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Outline of lectures

Lecture one:
(1) Frobenius integrability in 4D conformal structures
(2) Frobenius integrability in 3D conformal structures

Lecture two:
(1) Frobenius integrability in (2,3,5)-geometries
(2) Integrable (2,3,5)-geometries from scalar 4th order ODEs

Lecture three:
(1) Parabolic quasi-contact cone structures and quasi-contactification
(2) Frobenius integrability in quasi-contactified structures
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Review: Variational 4th order ODE ⇐⇒ (2,3,5)-geometry + infin symm
Scalar 4th ODEs define Cartan geom (G 8 → M5,ψ) of type (GL2⋉R4,B).
(Following Morimoto, Doubrov, Komrakov, Čap, The.)

Their fundamental invariants are four scalars w0,w1,c0,c1.

Furthermore, M5 has an almost conformally quasi-symplectic structure
[ρ],ρ∧ρ , 0 for which the solutions curves are characteristics.

An ACQS structure is conf q-sympl (CQS) if [ρ] has a closed
representative which for 4th order ODEs implies c1 = w1 = 0.

Locally, choosing a symp 2-form ρ0 ∈ [ρ] one has

dρ0 = 0 ⇒ ρ0 = dω4.

On M̃6 = M ×R define ω̃4 = dt +π∗ω⇒ω4 which is quasi-contact on M̃ .
Define G̃ 9 → M̃6 as the pull-back bundle of G 8 → M5. By the scaling
action induced on ω̃4, we lift ω̃4 to G̃ and (ω̃,ψ̃) gives an {e}-str on G̃ for
a Cartan geometry of type (P2,B), where P2 ⊂ G2.
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Review: Variational 4th order ODE ⇐⇒ (2,3,5)-geometry + infin symm

The underlying str of 4th order ODEs is (2,3,4,5)-dist D with a splitting:

g= g−4 ⊕g−3 ⊕g−2 ⊕g−1 ⊕g0 ⊕g1, g−1 = e⊕ f.

g− agrees with the underlying str of regular (G2,P12) truncated at g−5.

Extend G̃ to a (G2,P12) geometry which always descends to a
(2,3,5)-geometry and M̃6 can be viewed as the cone structure
PD → N5.

By viewing g= gl2 ⊕·R4 as a subspace in g̃= g2 we can pull back the
inner product (Killing+involution) to g.

Following Morimoto-Doubrov-Čap-The, use this inner product to obtain
a codifferential operator ∂∗ as the adjoint of the Lie algebra
cohomology diff ∂ to define regular normal Cartan conn.
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Review: Variational 4th order ODE ⇐⇒ (2,3,5)-geometry + infin symm
By this recipe the only modification of the normal Cartan conn of
(2,3,5) pulled-back to G̃ 9 involves the quasi-contact form ω̃4:

ω̃3 =ω3, ω̃2 =ω2, ω̃1 =ω1, θ̃1 = θ1 ω̃0 =ω0 − 3
16 c0ω̃

4,

ϕ̃0 =ϕ0 + 9
64 c0;0ω̃

4, ϕ̃1 =ϕ1 − 9

64
c0;0ω̃

4, ξ̃0 = ξ0 − (
9

32
c0;00 + 1

8
w0;11)ω̃4.

The Cartan quartic is given by

a4 = w0, a3 = 1
4 w0;1, a2 = 1

12 w0;11, a1 = 1
24 w0;111, a0 = 1

24 w0;1111, w0;11111 = 0

where f;1 denotes differentiation along the vertical v.f. wrt PD → N .
Moreover, wrt the conformal metric

g = ω̃4ω̃0 − ω̃1ω̃3 + 4
3 (ω̃2)2

the transversal infinitesimal symmetry ∂
∂ω̃4 is null iff c0 = 0.

If c0 = 0 ⇒ w0,111 = 0 then the (2,3,5)-geom is 3-integrable with null
symmetry and its Cartan quartic has type II.
If c0 = w0;11 = 0 then (2,3,5)-geom has holonomy reduction to P2

with null symmetry and its Cartan quartic has type III.
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Review: Variational 4th order ODE ⇐⇒ (2,3,5)-geometry + infin symm
Conversely, if there is a transv. infin. symm. v then there is reduction of
the (G2,P12) to a (P2,B)-geometry. In particular, choose a q-cont form
s.t. θ(v) = 1. Being transversal infin. symm implies for all w ∈ ker(θ)

0 = θ([v,w]) = dθ(v,w) ⇒ ιvdθ = 0 ⇒Lvdθ = 0 ⇒ dθ =π∗ρ

where ρ ∈
∧2

T∗M is CQS and M is the leaf space of v. Identifying the
q-contact distribution with TM, one can show that D equips M with a
CQS scalar 4th order ODE.

Remarks : Fels showed CQS 4th order ODEs are variational i.e. they
are the EL eqns for a 2nd order Lagrangian L(x,y,y′′).

Following Doubrov-Zelenko treatment (2011) of variational scalar
ODEs of order ≥ 6, divergence equiv classes of Lags L(x,y,y′,y′′) define
(2,3,5)-strs from Monge eqns z′ = L(x,y,y′,y′′) and vice versa.

Ivey showed that there is a one to one correspondence between
variational 4th order ODEs and sub-Finsler strs on contact 3-flds.
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A generalization: Parabolic quasi-contact cone structures

To quasi-contactify 4th order ODEs to (G2,P12) we mainly used
The quasi-contact str [ω̃] on M̃6.

The vertical direction of the cone bundle PD → N are transversal
to the characteristic direction of [ω̃] and give a splitting of g−1.

To generalize this construction define parabolic quasi-contact cone
structures as |k|-graded parabolic geometries s.t.

g−k is 1D and corresponds to a quasi-contact structure.
g−1 has a splitting into an abelian subalgebra of corank 1 and the
characteristic of the the quasi-contact structure.

Using the classification of non-rigid parabolic geometries, parabolic
quasi-contact cone structures are the following.
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Parabolic quasi-contact cone structures

(G2,P12) which descend to (2,3,5)-geometries.
(B3,P23) which descend to (3,6)-geometries.
(Bn,P12),n ≥ 2 i.e. causal structures which can descend to
odd-dimensional conformal or Lie contact structures.
(Dn,P12),n ≥ 4 i.e. causal structures which can descend to
even-dimensional conformal or Lie contact structures.
(D3,P123) i.e. so called XXX-geometries which can descend to 4D
conformal, 3D path, 5D Leg contact, ...

Remarks : Using Doubrov-Zelenko’s notion of bigraded regularity, the
first two cases can represent more general hybrid geometries e.g. in
the case of (G2,P12) the reduced structure can descend to 4th order
ODEs or GL2-structures.
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Parabolic almost conformally quasi-symplectic structures (PACQSS)

Similar to 4th order ODEs, we define parabolic almost conf q-sympl str
(PACQSS) on odd-dimensional manifold as almost conformally
quasi-symplectic structures [ρ] whose underlying structure is that of a
parabolic quasi-contact cone structure truncated at g−k.

g0 of PACQSS coincides with g0 of the corr parab q-cont cone str.
g+ of PACQSS is 1D.

PACQSS are
4th order ODEs under contact equivalence.
Pairs of 3rd order ODEs under contact equivalence.
Orthogonal path geometries i.e path geometries where the
vertical bundle of PTM → M is augmented with a conformal class
of an inner product.
Reduced XXX-geometries.
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Orthogonal path geometries (orthopath geometries)
Now we study 3D CQS orthopath strs by reducing path geometries.
(One can study them à la Morimoto et al.)

Path geometries on S5 is locally modeled on S ⊂PTM → M3 with
Fibration Sx ,→ S → M with 2D fibers. Let span{v1,v2} give the
vertical tangent bundle for S → M .
A line field ℓ= span{v0} transversal to fibers Sx.
A multi-contact structure i.e.

TpS = span{v0,v1,v2, [v0,v1], [v0,v2]}

Let 〈ω0,ω1,ω2〉, 〈ω1,ω2,θ1,θ2〉 be integ Pfaffian systems for Sx and ℓ s.t.

dωa ≡ θa ∧ω0 mod 〈ω1,ω2〉
Their Cartan geometry (G → M ,ψ) is of type (A3,P12) and

ψ=


s ξ0 ξb

ω0 ψ0
0 + s γb

ωa θa ψa
b + sδa

b

 , s =− 1
n+1 (ψ0

0 +ψa
a)
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Orthopath structures
The curvature 2-form is given by (Grossman’s thesis)

dψ+ψ∧ψ=


0 R0 Rb +Cb

0 R0
0 R0

b +C0
b

0 Ra
0 Ra

b +Ca
b


where the harmonic parts are T = Ra

00bω
0 ∧ωa and C = Ca

bcdω
c ∧θd.

An orthopath geom is a path geom augmented by the conf class of
h ∈ Sym2(T∗Sx). Assume h has sign (p,q) i.e. wrt some coframe

h = εabθ
a ◦θb.

Preserving [h] reduces G0 from R×GL2 to R×CO(p,q),p+q = 2.
Remarks : Equivalently, one can define [h̃], h̃ = εabω

a ◦ωb on S where
h ∈ Sym2(Ann(TV ) where V = ℓ⊕Sx.
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CQS orthopath structures
Using εab to raise and lower indices we have

ψa
b −ψ0

0δ
a
b =ϕa

b +σa
b +ϕ1δ

a
b, σab =σba, ϕab =−ϕba

where ϕa
b is co(1,1)-valued and

σab = Fabcθ
c + fabcω

c.

One can further reduce the structure bundle by dim(g+)−1 dimensions
by restricting to coframes wrt which

εabFabc,εabfabc = 0 ⇒ ξa,γa ≡ 0 mod 〈ω0,ωa,θa〉
Now, the ACQS structure [ρ], ρ = εabθ

a ∧ωa is well-defined and has
characteristics along ∂

∂ω0 i.e. the solution curves of the system of
second order ODEs that locally defines the path geometry.

Requiring ρ to be CQS implies, in particular,

Fabc = F(abc), fabc = f(abc), Rab = Rba

where Rab = εabRa
00b is the torsion of the path geometry.
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CQS orthopath structures
This reduction defines CQS orthopath geometries as Cartan geoms
(G → M ,ψ) of type (R4⋊ (GL2 ⊗O(p,q)),B⊗O(p,q)) where B ⊂ GL2 is Borel

ψ=


−ϕ0 +ε ξ0 0

ω0 −ϕ1 +ε 0

ωa θa ϕa
b +εδa

b

 , ε= 1

n+1
(ϕ0 +ϕ1)

and the fundamental invariants are

F = Fabcθ
a ◦θb ◦θc, W = Rabω

a ◦ωb, N = Nabω
a ∧ωb, q = εabQab(ω0)2

F and W are lifted to the harmonic invs of a causal str after quasi-cont.

We quasi-contactify those 3D indefinite orthopath strs that give 4D
indefinite conformal strs i.e. F = 0.

The fund inv are reduced to four scalars R11,R12,N12,q.
If N12 = 0 then such orthopath geometries define 3D projective strs.
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Conformal structures from CQS orthopath geometries

As before, define M̃ =R×M and let ρ0 ∈ [ρ] be a quasi-sympl 2-form:

dρ0 = 0 ⇒ ρ = dω3.

Define ω̃3 = dt +π∗ω3 and G̃ 10 → M̃6 as the pull-back of G 9 → M5. There
is a natural scaling action on ω̃3 using which one can lift ω̃3 to G̃ and
get a coframe (ω̃3,ψ̃=π∗ψ) on G̃ as an {e}-structure for a Cartan
geometry of type (P2,B),P2 ⊂ A3, B ⊂ GL2 is Borel.

M̃6 can be viewed as the sky bundle of [g] where g = ω̃0 ◦ ω̃3 − ω̃1 ◦ ω̃2.

Pulling back the normal Cartan conn for 4D conf str to G̃ 10 we have

ω̃2 =ω2, ω̃1 =ω1, θ̃1 = θ1, θ̃2 = θ2, ω̃0 =ω0 − 1
2 qω̃3.

q = 0 iff the infitesimal symmetry ∂
∂ω̃4 is null.
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Flatness, integrability and holonomy reduction

CQS orthopath strs giving conf strs loc depend on 5 fcns of 3 vars.
When R12 = R11 = 0, then the 4D conformal str is flat. Such
orthopath geometries define torsion-free path geometries and
their local moduli depends on 5 constants.
When q = 0, both SD and ASD Weyl curv have Petrov type I and
there is an integrable distr of ASD and SD null planes with null
symm. The local generality is 4 functions of 3 variables.
When q = N12 = 0, then R11;111,R12;222 = 0 and R11;11, = R12;22, then [g]
is 3-integ with null symm and both SD and ASD Weyl curv have
type II. The local generality is 3 functions of 3 variables.
In particular, 〈ω0〉 is integ as in fiber equivalent classes of ODEs.
When q = N12 = R11;11 = 0 then [g] is 3-integ with null symm, both
SD and ASD Weyl curvs have Petrov type III, with holonomy
reduced to P2. The local generality is 2 functions of 3 variables.
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Flatness, integrability and holonomy reduction
When R11 = 0, then [g] is SD. The local generality is 6 functions of
2 variables.
When R11 = q = 0, then [g] is SD with null symm and the SD Weyl
has no repeated root but there is an integrable distribution of SD
null planes. The local generality is 4 functions of 2 variables.
When R11 = q = N12 = 0, then [g] is SD, 3-integ with null symm and
SD Weyl curv has type III with holonomy reduced to P2. The local
generality is 3 functions of 2 variables.

Remarks : By Dunajski-West construction (when R11 = q = 0) the
orthopath geom descends further to a surface. Calderbank generalized
the construction by not assuming the null vector field to be a symmetry.

Jones-Tod showed all SD conf str with non-null infin. symm. arise from
EW strs plus a solution of generalized monopole eqn. If CSQ implies
being variational, then projective strs defined by EW geoms are
variational, most likely wrt to a generalized Randers metric.
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Orthopath structure on surfaces

Orthopath geometries on surfaces are the most degenerate case.
Being CQS imposes a 2D reduction i.e.−ϕ0 +ε ξ0 ξ1

ω0 −ϕ1 +ε ξ2

ω1 θ1 ε

→
−ϕ0 +ε ξ0 0

ω0 −ϕ1 +ε 0
ω1 θ1 ε

 ,ε= 1

3
(ϕ0 +ϕ1)

The CQS class [ρ] is given by ρ =ω1 ∧θ1.

The fundamental invariants are two scalars

c = c0(ω0)3 ⊗θ1, w = w0(θ1)2.

If w = 0 then CQS orthopath geometries define a subset of fiber
equivalent classes of ODEs which contains Painléve equations.
The local generality of such orthopath strs is 1 function of 2 variables.
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3D causal structures from CQS orthopath surfaces

3D causal strs are parabolic geoms of type (B2,P12), or equivalently,
contact equivalent classes of 3rd order ODEs, have two harmonic invs:
The Wünschmann invariant W and the Cartan invariant C.

The same recipe gives 3D causal str as quasi-contactified 2D
orthopath str on M̃4 =R×M3. The Cartan conn pulled-back to G̃ 7 is

ω̃1 =ω1, θ̃1 = θ1, ω̃0 =ω0 + 1
2 w0ω̃

2,

ϕ̃0 =ϕ0 + 1
2 w0;0ω̃

2, ϕ̃1 =ϕ1, ξ̃0 = ξ0 + 1
2 w0;00ω̃

2

where ω̃2 is the lifted quasi-contact form on G̃ and

W =π∗(w0;1(θ1)3), C =π∗c

In particular, the infitesimal symmetry is null iff w0 = 0.
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Flatness, integrability and holonomy reduction

CQS orthopath geometries locally depend on 1 function of 3 variables.
When w0;1 = c0 = 0, then the 3D conformal str is flat. Such
orthopath geometries define co-projective structures and their
local moduli depends on 3 constants.
When c0 = 0, 3D causal strs descend to contact proj strs. The local
generality is 3 functions of 2 variables.
When w0 = 0, the 3D conformal structure has Petrov type N for the
Cotton-York tensor, and is integrable with holonomy reduced to P2.
The local generality is 1 functions of 2 variables.
CQS orthopath surfaces that are projectively flat satisfy c0 = 0 and
a 2nd order condition on w0. The local generality is 1 functions of
2 variables.
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Variationality of PCQS strs via Griffiths formalism
A variational problem, denoted as (M , I ,ϕ), is the study of the functional

Φ : V (I) →R Φ(γ) =
∫
γ
ϕ

where γ is an integral curve of I and V (I) is the space of smooth
immersions of the integral curves of I into M for a fixed interval (a,b).
Define δΦ(γ) : TγV (I) →R to be a variation of Φ at γ by

δΦ(γ)[v] = d

ds

(∫
γs

ϕ

)
s=0

where γs ∈V (I) is any compactly supported variation of γ with γ0 = γ

and v is the the vartiational vector field for the deformation s → γs.

The Euler-Lagrange equations are the conditions that

δΦ(γ)[v] = 0, ∀v ∈ TγV (I).

Integral curves satisfying EL equations are called extemals of Φ.
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Variationality of PCQS strs via Griffiths formalism
For the variational problem (M , {0},ϕ), γ is an extremal iff

v ⌟ dϕγ = 0,

for any compactly supported variation , because

d

ds

(∫
γs

ϕ

)
s=0 =

∫ a

b
v ⌟ dϕ+d(v ⌟ϕ) =

∫ a

b
v ⌟ dϕ+ϕ(v)|ab =

∫ a

b
v ⌟ dϕ.

Thus the EL system of this variational problem is the Cartan system

C (dϕ) = {v ⌟ dϕ v ∈ C∞
0 (TM)}

and extremals are the characteristic curves of dϕ on M .

If I , {0} Griffiths gives a recipe to lift the variational problem (M , I ,ϕ) to
another variational problem of the form (Z , {0},ζ). The projection of the
extremals of the latter are extremals of the former.
The converse is not necessarily true.
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Variationality of PCQS strs via Griffiths formalism
Question: When do the characteristic curves of a PACQSS arise from
a variational problem in the sense of Griffiths? When it is CQS.

Question: What is the most natural non-degenerate variational
problem with I , {0} for such geometries?

Being CQS 4th order ODEs implies that J1(R,R) has a sub-Finsler
structure given by a 2nd order Lagrangian (Ivey).
Being CQS orhotpath geom implies that the paths are geodesics
of a pseudo-Finsler metric compatible with the degen bilinear form
i.e. 1st order Lagrangian with prescribed vertical Hessian.
Being CQS pair of third order ODEs seems to imply that there is a
degenerate 2nd order Lagrangian whose extremals on J2(R,R2)
are the solution curves. These may be Finslerian conformal
geodesics in 3D. There is more work to be done here.
In the case of reduced XXX-geometry an interpretation is unclear.

Remarks : Alternatively, following Fels’ work, one can solve the
variational multiplier problem for PACQS structures.
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Perspectives and speculations
(1) Find more general notions of contactification and relation to

variational/integrable geometries of other types and versions of
(strong) Goldberg-Sachs and Kerr theorems e.g. having null
symmetry implies integrability and Calderbank’s generalization of
Dunajski-West construction.

(2) Do the class of variational pairs of third order ODEs contain all
conformal geodesics equations in 3D?

(3) Can one extend Doubrov-Zelenko result to “variational” pairs (or
systems) of ODEs and certain rank 3 (or k ≥ 4) distributions?

(4) How to relate EW strs+gen monopole eqns to orthopath
geometries reduced from a SD conf str? Derive the corresponding
pseudo-Finsler (Randers) metric from an EW str+gen monop eqn.

(5) Give examples of cone structures with a transversal infinitesimal
symmetry arising as VMRTs.

(6) Study BGG operators for PCQS structures.
(7) Are the path geometries of Finsler metrics of scalar flag curvature

and constant flag curvatures are equivalent?
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