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Outline of lectures

Lecture one:
(1) Frobenius integrability in 4D conformal structures
(2) Frobenius integrability in 3D conformal structures

Lecture two:
(1) Frobenius integrability in (2,3,5)-geometries
(2) Integrable (2,3,5)-geometries from scalar 4th order ODEs

Lecture three:
(1) Parabolic quasi-contact cone structures and quasi-contactification
(2) Frobenius integrability in quasi-contactified structures
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Pfaffian systems and Frobenius integrability
Given a subring I ⊂∧

T∗M , on a manifold M , I is called an (algebraic)
ideal if it is closed under wedge product:

α ∈ I ⇒α∧β ∈ I for all β ∈∧
T∗M

I is called a differential ideal, or an exterior differential system (EDS), if
it is closed under exterior derivative

dI ⊂ I

Finding the differential ideal:

I = 〈S〉alg ⇒ Idiff = 〈S,dS〉alg

An integral manifold of I is a submanifold f : S → M s.t. f ∗I = 0.

Example : Solutions y′′ = F(x,y,y′) in the space (x,y,y′) are integ curves of

I = 〈dy−y′dx,dy′−F(x,y,y′)dx〉 i.e. integral curves of V = ∂
∂x +y′ ∂

∂y +F ∂
∂y′
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Pfaffian systems and Frobenius Integrability
A Pfaffian system is a diff ideal generated by finitely many 1-forms.
The notation “mod I” or “modulo I” means modulo the ideal I , e.g.

dI ≡ 0 mod I =⇒ I is a differential ideal.

Theorem (The Frobenius theorem): Let I be a Pfaffian system on an
n-dimensional manifold M, s.t I is Frobenius/completely integrable i.e.

I = 〈θ1, · · · ,θn−k〉alg

for some constant k in a neighborhood of a point p ∈ M . Then there is a
local coordinate (x1, · · · ,xn) around p such that

I = 〈dxk+1, · · · ,dxn〉alg .

The maximal k-dimensional integral manifolds of I are given by

xk+1 = const, · · · , xn = const.
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4D conformal geometry of signature (2,2)

Let [g] be the conformal class of g = η0η3 −η1η2 with sign (2,2).

The solution of the equivalence problem for [g] can be given as

Cartan (parabolic) geometries (π : G → M ,ψ) of type (SO(3,3),P1)
P1 = CO(2,2)⋉N4: Stabilizer of a null line in R6 (parabolic subgroup).

G is the prolongation of the CO(2,2)-bundle of frames on M.

The Cartan connection ψ is so(3,3)-valued 1-form expressed as follows.
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4D conformal geometry: structure equations

ψ=



−ϕ0 −ξ0 −ξ1 −ξ2 −ξ3 0

ω0 −ϕ1 γ1 γ2 0 ξ3

ω1 θ1 −ϕ2 0 γ2 −ξ2

ω2 θ2 0 ϕ2 γ1 −ξ1

ω3 0 θ2 θ1 ϕ1 ξ0

0 −ω3 ω2 ω1 −ω0 ϕ0


which is so(3,3)-valued wrt to

〈u,w〉 = u1w6 +w1u6 +u2w5 +w2u5 −u3w4 −w3u4

The conformal class [g] of g =ω0ω3 −ω1ω2 ∈ S2T∗G is well-defined.

For any section s : M →G , one has s∗g ∈ [g].

ωi’s are the lifted coframe i.e. at u ∈G with u0 = h ∈ CO(2,2)
ωi

u = (h−1)i
jπ

∗ηj.
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4D conformal geometry: structure equations
The curvature 2-form of the Cartan connection is given by

Ψ := dψ+ψ∧ψ=



0 −Ξ0 −Ξ1 −Ξ2 −Ξ3 0
0 −Φ1 Γ1 Γ2 0 Ξ3

0 Θ1 −Φ2 0 Γ2 −Ξ2

0 Θ2 0 Φ2 Γ1 −Ξ1

0 0 Θ2 Θ1 Φ1 Ξ0

0 0 0 0 0 0


The Weyl curvature and Cotton-York “tensor” of [g] are given by

Θ1 =−a4ω
0 ∧ω2 −a3ω

0 ∧ω3 −a3ω
1 ∧ω3 −a2ω

1 ∧ω3

1
2 (Φ2 −Φ1) = a3ω

0 ∧ω2 +a2ω
0 ∧ω3 +a2ω

1 ∧ω2 +a1ω
1 ∧ω3

Γ1 = a2ω
0 ∧ω2 +a1ω

0 ∧ω3 +a1ω
1 ∧ω2 +a0ω

1 ∧ω3

Θ2 =−b4ω
0 ∧ω1 −b3ω

0 ∧ω3 +b3ω
1 ∧ω2 −b2ω

2 ∧ω3

−1
2 (Φ1 +Φ2) = b3ω

0 ∧ω1 +b2ω
0 ∧ω3 −b2ω

1 ∧ω2 +b1ω
2 ∧ω3

Γ2 = b2ω
0 ∧ω1 +b1ω

0 ∧ω3 −b1ω
1 ∧ω2 +b0ω

2 ∧ω3

Ξi = 1
2 Cijkω

j ∧ωk, C[ijk] = Ci
ij = 0, Cijk =−Cikj
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Twistor bundles: S1-bundles of null planes
A 2-plane p ⊂ TxM is called null if g p = 0.

g|p = 0 ⇒ η0η3 −η1η2 = 0 ⇒ η0η3 = η1η2.

The null cone of g is the indefinite quadric which is doubly ruled.
More explicitly, there are two families of null planes

α-planes (ASD) :η
0

η1 = η2

η3 =α ∈R∪ {∞} ⇒ pα = ker Iα, Iα := {η0 −αη1,η2 −αη3}

β-planes (SD) :η
0

η2 = η1

η3 =β ∈R∪ {∞} ⇒ pβ = ker Iβ, Iβ := {η0 −βη2,η1 −βη3}.

Similarly, on G defining

Īα := {ω0 −αω1,ω2 −αω3}, Īβ := {ω0 −βω2,ω1 −βω3},

one can regard Iα and Iβ and s∗Īα and s∗Īβ for some section s : M →G .
i.e. pα, pβ are the projection of corank 2 planes p̄α = ker Īα, p̄β = ker Īβ.

The twistor bundles Nα (Nβ) are the S1-bundles of α-planes(β-planes).
We will switch between I and Ī as they will be interchangeable for us.
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Twistor bundles from the structure bundle
Affine parameters α and β represent two parameters in G0 = CO(2,2):

G0 =


f0

f1
g1 g2 g1g2

f1

f0

t1
f0

f2
t1g2

f1

f0
g2

f1

f2

t2 g1t2
f1

f0
f0f2 g1f1f2

t1t2
f1

f0
t2

f1

f2
t1f1f2 f0f1


with Lie algebra

g0 =


ϕ0 −ϕ1 γ1 γ2 0

θ1 ϕ0 −ϕ2 0 γ2

θ2 0 ϕ0 +ϕ2 γ1

0 θ2 θ1 ϕ0 +ϕ1


Let Ag1 be the 1-dimensional subgroup parameterized by g1.
Ag1 acts on G and ψ→ A−1

g1
ψAg1

(ω0,ω2) → (ω0 −g1ω
1,ω2 −g1ω

3), (ω1,ω3) → (ω1,ω3)

So g1 parameterizes α-planes. Similarly, g2 parameterizes β-planes.
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Projective structure on the fibers of the twistor bundles
Consequently, Nα and Nβ can be regarded as the leaf space of
〈ω0, · · · ,ω3,γ1〉 and 〈ω0, · · · ,ω3,γ2〉, respectively.

If 1/α and 1/β are taken as parameters, one can identify N1/α and
N1/β as the leaf space of 〈ω0, · · · ,ω3,θ1〉 and 〈ω0, · · · ,ω3,θ2〉.

The S1 fibers of Nα and Nβ are the integral curves of Iω = {ω0, · · · ,ω3}
over which γ1 and γ2 are a differential.
Using the structure equations modulo Iω one obtains

dγ1 ≡−(ϕ2 −ϕ1)∧γ1, d(ϕ2 −ϕ1) ≡−γ1 ∧θ1, dθ1 ≡ (ϕ2 −ϕ1)∧θ1,

i.e. each fiber has a projective structure
 1

2 (ϕ1 −ϕ2) θ1

γ1 −1
2 (ϕ1 −ϕ2)



Simiarly, fibers of Nβ have projective structure
 1

2 (ϕ1 +ϕ2) θ2

γ2 −1
2 (ϕ1 +ϕ2)
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Tautological rank 2 distribution on the twistor bundles
Nα has a tautologically induced rank 2 distribution D .
At p ∈Nα, Dp := The horizontal lift of p ⊂ TxM wrt any Weyl connection.
A coframe {ζ1,ζ2,ζ3,η1,η3} on Nα adapted to D is

ζ1 = η0 −αη1, ζ2 = η2 −αη3, ζ3 = dα−α2θ1 −α(ϕ1 −ϕ2)+γ1

where D = ker Iζ, Iζ = 〈ζ1,ζ2,ζ3〉, dζ1 ≡ η1 ∧ζ3,dζ2 ≡ η3 ∧ζ3 mod 〈ζ1,ζ2〉
dζ3 ≡ (a4α

4 +4a3α
3 +6a2α

2 +4a1α+a0)η1 ∧η3 mod Iζ

Wherever Cα = a4α
4 +4a3α

3 +6a2α
2 +4a1α+a0 , 0, D is (2,3,5).

Alternatively, viewing Nα as leaf space of 〈ω0,ω1,ω2,ω3,γ1〉, one has

dω0,dω2 ≡ 0 dγ1 ≡ a0ω
1 ∧ω3, mod 〈ω0,ω2,γ1〉

D := ker{ω0,ω2,γ1} is (2,3,5) when a0 , 0 i.e. α= 0 is not a root of Cα.
The structure group acts transitively on the roots of Cα.
The condition a0 = 0 gives additional coframe adaptation Cαα=0 = 0.

Coframe on Nα arise from ψ→ A−1
g1
ψAg1 +A−1

g1
dAg1 using s : M →G .
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Principal null planes and self-duality
p ∈Nα is principal null plane if D is not bracket generating at p.
Alternatively, p ∈Nα is principal if s∗W−(Dp) = 0, where s : Nα →G

W− = a0(ω1)4 +4a1(ω0)(ω1)3 +6a2(ω0)2(ω1)2 +4a3(ω0)3ω1 +a4(ω0)4.

Exercise: W− is not well-defined on Nα but its vanishing set on D is.
Moreover, W− is an invariant weighted quartic on Nβ.
More explicitly, let

V = f0∂ϕ0 + f1∂ϕ1 + f2∂ϕ2 +g2∂γ2 + t1∂θ1 + t2∂θ2 +xi∂ξi

be an infinitesimal generator of a fiber action in G →Nα, then

LV W−(Dα) = (2(f2 + f1 − f0)v4
1 −4g2v3

1v2)Cα.

where Dα = span{V1,V2} with V1 = v1(α∂ω0 +∂ω1 ),V2 = v2(α∂ω2 +∂ω3 )

[g] is self-dual if W− = 0 ⇔ all α-planes are principal ⇔D is integrable.

Then Nα is foliated by null surfaces parametrized by g1. The quartic
W+ gives the curvature of the resulting torsion-free path geometry.
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Integrability by null surfaces: necessary condition
The existence of an integrable distribution of α-planes means Iα0 is
Frobenius integrable for some α0 : M →Nα. Let us find 〈Iα0〉diff :

dIα0 ≡ 0 mod Iα0 = 〈η0−α0η
2,η1−α0η

3〉⇒ dα0 ≡α2
0θ

1+α0(ϕ1−ϕ2)−γ1, (1)

mod Iα0 . Identify α0 with some g1 and use ψ→ A−1
g1
ψAg1 +A−1

g1
dAg1 to get

γ1 → dα0 −α2
0θ

1 −α0(ϕ1 −ϕ2)+γ1

i.e. (1) simply means a reduction of γ1 for some further adaptation.
Another differentiation gives

(a4α
4
0 +4a3α

3
0 +6a2α

2
0 +4a1α0 +a0)η1 ∧η3 = 0.

Similarly, the existence of a foliation of M by β-surface implies

dβ0 ≡β2
0θ

2 +β0(ϕ1 +ϕ2)−γ2, mod Iβ0

(b4β
4
0 +4b3β

3
0 +6b2β

2
0 +4b1β0 +b0)η2 ∧η3 = 0

for a section β0 : M →Nβ.
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Integrability by null surfaces: sufficient conditions
Let α0 : G →Nα be a principal α-plane s.t. α0 is a double root of Cα.
Define G1 ⊂G such that α0 = 0 i.e.

G1 = {u ∈G a0(u) = a1(u) = 0}.

α-plane for α= 0 is ker{ω0,ω2} and preserved by G1 ⊂ G0 where g1 = 0.
We have an {e}-structure (π : G1 → M ,ψ1) where ψ1 =ψ|γ1=0.
To obtain the structure equations find γ1 :

da0 =a0(2ϕ0 +2ϕ1 −2ϕ2)+4a1γ1 +a0;iω
i

da1 =a0θ
1 +a1(2ϕ0 +ϕ1 −ϕ2)+3a2γ1 +a1;iω

i

Restrict to G1

γ1 =− 1
3a2

a1;iω
i ≡ 1

3a2
(C113ω

1 +C313ω
3) mod {ω0,ω2}

where Ξi = 1
2 Cijkω

j ∧ωk.

⇒ dω0 ≡ 1
3a2

C313ω
1 ∧ω3, dω2 ≡− 1

3a2
C113ω

1 ∧ω3 mod {ω0,ω2}
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Conformal Goldberg-Sachs theorem
The Cotton-York “tensor” is the R4-valued 2-form Y := (Ξ0, · · · ,Ξ3) and

Y ( ∂
∂ω1 , ∂

∂ω3 ) = (C013,C113,C213,C313).

Restricted to G1 the vanishing of (C113,C313) is invariantly defined.

Also, there is a unique co-dim 2 subbdle G3 ⊂G1 s.t. (C013,C213) is zero.

Theorem (Conformal GS theorem): If α0 : M →Nα is principal null
plane, any two of the following conditions implies the third.
(1) α0 is a repeated root of Cα.

(2) The Cotton-York tensor is degenerate on α0 for some g ∈ [g].
(3) α0 is integrable.
One only needs to show (2)+ (3) → (1). Proof goes by contradiction.
Assume α0 is not repeated. Define

G1 = {u ∈G a0(u) = 0}.

The integrability implies γ1 ≡ 0 modulo 〈ω0,ω2〉.
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Conformal Goldberg-Sachs theorem
Requiring that the Cotton tensor vanishes on pα0 results in a unique 4D
reduction to G5 ⊂G1 in which

ξ0,ξ1,ξ2,ξ3 ≡ 0 mod 〈ω0, · · · ,ω3〉.
Thus one obtains a Weyl structure ([g],∇) for which

Ricij = Ric(ij) +Ric[ij], Ric[24] = 20a1.

Ric[ij] = 0 implies that the Cotton tensor corresponds to a metric g ∈ [g].
Remarks :
(1) In the direction (1)+ (3) → (2) one also needs to require Ric[ij] = 0

which can always be done.
(2) In the Akivis-Goldberg book (1996) and Grossman’s article

(Selecta 2000), there is a theorem claiming that (1) → (3) in which
they only check the necessary conditions!

(3) What are examples of Petrov type I with an α-foliation?
Akivis-Goldberg claim recurrent conformal structures of type I are
such examples. However, being recurrent seems to imply that
Petrov type cannot be generic (c.f McLenaghan-Leroy 1972).
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3D conformal geometry

The conformal geometry of g = (η2)2 −2η1η3 is a Cartan geometry
(π : G → M ,ψ) of type (SO(2,3),P1) for which

ψ=


−ϕ2 ξ1 ξ2 ξ3 0
ω1 −ϕ1 γ1 0 ξ3

ω2 θ1 0 γ1 −ξ2

ω3 0 θ1 ϕ1 ξ1

0 ω3 −ω2 ω1 ϕ2


which is so(2,3)-valued wrt to

〈u,w〉 = u1w5 +w1u5 −u2w4 −w2u4 +u3w3

The conformal class [g] of g = (ω2)2 −2ω1ω3 ∈ S2T∗G is well-defined and
s∗g ∈ [g] for any section s : M →G .
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3D conformal geometry: structure equations
The Cartan curvature is given by

Ψ= dψ+ψ∧ψ=


0 Ξ1 Ξ2 Ξ3 0
0 0 0 0 Ξ3

0 0 0 0 −Ξ2

0 0 0 0 Ξ1

0 0 0 0 0


where the Cotten-York tensor is an R3-valued 2-form (Ξ1,Ξ2,Ξ3)

Ξ1 =2a2ω
2 ∧ω3 −4a3ω

1 ∧ω3 −4a4ω
1 ∧ω2

Ξ2 =−2a1ω
2 ∧ω3 −4a2ω

1 ∧ω3 −4a3ω
1 ∧ω2

Ξ3 =−4a0ω
2 ∧ω3 −2a1ω

1 ∧ω3 −2a2ω
1 ∧ω2.

The structure algebra and structure group are:

g0 =
ϕ2 −ϕ1 γ1 0

θ1 ϕ2 γ1

0 θ1 ϕ1 +ϕ2

 G0 =


f2

f1
g1

f1

2f2
g2

1

t1 f2 + f1

2f2
g1t1 g1f1

f1

2f2
t2

1 t1f1 f1f2
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Integrability by null surfaces: necessary condition
A 2-plane p ∈ TxM is null if Ann(p) ⊂ T∗

x M is null i.e. p = kerηα where

ηα = η1 +αη2 + 1
2α

2η3, α ∈R∪ {∞}.

If α0 : M →Nα is integrable then

dηα0 ≡ 0 mod ηα0 ⇒ dα0+ 1
2α

2
0θ

1−α0ϕ1−γ1−x3(η2+αη3) ≡ 0 mod 〈ηα0〉,

for some x3. This is the transformation of γ1 under change of gauge
ψ→ A−1ψA+A−1dA arising from the action of the 2D normal subgroup
A = Ag1,x3 ⊂ P1, where g1 =α0 and g1, x3 correspond to conn forms γ1, ξ3.
Two more differentiation gives

dx3 −x3(ϕ2 +ϕ1)+α0x3θ
1 −x2

3η
3 + 1

2α
2
0ξ1 −α0ξ2 +ξ3 ≡ 0 mod 〈ηα0〉

(a4α
4
0 +4a3α

3
0 +6a2α

2
0 +4a1α0 +a0)η2 ∧η3 = 0.

The first of which is the change in ξ3 after acting by Ag1,x3 .

Omid Makhmali Frobenius integrability and Cartan geometries 19 / 24



Twistor bundle of null planes
Let T → M be the 5D leaf space of 〈ω1,ω2,ω3,γ1,ξ3〉 whose 2D fibers
over M is the normal subgroup of P1 parametrized by g1,x3.

The parameter g1 can be identified with α.

At each point of T , define adapted coframe {ζ1,ζ2,ζ3,η2,η3} where

ζ1 = η1 +αη2 + 1
2α

2η3, ζ2 = dα+·· · , ζ3 = dx3 +·· · ,

T has a rank 2 distribution D = ker Iζ, Iζ := {ζ1,ζ2,ζ3} satisfying

dζ1,dζ2 ≡ 0, mod Iζ

dζ3 ≡ Cαη
2 ∧η3 mod Iζ, Cα = a4α

4 +4a3α
3 +6a2α

2 +4a1α+a0

Wherever Cα , 0, D has growth (2,3,4,5) for a 4th order ODE.
Alternatively, this can be seen form the str eqns for (ω1,ω2,ω3,γ1,ξ3).

pα ∈N is principal if Cα = 0. If all null planes are principal, [g] is flat.
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Integrability by null surfaces: sufficient conditions
Let Cα have type III or N and for k ≥ 2 and define

G1 = {u ∈G a0(u) = ·· · = ak(u) = 0}.

This gives a 1D reduction of G . By da2 = 0 and d2 = 0 for k = 2 one has

γ1 =− 1
a3

(a3;2 +a4;3)ω1− 1
2a3

a3;3ω
2.

One can easily verify modulo 〈ω1〉

dω1 ≡ 0, and γ1 ≡ 0

because d
(

a3;3

2a3

)
≡ a3;3

2a3
(ϕ1 +ϕ2)−ξ3 mod Iω. Similarly for type N .

Proposition : Repeated principal null planes for 3D conformal
structure of type III and N are always integrable and the local
generality of such structures depends on 3 and 2 functions of 2
variables, respectively.
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Type II and D
For type II and D the vanishing of one and two scalars are required to
ensure integrability. The local generality of such structures is given by
4 functions of 2 variables and 3 constants, respectively.
For type D assume there is a double root at 0 and ∞. The str bdle
reduces by 2D and the str eqns become a closed system after two
prolongations with 8 scalars. Assuming genericity, reduce further to

dω1 = 0, dω2 = z1ω
1 ∧ω3, dω3 = z2ω

1 ∧ω3

dz1 = 2
3ω

3 + 4
3 z3ω

3, dz3 = z2z3ω
1 + 1

2 z2ω
3

dz2 =− 1
3z1

z3(3z3
1 −2z2 −12)(2ω1 +ω3).

It can be checked that they have have 2D symmetry i.e.

LVω
i = 0 ⇒ V = v1

∂
∂ω1 −2v1z3

∂
∂ω3 +v2

∂
∂ω2 , dv1 = 0, dv2 =−v1z1(2z3ω

1+ω3)

Such conformal structures depend on 3 constants by an application of
the Frobenius theorem:
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Frobenius theorem for a closed system

On M ×R3, where (z1,z2,z3) are coordinates for R3, define

(ω1,ω2,ω3,ζ1,ζ2,ζ3)

where
ζ1 = dz1−2

3ω
3 − 4

3 z3ω
3, ζ3 = dz3 −z2z3ω

1 − 1
2 z2ω

3

ζ2 = dz2+ 1
3z1

z3(3z3
1 −2z2 −12)(2ω1 +ω3).

By str eqns for ωi’s, the ideal Iz = 〈ζ1,ζ2,ζ3〉 is Frobenius.

Thus tere is a local coordinate chart in which Iz = 〈dx1,dx2,dx3〉 and the
corresponding integrable conformal structures of type D are locally
parametrized by

x1 = const, x2 = const, x3 = const.
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