Dispersionless integrable equations and modular forms

E.V. Ferapontov

Department of Mathematical Sciences, Loughborough University, UK

E.V.Ferapontov@lboro.ac.uk

seminar of the Grieg collaboration project SCREAM, 16 June 2023

Plan:

- Dispersionless integrability
- 3D dispersionless Hirota type equations $F(u_{x^i x^j}) = 0$
 - Examples
 - Summary of known results
 - Hirota master-equation via genus three theta constants
- 3D integrable Lagrangians $\int f(v_{x_1}, v_{x_2}, v_{x_3}) dx_1 dx_2 dx_3$
 - Examples
 - Summary of known results
 - Integrable Lagrangians via Picard modular forms

Coefficients of dispersionless integrable PDEs in 3D can be written in terms of generalised hypergeometric functions/modular forms.

Dispersionless integrability

Hydrodynamic reductions: A PDE in 3D is said to be **integrable** if it possesses infinitely many reductions to a collection of commuting 2D systems of hydrodynamic type.

Dispersionless Lax pairs: A PDE in 3D is said to be integrable if it possesses a dispersionless Lax pair, that is, if it can be represented as the commutativity condition of two vector fields depending on a spectral parameter.

Integrability 'on solutions': A PDE in 3D is said to be **integrable** if its characteristic variety defines a conformal structure which is Einstein-Weyl on every solution.

All three approaches are equivalent!

3D dispersionless Hirota type equations

Dispersionless Hirota type equation is a second-order PDE of the form

$$F(u_{ij}) = 0$$

where $u(x_1, x_2, x_3)$ is a function of three independent variables, $u_{ij} = u_{x_i x_j}$.

Example 1. Dispersionless Kadomtsev-Petviashvili equation

$$u_{xt} - \frac{1}{2}u_{xx}^2 - u_{yy} = 0.$$

Example 2. Boyer-Finley equation

$$u_{xx} + u_{yy} - e^{u_{tt}} = 0.$$

Modular example

Example 3. Equation of the form

$$u_{tt} - \frac{u_{xy}}{u_{xt}} - \frac{1}{6}h(u_{xx})u_{xt}^2 = 0$$

is integrable if and only if the coefficient h satisfies the Chazy equation

$$h''' + 2hh'' - 3(h')^2 = 0$$

(Pavlov, 2003). Its general solution can be expressed in terms of the Eisenstein series of weight 2 on the modular group $SL(2,\mathbb{Z})$: $h(s)=E_2(is/\pi)$ where $(q=e^{2\pi i \tau})$

$$E_2(\tau) = 1 - 24 \sum_{n=1}^{\infty} \sigma_1(n) e^{2\pi i n \tau} = 1 - 24 q - 72 q^2 - 96 q^3 + \dots$$

3D Hirota type equations: summary of known results

• The class of Hirota equations is invariant under the symplectic group $Sp(6,\mathbb{R})$:

$$U \mapsto (AU + B)(CU + D)^{-1}$$
.

Here $U = \text{Hess}(u) = u_{ij}$ is the Hessian matrix of the function u.

- The parameter space of integrable Hirota type equations is 21-dimensional. Furthermore, the action of the equivalence group $Sp(6,\mathbb{R})$ on the parameter space is locally free. Since $\dim Sp(6,\mathbb{R})=21$, there exists a generic Hirota master-equation generating an open 21-dimensional $Sp(6,\mathbb{R})$ -orbit.
- Geometrically, Hirota type equation $F(u_{ij})=0$ can be viewed as the defining equation of a hypersurface M^5 in the Lagrangian Grassmannian Λ^6 .

E.V. Ferapontov, L. Hadjikos and K.R. Khusnutdinova, Integrable equations of the dispersionless Hirota type and hypersurfaces in the Lagrangian Grassmannian, IMRN (2010) 496-535.

3D Hirota master-equation

Theorem. A 3D Hirota master-equation is given by the formula

$$\vartheta_m(u_{ij}) = 0$$

where ϑ_m is any genus 3 theta constant with an even characteristic m.

F. Cléry, E.V. Ferapontov, Dispersionless Hirota equations and the genus 3 hyperelliptic divisor, Comm. Math. Phys. **376**, no. 2 (2020) 1397-1412.

Note that θ -constants are Siegel modular forms of weight 1/2.

The corresponding hypersurface $M^5\subset \Lambda^6$ is the genus 3 hyperelliptic divisor.

This theorem was proved by uncovering geometry behind the Odesskii-Sokolov construction that parametrises dispersionless integrable systems via generalised hypergeometric functions.

ϑ -constants

Theta constants (of genus 3) with characteristics are defined by

$$\vartheta_m(\tau) = \vartheta_{\left[\begin{matrix} \mu \\ \nu \end{matrix} \right]}(\tau) = \sum_{n \in \mathbb{Z}^3} e^{i\pi(n+\mu/2)\left(\tau(n+\mu/2)^t + \nu^t\right)}$$

where $\mu,\nu\in\{0,1\}^3$ and τ is a 3×3 symmetric matrix. The characteristic $m=\left[\begin{smallmatrix}\mu\\\nu\end{smallmatrix}\right]$ is called even if $\mu\nu^t$ is even. In genus 3, there are 36 even characteristics and they give rise to 36 theta constants. Recall that there is an action of the group $Sp(6,\mathbb{Z})$ on the set of even characteristics which is transitive, so that all equations

$$\vartheta_m(u_{ij}) = 0$$

for different characteristics m are equivalent. It is known that in genus 3 the vanishing of even theta constants characterises the hyperelliptic divisor (Schottky).

Open problems

- Find a purely computational proof that even theta constants satisfy the 3D integrability conditions by deriving $Sp(6,\mathbb{R})$ -invariant differential equations that characterise theta constants.
- Classify 3D integrable Hirota type equations corresponding to singular $Sp(6,\mathbb{R})$ -orbits of lower dimension (degenerations of theta constants).

3D Integrable Lagrangians $\int f(v_{x_1}, v_{x_2}, v_{x_3}) \ dx$

Euler-Lagrange equation:

$$(f_{v_{x_1}})_{x_1} + (f_{v_{x_2}})_{x_2} + (f_{v_{x_3}})_{x_3} = 0.$$

Example 1. Dispersionless Kadomtsev-Petviashvili equation

$$v_{x_1x_3} - v_{x_1}v_{x_1x_1} - v_{x_2x_2} = 0, f = v_{x_1}v_{x_2} - \frac{1}{3}v_{x_1}^3 - v_{x_2}^2.$$

Example 2. Boyer-Finley equation

$$v_{x_1x_1} + v_{x_2x_2} - e^{v_{x_3}}v_{x_3x_3} = 0, f = v_{x_1}^2 + v_{x_2}^2 - 2e^{v_{x_3}}.$$

E.V. Ferapontov, K.R. Khusnutdinova and S.P. Tsarev, On a class of three-dimensional integrable Lagrangians, Comm. Math. Phys. **261**, N1 (2006) 225-243.

E.V. Ferapontov and A.V. Odesskii, Integrable Lagrangians and modular forms, J. Geom. Phys. **60**, no. 6-8 (2010) 896-906.

Modular example

Example 3. Lagrangian density $f=v_{x_1}v_{x_2}g(v_{x_3})$ gives the Euler-Lagrange equation

$$(v_{x_2}g(v_{x_3}))_{x_1} + (v_{x_1}g(v_{x_3}))_{x_2} + (v_{x_1}v_{x_2}g'(v_{x_3}))_{x_3} = 0.$$

Integrability condition for g(z):

$$g''''(g^2g'' - 2g(g')^2) - 9(g')^2(g'')^2 + 2gg'g''g''' + 8(g')^3g''' - g^2(g''')^2 = 0.$$

The generic solution g(z) can be represented in the form ($q=e^{2\pi iz}$)

$$g(z) = \sum_{(k,l)\in\mathbb{Z}^2} e^{2\pi i(k^2 + kl + l^2)z} = 1 + 6q + 6q^3 + 6q^4 + 12q^4 + \dots$$

Note that g coincides with the Eisenstein series $E_{1,3}(z)$ which is a modular form of weight one and level three.

Summary of known results

- ullet The parameter space of integrable Lagrangian densities f is 20-dimensional.
- ullet Integrability conditions for f are invariant under a 20-dimensional symmetry group that acts on the parameter space with an open orbit.

Problem: construct master-Lagrangian corresponding to the open orbit. Remarkably, this leads to the theory of Picard modular forms.

F. Cléry, E.V. Ferapontov, A. Odesskii, D. Zagier, Integrable Lagrangians and modular forms, https://people.mpim-bonn.mpg.de/zagier/files/preprints/cfoz.pdf, work in progress.

Integrability conditions

Integrability conditions form a PDE system for the density f:

$$d^4f = d^3f \frac{dH}{H} + \frac{3}{H} \det(dM).$$

Here d^3f and d^4f are the symmetric differentials of f while the Hessian H and the 4×4 matrix M are defined as

$$H = \det \begin{pmatrix} f_{xx} & f_{xy} & f_{xz} \\ f_{xy} & f_{yy} & f_{yz} \\ f_{xz} & f_{yz} & f_{zz} \end{pmatrix}, \quad M = \begin{pmatrix} 0 & f_x & f_y & f_z \\ f_x & f_{xx} & f_{xy} & f_{xz} \\ f_y & f_{xy} & f_{yy} & f_{yz} \\ f_z & f_{xz} & f_{yz} & f_{zz} \end{pmatrix}.$$

Here $(x,y,z)=(v_{x_1},v_{x_2},v_{x_3})$. The system for f is in involution and its solution space is 20-dimensional.

Weierstrass sigma function σ and integers C_k

Let σ be the Weierstrass sigma function (equianharmonic case $g_2=0$). It solves the ODE

$$\sigma\sigma'''' - 4\sigma'\sigma''' + 3\sigma''^2 = 0$$

and possesses a power series expansion

$$\sigma(z) = \sum_{k>0} C_k \frac{z^{6k+1}}{(6k+1)!}$$

where C_k are certain integers:

$$1, 1, -6, -552, 18600, -9831240, \ldots$$

These integers will feature in the formulas for the density f.

Lagrangian densities $f = v_{x_1} v_{x_2} g(v_{x_3})$

Euler-Lagrange equation:

$$(v_{x_2}g(v_{x_3}))_{x_1} + (v_{x_1}g(v_{x_3}))_{x_2} + (v_{x_1}v_{x_2}g'(v_{x_3}))_{x_3} = 0.$$

Integrability condition:

$$g''''(g^2g'' - 2g(g')^2) - 9(g')^2(g'')^2 + 2gg'g''g''' + 8(g')^3g''' - g^2(g''')^2 = 0.$$

Below we give 3 equivalent representations of the generic solution g:

Theta representation;

Power series representation;

Parametric representation.

Auxiliary hypergeometric equation

Consider the auxiliary hypergeometric equation

$$u(1-u)h_{uu} + (1-2u)h_u - \frac{2}{9}h = 0.$$

The geometry behind this equation is a one-parameter family of genus 2 trigonal curves.

$$r^3 = t(t-1)(t-u)^2,$$

supplied with the holomorphic differential $\omega=dt/r$. The corresponding periods, $h=\int_a^b\omega$ where $a,b\in\{0,1,\infty,u\}$, form a 2-dimensional vector space and satisfy the above (Picard-Fuchs) hypergeometric equation.

Generic solution g(z)

1. Theta representation:

$$g(z) = \sum_{(k,l)\in\mathbb{Z}^2} e^{2\pi i(k^2 + kl + l^2)z} = 1 + 6q + 6q^3 + 6q^4 + 12q^4 + \dots$$

2. Power series:

$$g(z) = \sum_{k>0} C_k^2 \frac{z^{6k+1}}{(6k+1)!}.$$

3. Parametric form:

$$z = \frac{h_1(u)}{h_2(u)}, \quad g = h_2(u),$$

here h_i are two linearly independent solutions of the above hypergeometric equation.

Lagrangian densities $f = v_{x_1} g(v_{x_2}, v_{x_3})$

The corresponding Euler-Lagrange equation is

$$(g)_{x_1} + (v_{x_1}g_{v_{x_2}})_{x_2} + (v_{x_1}g_{v_{x_3}})_{x_3} = 0.$$

The integrability conditions lead to an involutive PDE system for g(y,z) which is invariant under a ten-dimensional symmetry group. This invariance allows one to linearise the integrability conditions for g.

Auxiliary hypergeometric system

Consider the auxiliary (Appell) hypergeometric system

$$h_{u_1 u_2} = \frac{1}{3} \frac{h_{u_1} - h_{u_2}}{u_1 - u_2},$$

$$h_{u_1u_1} = -\frac{h}{9u_1(u_1-1)} + \frac{h_{u_2}}{3(u_1-u_2)} \frac{u_2(u_2-1)}{u_1(u_1-1)} - \frac{h_{u_1}}{3} \left(\frac{1}{u_1-u_2} + \frac{2}{u_1} + \frac{2}{u_1-1} \right),$$

$$h_{u_2u_2} = -\frac{h}{9u_2(u_2 - 1)} + \frac{h_{u_1}}{3(u_2 - u_1)} \frac{u_1(u_1 - 1)}{u_2(u_2 - 1)} - \frac{h_{u_2}}{3} \left(\frac{1}{u_2 - u_1} + \frac{2}{u_2} + \frac{2}{u_2 - 1} \right).$$

Its solutions are periods of the holomorphic differential $\omega=dq/r$ of the genus three Picard trigonal curves (Picard, 1883):

$$r^{3} = q(q-1)(q-u_{1})(q-u_{2}).$$

Generic solution g(y, z)

1. Theta representation:

$$g(y,z) = y + \sum_{(k,l)\in\mathbb{Z}^2\backslash 0} \frac{\sigma((k+\epsilon l)y)}{k+\epsilon l} e^{2\pi i(k^2+kl+l^2)z}, \quad \epsilon = e^{\pi i/3}.$$

2. Power series:

$$g(y,z) = \sum_{j,k \ge 0} C_j C_k C_{j+k} \frac{y^{6j+1}}{(6j+1)!} \frac{z^{6k+1}}{(6k+1)!}.$$

3. Parametric form:

$$y = \frac{h_1(u_1, u_2)}{h_3(u_1, u_2)}, \quad z = \frac{h_2(u_1, u_2)}{h_3(u_1, u_2)}, \quad g = F(s), \ s = \frac{u_1(u_2 - 1)}{u_2(u_1 - 1)}.$$

where
$$F' = [s(s-1)]^{-2/3}$$
.

Relation to Picard modular forms

The period map,

$$y = \frac{h_1(u_1, u_2)}{h_3(u_1, u_2)}, \quad z = \frac{h_2(u_1, u_2)}{h_3(u_1, u_2)},$$

was inverted by Picard (1883):

$$u_1 = \frac{\varphi_1(y, z)}{\varphi_0(y, z)}, \ u_2 = \frac{\varphi_2(y, z)}{\varphi_0(y, z)},$$

where φ_{ν} are modular forms on a 2-dimensional complex ball $2{\rm Re}y+|z|^2<0$ with respect to the Picard modular group

 $\Gamma[\sqrt{-3}]=\{g\in U(2,1;\mathbb{Z}[\rho]):g\equiv 1(\mathrm{mod}\sqrt{-3})\},\ \rho=e^{2\pi i/3}.$ Picard modular forms were extensively studied by Holzapfel, Feustel, Finis, Shiga, Cléry and van der Geer.

Differential dg via Picard modular forms

There exists a simple expression of the differential dg is terms of φ_{ν} :

$$dg = \frac{\varphi_1 \varphi_2 (\varphi_2 - \varphi_1) d\varphi_0 + \varphi_0 \varphi_2 (\varphi_0 - \varphi_2) d\varphi_1 + \varphi_0 \varphi_1 (\varphi_1 - \varphi_0) d\varphi_2}{\zeta^2}$$

where ζ is a modular form defined as

$$\zeta^3 = \varphi_0 \varphi_1 \varphi_2 (\varphi_1 - \varphi_0) (\varphi_2 - \varphi_0) (\varphi_2 - \varphi_1).$$

Up to a constant factor, the differential dg has appeared in the theory of vector-valued Picard modular forms.

H. Shiga, On the representation of the Picard modular function by θ constants, I, II. Publ. Res. Inst. Math. Sci. **24**, no. 3 (1988) 311-360.

F. Cléry, G. van der Geer, Generators for modules of vector-valued Picard modular forms, Nagoya Math. J. **212** (2013) 19-57.

Generic Lagrangian densities $f(v_{x_1}, v_{x_2}, v_{x_3})$

Euler-Lagrange equation:

$$(f_{v_{x_1}})_{x_1} + (f_{v_{x_2}})_{x_2} + (f_{v_{x_3}})_{x_3} = 0.$$

Integrability conditions lead to a PDE system for f(x, y, z) which is invariant under 20-dimensional symmetry group:

$$\tilde{x} = \frac{l_1(x, y, z)}{l(x, y, z)}, \quad \tilde{y} = \frac{l_2(x, y, z)}{l(x, y, z)}, \quad \tilde{z} = \frac{l_3(x, y, z)}{l(x, y, z)}, \quad \tilde{f} = \frac{f}{l(x, y, z)},$$

as well as obvious symmetries of the form

$$\tilde{f} = \epsilon f + \alpha x + \beta y + \gamma z + \delta,$$

This symmetry allows one to linearise the integrability conditions for f.

Auxiliary hypergeometric system

Consider the auxiliary (Appell) hypergeometric system

$$h_{u_i u_j} = \frac{1}{3} \frac{h_{u_i} - h_{u_j}}{u_i - u_j},$$

$$h_{u_i u_i} = -\frac{2}{9} \frac{h}{u_i (u_i - 1)} - \frac{1}{3u_i (u_i - 1)} \sum_{j \neq i}^3 \frac{u_j (u_j - 1)}{u_j - u_i} h_{u_j} + \frac{1}{3} \left(\sum_{i \neq i}^3 \frac{1}{u_i - u_j} + \frac{2}{u_i} + \frac{2}{u_i - 1} \right) h_{u_i}.$$

Its solutions are periods of the holomorphic differential $\omega=dq/r$ of the genus four Picard trigonal curves,

$$r^{3} = q(q-1)(q-u_{1})(q-u_{2})(q-u_{3}).$$

Inhomogeneous hypergeometric extension

We will also need the inhomogeneous hypergeometric system

$$F_{u_i u_j} = \frac{1}{3} \frac{F_{u_i} - F_{u_j}}{u_i - u_j} + \epsilon_{ijk} \frac{u_k (u_k - 1)(u_i - u_j)}{U^{2/3}},$$

$$F_{u_i u_i} = -\frac{2}{9} \frac{F}{u_i (u_i - 1)} - \frac{1}{3u_i (u_i - 1)} \sum_{j \neq i}^{3} \frac{u_j (u_j - 1)}{u_j - u_i} F_{u_j} + \frac{1}{3} \left(\sum_{j \neq i}^{3} \frac{1}{u_i - u_j} + \frac{2}{u_i} + \frac{2}{u_i - 1} \right) F_{u_i},$$

where ϵ_{ijk} is the totally antisymmetric tensor and

$$U = u_1 u_2 u_3 (u_1 - 1)(u_2 - 1)(u_3 - 1)(u_1 - u_2)(u_2 - u_3)(u_3 - u_1).$$

This system for F is in involution.

Generic solution f(x, y, z)

1. Theta representation:

$$f(x,y,z) = xy + \sum_{(k,l)\in\mathbb{Z}^2\setminus 0} \frac{\sigma((k+\epsilon l)x)\sigma((k+\epsilon l)y)}{(k+\epsilon l)^2} e^{2\pi i(k^2+kl+l^2)z}.$$

2. Power series:

$$f(x,y,z) = \sum_{i,j,k\geq 0} C_i C_j C_k C_{i+j+k} \frac{x^{6i+1}}{(6i+1)!} \frac{y^{6j+1}}{(6j+1)!} \frac{z^{6k+1}}{(6k+1)!}.$$

3. Parametric form:

$$x = \frac{h_1}{h_4}, \ y = \frac{h_2}{h_4}, \ z = \frac{h_3}{h_4}, \ f = \frac{F}{h_4}$$

where F is a solution of the inhomogeneous system.

Open problem

 Classify integrable Lagrangian densities corresponding to singular orbits of lower dimension (degenerations of Picard modular forms).

What do dispersionless integrable systems give to the theory of modular forms?

- Differential equations for modular forms (integrability conditions);
- Potentials for vector-valued modular forms.