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Outline of lectures
Lecture one:
(1) Frobenius integrability in 4D conformal structures
(2) Frobenius integrability in 3D conformal structures

(2,3,4,5)-distribution on the twistor bundle does not have a
splitting, thus, does not define a 4th order ODE.

Lecture two:
(1) Frobenius integrability in (2,3,5)-geometries
(2) Integrable (2,3,5)-geometries from scalar 4th order ODEs

Lecture three:
(1) Parabolic quasi-contact cone structures and quasi-contactification
(2) Frobenius integrability in quasi-contactified structures
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(2,3,5)-distributions as Cartan geometries
A bracket-generating rank 2 dist in 5D has growth vector (2,3,5) and
defines a Cartan geometry (π : G → M ,ψ) of type (G2,P1) where

ψ=
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3ξ0

1
3ξ1 − 1p

3
ξ2 −ξ3 −ξ4 0

ω0 −1
3ϕ0 −ϕ1 γ1 − 2p

3
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ω1 θ1 −1
3ϕ0 +ϕ1

2p
3
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2p
3
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3
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ω3 −1
3ω

2 0 1p
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3ϕ0 −ϕ1 γ1 −1
3ξ1

ω4 0 −1
3ω

2 1p
3
ω1 θ1 1

3ϕ0 +ϕ1
1
3ξ0

0 ω4 −ω3 2p
3
ω2 −ω1 ω0 2

3ϕ0


⊂ so(3,4) wrt 〈u,w〉 = u1w7 +u7w1 −u2w6 −u6w2 +u3w5 +u5w3 −u4w4.

The harmonic invariant is the so-called Cartan quartic A ⊂ Sym4(D∗)

A = a4(ω0)4 +4a3(ω0)3ω1 +6a2(ω0)2(ω1)2 +4a1ω
0(ω1)3 +a0(ω1)4
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(2,3,5)-geometries: structure equations
One also has the ternary quartic [T] ⊂ Sym4(∂D)∗ defined as

T = A+Bω2 +C(ω2)2 +D(ω2)3 +e(ω2)4,

B = b3(ω0)3 +3b2(ω0)2(ω1)+3b1ω
0(ω1)2 +b0(ω1)3,

C = c2(ω0)2 +2c1ω
0ω1 + c0(ω1)2, D = d1ω

0 +d0ω
1.

The str group G0 and its Lie algebra g0 acting on {ω4, · · · ,ω0}⊤ is

G0 =


∆0f1 ∆0t1 0 0 0
∆0g1 ∆0f2 0 0 0
∆0x1 ∆0x0 ∆0 0 0

f1x2 +∆1x1 t1x2 +∆1x0 2∆1 f1 t1

g1x2 +∆2x1 f2x2 +∆2x0 2∆2 g1 f2

⊂ CO(2,3),

where ∆0 = f1f2 −g1t1, ∆1 = 2
3 (f1x0 − t1x1) and ∆2 = 2

3 (g1x0 − f2x1), and

g0 =
ϕ0 +ϕ1 θ1 0 0 0

γ1 ϕ0 −ϕ1 0 0 0

ξ1 ξ0
2
3 ϕ0 0 0

ξ2 0 4
3 ξ0

1
3 ϕ0 +ϕ1 θ1

0 ξ2 − 4
3 ξ1 γ1

1
3 ϕ0 −ϕ1

⊂ co(2,3),

wrt to the inner product 〈u,w〉 = u1w5 +u5w1 −u2w4 −u4w2 + 4
3 u3w3
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3D Twistor correspondence
The projectivized null cone C ⊂PTM of the conformal str [g] where

g =ω0 ◦ω4 −ω1 ◦ω3 + 2
3ω

2 ◦ω2

at each point is the 3D indefinite quadric

Cx = {[v] ∈PTxM g(v,v) = 0}

Thus, a null plane in TxM is a null line in Cx. Recall the double fibration

SO+(2,3)/P1 �Q3 ℓ←− F
ν−→ G3

0 � SO+(2,3)/P2

� �

Sp(4)/P̃2 � L3 P3 � Sp(4)/P̃1

L3 �Q3 is via Plücker embedding Gr(2,4) ,→P(
∧2R4) i.e. define (R4,ρ)

ρ = ρ1 ∧ρ4 + 4
3ρ2 ∧ρ3,

∧2
0R

4 = {z ∈∧2R4 ρ(z) = 0}

Then Q3 ⊂P
∧2

0R
4 is the null cone of 〈·, ·〉 defined as

〈z1,z2〉 =−(ρ∧ρ)(z1 ∧z2).
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(2,3,5)-geometries and their space of null planes
Take the basis {ei}4

i=1 and {vi}5
i=1 for (R4,ρ) and

∧2
0R

4

v1 = e1 ∧ e3, v2 = e1 ∧ e2, v3 =
p

3
3 e1 ∧ e4 −

p
3

4 e2 ∧ e3, v4 = e3 ∧ e4, v5 = e2 ∧ e4

one finds the isomorphism ϕ : sp(4) → so(2,3)

ϕ


s1 s2 t2 t3

s3 s4 t1
4
3 t2

r2 r1 −s4 −4
3 s2

r3
4
3 r2 −4

3 s3 −s1

=


s1 + s4 t1 2t2 2t3 0

r1 s1 − s4 −2s2 0 2t3

r2 −s3 0 −3
2 s2 −3

2 t2
1
2 r3 0 −4

3 s3 −s1 + s4 t1

0 1
2 r3 −4

3 r2 r1 −s1 − s4


with respect to matrices

r =


0 0 0 1
0 0 4

3 0
0 −4

3 0 0
−1 0 0 0

 h =


0 0 0 0 1
0 0 0 −1 0
0 0 4

3 0 0
0 −1 0 0 0
1 0 0 0 0
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Bundle of null planes

In the double fibration define

L3 �Q3 ℓ←− F
ν−→G3

0 �P3, p̂ = ν◦ℓ−1(p) ⊂P3, ṽ = ℓ◦ν−1(v) ⊂Q3,

p1,p2 ∈Q3 are null-separated if they lie on a null line v ⊂Q3 ⇒ p̂1∩ p̂1 = v̂

v1,v2 ∈P3 are contact-sep. if are on a contact line p ⊂P3 ⇒ ṽ1 ∩ ṽ2 = p̃

Given a null line v = [z] ∈P3, then ṽ = [z∧w] ⊂Q3 where w = z⊥

e.g. the 2-plane corresponding to [e4] is

[e4 ∧ e⊥4 ] = [e4 ∧ (µ2e2 +µ3e3 +µ4e4)] = span{v4,v5} =D

These are 3D analogues of incident relations in classical twistor theory.
(c.f. Ward-Wells, Twistor geometry and field theory,1991)
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Bundle of null planes

Recall that g0 ⊂ co(2,3), and

ϕ(g0 ∩so(2,3)) =


1
3ϕ0 0 0 0
−ξ0 ϕ1 θ1 0
ξ1 γ1 −ϕ1 0

2ξ2
4
3ξ1

4
3ξ0 −1

3ϕ0

⊂ sp(4).

Proposition : The space of null planes at each point of a
(2,3,5)-geometry is equipped with an invariant flag

{p0} ⊂P2 ⊂P3,

and G0 acts transitively on P3\P2 and P2\{p0}, where p0 = [e4] ∈P3 is the
rank 2 dist D and P2 = span{[e2], [e3], [e4]} is the 2D space of null planes
with non-empty intersection with D i.e. contact-separated from D .
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Twistor bundle N as P2-bundle of special null planes

Let [λ0 : λ1 : λ2 : λ3] be homog coords on P3. Let P2 be represented by
[λ1e2 +λ2e3 −2

p
2λ3e4] then the corresponding null planes are

p = Z ∧ (λ1e2 +λ2e3 −2
p

2λ3e4), ρ(p) = 0 ⇒ 3
p

2
2 z1λ3 −z2λ2 +z3λ1 = 0

Working on the affine chart λ2 = 1, one obtains

Z = t1e1 + 3
p

2
2 t1λ3e2 − t2e4,

for two param t1 and t2, and p corresponds to span{V1,V2} where

V1 = v1 +λ1v2 −3λ3v3 −6λ2
3v5 V2 = v4 +λ1v5

Similarly one can treat other two affine charts.
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Twistor bundle N as P2-bundle of special null planes
The special null planes in TxM are the P2-bundle with non-empty
intersection with D and can be parametrized as 〈β1,β2,β3〉⊥ where

β1 =ω3 −λ1ω
4, β2 =ω0 −6λ2

3ω
4 −λ1ω

1 −4λ3ω
2, β3 =ω2 +3λ3ω

4,

Like in 3D, 4D conformal strs, λ1,λ3 can be identified with group
parameters g1,−3x1 which correspond to conn forms γ1,ξ1.
Hence the twistor bundle N 7 is the leaf space of

〈ω0,ω1,ω2,ω3,ω4,γ1,ξ1〉
and its 2D fibers Nx are the 2D normal subgroup Ag1,x1 ⊂ P1.
Proposition : N has a canonical rank 2 dist H = ker{β1, · · · ,β5} where

β4 = dλ1 +6λ3
3ω

4 −λ2
1θ

1 −2λ1ϕ1 +γ1

β5 = dλ3 +λ2
3ω

1 − 1
3λ3ϕ0 −λ3ϕ1 −λ3λ1θ

1 − 1
3λ1ξ0 − 1

3ξ1

H is integrable if and only if D is flat.
Direct computation shows modulo 〈β1, · · · ,β5〉 dβ1,dβ2,dβ3 ≡ 0,

dβ4 ≡ A(λ1)ω1 ∧ω4, dβ5 ≡ 1
4

(
B(λ1)+λ3

d
dλ1

A(λ1)
)
ω1 ∧ω4

Omid Makhmali Frobenius integrability and Cartan geometries 10 / 25



Twistor bundle N
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Integrability by distinguished null surfaces: necessary condition

Let us find necessary conditions for the existence of λ : M →N for
which s∗I is Frobenius integrable where I = 〈β1,β2,β3〉.

β1 =ω3 −λ1ω
4, β2 =ω0 −6λ2

3ω
4 −λ1ω

1 −4λ3ω
2, β3 =ω2 +3λ3ω

4.

One finds modulo I , dI ⊂ I implies β4,β5 ∈ s∗I where

β4 = dλ1 +6λ3
3ω

4 −λ2
1θ

1 −2λ1ϕ1 +γ1

β5 = dλ3 +λ2
3ω

1 − 1
3λ3ϕ0 −λ3ϕ1 −λ3λ1θ

1 − 1
3λ1ξ0 − 1

3ξ1

i.e. a 2D reduction of G . Another differentiation gives

dβ4 ≡ A(λ1)ω1 ∧ω4, dβ5 ≡ 1
4

(
B(λ1)+λ3

d
dλ1

A(λ1)
)
ω1 ∧ω4
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Integrability by null surfaces: sufficient conditions
Proposition : Let λ : G →N \{D} be a special null plane such that it is
a repeated root of A and B of multiplicity k ≥ 2 and ≥ k respectively.
Then λ is integrable iff λ is a root of C of multiplicity ≥ k−1.

Assume k = 2. As before, define the co-dim 2 subbundle G2 ⊂G

G2 = {u ∈G a0(u) = a1(u) = b0(u) = b1(u) = 0)}.

A and B sharing equally repeated roots defines a section of N

da0 ≡ 4
3 a0ϕ0 +4a0ϕ1 +4a1γ1, da1 ≡ a0θ

1 + 4
3 a1ϕ0 +2a1ϕ1 +3a2γ1

db0 ≡ 4
3 (a0ξ0 −a1ξ1)+ 5

3 b0ϕ0 +3b0ϕ1 +3b1γ1

db1 ≡ 4
3 (a1ξ0 −a2ξ1)+b0θ

1 + 5
3 b1ϕ0 +b1ϕ1 +2b2γ1.

One obtains a 2D reduction which gives modulo 〈ω0,ω2,ω3〉
γ1 ≡− 1

2a2
h3ω

4, ξ1 ≡− 9
8a2

c0ω
1 + (· · · )ω4

⇒ dω3 ≡ 0, dω2 ≡ 9
8a2

c0ω
1 ∧ω4, dω0 = 1

2a2
h3ω

1 ∧ω4, h3 =−3
4 c0;1
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Goldberg-Sachs theorem

Theorem : Given a special null plane dist K : M →N and k ≥ 2 any
two of the following imply the third
(1) K is a repeated root of A and B with multiplicity k and ≥ k resp.
(2) K is a root of C with mulitplicity at least k−1 everywhere.
(3) K is integrable.

What is left is to show (2)+ (3) → (1) which is a proof by contradiction.

Remarks :
The set of repeated roots of A and B with equal multiplicity defines a
finite set of points at each fiber of N in non-flat case.
Similarly one can investigate Frobenius integrability in (3,6)-geometries
by exploiting the isomorphism sl(4) → so(3,3).
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3-integrability: necessary conditions
Let N ∗ → M be the twistor P2-bundle of special null co-planes. They
can be parametrized as the dual to the null planes of N wrt to the
conformal metric i.e. in the affine chart λ2 = 1, one has I = 〈ζ1,ζ2〉

ζ1 =ω3 −λ1ω
4, ζ2 =ω0 −6λ2

3ω
4 −λ1ω

1 −4λ3ω
2

One finds modulo I , dI ⊂ I implies ζ3,ζ4,ζ5 ∈ s∗I where

ζ3 =dλ1 −12λ3
3ω

4 −λ2
1θ

1 −6λ2
3ω

2 −2λ1ϕ1 +γ1

ζ4 =dλ3 +λ2
3ω

1 + 1
12µω

2 + 1
4µλ3ω

4 − 1
3λ3ϕ0 −λ3ϕ1 −λ1λ3θ

1 − 1
3λ1ξ0 − 1

3ξ1

ζ5 =dµ+ 3
4µλ3ω

1 +µ2ω4 −µ(ϕ0 +ϕ1)+ (6λ3
3 −λ1µ)θ1

+6λ2
3ξ0 −3λ3ξ2 +λ1ξ3 +ξ4

Thus the necessary conditions for 3-integrability defines an 8D twistor
bundle which is the leaf space of

〈ω0,ω1,ω2,ω3,ω4,γ1,ξ1,ξ4〉
whose fibers are the 3D normal subgroup Ag1,x1,x4 ⊂ P1.
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3-integrability: necessary conditions

Modulo 〈ζ1,ζ2,ζ3,ζ4〉 one has dζ1,dζ2 ≡ 0 and

dζ3 ≡Aω1 ∧ω4 + (
B+λ3A′)ω2 ∧ω4

dζ4 ≡1
4

(
B+λ3A′)ω1 ∧ω4

+ (1
4 C+ 2

3λ3B′+ 1
3λ

2
3A′′)ω2 ∧ω4 + 1

12 (3λ3ω
4 +ω2)∧ζ5

and modulo 〈ζ1,ζ2,ζ3,ζ4,ζ5〉 one finds

dζ5 ≡(−1
4µA′+H+ 9

8λ3C+ 3
2λ

2
3B′+ 1

2λ
3
3A′′)ω1 ∧ω4

+ (−1
3µB′+K+ 5

4λ3D+ 4
3λ3H′+ 9

2λ
2
3C′+4λ3

3B′′+λ4
3A′′′)ω2 ∧ω4

where
H = k3λ

3
1 +3(h6 − 1

16 d1)λ2
1 +3(h4 − 1

32 d0)λ1 +h3

K = k2λ
2
1 +2(h5 + 3

64 e)λ1 +h2
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3-integrability: sufficient conditions

Using the natural map between special null planes and co-planes
direct inspection implies:

Proposition : 3-integrability implies 2-int by special null planes.

The following can be shown using the same method as before.

Proposition : Let K : M →N ∗\{∂D} have the property that it is a
repeated root of A,B with multiplicity k ≥ 2 and ≥ k and a root of C with
multiplicity ≥ k−1 everywhere. Then, K is Frobenius integrable if and
only if it is a root of K with multiplicity at least k−1.

Remarks : The 2-integrability is evident above. One is likely to find a
Goldberg-Sachs-like theorem for 3-integrability.
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Scalar 4th order ODEs as a Cartan geometry

Contact equivalent classes of scalar 4th order ODEs define a Cartan
geometry (π : G → M ,ψ) of type (GL2⋉R4,B) (due to Morimoto, Doubrov,
Komrakov, Čap, The,...) where ψ is

ψ̃=



−2
3ϕ0 +ε 1

3ξ0 0 0 0

ω0 −1
3ϕ0 −ϕ1 +ε 0 0 0

ω1 θ1 −1
3ϕ0 +ϕ1 +ε 2p

3
ξ0 0

2p
3
ω2 − 1p

3
ω1 1p

3
ω0 ε 2p

3
ξ0

ω3 −1
3ω

2 0 1p
3
ω0 1

3ϕ0 −ϕ1 +ε



ψ̃=



−2
3ϕ0 +ε 1

3ξ0 0 0 0

ω0 −1
3ϕ0 −ϕ1 +ε 0 0 0

ω1 θ1 −1
3ϕ0 +ϕ1 +ε 2p

3
ξ0 0

2p
3
ω2 − 1p

3
ω1 1p

3
ω0 ε 2p

3
ξ0

ω3 −1
3ω

2 0 1p
3
ω0 1

3ϕ0 −ϕ1 +ε


with ε= 1

5 (ϕ0 +ϕ1).

The fund invs are four scalars: two Wilczyński invariants w1,w0 of
homog 3,4 and Bryant invariants c1,c0 of homog 3,4.
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ξ1 ξ2 0 −ξ4

ω1 θ1 −1
3ϕ0 +ϕ1

2p
3
ξ0 0 ξ2 ξ3
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with ε= 1
5 (ϕ0 +ϕ1).

The fund invs are four scalars: two Wilczyński invariants w1,w0 of
homog 3,4 and Bryant invariants c1,c0 of homog 3,4.
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Scalar 4th order ODEs: structure equations
A linear scalar ODE of order n+1 expressed as

y(n+1) = pn(x)y(n) +pn−1(x)y(n−1) +·· ·p0(x)y(x)

where y(x) is a Rn+1-valued function, is in Laguerre-Forsyth normal
form if pn = pn−1 = 0. In our case we have n+1 = 4.

The soln space S is leaf space of the solutions curves tangent to ∂
∂ω0 .

At s ∈S , define the co-vector function y =ω3 where ω3 ∈ T∗
s S and

y(k) =L k
∂

∂ω0
ω3.

Using the structure equations one obtains

y′ =−ω2, y′′ =ω1, y′′′ = w1ω
3 +θ1.

Thus, the linearization of the ODEs along the solution s ∈S is

y′′′′ = 2w1y′− (w0 +w1;0)y.
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Almost conformally quasi-symplectic structures
A quasi-symplectic 2-form on M5 is the odd-dimensional analogue of
symplectic 2-form i.e.

ρ ⊂
∧2

T∗M : ρ∧ρ , 0, dρ = 0.

Any 4th order order ODE uniquely determines a 2-form up to scale, [ρ],

ρ =−θ1 ∧ω3 −ω1 ∧ω2

which has maximal rank but not closed, referred to as an almost
conformally quasi-symplectic structure (ACQS), with its degenerate
direction tangent to the solution curves i.e. ∂

∂ω0 .

ACQS structure is called CQS if the [ρ] has a closed representative.

Proposition : Being CQS is equivalent to the induced connection on
the line bundle [ρ] ⊂

∧2
T∗M being torsion-free and flat.

dρ =−(ϕ0 +ϕ1)∧ρ & d(ϕ0 +ϕ1) = 0 ⇒ w1,c1 = 0.
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Conf q-symplectic 2-forms and quasi-contactification

Given a CQS 4th order ODE on M5, let M̃6 = M ×R with π : M̃ → M .
Take a representative ρ0 ∈ [ρ] such that locally

dρ0 = 0 ⇒ ρ0 = dω4

Define ω̃4 =π∗ω4 +dt on M̃ . Then dω̃4 =π∗ρ0, and it defines a
quasi-contact structure on M̃6 i.e. kerω̃4 is maximally non-integ and ω̃4

has a degenerate direction.

The scaling action on ρ0 naturally extends to ω̃4 and one obtains [ω̃4].

Let G̃ → M̃ be the pull-back of the structure bundle G → M , and ψ̃ the
pull-back of ψ with ω̃4 as the lifted 1-form.

On M̃ the rank 2 distribution ker{ω̃1, · · · ,ω̃4} has a splitting and defines a
(P2,B) geometry where P2 ⊂ G2.
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(2,3,5)-geometries from 4th order ODEs

One can find the corresponding (G2,P12) Cartan geometry which is
regular and therefore defines a (2,3,5)-geometry.

The normal connection of the (2,3,5)-geometry is

ω̃3 =ω3, ω̃2 =ω2, ω̃1 =ω1, θ̃1 = θ1 ω̃0 =ω0 − 3
16 c0ω̃

4,

ϕ̃0 =ϕ0 + 9
64 c0;0ω̃

4, ϕ̃1 =ϕ1 − 9
64 c0;0ω̃

4, ξ̃0 = ξ0 − ( 9
32 c0;00 + 1

8 w0;11)ω̃4.

where w0;1 = ∂
∂θ1 w0.

The scalar harmonic inv of (G2,P12) geometry is π∗w0(ω0)4 and

a4 = w0, a3 = 1
4 w0;1, a2 = 1

12 w0;11, a1 = 1
24 w0;111, a0 = 1

24 w0;1111,

and, w0;11111 = 0.
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Flatness, integrability and holonomy reduction
4th order ODE locally are given by 1 function of 5 variables.
CQS 4th order ODEs locally depend on 1 function of 4 varialbes.

We consider the following cases.
When w0 = 0, then the (2,3,5)-geometry is flat. Such fourth order
ODEs define torsion-free GL2-structures with symmetric Ricci and
their local moduli depends on 5 constants.
When c0 = 0, then w0;111 = 0, i.e. the Cartan quartic is type II , and
(2,3,5)-geometries are 3-integrable i.e. 〈ω̃0,ω̃4〉 is Frobenius. The
local generality is 2 functions of 3 variables.
If c0 = 0 and w0;11 = 0 i.e. the Cartan quartic has type III, then one
has a holonomy reduction of the (2,3,5)-geometry to P2, the local
generality is 1 function of 3 variables.
If c0 = 0 and w0;1 = 0 i.e. the Cartan quartic has type N the local
generality is 2 function of 2 variables.
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Variational 4th order ODEs ⇔ (2,3,5)-dist + infin symmetry

Theorem : (Fels 1996) A 4th order ODE is CQS iff it is variational.

Corollary : Variational 4th order ODEs ⇔ (2,3,5)-dist + infin symmetry

Given a (2,3,5)-geometry, consider the corresponding (G2,P12) geom.
If it arises from a 4th order ODE then ∂

∂t is an infin symmetry that is
transversal to the quasi-contact distribution.

Conversely, if there is a transv. infin. symm. v then there is reduction of
the (G2,P12) to a (P2,B)-geometry. In particular, choose a q-cont form
s.t. θ(v) = 1. Since Lvθ =Lvdθ = 0, one has dθ(v, .) = 0 ⇒ dθ =π∗ρ
where ρ ∈

∧2
T∗M is CQS where M is the leaf space of v. Identifying

the q-contact distribution with TM, one can show that it is equipped
with a CQS 4th order ODE.
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