \quad \operatorname{Ric}_{[24]}=20 a_{1} .
$$

$\operatorname{Ric}_{[i j]}=0$ implies that the Cotton tensor corresponds to a metric $g \in[g]$. Remarks :
(1) In the direction (1) + (3) \rightarrow (2) one also needs to require $\operatorname{Ric}_{[i j]}=0$ which can always be done.
(2) In the Akivis-Goldberg book (1996) and Grossman's article (Selecta 2000), there is a theorem claiming that (1) \rightarrow (3) in which they only check the necessary conditions!
(3) What are examples of Petrov type I with an α-foliation?

Akivis-Goldberg claim recurrent conformal structures of type I are such examples. However, being recurrent seems to imply that Petrov type cannot be generic (c.f McLenaghan-Leroy 1972).

3D conformal geometry

The conformal geometry of $g=\left(\eta^{2}\right)^{2}-2 \eta^{1} \eta^{3}$ is a Cartan geometry $(\pi: \mathscr{G} \rightarrow M, \psi)$ of type (SO(2,3), P_{1}) for which

$$
\psi=\left(\begin{array}{ccccc}
-\phi_{2} & \xi_{1} & \xi_{2} & \xi_{3} & 0 \\
\omega^{1} & -\phi_{1} & \gamma_{1} & 0 & \xi_{3} \\
\omega^{2} & \theta^{1} & 0 & \gamma_{1} & -\xi_{2} \\
\omega^{3} & 0 & \theta^{1} & \phi_{1} & \xi_{1} \\
0 & \omega^{3} & -\omega^{2} & \omega^{1} & \phi_{2}
\end{array}\right)
$$

which is $\mathfrak{s v}(2,3)$-valued wrt to

$$
\langle u, w\rangle=u_{1} w_{5}+w_{1} u_{5}-u_{2} w_{4}-w_{2} u_{4}+u_{3} w_{3}
$$

The conformal class $[\mathbf{g}]$ of $\mathbf{g}=\left(\omega^{2}\right)^{2}-2 \omega^{1} \omega^{3} \in S^{2} T^{*} \mathscr{G}$ is well-defined and $s^{*} \mathbf{g} \in[g]$ for any section $s: M \rightarrow \mathscr{G}$.

3D conformal geometry: structure equations

The Cartan curvature is given by

$$
\Psi=\mathrm{d} \psi+\psi \wedge \psi=\left(\begin{array}{ccccc}
0 & \Xi_{1} & \Xi_{2} & \Xi_{3} & 0 \\
0 & 0 & 0 & 0 & \Xi_{3} \\
0 & 0 & 0 & 0 & -\Xi_{2} \\
0 & 0 & 0 & 0 & \Xi_{1} \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

where the Cotten-York tensor is an \mathbb{R}^{3}-valued 2-form $\left(\Xi_{1}, \Xi_{2}, \Xi_{3}\right)$

$$
\begin{aligned}
& \Xi_{1}=2 a_{2} \omega^{2} \wedge \omega^{3}-4 a_{3} \omega^{1} \wedge \omega^{3}-4 a_{4} \omega^{1} \wedge \omega^{2} \\
& \Xi_{2}=-2 a_{1} \omega^{2} \wedge \omega^{3}-4 a_{2} \omega^{1} \wedge \omega^{3}-4 a_{3} \omega^{1} \wedge \omega^{2} \\
& \Xi_{3}=-4 a_{0} \omega^{2} \wedge \omega^{3}-2 a_{1} \omega^{1} \wedge \omega^{3}-2 a_{2} \omega^{1} \wedge \omega^{2}
\end{aligned}
$$

The structure algebra and structure group are:

$$
\mathfrak{g}_{0}=\left(\begin{array}{ccc}
\phi_{2}-\phi_{1} & \gamma_{1} & 0 \\
\theta^{1} & \phi_{2} & \gamma_{1} \\
0 & \theta^{1} & \phi_{1}+\phi_{2}
\end{array}\right) \quad G_{0}=\left(\begin{array}{ccc}
\frac{f_{2}}{f_{1}} & g_{1} & \frac{f_{1}}{2 f_{2}} g_{1}^{2} \\
t_{1} & f_{2}+\frac{f_{1}}{2 f_{2}} g_{1} t_{1} & g_{1} f_{1} \\
\frac{f_{1}}{2 f_{2}} t_{1}^{2} & t_{1} f_{1} & f_{1} f_{2}
\end{array}\right)
$$

Integrability by null surfaces: necessary condition

A 2-plane $p \in T_{x} M$ is null if $\operatorname{Ann}(p) \subset T_{x}^{*} M$ is null i.e. $p=\operatorname{ker} \eta_{\alpha}$ where

$$
\eta_{\alpha}=\eta^{1}+\alpha \eta^{2}+\frac{1}{2} \alpha^{2} \eta^{3}, \quad \alpha \in \mathbb{R} \cup\{\infty\} .
$$

If $\alpha_{0}: M \rightarrow \mathscr{N}_{\alpha}$ is integrable then

$$
\mathrm{d} \eta_{\alpha_{0}} \equiv 0 \quad \bmod \eta_{\alpha_{0}} \Rightarrow \mathrm{~d} \alpha_{0}+\frac{1}{2} \alpha_{0}^{2} \theta^{1}-\alpha_{0} \phi_{1}-\gamma_{1}-x_{3}\left(\eta^{2}+\alpha \eta^{3}\right) \equiv 0 \quad \bmod \left\langle\eta_{\alpha_{0}}\right\rangle
$$

for some x_{3}. This is the transformation of γ_{1} under change of gauge $\psi \rightarrow A^{-1} \psi A+A^{-1} \mathrm{~d} A$ arising from the action of the 2D normal subgroup $A=A_{g_{1}, x_{3}} \subset P_{1}$, where $g_{1}=\alpha_{0}$ and g_{1}, x_{3} correspond to conn forms γ_{1}, ξ_{3}. Two more differentiation gives

$$
\begin{aligned}
& \mathrm{d} x_{3}-x_{3}\left(\phi_{2}+\phi_{1}\right)+\alpha_{0} x_{3} \theta^{1}-x_{3}^{2} \eta^{3}+\frac{1}{2} \alpha_{0}^{2} \xi_{1}-\alpha_{0} \xi_{2}+\xi_{3} \equiv 0 \quad \bmod \left\langle\eta_{\alpha_{0}}\right\rangle \\
& \left(a_{4} \alpha_{0}^{4}+4 a_{3} \alpha_{0}^{3}+6 a_{2} \alpha_{0}^{2}+4 a_{1} \alpha_{0}+a_{0}\right) \eta^{2} \wedge \eta^{3}=0
\end{aligned}
$$

The first of which is the change in ξ_{3} after acting by $A_{g_{1}, x_{3}}$.

Twistor bundle of null planes

Let $\mathscr{T} \rightarrow M$ be the 5D leaf space of $\left\langle\omega^{1}, \omega^{2}, \omega^{3}, \gamma_{1}, \xi_{3}\right\rangle$ whose 2D fibers over M is the normal subgroup of P_{1} parametrized by g_{1}, x_{3}.

The parameter g_{1} can be identified with α.
At each point of \mathscr{T}, define adapted coframe $\left\{\zeta_{1}, \zeta_{2}, \zeta_{3}, \eta^{2}, \eta^{3}\right\}$ where

$$
\zeta_{1}=\eta^{1}+\alpha \eta^{2}+\frac{1}{2} \alpha^{2} \eta^{3}, \quad \zeta_{2}=\mathrm{d} \alpha+\cdots, \quad \zeta_{3}=\mathrm{d} x_{3}+\cdots,
$$

\mathscr{T} has a rank 2 distribution $\mathscr{D}=\operatorname{ker} I_{\zeta}, I_{\zeta}:=\left\{\zeta_{1}, \zeta_{2}, \zeta_{3}\right\}$ satisfying

$$
\begin{aligned}
& \mathrm{d} \zeta_{1}, \mathrm{~d} \zeta_{2} \equiv 0, \quad \bmod I_{\zeta} \\
& \mathrm{d} \zeta_{3} \equiv C_{\alpha} \eta^{2} \wedge \eta^{3} \quad \bmod I_{\zeta}, \quad C_{\alpha}=a_{4} \alpha^{4}+4 a_{3} \alpha^{3}+6 a_{2} \alpha^{2}+4 a_{1} \alpha+a_{0}
\end{aligned}
$$

Wherever $C_{\alpha} \neq 0, \mathscr{D}$ has growth $(2,3,4,5)$ for a 4th order ODE. Alternatively, this can be seen form the str eqns for ($\omega^{1}, \omega^{2}, \omega^{3}, \gamma_{1}, \xi_{3}$).
$p_{\alpha} \in \mathscr{N}$ is principal if $C_{\alpha}=0$. If all null planes are principal, $[g]$ is flat.

Integrability by null surfaces: sufficient conditions

 Let C_{α} have type III or N and for $k \geq 2$ and define$$
\mathscr{G}_{1}=\left\{u \in \mathscr{G} \mid a_{0}(u)=\cdots=a_{k}(u)=0\right\} .
$$

This gives a 1D reduction of \mathscr{G}. By $\mathrm{d} a_{2}=0$ and $\mathrm{d}^{2}=0$ for $k=2$ one has

$$
\gamma_{1}=-\frac{1}{a_{3}}\left(a_{3 ; 2}+a_{4 ; 3}\right) \omega^{1}-\frac{1}{2 a_{3}} a_{3 ; 3} \omega^{2} .
$$

One can easily verify modulo $\left\langle\omega^{1}\right\rangle$

$$
\mathrm{d} \omega^{1} \equiv 0, \quad \text { and } \quad \gamma_{1} \equiv 0
$$

because $\mathrm{d}\left(\frac{a_{3 ; 3}}{2 a_{3}}\right) \equiv \frac{a_{3 ; 3}}{2 a_{3}}\left(\phi_{1}+\phi_{2}\right)-\xi_{3} \bmod I_{\omega}$. Similarly for type N.
Proposition : Repeated principal null planes for 3D conformal structure of type III and N are always integrable and the local generality of such structures depends on 3 and 2 functions of 2 variables, respectively.

Type $I I$ and D

For type $I I$ and D the vanishing of one and two scalars are required to ensure integrability. The local generality of such structures is given by 4 functions of 2 variables and 3 constants, respectively. For type D assume there is a double root at 0 and ∞. The str bdle reduces by 2D and the str eqns become a closed system after two prolongations with 8 scalars. Assuming genericity, reduce further to

$$
\begin{gathered}
\mathrm{d} \omega^{1}=0, \quad \mathrm{~d} \omega^{2}=z_{1} \omega^{1} \wedge \omega^{3}, \quad \mathrm{~d} \omega^{3}=z_{2} \omega^{1} \wedge \omega^{3} \\
\mathrm{~d} z_{1}=\frac{2}{3} \omega^{3}+\frac{4}{3} z_{3} \omega^{3}, \quad \mathrm{~d} z_{3}=z_{2} z_{3} \omega^{1}+\frac{1}{2} z_{2} \omega^{3} \\
\mathrm{~d} z_{2}=-\frac{1}{3 z_{1}} z_{3}\left(3 z_{1}^{3}-2 z_{2}-12\right)\left(2 \omega^{1}+\omega^{3}\right) .
\end{gathered}
$$

It can be checked that they have have 2D symmetry i.e.
$\mathscr{L}_{V} \omega^{i}=0 \Rightarrow V=v_{1} \frac{\partial}{\partial \omega^{1}}-2 v_{1} z_{3} \frac{\partial}{\partial \omega^{3}}+v_{2} \frac{\partial}{\partial \omega^{2}}, \quad \mathrm{~d} \nu_{1}=0, \quad \mathrm{~d} v_{2}=-v_{1} z_{1}\left(2 z_{3} \omega^{1}+\omega^{3}\right)$
Such conformal structures depend on 3 constants by an application of the Frobenius theorem:

Frobenius theorem for a closed system

On $M \times \mathbb{R}^{3}$, where $\left(z_{1}, z_{2}, z_{3}\right)$ are coordinates for \mathbb{R}^{3}, define

$$
\left(\omega^{1}, \omega^{2}, \omega^{3}, \zeta_{1}, \zeta_{2}, \zeta_{3}\right)
$$

where

$$
\begin{gathered}
\zeta_{1}=\mathrm{d} z_{1}-\frac{2}{3} \omega^{3}-\frac{4}{3} z_{3} \omega^{3}, \quad \zeta_{3}=\mathrm{d} z_{3}-z_{2} z_{3} \omega^{1}-\frac{1}{2} z_{2} \omega^{3} \\
\zeta_{2}=\mathrm{d} z_{2}+\frac{1}{3 z_{1}} z_{3}\left(3 z_{1}^{3}-2 z_{2}-12\right)\left(2 \omega^{1}+\omega^{3}\right) .
\end{gathered}
$$

By str eqns for ω^{i} 's, the ideal $I_{z}=\left\langle\zeta_{1}, \zeta_{2}, \zeta_{3}\right\rangle$ is Frobenius.

Thus tere is a local coordinate chart in which $I_{z}=\left\langle\mathrm{d} x_{1}, \mathrm{~d} x_{2}, \mathrm{~d} x_{3}\right\rangle$ and the corresponding integrable conformal structures of type D are locally parametrized by

$$
x_{1}=\text { const }, \quad x_{2}=\text { const }, \quad x_{3}=\text { const } .
$$

References

- A. R. Gover, C. D. Hill, and P. Nurowski. Sharp version of the Goldberg-Sachs theorem. Ann. Mat. Pura Appl. (4), 190(2):295340, 2011.
- P. Nurowski and A. Taghavi-Chabert. A Goldberg-Sachs theorem in dimension three. Class. Q. Gravity 32.11 (2015), pp. 115009, 36.
- M. A. Akivis and V. V. Goldberg. Conformal differential geometry and its generalizations. Pure and Applied Mathematics (New York). John Wiley \& Sons Inc., New York, 1996. A WileyInterscience Publication.

