Frobenius integrability and Cartan geometries

Omid Makhmali

Center for Theoretical Physics
Polish Academy of Sciences
Warsaw

March 18, 2022

GRIEG seminar

Outline of lectures

Lecture one:
(1) Frobenius integrability in 4D conformal structures
(2) Frobenius integrability in 3D conformal structures

- (2,3,4,5)-distribution on the twistor bundle does not have a splitting, thus, does not define a 4th order ODE.

Lecture two:
(1) Frobenius integrability in (2,3,5)-geometries
(2) Integrable (2,3,5)-geometries from scalar 4th order ODEs

Lecture three:
(1) Parabolic quasi-contact cone structures and quasi-contactification
(2) Frobenius integrability in quasi-contactified structures

(2,3,5)-distributions as Cartan geometries

A bracket-generating rank 2 dist in 5D has growth vector $(2,3,5)$ and defines a Cartan geometry ($\pi: \mathscr{G} \rightarrow M, \psi$) of type (G_{2}, P_{1}) where

$$
\begin{aligned}
& \psi=\left(\begin{array}{ccccccc}
-\frac{2}{3} \phi_{0} & \frac{1}{3} \xi_{0} & \frac{1}{3} \xi_{1} & -\frac{1}{\sqrt{3}} \xi_{2} & -\xi_{3} & -\xi_{4} & 0 \\
\omega^{0} & -\frac{1}{3} \phi_{0}-\phi_{1} & \gamma_{1} & -\frac{2}{\sqrt{3}} \xi_{1} & \xi_{2} & 0 & -\xi_{4} \\
\omega^{1} & \theta^{1} & -\frac{1}{3} \phi_{0}+\phi_{1} & \frac{2}{\sqrt{3}} \xi_{0} & 0 & \xi_{2} & \xi_{3} \\
\frac{2}{\sqrt{3}} \omega^{2} & -\frac{1}{\sqrt{3}} \omega^{1} & \frac{1}{\sqrt{3}} \omega^{0} & 0 & \frac{2}{\sqrt{3}} \xi_{0} & \frac{2}{\sqrt{3}} \xi_{1} & -\frac{1}{\sqrt{3}} \xi_{2} \\
\omega^{3} & -\frac{1}{3} \omega^{2} & 0 & \frac{1}{\sqrt{3}} \omega^{0} & \frac{1}{3} \phi_{0}-\phi_{1} & \gamma_{1} & -\frac{1}{3} \xi_{1} \\
\omega^{4} & 0 & -\frac{1}{3} \omega^{2} & \frac{1}{\sqrt{3}} \omega^{1} & \theta^{1} & \frac{1}{3} \phi_{0}+\phi_{1} & \frac{1}{3} \xi_{0} \\
0 & \omega^{4} & -\omega^{3} & \frac{2}{\sqrt{3}} \omega^{2} & -\omega^{1} & \omega^{0} & \frac{2}{3} \phi_{0}
\end{array}\right) \\
& \subset \mathfrak{s o}(3,4) \mathrm{wrt}\langle u, w\rangle=u_{1} w_{7}+u_{7} \omega_{1}-u_{2} w_{6}-u_{6} \omega_{2}+u_{3} w_{5}+u_{5} w_{3}-u_{4} w_{4} .
\end{aligned}
$$

The harmonic invariant is the so-called Cartan quartic $\mathrm{A} \subset \operatorname{Sym}^{4}\left(\mathscr{D}^{*}\right)$

$$
\mathbf{A}=a_{4}\left(\omega^{0}\right)^{4}+4 a_{3}\left(\omega^{0}\right)^{3} \omega^{1}+6 a_{2}\left(\omega^{0}\right)^{2}\left(\omega^{1}\right)^{2}+4 a_{1} \omega^{0}\left(\omega^{1}\right)^{3}+a_{0}\left(\omega^{1}\right)^{4}
$$

(2,3,5)-geometries: structure equations

One also has the ternary quartic $[\mathrm{T}] \subset \operatorname{Sym}^{4}(\partial \mathscr{D})^{*}$ defined as

$$
\begin{aligned}
& \mathbf{T}=\mathbf{A}+\mathbf{B} \omega^{2}+\mathbf{C}\left(\omega^{2}\right)^{2}+\mathbf{D}\left(\omega^{2}\right)^{3}+e\left(\omega^{2}\right)^{4}, \\
& \mathbf{B}=b_{3}\left(\omega^{0}\right)^{3}+3 b_{2}\left(\omega^{0}\right)^{2}\left(\omega^{1}\right)+3 b_{1} \omega^{0}\left(\omega^{1}\right)^{2}+b_{0}\left(\omega^{1}\right)^{3}, \\
& \mathbf{C}=c_{2}\left(\omega^{0}\right)^{2}+2 c_{1} \omega^{0} \omega^{1}+c_{0}\left(\omega^{1}\right)^{2}, \quad \mathbf{D}=d_{1} \omega^{0}+d_{0} \omega^{1} .
\end{aligned}
$$

The str group G_{0} and its Lie algebra \mathfrak{g}_{0} acting on $\left\{\omega^{4}, \cdots, \omega^{0}\right\}^{\top}$ is

$$
G_{0}=\left(\begin{array}{ccccc}
\Delta_{0} f_{1} & \Delta_{0} t_{1} & 0 & 0 & 0 \\
\Delta_{0} g_{1} & \Delta_{0} f_{2} & 0 & 0 & 0 \\
\Delta_{0} x_{1} & \Delta_{0} x_{0} & \Delta_{0} & 0 & 0 \\
f_{1} x_{2}+\Delta_{1} x_{1} & t_{1} x_{2}+\Delta_{1} x_{0} & 2 \Delta_{1} & f_{1} & t_{1} \\
g_{1} x_{2}+\Delta_{2} x_{1} & f_{2} x_{2}+\Delta_{2} x_{0} & 2 \Delta_{2} & g_{1} & f_{2}
\end{array}\right) \subset \mathrm{CO}(2,3)
$$

where $\Delta_{0}=f_{1} f_{2}-g_{1} t_{1}, \Delta_{1}=\frac{2}{3}\left(f_{1} x_{0}-t_{1} x_{1}\right)$ and $\Delta_{2}=\frac{2}{3}\left(g_{1} x_{0}-f_{2} x_{1}\right)$, and

$$
\mathfrak{g}_{0}=\left(\begin{array}{ccccc}
\phi_{0}+\phi_{1} & \theta^{1} & 0 & 0 & 0 \\
r_{1} & \phi_{0}-\phi_{1} & 0 & 0 & 0 \\
\xi_{1} & \xi_{0} & \frac{2}{3} \phi_{0} & 0 & 0 \\
\xi_{2} & 0 & \frac{3}{3} \xi_{0} & \frac{1}{3} \phi_{0}+\phi_{1} & \theta^{1} \\
0 & \xi_{2} & -\frac{4}{3} \xi_{1} & r_{1} & \frac{1}{3} \phi_{0}-\phi_{1}
\end{array}\right) \subset \operatorname{col}(2,3),
$$

wrt to the inner product $\langle u, w\rangle=u_{1} w_{5}+u_{5} w_{1}-u_{2} w_{4}-u_{4} w_{2}+\frac{4}{3} u_{3} w_{3}$

3D Twistor correspondence

The projectivized null cone $\mathscr{C} \subset \mathbb{P} T M$ of the conformal str [g] where

$$
g=\omega^{0} \circ \omega^{4}-\omega^{1} \circ \omega^{3}+\frac{2}{3} \omega^{2} \circ \omega^{2}
$$

at each point is the 3D indefinite quadric

$$
\mathscr{C}_{x}=\left\{[\nu] \in \mathbb{P} T_{x} M \mid g(\nu, \nu)=0\right\}
$$

Thus, a null plane in $T_{x} M$ is a null line in \mathscr{C}_{x}. Recall the double fibration

$$
\begin{array}{cc}
\mathrm{SO}^{+}(2,3) / P_{1} \cong \mathbb{Q}^{3} \stackrel{\ell}{\hookrightarrow} \mathbb{F} \xrightarrow{v} & \mathbb{T}_{0}^{3} \cong \mathrm{SO}^{+}(2,3) / P_{2} \\
\text { थn }(4) / \tilde{P}_{2} \cong \mathbb{Q}^{3} & \mathbb{P}^{3} \cong \operatorname{Sp}(4) / \tilde{P}_{1}
\end{array}
$$

$\mathbb{L}^{3} \cong \mathbb{Q}^{3}$ is via Plücker embedding $\operatorname{Gr}(2,4) \hookrightarrow \mathbb{P}\left(\bigwedge^{2} \mathbb{R}^{4}\right)$ i.e. define $\left(\mathbb{R}^{4}, \rho\right)$

$$
\rho=\rho_{1} \wedge \rho_{4}+\frac{4}{3} \rho_{2} \wedge \rho_{3}, \quad \bigwedge_{0}^{2} \mathbb{R}^{4}=\left\{z \in \bigwedge^{2} \mathbb{R}^{4} \mid \rho(z)=0\right\}
$$

Then $\mathbb{Q}^{3} \subset \mathbb{P} \wedge_{0}^{2} \mathbb{R}^{4}$ is the null cone of $\langle\cdot, \cdot\rangle$ defined as

$$
\left\langle z_{1}, z_{2}\right\rangle=-(\rho \wedge \rho)\left(z_{1} \wedge z_{2}\right)
$$

(2,3,5)-geometries and their space of null planes

Take the basis $\left\{e_{i}\right\}_{i=1}^{4}$ and $\left\{\mathrm{V}_{i}\right\}_{i=1}^{5}$ for $\left(\mathbb{R}^{4}, \rho\right)$ and $\bigwedge_{0}^{2} \mathbb{R}^{4}$
$\mathrm{v}_{1}=e_{1} \wedge e_{3}, \quad \mathrm{~V}_{2}=e_{1} \wedge e_{2}, \quad \mathrm{v}_{3}=\frac{\sqrt{3}}{3} e_{1} \wedge e_{4}-\frac{\sqrt{3}}{4} e_{2} \wedge e_{3}, \quad \mathrm{~V}_{4}=e_{3} \wedge e_{4}, \quad \mathrm{~V}_{5}=e_{2} \wedge e_{4}$ one finds the isomorphism $\phi: \mathfrak{s p}(4) \rightarrow \mathfrak{s p}(2,3)$

$$
\phi\left(\begin{array}{cccc}
s_{1} & s_{2} & t_{2} & t_{3} \\
s_{3} & s_{4} & t_{1} & \frac{4}{3} t_{2} \\
r_{2} & r_{1} & -s_{4} & -\frac{4}{3} s_{2} \\
r_{3} & \frac{4}{3} r_{2} & -\frac{4}{3} s_{3} & -s_{1}
\end{array}\right)=\left(\begin{array}{ccccc}
s_{1}+s_{4} & t_{1} & 2 t_{2} & 2 t_{3} & 0 \\
r_{1} & s_{1}-s_{4} & -2 s_{2} & 0 & 2 t_{3} \\
r_{2} & -s_{3} & 0 & -\frac{3}{2} s_{2} & -\frac{3}{2} t_{2} \\
\frac{1}{2} r_{3} & 0 & -\frac{4}{3} s_{3} & -s_{1}+s_{4} & t_{1} \\
0 & \frac{1}{2} r_{3} & -\frac{4}{3} r_{2} & r_{1} & -s_{1}-s_{4}
\end{array}\right)
$$

with respect to matrices

$$
\mathbf{r}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & \frac{4}{3} & 0 \\
0 & -\frac{4}{3} & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right) \quad \mathbf{h}=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & -1 & 0 \\
0 & 0 & \frac{4}{3} & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Bundle of null planes

In the double fibration define

$$
\mathbb{Q}^{3} \cong \mathbb{Q}^{3} \stackrel{\ell}{セ} \mathbb{F} \xrightarrow{v} \mathbb{G}_{0}^{3} \cong \mathbb{P}^{3}, \hat{p}=v \circ \ell^{-1}(p) \subset \mathbb{P}^{3}, \tilde{v}=\ell \circ v^{-1}(v) \subset \mathbb{Q}^{3},
$$

$p_{1}, p_{2} \in \mathbb{Q}^{3}$ are null-separated if they lie on a null line $v \subset \mathbb{Q}^{3} \Rightarrow \hat{p}_{1} \cap \hat{p}_{1}=\hat{v}$
$\nu_{1}, \nu_{2} \in \mathbb{P}^{3}$ are contact-sep. if are on a contact line $p \subset \mathbb{P}^{3} \Rightarrow \tilde{\nu}_{1} \cap \tilde{v}_{2}=\tilde{p}$
Given a null line $v=[z] \in \mathbb{P}^{3}$, then $\tilde{v}=[z \wedge w] \subset \mathbb{Q}^{3}$ where $w=z^{\perp}$ e.g. the 2-plane corresponding to $\left[e_{4}\right]$ is

$$
\left[e_{4} \wedge e_{4}^{\perp}\right]=\left[e_{4} \wedge\left(\mu_{2} e_{2}+\mu_{3} e_{3}+\mu_{4} e_{4}\right)\right]=\operatorname{span}\left\{v_{4}, \mathrm{v}_{5}\right\}=\mathscr{D}
$$

These are 3D analogues of incident relations in classical twistor theory. (c.f. Ward-Wells, Twistor geometry and field theory, 1991)

Bundle of null planes

Recall that $\mathrm{g}_{0} \subset \mathfrak{c o}(2,3)$, and

$$
\phi\left(\mathfrak{g}_{0} \cap \mathfrak{s o}(2,3)\right)=\left(\begin{array}{cccc}
\frac{1}{3} \phi_{0} & 0 & 0 & 0 \\
-\xi_{0} & \phi_{1} & \theta^{1} & 0 \\
\xi_{1} & \gamma_{1} & -\phi_{1} & 0 \\
2 \xi_{2} & \frac{4}{3} \xi_{1} & \frac{4}{3} \xi_{0} & -\frac{1}{3} \phi_{0}
\end{array}\right) \subset \mathfrak{s p}(4) .
$$

Proposition : The space of null planes at each point of a
($2,3,5$)-geometry is equipped with an invariant flag

$$
\left\{p_{0}\right\} \subset \mathbb{P}^{2} \subset \mathbb{P}^{3},
$$

and G_{0} acts transitively on $\mathbb{P}^{3} \backslash \mathbb{P}^{2}$ and $\mathbb{P}^{2} \backslash\left\{p_{0}\right\}$, where $p_{0}=\left[e_{4}\right] \in \mathbb{P}^{3}$ is the rank 2 dist \mathscr{D} and $\mathbb{P}^{2}=\operatorname{span}\left\{\left[e_{2}\right],\left[e_{3}\right],\left[e_{4}\right]\right\}$ is the 2D space of null planes with non-empty intersection with \mathscr{D} i.e. contact-separated from \mathscr{D}.

Twistor bundle \mathscr{N} as \mathbb{P}^{2}-bundle of special null planes

Let $\left[\lambda_{0}: \lambda_{1}: \lambda_{2}: \lambda_{3}\right]$ be homog coords on \mathbb{P}^{3}. Let \mathbb{P}^{2} be represented by $\left[\lambda_{1} e_{2}+\lambda_{2} e_{3}-2 \sqrt{2} \lambda_{3} e_{4}\right]$ then the corresponding null planes are

$$
p=Z_{\wedge}\left(\lambda_{1} e_{2}+\lambda_{2} e_{3}-2 \sqrt{2} \lambda_{3} e_{4}\right), \quad \rho(p)=0 \Rightarrow \frac{3 \sqrt{2}}{2} z_{1} \lambda_{3}-z_{2} \lambda_{2}+z_{3} \lambda_{1}=0
$$

Working on the affine chart $\lambda_{2}=1$, one obtains

$$
Z=t_{1} e_{1}+\frac{3 \sqrt{2}}{2} t_{1} \lambda_{3} e_{2}-t_{2} e_{4}
$$

for two param t_{1} and t_{2}, and p corresponds to $\operatorname{span}\left\{V_{1}, V_{2}\right\}$ where

$$
V_{1}=\mathrm{v}_{1}+\lambda_{1} \mathrm{v}_{2}-3 \lambda_{3} \mathrm{v}_{3}-6 \lambda_{3}^{2} \mathrm{v}_{5} \quad V_{2}=\mathrm{v}_{4}+\lambda_{1} \mathrm{v}_{5}
$$

Similarly one can treat other two affine charts.

Twistor bundle \mathscr{N} as \mathbb{P}^{2}-bundle of special null planes

 The special null planes in $T_{x} M$ are the \mathbb{P}^{2}-bundle with non-empty intersection with \mathscr{D} and can be parametrized as $\left\langle\beta^{1}, \beta^{2}, \beta^{3}\right\rangle^{\perp}$ where$$
\beta^{1}=\omega^{3}-\lambda_{1} \omega^{4}, \quad \beta^{2}=\omega^{0}-6 \lambda_{3}^{2} \omega^{4}-\lambda_{1} \omega^{1}-4 \lambda_{3} \omega^{2}, \quad \beta^{3}=\omega^{2}+3 \lambda_{3} \omega^{4}
$$

Like in 3D, 4D conformal strs, λ_{1}, λ_{3} can be identified with group parameters $g_{1},-3 x_{1}$ which correspond to conn forms γ_{1}, ξ_{1}. Hence the twistor bundle \mathscr{N}^{7} is the leaf space of

$$
\left\langle\omega^{0}, \omega^{1}, \omega^{2}, \omega^{3}, \omega^{4}, \gamma_{1}, \xi_{1}\right\rangle
$$

and its 2D fibers \mathscr{N}_{x} are the 2D normal subgroup $A_{g_{1}, x_{1}} \subset P_{1}$.
Proposition : \mathscr{N} has a canonical rank 2 dist $\mathscr{H}=\operatorname{ker}\left\{\beta^{1}, \cdots, \beta^{5}\right\}$ where

$$
\begin{aligned}
& \beta^{4}=\mathrm{d} \lambda_{1}+6 \lambda_{3}^{3} \omega^{4}-\lambda_{1}^{2} \theta^{1}-2 \lambda_{1} \phi_{1}+\gamma_{1} \\
& \beta^{5}=\mathrm{d} \lambda_{3}+\lambda_{3}^{2} \omega^{1}-\frac{1}{3} \lambda_{3} \phi_{0}-\lambda_{3} \phi_{1}-\lambda_{3} \lambda_{1} \theta^{1}-\frac{1}{3} \lambda_{1} \xi_{0}-\frac{1}{3} \xi_{1}
\end{aligned}
$$

\mathscr{H} is integrable if and only if \mathscr{D} is flat.
Direct computation shows modulo $\left\langle\beta^{1}, \cdots, \beta^{5}\right\rangle \mathrm{d} \beta^{1}, \mathrm{~d} \beta^{2}, \mathrm{~d} \beta^{3} \equiv 0$,

$$
\mathrm{d} \beta^{4} \equiv \mathbf{A}\left(\lambda_{1}\right) \omega^{1} \wedge \omega^{4}, \quad \mathrm{~d} \beta^{5} \equiv \frac{1}{4}\left(\mathbf{B}\left(\lambda_{1}\right)+\lambda_{3} \frac{\mathrm{~d}}{\mathrm{~d} \lambda_{1}} \mathbf{A}\left(\lambda_{1}\right)\right) \omega^{1} \wedge \omega^{4}
$$

Twistor bundle \mathscr{N}

Integrability by distinguished null surfaces: necessary condition

Let us find necessary conditions for the existence of $\lambda: M \rightarrow \mathscr{N}$ for which $s^{*} I$ is Frobenius integrable where $I=\left\langle\beta^{1}, \beta^{2}, \beta^{3}\right\rangle$.

$$
\beta^{1}=\omega^{3}-\lambda_{1} \omega^{4}, \quad \beta^{2}=\omega^{0}-6 \lambda_{3}^{2} \omega^{4}-\lambda_{1} \omega^{1}-4 \lambda_{3} \omega^{2}, \quad \beta^{3}=\omega^{2}+3 \lambda_{3} \omega^{4} .
$$

One finds modulo $I, \mathrm{~d} I \subset I$ implies $\beta^{4}, \beta^{5} \in s^{*} I$ where

$$
\begin{aligned}
& \beta_{4}=\mathrm{d} \lambda_{1}+6 \lambda_{3}^{3} \omega^{4}-\lambda_{1}^{2} \theta^{1}-2 \lambda_{1} \phi_{1}+\gamma_{1} \\
& \beta_{5}=\mathrm{d} \lambda_{3}+\lambda_{3}^{2} \omega^{1}-\frac{1}{3} \lambda_{3} \phi_{0}-\lambda_{3} \phi_{1}-\lambda_{3} \lambda_{1} \theta^{1}-\frac{1}{3} \lambda_{1} \xi_{0}-\frac{1}{3} \xi_{1}
\end{aligned}
$$

i.e. a 2D reduction of \mathscr{G}. Another differentiation gives

$$
\mathrm{d} \beta^{4} \equiv \mathbf{A}\left(\lambda_{1}\right) \omega^{1} \wedge \omega^{4}, \quad \mathrm{~d} \beta^{5} \equiv \frac{1}{4}\left(\mathbf{B}\left(\lambda_{1}\right)+\lambda_{3} \frac{\mathrm{~d}}{\mathrm{~d} \lambda_{1}} \mathbf{A}\left(\lambda_{1}\right)\right) \omega^{1} \wedge \omega^{4}
$$

Integrability by null surfaces: sufficient conditions

Proposition : Let $\lambda: \mathscr{G} \rightarrow \mathscr{N} \backslash\{\mathscr{D}\}$ be a special null plane such that it is a repeated root of \mathbf{A} and \mathbf{B} of multiplicity $k \geq 2$ and $\geq k$ respectively. Then λ is integrable iff λ is a root of C of multiplicity $\geq k-1$.

Assume $k=2$. As before, define the co-dim 2 subbundle $\mathscr{G}_{2} \subset \mathscr{G}$

$$
\left.\mathscr{G}_{2}=\left\{u \in \mathscr{G} \mid a_{0}(u)=a_{1}(u)=b_{0}(u)=b_{1}(u)=0\right)\right\} .
$$

A and B sharing equally repeated roots defines a section of \mathscr{N}

$$
\begin{aligned}
& \mathrm{d} a_{0} \equiv \frac{4}{3} a_{0} \phi_{0}+4 a_{0} \phi_{1}+4 a_{1} \gamma_{1}, \quad \mathrm{~d} a_{1} \equiv a_{0} \theta^{1}+\frac{4}{3} a_{1} \phi_{0}+2 a_{1} \phi_{1}+3 a_{2} \gamma_{1} \\
& \mathrm{~d} b_{0} \equiv \frac{4}{3}\left(a_{0} \xi_{0}-a_{1} \xi_{1}\right)+\frac{5}{3} b_{0} \phi_{0}+3 b_{0} \phi_{1}+3 b_{1} \gamma_{1} \\
& \mathrm{~d} b_{1} \equiv \frac{4}{3}\left(a_{1} \xi_{0}-a_{2} \xi_{1}\right)+b_{0} \theta^{1}+\frac{5}{3} b_{1} \phi_{0}+b_{1} \phi_{1}+2 b_{2} \gamma_{1} .
\end{aligned}
$$

One obtains a 2D reduction which gives modulo $\left\langle\omega^{0}, \omega^{2}, \omega^{3}\right\rangle$

$$
\begin{gathered}
\gamma_{1} \equiv-\frac{1}{2 a_{2}} h_{3} \omega^{4}, \quad \xi_{1} \equiv-\frac{9}{8 a_{2}} c_{0} \omega^{1}+(\cdots) \omega^{4} \\
\Rightarrow \mathrm{~d} \omega^{3} \equiv 0, \quad \mathrm{~d} \omega^{2} \equiv \frac{9}{8 a_{2}} c_{0} \omega^{1} \wedge \omega^{4}, \quad \mathrm{~d} \omega^{0}=\frac{1}{2 a_{2}} h_{3} \omega^{1} \wedge \omega^{4}, \quad h_{3}=-\frac{3}{4} c_{0 ; 1}
\end{gathered}
$$

Goldberg-Sachs theorem

Theorem : Given a special null plane dist $\mathscr{K}: M \rightarrow \mathscr{N}$ and $k \geq 2$ any two of the following imply the third
(1) \mathscr{K} is a repeated root of \mathbf{A} and \mathbf{B} with multiplicity k and $\geq k$ resp.
(2) \mathscr{K} is a root of \mathbf{C} with mulitplicity at least $k-1$ everywhere.
(3) \mathscr{K} is integrable.

What is left is to show $(2)+(3) \rightarrow(1)$ which is a proof by contradiction.

Remarks :

The set of repeated roots of \mathbf{A} and \mathbf{B} with equal multiplicity defines a finite set of points at each fiber of \mathscr{N} in non-flat case. Similarly one can investigate Frobenius integrability in (3,6)-geometries by exploiting the isomorphism $\mathfrak{s l}(4) \rightarrow \mathfrak{s p}(3,3)$.

3-integrability: necessary conditions

Let $\mathscr{N}^{*} \rightarrow M$ be the twistor \mathbb{P}^{2}-bundle of special null co-planes. They can be parametrized as the dual to the null planes of \mathscr{N} wrt to the conformal metric i.e. in the affine chart $\lambda_{2}=1$, one has $I=\left\langle\zeta^{1}, \zeta^{2}\right\rangle$

$$
\zeta^{1}=\omega^{3}-\lambda_{1} \omega^{4}, \quad \zeta^{2}=\omega^{0}-6 \lambda_{3}^{2} \omega^{4}-\lambda_{1} \omega^{1}-4 \lambda_{3} \omega^{2}
$$

One finds modulo I, $\mathrm{d} I \subset I$ implies $\zeta^{3}, \zeta^{4}, \zeta^{5} \in s^{*} I$ where

$$
\begin{aligned}
\zeta^{3}= & \mathrm{d} \lambda_{1}-12 \lambda_{3}^{3} \omega^{4}-\lambda_{1}^{2} \theta^{1}-6 \lambda_{3}^{2} \omega^{2}-2 \lambda_{1} \phi_{1}+\gamma_{1} \\
\zeta^{4}= & \mathrm{d} \lambda_{3}+\lambda_{3}^{2} \omega^{1}+\frac{1}{12} \mu \omega^{2}+\frac{1}{4} \mu \lambda_{3} \omega^{4}-\frac{1}{3} \lambda_{3} \phi_{0}-\lambda_{3} \phi_{1}-\lambda_{1} \lambda_{3} \theta^{1}-\frac{1}{3} \lambda_{1} \xi_{0}-\frac{1}{3} \xi_{1} \\
\zeta^{5}= & \mathrm{d} \mu+\frac{3}{4} \mu \lambda_{3} \omega^{1}+\mu^{2} \omega^{4}-\mu\left(\phi_{0}+\phi_{1}\right)+\left(6 \lambda_{3}^{3}-\lambda_{1} \mu\right) \theta^{1} \\
& +6 \lambda_{3}^{2} \xi_{0}-3 \lambda_{3} \xi_{2}+\lambda_{1} \xi_{3}+\xi_{4}
\end{aligned}
$$

Thus the necessary conditions for 3-integrability defines an 8D twistor bundle which is the leaf space of

$$
\left\langle\omega^{0}, \omega^{1}, \omega^{2}, \omega^{3}, \omega^{4}, \gamma_{1}, \xi_{1}, \xi_{4}\right\rangle
$$

whose fibers are the 3D normal subgroup $A_{g_{1}, x_{1}, x_{4}} \subset P_{1}$.

3-integrability: necessary conditions

Modulo $\left\langle\zeta^{1}, \zeta^{2}, \zeta^{3}, \zeta^{4}\right\rangle$ one has $\mathrm{d} \zeta^{1}, \mathrm{~d} \zeta^{2} \equiv 0$ and

$$
\begin{aligned}
\mathrm{d} \zeta^{3} \equiv & \mathbf{A} \omega^{1} \wedge \omega^{4}+\left(\mathbf{B}+\lambda_{3} \mathbf{A}^{\prime}\right) \omega^{2} \wedge \omega^{4} \\
\mathrm{~d} \zeta^{4} \equiv & \equiv \frac{1}{4}\left(\mathbf{B}+\lambda_{3} \mathbf{A}^{\prime}\right) \omega^{1} \wedge \omega^{4} \\
& +\left(\frac{1}{4} \mathbf{C}+\frac{2}{3} \lambda_{3} \mathbf{B}^{\prime}+\frac{1}{3} \lambda_{3}^{2} \mathbf{A}^{\prime \prime}\right) \omega^{2} \wedge \omega^{4}+\frac{1}{12}\left(3 \lambda_{3} \omega^{4}+\omega^{2}\right) \wedge \zeta^{5}
\end{aligned}
$$

and modulo $\left\langle\zeta^{1}, \zeta^{2}, \zeta^{3}, \zeta^{4}, \zeta^{5}\right\rangle$ one finds

$$
\begin{aligned}
\mathrm{d} \zeta^{5} \equiv & \left(-\frac{1}{4} \mu \mathbf{A}^{\prime}+\mathbf{H}+\frac{9}{8} \lambda_{3} \mathbf{C}+\frac{3}{2} \lambda_{3}^{2} \mathbf{B}^{\prime}+\frac{1}{2} \lambda_{3}^{3} \mathbf{A}^{\prime \prime}\right) \omega^{1} \wedge \omega^{4} \\
& +\left(-\frac{1}{3} \mu \mathbf{B}^{\prime}+\mathbf{K}+\frac{5}{4} \lambda_{3} \mathbf{D}+\frac{4}{3} \lambda_{3} \mathbf{H}^{\prime}+\frac{9}{2} \lambda_{3}^{2} \mathbf{C}^{\prime}+4 \lambda_{3}^{3} \mathbf{B}^{\prime \prime}+\lambda_{3}^{4} \mathbf{A}^{\prime \prime \prime}\right) \omega^{2} \wedge \omega^{4}
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathbf{H}=k_{3} \lambda_{1}^{3}+3\left(h_{6}-\frac{1}{16} d_{1}\right) \lambda_{1}^{2}+3\left(h_{4}-\frac{1}{32} d_{0}\right) \lambda_{1}+h_{3} \\
& \mathbf{K}=k_{2} \lambda_{1}^{2}+2\left(h_{5}+\frac{3}{64} e\right) \lambda_{1}+h_{2}
\end{aligned}
$$

3-integrability: sufficient conditions

Using the natural map between special null planes and co-planes direct inspection implies:

Proposition : 3-integrability implies 2-int by special null planes.
The following can be shown using the same method as before.
Proposition : Let $\mathscr{K}: M \rightarrow \mathscr{N}^{*} \backslash\{\partial \mathscr{D}\}$ have the property that it is a repeated root of A, B with multiplicity $k \geq 2$ and $\geq k$ and a root of C with multiplicity $\geq k-1$ everywhere. Then, \mathscr{K} is Frobenius integrable if and only if it is a root of K with multiplicity at least $k-1$.

Remarks : The 2-integrability is evident above. One is likely to find a Goldberg-Sachs-like theorem for 3-integrability.

Scalar 4th order ODEs as a Cartan geometry

Contact equivalent classes of scalar 4th order ODEs define a Cartan geometry ($\pi: \mathscr{G} \rightarrow M, \psi$) of type $\left(\mathrm{GL}_{2} \ltimes \mathbb{R}^{4}, B\right.$) (due to Morimoto, Doubrov, Komrakov, Čap, The,...) where ψ is

$$
\tilde{\psi}=\left(\begin{array}{ccccc}
-\frac{2}{3} \phi_{0}+\varepsilon & \frac{1}{3} \xi_{0} & 0 & 0 & 0 \\
\omega^{0} & -\frac{1}{3} \phi_{0}-\phi_{1}+\varepsilon & 0 & 0 & 0 \\
\omega^{1} & \theta^{1} & -\frac{1}{3} \phi_{0}+\phi_{1}+\varepsilon & \frac{2}{\sqrt{3}} \xi_{0} & 0 \\
\frac{2}{\sqrt{3}} \omega^{2} & -\frac{1}{\sqrt{3}} \omega^{1} & \frac{1}{\sqrt{3}} \omega^{0} & \varepsilon & \frac{2}{\sqrt{3}} \xi_{0} \\
\omega^{3} & -\frac{1}{3} \omega^{2} & 0 & \frac{1}{\sqrt{3}} \omega^{0} & \frac{1}{3} \phi_{0}-\phi_{1}+\varepsilon
\end{array}\right)
$$

Scalar 4th order ODEs as a Cartan geometry

Contact equivalent classes of scalar 4th order ODEs define a Cartan geometry ($\pi: \mathscr{G} \rightarrow M, \psi$) of type $\left(\mathrm{GL}_{2} \ltimes \mathbb{R}^{4}, B\right.$) (due to Morimoto, Doubrov, Komrakov, Čap, The,...) where ψ is
$\left(\begin{array}{ccccccc}-\frac{2}{3} \phi_{0} & \frac{1}{3} \xi_{0} & \frac{1}{3} \xi_{1} & -\frac{1}{\sqrt{3}} \xi_{2} & -\xi_{3} & -\xi_{4} & 0 \\ \omega^{0} & -\frac{1}{3} \phi_{0}-\phi_{1} & \gamma_{1} & -\frac{2}{\sqrt{3}} \xi_{1} & \xi_{2} & 0 & -\xi_{4} \\ \omega^{1} & \theta^{1} & -\frac{1}{3} \phi_{0}+\phi_{1} & \frac{2}{\sqrt{3}} \xi_{0} & 0 & \xi_{2} & \xi_{3} \\ \frac{2}{\sqrt{3}} \omega^{2} & -\frac{1}{\sqrt{3}} \omega^{1} & \frac{1}{\sqrt{3}} \omega^{0} & 0 & \frac{2}{\sqrt{3}} \xi_{0} & \frac{2}{\sqrt{3}} \xi_{1} & -\frac{1}{\sqrt{3}} \xi_{2} \\ \omega^{3} & -\frac{1}{3} \omega^{2} & 0 & \frac{1}{\sqrt{3}} \omega^{0} & \frac{1}{3} \phi_{0}-\phi_{1} & \gamma_{1} & -\frac{1}{3} \xi_{1} \\ \omega^{4} & 0 & -\frac{1}{3} \omega^{2} & \frac{1}{\sqrt{3}} \omega^{1} & \theta^{1} & \frac{1}{3} \phi_{0}+\phi_{1} & \frac{1}{3} \xi_{0} \\ 0 & \omega^{4} & -\omega^{3} & \frac{2}{\sqrt{3}} \omega^{2} & -\omega^{1} & \omega^{0} & \frac{2}{3} \phi_{0}\end{array}\right)$

Scalar 4th order ODEs as a Cartan geometry

Contact equivalent classes of scalar 4th order ODEs define a Cartan geometry ($\pi: \mathscr{G} \rightarrow M, \psi$) of type $\left(\mathrm{GL}_{2} \ltimes \mathbb{R}^{4}, B\right.$) (due to Morimoto, Doubrov, Komrakov, Čap, The,...) where ψ is

$$
\tilde{\psi}=\left(\begin{array}{ccccc}
-\frac{2}{3} \phi_{0}+\varepsilon & \frac{1}{3} \xi_{0} & 0 & 0 & 0 \\
\omega^{0} & -\frac{1}{3} \phi_{0}-\phi_{1}+\varepsilon & 0 & 0 & 0 \\
\omega^{1} & \theta^{1} & -\frac{1}{3} \phi_{0}+\phi_{1}+\varepsilon & \frac{2}{\sqrt{3}} \xi_{0} & 0 \\
\frac{2}{\sqrt{3}} \omega^{2} & -\frac{1}{\sqrt{3}} \omega^{1} & \frac{1}{\sqrt{3}} \omega^{0} & \varepsilon & \frac{2}{\sqrt{3}} \xi_{0} \\
\omega^{3} & -\frac{1}{3} \omega^{2} & 0 & \frac{1}{\sqrt{3}} \omega^{0} & \frac{1}{3} \phi_{0}-\phi_{1}+\varepsilon
\end{array}\right)
$$

with $\varepsilon=\frac{1}{5}\left(\phi_{0}+\phi_{1}\right)$.
The fund invs are four scalars: two Wilczyński invariants w_{1}, w_{0} of homog 3,4 and Bryant invariants c_{1}, c_{0} of homog 3,4.

Scalar 4th order ODEs: structure equations

A linear scalar ODE of order $n+1$ expressed as

$$
y^{(n+1)}=p_{n}(x) y^{(n)}+p_{n-1}(x) y^{(n-1)}+\cdots p_{0}(x) y(x)
$$

where $y(x)$ is a \mathbb{R}^{n+1}-valued function, is in Laguerre-Forsyth normal form if $p_{n}=p_{n-1}=0$. In our case we have $n+1=4$.

The soln space \mathscr{S} is leaf space of the solutions curves tangent to $\frac{\partial}{\partial \omega^{0}}$. At $s \in \mathscr{S}$, define the co-vector function $y=\omega^{3}$ where $\omega^{3} \in T_{s}^{*} \mathscr{S}$ and

$$
y^{(k)}=\mathscr{L}_{\frac{\partial}{\partial \omega^{0}}}^{k} \omega^{3} .
$$

Using the structure equations one obtains

$$
y^{\prime}=-\omega^{2}, \quad y^{\prime \prime}=\omega^{1}, \quad y^{\prime \prime \prime}=w_{1} \omega^{3}+\theta^{1} .
$$

Thus, the linearization of the ODEs along the solution $s \in \mathscr{S}$ is

$$
y^{\prime \prime \prime \prime}=2 w_{1} y^{\prime}-\left(w_{0}+w_{1 ; 0}\right) y
$$

Almost conformally quasi-symplectic structures

A quasi-symplectic 2 -form on M^{5} is the odd-dimensional analogue of symplectic 2 -form i.e.

$$
\rho \subset \wedge^{2} T^{*} M: \quad \rho \wedge \rho \neq 0, \quad \mathrm{~d} \rho=0 .
$$

Any 4th order order ODE uniquely determines a 2 -form up to scale, [ρ],

$$
\rho=-\theta^{1} \wedge \omega^{3}-\omega^{1} \wedge \omega^{2}
$$

which has maximal rank but not closed, referred to as an almost conformally quasi-symplectic structure (ACQS), with its degenerate direction tangent to the solution curves i.e. $\frac{\partial}{\partial \omega^{\circ}}$.

ACQS structure is called CQS if the [ρ] has a closed representative.
Proposition : Being CQS is equivalent to the induced connection on the line bundle $[\rho] \subset \wedge^{2} T^{*} M$ being torsion-free and flat.

$$
\mathrm{d} \rho=-\left(\phi_{0}+\phi_{1}\right) \wedge \rho \quad \& \quad \mathrm{~d}\left(\phi_{0}+\phi_{1}\right)=0 \Rightarrow w_{1}, c_{1}=0 .
$$

Conf q-symplectic 2-forms and quasi-contactification

Given a CQS 4th order ODE on M^{5}, let $\tilde{M}^{6}=M \times \mathbb{R}$ with $\pi: \tilde{M} \rightarrow M$.
Take a representative $\rho_{0} \in[\rho]$ such that locally

$$
\mathrm{d} \rho_{0}=0 \Rightarrow \rho_{0}=\mathrm{d} \omega^{4}
$$

Define $\tilde{\omega}^{4}=\pi^{*} \omega^{4}+\mathrm{d} t$ on \tilde{M}. Then $\mathrm{d} \tilde{\omega}^{4}=\pi^{*} \rho_{0}$, and it defines a quasi-contact structure on \tilde{M}^{6} i.e. $\operatorname{ker} \tilde{\omega}^{4}$ is maximally non-integ and $\tilde{\omega}^{4}$ has a degenerate direction.

The scaling action on ρ_{0} naturally extends to $\tilde{\omega}^{4}$ and one obtains $\left[\tilde{\omega}^{4}\right]$.
Let $\tilde{\mathscr{G}} \rightarrow \tilde{M}$ be the pull-back of the structure bundle $\mathscr{G} \rightarrow M$, and $\tilde{\psi}$ the pull-back of ψ with $\tilde{\omega}^{4}$ as the lifted 1 -form.

On \tilde{M} the rank 2 distribution $\operatorname{ker}\left\{\tilde{\omega}^{1}, \cdots, \tilde{\omega}^{4}\right\}$ has a splitting and defines a $\left(P_{2}, B\right)$ geometry where $P_{2} \subset \mathrm{G}_{2}$.

(2,3,5)-geometries from 4th order ODEs

One can find the corresponding (G_{2}, P_{12}) Cartan geometry which is regular and therefore defines a ($2,3,5$)-geometry.

The normal connection of the $(2,3,5)$-geometry is

$$
\begin{gathered}
\tilde{\omega}^{3}=\omega^{3}, \quad \tilde{\omega}^{2}=\omega^{2}, \quad \tilde{\omega}^{1}=\omega^{1}, \quad \tilde{\theta}^{1}=\theta^{1} \quad \tilde{\omega}^{0}=\omega^{0}-\frac{3}{16} c_{0} \tilde{\omega}^{4}, \\
\tilde{\phi}_{0}=\phi_{0}+\frac{9}{64} c_{0 ; 0} \tilde{\omega}^{4}, \quad \tilde{\phi}_{1}=\phi_{1}-\frac{9}{64} c_{0 ; 0} \tilde{\omega}^{4}, \quad \tilde{\xi}_{0}=\xi_{0}-\left(\frac{9}{32} c_{0 ; 00}+\frac{1}{8} w_{0 ; 11}\right) \tilde{\omega}^{4} .
\end{gathered}
$$

where $w_{0 ; 1}=\frac{\partial}{\partial \theta^{1}} w_{0}$.
The scalar harmonic inv of $\left(G_{2}, P_{12}\right)$ geometry is $\pi^{*} w_{0}\left(\omega^{0}\right)^{4}$ and

$$
a_{4}=w_{0}, \quad a_{3}=\frac{1}{4} w_{0 ; 1}, \quad a_{2}=\frac{1}{12} w_{0 ; 11}, \quad a_{1}=\frac{1}{24} w_{0 ; 111}, \quad a_{0}=\frac{1}{24} w_{0 ; 1111},
$$

and, $w_{0 ; 11111}=0$.

Flatness, integrability and holonomy reduction

4th order ODE locally are given by 1 function of 5 variables. CQS 4th order ODEs locally depend on 1 function of 4 varialbes.

We consider the following cases.

- When $w_{0}=0$, then the ($2,3,5$)-geometry is flat. Such fourth order ODEs define torsion-free $G L_{2}$-structures with symmetric Ricci and their local moduli depends on 5 constants.
- When $c_{0}=0$, then $w_{0 ; 111}=0$, i.e. the Cartan quartic is type $I I$, and $(2,3,5)$-geometries are 3 -integrable i.e. $\left\langle\tilde{\omega}^{0}, \tilde{\omega}^{4}\right\rangle$ is Frobenius. The local generality is 2 functions of 3 variables.
- If $c_{0}=0$ and $w_{0 ; 11}=0$ i.e. the Cartan quartic has type III, then one has a holonomy reduction of the ($2,3,5$)-geometry to P_{2}, the local generality is 1 function of 3 variables.
- If $c_{0}=0$ and $w_{0 ; 1}=0$ i.e. the Cartan quartic has type N the local generality is 2 function of 2 variables.

Variational 4th order ODEs $\Leftrightarrow(2,3,5)$-dist + infin symmetry

Theorem : (Fels 1996) A 4th order ODE is CQS iff it is variational.
Corollary : Variational 4th order ODEs $\Leftrightarrow(2,3,5)$-dist + infin symmetry
Given a ($2,3,5$)-geometry, consider the corresponding (G_{2}, P_{12}) geom. If it arises from a 4th order ODE then $\frac{\partial}{\partial t}$ is an infin symmetry that is transversal to the quasi-contact distribution.

Conversely, if there is a transv. infin. symm. v then there is reduction of the $\left(G_{2}, P_{12}\right)$ to a $\left(P_{2}, B\right)$-geometry. In particular, choose a q-cont form s.t. $\theta(\nu)=1$. Since $\mathscr{L}_{\nu} \theta=\mathscr{L}_{\nu} \mathrm{d} \theta=0$, one has $\mathrm{d} \theta(\nu,)=.0 \Rightarrow \mathrm{~d} \theta=\pi^{*} \rho$ where $\rho \in \Lambda^{2} T^{*} M$ is CQS where M is the leaf space of v. Identifying the q-contact distribution with $T M$, one can show that it is equipped with a CQS 4th order ODE.

References

- R S Ward and R O Wells Jr. Twistor geometry and field theory. Cambridge University Press. 1991.
- O Makhmali, P Nurowski. Integrability conditions on non-integrable plane fields in dimension five. in preparation
- A Čap, T Salač. Parabolic conformally symplectic structures O,I,II. 2014-2019
- O Makhmali, K. Sagerschnig. Parabolic quasi-contact cone structures with transversal infinitesimal symmetry. in preparation
- M Fels. The inverse problem of the calculus of variations for scalar fourth-order ordinary differential equations. Transactions of the American Mathematical Society, 348(12):50075029, 1996.

