Frobenius integrability and Cartan geometries

Omid Makhmali

Center for Theoretical Physics Polish Academy of Sciences Warsaw

March 18, 2022

GRIEG seminar

Outline of lectures

Lecture one:

- (1) Frobenius integrability in 4D conformal structures
- (2) Frobenius integrability in 3D conformal structures
 - (2,3,4,5)-distribution on the twistor bundle does not have a splitting, thus, does not define a 4th order ODE.

Lecture two:

- (1) Frobenius integrability in (2,3,5)-geometries
- (2) Integrable (2,3,5)-geometries from scalar 4th order ODEs

Lecture three:

- (1) Parabolic quasi-contact cone structures and quasi-contactification
- (2) Frobenius integrability in quasi-contactified structures

(2,3,5)-distributions as Cartan geometries

A bracket-generating rank 2 dist in 5D has growth vector (2,3,5) and defines a Cartan geometry $(\pi: \mathcal{G} \to M, \psi)$ of type (G_2, P_1) where

$$\psi = \begin{pmatrix} -\frac{2}{3}\phi_0 & \frac{1}{3}\xi_0 & \frac{1}{3}\xi_1 & -\frac{1}{\sqrt{3}}\xi_2 & -\xi_3 & -\xi_4 & 0 \\ \omega^0 & -\frac{1}{3}\phi_0 - \phi_1 & \gamma_1 & -\frac{2}{\sqrt{3}}\xi_1 & \xi_2 & 0 & -\xi_4 \\ \omega^1 & \theta^1 & -\frac{1}{3}\phi_0 + \phi_1 & \frac{2}{\sqrt{3}}\xi_0 & 0 & \xi_2 & \xi_3 \\ \frac{2}{\sqrt{3}}\omega^2 & -\frac{1}{\sqrt{3}}\omega^1 & \frac{1}{\sqrt{3}}\omega^0 & 0 & \frac{2}{\sqrt{3}}\xi_0 & \frac{2}{\sqrt{3}}\xi_1 & -\frac{1}{\sqrt{3}}\xi_2 \\ \omega^3 & -\frac{1}{3}\omega^2 & 0 & \frac{1}{\sqrt{3}}\omega^0 & \frac{1}{3}\phi_0 - \phi_1 & \gamma_1 & -\frac{1}{3}\xi_1 \\ \omega^4 & 0 & -\frac{1}{3}\omega^2 & \frac{1}{\sqrt{3}}\omega^1 & \theta^1 & \frac{1}{3}\phi_0 + \phi_1 & \frac{1}{3}\xi_0 \\ 0 & \omega^4 & -\omega^3 & \frac{2}{\sqrt{3}}\omega^2 & -\omega^1 & \omega^0 & \frac{2}{3}\phi_0 \end{pmatrix}$$

 $\subset \mathfrak{so}(3,4)$ wrt $\langle u, w \rangle = u_1 w_7 + u_7 w_1 - u_2 w_6 - u_6 w_2 + u_3 w_5 + u_5 w_3 - u_4 w_4.$

The harmonic invariant is the so-called Cartan quartic $\mathbf{A} \subset \text{Sym}^4(\mathscr{D}^*)$

$$\mathbf{A} = a_4(\omega^0)^4 + 4a_3(\omega^0)^3\omega^1 + 6a_2(\omega^0)^2(\omega^1)^2 + 4a_1\omega^0(\omega^1)^3 + a_0(\omega^1)^4$$

(2,3,5)-geometries: structure equations One also has the *ternary quartic* $[T] \subset Sym^4(\partial \mathscr{D})^*$ defined as

$$\mathbf{T} = \mathbf{A} + \mathbf{B}\omega^{2} + \mathbf{C}(\omega^{2})^{2} + \mathbf{D}(\omega^{2})^{3} + e(\omega^{2})^{4},$$

$$\mathbf{B} = b_{3}(\omega^{0})^{3} + 3b_{2}(\omega^{0})^{2}(\omega^{1}) + 3b_{1}\omega^{0}(\omega^{1})^{2} + b_{0}(\omega^{1})^{3},$$

$$\mathbf{C} = c_{2}(\omega^{0})^{2} + 2c_{1}\omega^{0}\omega^{1} + c_{0}(\omega^{1})^{2},$$

$$\mathbf{D} = d_{1}\omega^{0} + d_{0}\omega^{1}$$

The str group G_0 and its Lie algebra \mathfrak{g}_0 acting on $\{\omega^4, \dots, \omega^0\}^\top$ is

$$G_{0} = \begin{pmatrix} \Delta_{0}f_{1} & \Delta_{0}t_{1} & 0 & 0 & 0\\ \Delta_{0}g_{1} & \Delta_{0}f_{2} & 0 & 0 & 0\\ \Delta_{0}x_{1} & \Delta_{0}x_{0} & \Delta_{0} & 0 & 0\\ f_{1}x_{2} + \Delta_{1}x_{1} & t_{1}x_{2} + \Delta_{1}x_{0} & 2\Delta_{1} & f_{1} & t_{1}\\ g_{1}x_{2} + \Delta_{2}x_{1} & f_{2}x_{2} + \Delta_{2}x_{0} & 2\Delta_{2} & g_{1} & f_{2} \end{pmatrix} \subset CO(2,3),$$

where $\Delta_0 = f_1 f_2 - g_1 t_1$, $\Delta_1 = \frac{2}{3}(f_1 x_0 - t_1 x_1)$ and $\Delta_2 = \frac{2}{3}(g_1 x_0 - f_2 x_1)$, and

$$\mathfrak{g}_{0} = \begin{pmatrix} \phi_{0} + \phi_{1} & \theta^{1} & 0 & 0 & 0 \\ \gamma_{1} & \phi_{0} - \phi_{1} & 0 & 0 & 0 \\ \xi_{1} & \xi_{0} & \frac{2}{3}\phi_{0} & 0 & 0 \\ \xi_{2} & 0 & \frac{4}{3}\xi_{0} & \frac{1}{3}\phi_{0} + \phi_{1} & \theta^{1} \\ 0 & \xi_{2} & -\frac{4}{3}\xi_{1} & \gamma_{1} & \frac{1}{3}\phi_{0} - \phi_{1} \end{pmatrix} \subset \mathfrak{co}(2,3),$$

wrt to the inner product $\langle u, w \rangle = u_1 w_5 + u_5 w_1 - u_2 w_4 - u_4 w_2 + \frac{4}{3} u_3 w_3$

Omid Makhmali

3D Twistor correspondence

The projectivized null cone $\mathscr{C} \subset \mathbb{P}TM$ of the conformal str [g] where

$$g = \omega^0 \circ \omega^4 - \omega^1 \circ \omega^3 + \frac{2}{3}\omega^2 \circ \omega^2$$

at each point is the 3D indefinite quadric

$$\mathscr{C}_x = \{ [v] \in \mathbb{P} T_x M \mid g(v, v) = 0 \}$$

Thus, a null plane in $T_x M$ is a null line in \mathscr{C}_x . Recall the double fibration

$$SO^{+}(2,3)/P_{1} \cong \mathbb{Q}^{3} \xleftarrow{\ell} \mathbb{F} \xrightarrow{\nu} \mathbb{G}_{0}^{3} \cong SO^{+}(2,3)/P_{2}$$

$$\exists I \qquad \exists I \qquad \exists I$$

$$Sp(4)/\tilde{P}_{2} \cong \mathbb{L}^{3} \qquad \mathbb{P}^{3} \cong Sp(4)/\tilde{P}_{1}$$

 $\mathbb{L}^3 \cong \mathbb{Q}^3$ is via Plücker embedding $Gr(2,4) \hookrightarrow \mathbb{P}(\wedge^2 \mathbb{R}^4)$ i.e. define (\mathbb{R}^4, ρ)

$$\rho = \rho_1 \wedge \rho_4 + \frac{4}{3}\rho_2 \wedge \rho_3, \quad \bigwedge_0^2 \mathbb{R}^4 = \{z \in \bigwedge^2 \mathbb{R}^4 \mid \rho(z) = 0\}$$

Then $\mathbb{Q}^3 \subset \mathbb{P} \wedge_0^2 \mathbb{R}^4$ is the null cone of $\langle \cdot, \cdot \rangle$ defined as

$$\langle z_1, z_2 \rangle = -(\rho \wedge \rho)(z_1 \wedge z_2).$$

(2,3,5)-geometries and their space of null planes Take the basis $\{e_i\}_{i=1}^4$ and $\{v_i\}_{i=1}^5$ for (\mathbb{R}^4, ρ) and $\bigwedge_0^2 \mathbb{R}^4$

 $V_1 = e_1 \wedge e_3$, $V_2 = e_1 \wedge e_2$, $V_3 = \frac{\sqrt{3}}{3}e_1 \wedge e_4 - \frac{\sqrt{3}}{4}e_2 \wedge e_3$, $V_4 = e_3 \wedge e_4$, $V_5 = e_2 \wedge e_4$ one finds the isomorphism ϕ : $\mathfrak{sp}(4) \to \mathfrak{so}(2,3)$

$$\boldsymbol{\phi} \begin{pmatrix} s_1 & s_2 & t_2 & t_3 \\ s_3 & s_4 & t_1 & \frac{4}{3}t_2 \\ r_2 & r_1 & -s_4 & -\frac{4}{3}s_2 \\ r_3 & \frac{4}{3}r_2 & -\frac{4}{3}s_3 & -s_1 \end{pmatrix} = \begin{pmatrix} s_1 + s_4 & t_1 & 2t_2 & 2t_3 & 0 \\ r_1 & s_1 - s_4 & -2s_2 & 0 & 2t_3 \\ r_2 & -s_3 & 0 & -\frac{3}{2}s_2 & -\frac{3}{2}t_2 \\ \frac{1}{2}r_3 & 0 & -\frac{4}{3}s_3 & -s_1 + s_4 & t_1 \\ 0 & \frac{1}{2}r_3 & -\frac{4}{3}r_2 & r_1 & -s_1 - s_4 \end{pmatrix}$$

with respect to matrices

$$\mathbf{r} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & \frac{4}{3} & 0 \\ 0 & -\frac{4}{3} & 0 & 0 \\ -1 & 0 & 0 & 0 \end{pmatrix} \qquad \mathbf{h} = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & \frac{4}{3} & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Bundle of null planes

In the double fibration define

$$\mathbb{L}^3 \cong \mathbb{Q}^3 \xleftarrow{\ell} \mathbb{F} \xrightarrow{\nu} \mathbb{G}_0^3 \cong \mathbb{P}^3, \quad \hat{p} = v \circ \ell^{-1}(p) \subset \mathbb{P}^3, \quad \tilde{v} = \ell \circ v^{-1}(v) \subset \mathbb{Q}^3,$$

 $p_1, p_2 \in \mathbb{Q}^3$ are *null-separated* if they lie on a null line $v \subset \mathbb{Q}^3 \Rightarrow \hat{p}_1 \cap \hat{p}_1 = \hat{v}$

 $v_1, v_2 \in \mathbb{P}^3$ are *contact-sep.* if are on a contact line $p \subset \mathbb{P}^3 \Rightarrow \tilde{v}_1 \cap \tilde{v}_2 = \tilde{p}$

Given a null line $v = [z] \in \mathbb{P}^3$, then $\tilde{v} = [z \land w] \subset \mathbb{Q}^3$ where $w = z^{\perp}$ e.g. the 2-plane corresponding to $[e_4]$ is

$$[e_4 \land e_4^{\perp}] = [e_4 \land (\mu_2 e_2 + \mu_3 e_3 + \mu_4 e_4)] = \operatorname{span}\{\mathsf{V}_4, \mathsf{V}_5\} = \mathscr{D}$$

These are 3D analogues of incident relations in classical twistor theory. (c.f. Ward-Wells, *Twistor geometry and field theory*,1991)

Bundle of null planes

Recall that $g_0 \subset \mathfrak{co}(2,3)$, and

$$\phi(\mathfrak{g}_0 \cap \mathfrak{so}(2,3)) = \begin{pmatrix} \frac{1}{3}\phi_0 & 0 & 0 & 0\\ -\xi_0 & \phi_1 & \theta^1 & 0\\ \xi_1 & \gamma_1 & -\phi_1 & 0\\ 2\xi_2 & \frac{4}{3}\xi_1 & \frac{4}{3}\xi_0 & -\frac{1}{3}\phi_0 \end{pmatrix} \subset \mathfrak{sp}(4).$$

Proposition : The space of null planes at each point of a (2,3,5)-geometry is equipped with an *invariant flag*

$$\{p_0\} \subset \mathbb{P}^2 \subset \mathbb{P}^3$$
,

and G_0 acts transitively on $\mathbb{P}^3 \setminus \mathbb{P}^2$ and $\mathbb{P}^2 \setminus \{p_0\}$, where $p_0 = [e_4] \in \mathbb{P}^3$ is the rank 2 dist \mathscr{D} and $\mathbb{P}^2 = \operatorname{span}\{[e_2], [e_3], [e_4]\}$ is the 2D space of null planes with non-empty intersection with \mathscr{D} i.e. contact-separated from \mathscr{D} .

Twistor bundle \mathcal{N} as \mathbb{P}^2 -bundle of special null planes

Let $[\lambda_0: \lambda_1: \lambda_2: \lambda_3]$ be homog coords on \mathbb{P}^3 . Let \mathbb{P}^2 be represented by $[\lambda_1e_2 + \lambda_2e_3 - 2\sqrt{2}\lambda_3e_4]$ then the corresponding null planes are

$$p = Z \wedge (\lambda_1 e_2 + \lambda_2 e_3 - 2\sqrt{2}\lambda_3 e_4), \qquad \rho(p) = 0 \Rightarrow \frac{3\sqrt{2}}{2}z_1\lambda_3 - z_2\lambda_2 + z_3\lambda_1 = 0$$

Working on the *affine chart* $\lambda_2 = 1$, one obtains

$$Z = t_1 e_1 + \frac{3\sqrt{2}}{2} t_1 \lambda_3 e_2 - t_2 e_4,$$

for two param t_1 and t_2 , and p corresponds to span{ V_1, V_2 } where

$$V_1 = V_1 + \lambda_1 V_2 - 3\lambda_3 V_3 - 6\lambda_3^2 V_5$$
 $V_2 = V_4 + \lambda_1 V_5$

Similarly one can treat other two affine charts.

Twistor bundle \mathcal{N} as \mathbb{P}^2 -bundle of special null planes The *special null planes* in $T_x M$ are the \mathbb{P}^2 -bundle with non-empty intersection with \mathcal{D} and can be parametrized as $\langle \beta^1, \beta^2, \beta^3 \rangle^{\perp}$ where

$$\beta^1 = \omega^3 - \lambda_1 \omega^4, \qquad \beta^2 = \omega^0 - 6\lambda_3^2 \omega^4 - \lambda_1 \omega^1 - 4\lambda_3 \omega^2, \qquad \beta^3 = \omega^2 + 3\lambda_3 \omega^4,$$

Like in 3D, 4D conformal strs, λ_1, λ_3 can be identified with group parameters $g_1, -3x_1$ which correspond to conn forms γ_1, ξ_1 . Hence the twistor bundle \mathcal{N}^7 is the leaf space of

 $\langle \omega^0, \omega^1, \omega^2, \omega^3, \omega^4, \gamma_1, \xi_1 \rangle$

and its 2D fibers \mathcal{N}_x are the 2D normal subgroup $A_{g_1,x_1} \subset P_1$. **Proposition** : \mathcal{N} has a canonical rank 2 dist $\mathcal{H} = \ker\{\beta^1, \dots, \beta^5\}$ where

$$\beta^4 = d\lambda_1 + 6\lambda_3^3\omega^4 - \lambda_1^2\theta^1 - 2\lambda_1\phi_1 + \gamma_1$$

$$\beta^5 = d\lambda_3 + \lambda_3^2\omega^1 - \frac{1}{3}\lambda_3\phi_0 - \lambda_3\phi_1 - \lambda_3\lambda_1\theta^1 - \frac{1}{3}\lambda_1\xi_0 - \frac{1}{3}\xi_1$$

 \mathscr{H} is integrable if and only if \mathscr{D} is flat. Direct computation shows modulo $\langle \beta^1, \dots, \beta^5 \rangle d\beta^1, d\beta^2, d\beta^3 \equiv 0$,

$$\mathbf{d}\boldsymbol{\beta}^4 \equiv \mathbf{A}(\lambda_1)\omega^1 \wedge \omega^4, \qquad \mathbf{d}\boldsymbol{\beta}^5 \equiv \frac{1}{4} \left(\mathbf{B}(\lambda_1) + \lambda_3 \frac{\mathbf{d}}{\mathbf{d}\lambda_1} \mathbf{A}(\lambda_1) \right) \omega^1 \wedge \omega^4$$

Twistor bundle $\ensuremath{\mathcal{N}}$

Integrability by distinguished null surfaces: necessary condition

Let us find necessary conditions for the existence of $\lambda: M \to \mathcal{N}$ for which s^*I is Frobenius integrable where $I = \langle \beta^1, \beta^2, \beta^3 \rangle$.

$$\beta^1 = \omega^3 - \lambda_1 \omega^4, \qquad \beta^2 = \omega^0 - 6\lambda_3^2 \omega^4 - \lambda_1 \omega^1 - 4\lambda_3 \omega^2, \qquad \beta^3 = \omega^2 + 3\lambda_3 \omega^4.$$

One finds modulo *I*, $dI \subset I$ implies $\beta^4, \beta^5 \in s^*I$ where

$$\beta_4 = d\lambda_1 + 6\lambda_3^3\omega^4 - \lambda_1^2\theta^1 - 2\lambda_1\phi_1 + \gamma_1$$

$$\beta_5 = d\lambda_3 + \lambda_3^2\omega^1 - \frac{1}{3}\lambda_3\phi_0 - \lambda_3\phi_1 - \lambda_3\lambda_1\theta^1 - \frac{1}{3}\lambda_1\xi_0 - \frac{1}{3}\xi_1$$

i.e. a 2D reduction of *G*. Another differentiation gives

$$\mathrm{d}\beta^4 \equiv \mathbf{A}(\lambda_1)\omega^1 \wedge \omega^4, \qquad \mathrm{d}\beta^5 \equiv \frac{1}{4} \left(\mathbf{B}(\lambda_1) + \lambda_3 \frac{\mathrm{d}}{\mathrm{d}\lambda_1} \mathbf{A}(\lambda_1) \right) \omega^1 \wedge \omega^4$$

Integrability by null surfaces: sufficient conditions Proposition : Let $\lambda: \mathcal{G} \to \mathcal{N} \setminus \{\mathcal{D}\}$ be a special null plane such that it is a repeated root of **A** and **B** of multiplicity $k \ge 2$ and $\ge k$ respectively. Then λ is integrable iff λ is a root of **C** of multiplicity $\ge k-1$.

Assume k = 2. As before, define the co-dim 2 subbundle $\mathscr{G}_2 \subset \mathscr{G}$

$$\mathcal{G}_2 = \{ u \in \mathcal{G} \mid a_0(u) = a_1(u) = b_0(u) = b_1(u) = 0 \}.$$

A and **B** sharing equally repeated roots defines a section of \mathcal{N}

$$\begin{aligned} &da_0 \equiv \frac{4}{3}a_0\phi_0 + 4a_0\phi_1 + 4a_1\gamma_1, \quad da_1 \equiv a_0\theta^1 + \frac{4}{3}a_1\phi_0 + 2a_1\phi_1 + 3a_2\gamma_1 \\ &db_0 \equiv \frac{4}{3}(a_0\xi_0 - a_1\xi_1) + \frac{5}{3}b_0\phi_0 + 3b_0\phi_1 + 3b_1\gamma_1 \\ &db_1 \equiv \frac{4}{3}(a_1\xi_0 - a_2\xi_1) + b_0\theta^1 + \frac{5}{3}b_1\phi_0 + b_1\phi_1 + 2b_2\gamma_1. \end{aligned}$$

One obtains a 2D reduction which gives modulo $\langle \omega^0, \omega^2, \omega^3 \rangle$

$$\gamma_1 \equiv -\frac{1}{2a_2}h_3\omega^4, \qquad \xi_1 \equiv -\frac{9}{8a_2}c_0\omega^1 + (\cdots)\omega^4$$

$$\Rightarrow d\omega^3 \equiv 0, \qquad d\omega^2 \equiv \frac{9}{8a_2}c_0\omega^1 \wedge \omega^4, \qquad d\omega^0 = \frac{1}{2a_2}h_3\omega^1 \wedge \omega^4, \qquad h_3 = -\frac{3}{4}c_{0;1}$$

Goldberg-Sachs theorem

Theorem : Given a special null plane dist $\mathcal{K}: M \to \mathcal{N}$ and $k \ge 2$ any two of the following imply the third

- (1) \mathscr{K} is a repeated root of **A** and **B** with multiplicity k and $\geq k$ resp.
- (2) \mathscr{K} is a root of **C** with mulitplicity at least k-1 everywhere.
- (3) \mathscr{K} is integrable.

What is left is to show $(2) + (3) \rightarrow (1)$ which is a proof by contradiction.

Remarks :

The set of repeated roots of **A** and **B** with equal multiplicity defines a finite set of points at each fiber of \mathcal{N} in non-flat case. Similarly one can investigate Frobenius integrability in (3,6)-geometries

by exploiting the isomorphism $\mathfrak{sl}(4) \rightarrow \mathfrak{so}(3,3)$.

3-integrability: necessary conditions

Let $\mathcal{N}^* \to M$ be the twistor \mathbb{P}^2 -bundle of *special null co-planes*. They can be parametrized as the dual to the null planes of \mathcal{N} wrt to the conformal metric i.e. in the affine chart $\lambda_2 = 1$, one has $I = \langle \zeta^1, \zeta^2 \rangle$

$$\zeta^1 = \omega^3 - \lambda_1 \omega^4, \qquad \zeta^2 = \omega^0 - 6\lambda_3^2 \omega^4 - \lambda_1 \omega^1 - 4\lambda_3 \omega^2$$

One finds modulo *I*, $dI \subset I$ implies $\zeta^3, \zeta^4, \zeta^5 \in s^*I$ where

$$\begin{split} \zeta^{3} = & d\lambda_{1} - 12\lambda_{3}^{3}\omega^{4} - \lambda_{1}^{2}\theta^{1} - 6\lambda_{3}^{2}\omega^{2} - 2\lambda_{1}\phi_{1} + \gamma_{1} \\ \zeta^{4} = & d\lambda_{3} + \lambda_{3}^{2}\omega^{1} + \frac{1}{12}\mu\omega^{2} + \frac{1}{4}\mu\lambda_{3}\omega^{4} - \frac{1}{3}\lambda_{3}\phi_{0} - \lambda_{3}\phi_{1} - \lambda_{1}\lambda_{3}\theta^{1} - \frac{1}{3}\lambda_{1}\xi_{0} - \frac{1}{3}\xi_{1} \\ \zeta^{5} = & d\mu + \frac{3}{4}\mu\lambda_{3}\omega^{1} + \mu^{2}\omega^{4} - \mu(\phi_{0} + \phi_{1}) + (6\lambda_{3}^{3} - \lambda_{1}\mu)\theta^{1} \\ & + 6\lambda_{3}^{2}\xi_{0} - 3\lambda_{3}\xi_{2} + \lambda_{1}\xi_{3} + \xi_{4} \end{split}$$

Thus the necessary conditions for 3-integrability defines an 8D twistor bundle which is the leaf space of

$$\langle \omega^0, \omega^1, \omega^2, \omega^3, \omega^4, \gamma_1, \xi_1, \xi_4 \rangle$$

whose fibers are the 3D normal subgroup $A_{g_1,x_1,x_4} \subset P_1$.

Omid Makhmali

3-integrability: necessary conditions

Modulo $\langle \zeta^1, \zeta^2, \zeta^3, \zeta^4 \rangle$ one has $d\zeta^1, d\zeta^2 \equiv 0$ and

$$\begin{aligned} \mathrm{d}\zeta^{3} &\equiv \mathbf{A}\omega^{1} \wedge \omega^{4} + \left(\mathbf{B} + \lambda_{3}\mathbf{A}'\right)\omega^{2} \wedge \omega^{4} \\ \mathrm{d}\zeta^{4} &\equiv \frac{1}{4}\left(\mathbf{B} + \lambda_{3}\mathbf{A}'\right)\omega^{1} \wedge \omega^{4} \\ &+ \left(\frac{1}{4}\mathbf{C} + \frac{2}{3}\lambda_{3}\mathbf{B}' + \frac{1}{3}\lambda_{3}^{2}\mathbf{A}''\right)\omega^{2} \wedge \omega^{4} + \frac{1}{12}(3\lambda_{3}\omega^{4} + \omega^{2}) \wedge \zeta^{5} \end{aligned}$$

and modulo $\langle \zeta^1, \zeta^2, \zeta^3, \zeta^4, \zeta^5\rangle$ one finds

$$\begin{split} \mathbf{d}\boldsymbol{\zeta}^5 &\equiv \left(-\frac{1}{4}\boldsymbol{\mu}\mathbf{A}' + \mathbf{H} + \frac{9}{8}\lambda_3\mathbf{C} + \frac{3}{2}\lambda_3^2\mathbf{B}' + \frac{1}{2}\lambda_3^3\mathbf{A}''\right)\omega^1 \wedge \omega^4 \\ &+ \left(-\frac{1}{3}\boldsymbol{\mu}\mathbf{B}' + \mathbf{K} + \frac{5}{4}\lambda_3\mathbf{D} + \frac{4}{3}\lambda_3\mathbf{H}' + \frac{9}{2}\lambda_3^2\mathbf{C}' + 4\lambda_3^3\mathbf{B}'' + \lambda_3^4\mathbf{A}'''\right)\omega^2 \wedge \omega^4 \end{split}$$

where

$$\mathbf{H} = k_3 \lambda_1^3 + 3(h_6 - \frac{1}{16}d_1)\lambda_1^2 + 3(h_4 - \frac{1}{32}d_0)\lambda_1 + h_3$$
$$\mathbf{K} = k_2 \lambda_1^2 + 2(h_5 + \frac{3}{64}e)\lambda_1 + h_2$$

3-integrability: sufficient conditions

Using the natural map between special null planes and co-planes direct inspection implies:

Proposition : 3-integrability implies 2-int by special null planes.

The following can be shown using the same method as before.

Proposition : Let $\mathscr{K}: M \to \mathscr{N}^* \setminus \{\partial \mathscr{D}\}\$ have the property that it is a repeated root of **A**, **B** with multiplicity $k \ge 2$ and $\ge k$ and a root of **C** with multiplicity $\ge k-1$ everywhere. Then, \mathscr{K} is Frobenius integrable if and only if it is a root of **K** with multiplicity at least k-1.

Remarks : The 2-integrability is evident above. One is likely to find a Goldberg-Sachs-like theorem for 3-integrability.

Scalar 4th order ODEs as a Cartan geometry

Contact equivalent classes of scalar 4th order ODEs define a Cartan geometry $(\pi: \mathcal{G} \to M, \psi)$ of type $(GL_2 \ltimes \mathbb{R}^4, B)$ (due to Morimoto, Doubrov, Komrakov, Čap, The,...) where ψ is

$$\tilde{\psi} = \begin{pmatrix} -\frac{2}{3}\phi_0 + \varepsilon & \frac{1}{3}\xi_0 & 0 & 0 & 0 \\ \omega^0 & -\frac{1}{3}\phi_0 - \phi_1 + \varepsilon & 0 & 0 & 0 \\ \omega^1 & \theta^1 & -\frac{1}{3}\phi_0 + \phi_1 + \varepsilon & \frac{2}{\sqrt{3}}\xi_0 & 0 \\ \frac{2}{\sqrt{3}}\omega^2 & -\frac{1}{\sqrt{3}}\omega^1 & \frac{1}{\sqrt{3}}\omega^0 & \varepsilon & \frac{2}{\sqrt{3}}\xi_0 \\ \omega^3 & -\frac{1}{3}\omega^2 & 0 & \frac{1}{\sqrt{3}}\omega^0 & \frac{1}{3}\phi_0 - \phi_1 + \varepsilon \end{pmatrix}$$

1

Scalar 4th order ODEs as a Cartan geometry

Contact equivalent classes of scalar 4th order ODEs define a Cartan geometry $(\pi: \mathcal{G} \to M, \psi)$ of type $(GL_2 \ltimes \mathbb{R}^4, B)$ (due to Morimoto, Doubrov, Komrakov, Čap, The,...) where ψ is

Scalar 4th order ODEs as a Cartan geometry

Contact equivalent classes of scalar 4th order ODEs define a Cartan geometry $(\pi: \mathcal{G} \to M, \psi)$ of type $(GL_2 \ltimes \mathbb{R}^4, B)$ (due to Morimoto, Doubrov, Komrakov, Čap, The,...) where ψ is

$$\tilde{\psi} = \begin{pmatrix} -\frac{2}{3}\phi_0 + \varepsilon & \frac{1}{3}\xi_0 & 0 & 0 & 0 \\ \omega^0 & -\frac{1}{3}\phi_0 - \phi_1 + \varepsilon & 0 & 0 & 0 \\ \omega^1 & \theta^1 & -\frac{1}{3}\phi_0 + \phi_1 + \varepsilon & \frac{2}{\sqrt{3}}\xi_0 & 0 \\ \frac{2}{\sqrt{3}}\omega^2 & -\frac{1}{\sqrt{3}}\omega^1 & \frac{1}{\sqrt{3}}\omega^0 & \varepsilon & \frac{2}{\sqrt{3}}\xi_0 \\ \omega^3 & -\frac{1}{3}\omega^2 & 0 & \frac{1}{\sqrt{3}}\omega^0 & \frac{1}{3}\phi_0 - \phi_1 + \varepsilon \end{pmatrix}$$
with $\varepsilon = \frac{1}{5}(\phi_0 + \phi_1)$.

The fund invs are four scalars: two Wilczyński invariants w_1, w_0 of homog 3,4 and Bryant invariants c_1, c_0 of homog 3,4.

Scalar 4th order ODEs: structure equations

A linear scalar ODE of order n+1 expressed as

$$y^{(n+1)} = p_n(x)y^{(n)} + p_{n-1}(x)y^{(n-1)} + \dots + p_0(x)y^{(n-1)}$$

where y(x) is a \mathbb{R}^{n+1} -valued function, is in Laguerre-Forsyth normal form if $p_n = p_{n-1} = 0$. In our case we have n+1 = 4.

The soln space \mathscr{S} is leaf space of the solutions curves tangent to $\frac{\partial}{\partial \omega^0}$. At $s \in \mathscr{S}$, define the co-vector function $y = \omega^3$ where $\omega^3 \in T_s^* \mathscr{S}$ and

$$y^{(k)} = \mathscr{L}^k_{\frac{\partial}{\partial \omega^0}} \omega^3.$$

Using the structure equations one obtains

$$y' = -\omega^2$$
, $y'' = \omega^1$, $y''' = w_1\omega^3 + \theta^1$.

Thus, the linearization of the ODEs along the solution $s \in \mathcal{S}$ is

$$y'''' = 2w_1y' - (w_0 + w_{1,0})y.$$

Almost conformally quasi-symplectic structures A quasi-symplectic 2-form on M^5 is the odd-dimensional analogue of symplectic 2-form i.e.

$$\rho \subset \bigwedge^2 T^* M: \qquad \rho \wedge \rho \neq 0, \qquad \mathrm{d}\rho = 0.$$

Any 4th order order ODE uniquely determines a 2-form up to scale, $[\rho]$,

$$\rho = -\theta^1 \wedge \omega^3 - \omega^1 \wedge \omega^2$$

which has *maximal rank* but not closed, referred to as an *almost* conformally quasi-symplectic structure (ACQS), with its degenerate direction tangent to the solution curves i.e. $\frac{\partial}{\partial \omega^0}$.

ACQS structure is called CQS if the $[\rho]$ has a closed representative.

Proposition : Being CQS is equivalent to the induced connection on the line bundle $[\rho] \subset \bigwedge^2 T^*M$ being torsion-free and flat.

$$\mathrm{d}\rho = -(\phi_0 + \phi_1) \wedge \rho \quad \& \quad \mathrm{d}(\phi_0 + \phi_1) = 0 \Rightarrow w_1, c_1 = 0.$$

Conf q-symplectic 2-forms and quasi-contactification

Given a CQS 4th order ODE on M^5 , let $\tilde{M}^6 = M \times \mathbb{R}$ with $\pi : \tilde{M} \to M$. Take a representative $\rho_0 \in [\rho]$ such that locally

$$d\rho_0 = 0 \Rightarrow \rho_0 = d\omega^4$$

Define $\tilde{\omega}^4 = \pi^* \omega^4 + dt$ on \tilde{M} . Then $d\tilde{\omega}^4 = \pi^* \rho_0$, and it defines a *quasi-contact* structure on \tilde{M}^6 i.e. ker $\tilde{\omega}^4$ is maximally non-integ and $\tilde{\omega}^4$ has a degenerate direction.

The scaling action on ρ_0 naturally extends to $\tilde{\omega}^4$ and one obtains $[\tilde{\omega}^4]$.

Let $\tilde{\mathscr{G}} \to \tilde{M}$ be the pull-back of the structure bundle $\mathscr{G} \to M$, and $\tilde{\psi}$ the pull-back of ψ with $\tilde{\omega}^4$ as the lifted 1-form.

On \tilde{M} the rank 2 distribution ker{ $\tilde{\omega}^1, \dots, \tilde{\omega}^4$ } has a splitting and defines a (P_2, B) geometry where $P_2 \subset G_2$.

(2,3,5)-geometries from 4th order ODEs

One can find the corresponding (G_2, P_{12}) Cartan geometry which is *regular* and therefore defines a (2,3,5)-geometry.

The normal connection of the (2,3,5)-geometry is

$$\begin{split} \tilde{\omega}^3 &= \omega^3, \quad \tilde{\omega}^2 = \omega^2, \quad \tilde{\omega}^1 = \omega^1, \quad \tilde{\theta}^1 = \theta^1 \quad \tilde{\omega}^0 = \omega^0 - \frac{3}{16} c_0 \tilde{\omega}^4, \\ \tilde{\phi}_0 &= \phi_0 + \frac{9}{64} c_{0;0} \tilde{\omega}^4, \quad \tilde{\phi}_1 = \phi_1 - \frac{9}{64} c_{0;0} \tilde{\omega}^4, \quad \tilde{\xi}_0 = \xi_0 - (\frac{9}{32} c_{0;00} + \frac{1}{8} w_{0;\underline{11}}) \tilde{\omega}^4. \end{split}$$

where $w_{0;\underline{1}} = \frac{\partial}{\partial \theta^1} w_0$.

The scalar harmonic inv of (G_2, P_{12}) geometry is $\pi^* w_0(\omega^0)^4$ and

$$a_4 = w_0, \quad a_3 = \frac{1}{4} w_{0;\underline{1}}, \quad a_2 = \frac{1}{12} w_{0;\underline{11}}, \quad a_1 = \frac{1}{24} w_{0;\underline{111}}, \quad a_0 = \frac{1}{24} w_{0;\underline{1111}},$$

and, $w_{0;\underline{11111}} = 0$.

Flatness, integrability and holonomy reduction

4th order ODE locally are given by 1 function of 5 variables. CQS 4th order ODEs locally depend on 1 function of 4 varialbes.

We consider the following cases.

- When $w_0 = 0$, then the (2,3,5)-geometry is flat. Such fourth order ODEs define torsion-free GL_2 -structures with symmetric Ricci and their local moduli depends on 5 constants.
- When $c_0 = 0$, then $w_{0;111} = 0$, i.e. the Cartan quartic is type *II*, and (2,3,5)-geometries are 3-integrable i.e. $\langle \tilde{\omega}^0, \tilde{\omega}^4 \rangle$ is Frobenius. The local generality is 2 functions of 3 variables.
- If $c_0 = 0$ and $w_{0;11} = 0$ i.e. the Cartan quartic has type *III*, then one has a holonomy reduction of the (2,3,5)-geometry to P_2 , the local generality is 1 function of 3 variables.
- If $c_0 = 0$ and $w_{0;\underline{1}} = 0$ i.e. the Cartan quartic has type *N* the local generality is 2 function of 2 variables.

Variational 4th order ODEs \Leftrightarrow (2,3,5)-dist + infin symmetry

Theorem : (Fels 1996) A 4th order ODE is CQS iff it is variational.

Corollary : Variational 4th order ODEs \Leftrightarrow (2,3,5)-dist + infin symmetry

Given a (2,3,5)-geometry, consider the corresponding (G_2 , P_{12}) geom. If it arises from a 4th order ODE then $\frac{\partial}{\partial t}$ is an infin symmetry that is transversal to the quasi-contact distribution.

Conversely, if there is a transv. infin. symm. v then there is reduction of the (G_2, P_{12}) to a (P_2, B) -geometry. In particular, choose a q-cont form s.t. $\theta(v) = 1$. Since $\mathscr{L}_v \theta = \mathscr{L}_v d\theta = 0$, one has $d\theta(v, .) = 0 \Rightarrow d\theta = \pi^* \rho$ where $\rho \in \bigwedge^2 T^* M$ is CQS where *M* is the leaf space of *v*. Identifying the q-contact distribution with *TM*, one can show that it is equipped with a CQS 4th order ODE.

References

- R S Ward and R O Wells Jr. *Twistor geometry and field theory*. Cambridge University Press. 1991.
- O Makhmali, P Nurowski. Integrability conditions on non-integrable plane fields in dimension five. in preparation
- A Čap, T Salač. Parabolic conformally symplectic structures O,I,II. 2014-2019
- O Makhmali, K. Sagerschnig. Parabolic quasi-contact cone structures with transversal infinitesimal symmetry. in preparation
- M Fels. The inverse problem of the calculus of variations for scalar fourth-order ordinary differential equations. Transactions of the American Mathematical Society, 348(12):50075029, 1996.