On ODEs satisfied by modular forms

E.V. Ferapontov
Department of Mathematical Sciences, Loughborough University, UK
E.V.Ferapontov@lboro.ac.uk
Based on joint work with S. Opanasenko

Seminar of the Grieg collaboration project SCREAM, 2 June 2023

Plan:

- Modular forms
- Modular forms, Eisenstein series, Ramanujan equations
- Modularity theorem
- Third-order ODEs for modular forms
- Fourth-order ODEs for modular forms
- Examples
- Jacobi forms
- Jacobi forms
- Differential invariants, involutive differential systems for Jacobi forms
- Examples
S. Opanasenko, E. V. Ferapontov, On ODEs satisfied by modular forms; arXiv:2212.01413.

General picture

Let f be a modular form (classical, Jacobi, Siegel, Picard, ...) on a discrete subgroup Γ of a Lie group G. Then f solves a nonlinear ODE/PDE system Σ such that:

- System Σ is involutive (\sim compatible)
- System Σ is of finite type (\sim finite-dimensional solution space)
- System Σ is G-invariant, furthermore, the Lie group G acts on the solution space of Σ locally transitively and with an open orbit (\sim dimension of the solution space of Σ equals $\operatorname{dim} G$); system Σ is expressible via differential invariants of G
- The modular form f is a generic solution of system Σ ($\sim f$ belongs to the open orbit), with discrete stabilizer G

Classical modular forms $f(\tau), \tau \in \mathcal{H}: \Gamma=\operatorname{SL}(2, \mathbb{Z}), G=\operatorname{SL}(2, \mathbb{R})$, system Σ is a third-order nonlinear $\operatorname{SL}(2, \mathbb{R})$-invariant ODE for $f(\tau)$.

Modular forms

A modular form on a discrete subgroup Γ of $\operatorname{SL}(2, \mathbb{R})$ is a holomorphic function $f(\tau)$ on the upper half-plane \mathcal{H} that satisfies the modular transformation property,

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(\tau), \quad\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \in \Gamma
$$

where k is the weight of a modular form. An example of Γ is the Hecke congruence subgroup of $\operatorname{SL}(2, \mathbb{Z})$ of level N, denoted $\Gamma_{0}(N)$, characterised by the condition $a, b, c, d \in \mathbb{Z}, c \equiv 0(\bmod N)$; note that $\Gamma_{0}(1)$ coincides with the full modular group $\mathrm{SL}(2, \mathbb{Z})$.

Eisenstein series

The Eisenstein series are defined as

$$
E_{k}(\tau)=1-\frac{2 k}{B_{k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n}, \quad q=e^{2 \pi i \tau}
$$

where B_{k} are the Bernoulli numbers and $\sigma_{k-1}(n)$ denotes the sum of the ($k-1$)st powers of the positive divisors of n. Explicitly,

$$
\begin{gathered}
E_{2}(\tau)=1-24 \sum_{n=1}^{\infty} \sigma_{1}(n) q^{n}=1-24 q-72 q^{2}-\ldots, \\
E_{4}(\tau)=1+240 \sum_{n=1}^{\infty} \sigma_{3}(n) q^{n}=1+240 q+2160 q^{2}+\ldots, \\
E_{6}(\tau)=1-504 \sum_{n=1}^{\infty} \sigma_{5}(n) q^{n}=1-504 q-16632 q^{2}-\ldots
\end{gathered}
$$

For every even $k>2, E_{k}(\tau)$ is a modular form of weight k on $\mathrm{SL}(2, \mathbb{Z})$.

Ramanujan equations

The Eisenstein series E_{2}, E_{4} and E_{6} satisfy the Ramanujan equations,

$$
E_{2}^{\prime}=\frac{E_{2}^{2}-E_{4}}{12}, \quad E_{4}^{\prime}=\frac{E_{2} E_{4}-E_{6}}{3}, \quad E_{6}^{\prime}=\frac{E_{2} E_{6}-E_{4}^{2}}{2}
$$

here prime denotes the operator $q \frac{d}{d q}=\frac{1}{2 \pi i} \frac{d}{d \tau}$. These equations are invariant under the following action of the Lie group $\operatorname{SL}(2, \mathbb{R})$:

$$
\begin{gathered}
\tilde{\tau}=\frac{a \tau+b}{c \tau+d}, \quad \tilde{E}_{2}=(c \tau+d)^{2} E_{2}+12 c(c \tau+d), \\
\tilde{E}_{4}=(c \tau+d)^{4} E_{4}, \quad \tilde{E}_{6}=(c \tau+d)^{6} E_{6}
\end{gathered}
$$

Every modular form f on $\mathrm{SL}(2, \mathbb{Z})$ is a homogeneous polynomial in E_{4} and E_{6}. Differentiation of f with the help of Ramanujan equations gives four polynomial expressions for $f, f^{\prime}, f^{\prime \prime}, f^{\prime \prime \prime}$ in terms of E_{2}, E_{4} and E_{6}. The elimination of E_{2}, E_{4}, E_{6} leads to a third-order nonlinear ODE for f which inherits $\operatorname{SL}(2, \mathbb{R})$ symmetry from the Ramanujan equations.

Example: ODEs for the modular discriminant

The modular discriminant is a cusp form of weight $k=12$ on $\mathrm{SL}(2, \mathbb{Z})$:

$$
\Delta=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}=\frac{1}{1728}\left(E_{4}^{3}-E_{6}^{2}\right)
$$

It satisfies an $\mathrm{SL}(2, \mathbb{R})$-invariant third-order ODE (Resnikoff),

$$
\begin{aligned}
& 36 \Delta^{4} \Delta^{\prime \prime \prime 2}-14\left(18 \Delta \Delta^{\prime \prime}-13 \Delta^{\prime 2}\right) \Delta^{2} \Delta^{\prime} \Delta^{\prime \prime \prime}+48 \Delta^{3} \Delta^{\prime \prime 3} \\
& \quad+285 \Delta^{2} \Delta^{\prime 2} \Delta^{\prime \prime 2}-468 \Delta \Delta^{\prime 4} \Delta^{\prime \prime}+169 \Delta^{\prime 6}+48 \Delta^{7}=0
\end{aligned}
$$

as well as the GL $(2, \mathbb{R})$-invariant fourth-order ODE (van der Pol - Rankin),

$$
2 \Delta^{3} \Delta^{\prime \prime \prime \prime}-10 \Delta^{2} \Delta^{\prime} \Delta^{\prime \prime \prime}-3 \Delta^{2} \Delta^{\prime 2}+24 \Delta \Delta^{\prime 2} \Delta^{\prime \prime}-13 \Delta^{\prime 4}=0
$$

possessing an extra scaling symmetry $\Delta \rightarrow \lambda \Delta$ that is not present in the
third-order ODE. Note that the fourth-order ODE is a differential consequence of the third-order ODE.

Modularity theorem

Every elliptic curve γ over \mathbb{Q} possesses a modular parametrisation, that is, for some $N \geq 11$ there is a rational map

$$
\Gamma_{0}(N) \backslash \mathcal{H} \longrightarrow \gamma
$$

such that the pull-back of the holomorphic differential from γ equals $\pi i f(\tau) d \tau$ where $f(\tau)$ is a cusp form of weight two on $\Gamma_{0}(N)$ with integer coefficients. This is the statement of the Taniyama-Shimura-Weyl conjecture proved by Wiles and Taylor for semistable elliptic curves (1995), and by Breuli, Conrad, Diamond, and Taylor in full generality (2001).
For instance, the elliptic curve $y^{2}+y=x^{3}-x^{2}-10 x-20$ (with j-invariant $j=-2^{12} 31^{3} 11^{-5}$) corresponds to the cusp form of weight two on $\Gamma_{0}(11)$,

$$
f(\tau)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{2}\left(1-q^{11 n}\right)^{2}
$$

We will see that the ODE for $f(\tau)$ 'knows' the corresponding elliptic curve γ.

Fermat's last theorem

The most spectacular application of the modularity theorem is the proof of Fermat's Last Theorem. Suppose

$$
a^{p}+b^{p}=c^{p}
$$

is a counter-example to Fermat's Last Theorem. Then the (Hellegouarch-Frey) elliptic curve,

$$
y^{2}=x\left(x-a^{p}\right)\left(x+b^{p}\right)
$$

cannot be modular (Ribet, 1990). Thus, the modularity theorem implies Fermat's Last Theorem.

Third-order ODEs for modular forms

Every modular form $f(\tau)$ of weight k satisfies a third-order ODE which can be represented by an algebraic relation

$$
F\left(I_{k}, J_{k}\right)=0
$$

where I_{k} and J_{k} are differential invariants of a certain $\operatorname{SL}(2, \mathbb{R})$-action:

$$
\begin{gathered}
I_{k}=\frac{k f f^{\prime \prime}-(k+1) f^{\prime 2}}{f^{2+\frac{4}{k}}}=\frac{[f, f]_{2}}{(k+1) f^{2+\frac{4}{k}}} \\
J_{k}=\frac{k^{2} f^{2} f^{\prime \prime \prime}-3 k(k+2) f f^{\prime} f^{\prime \prime}+2(k+1)(k+2) f^{\prime 3}}{f^{3+\frac{6}{k}}}=\frac{\left[f,[f, f]_{2}\right]_{1}}{(k+1) f^{3+\frac{6}{k}}}
\end{gathered}
$$

Here $[\cdot, \cdot]_{i}$ is the i th Rankin-Cohen bracket. Thus, there is a plane algebraic curve $C: F\left(I_{k}, J_{k}\right)=0$ naturally associated with every modular form (note that relation F depends on the modular form f).
Generic solution of this ODE: $\frac{1}{(c \tau+d)^{k}} f\left(\frac{a \tau+b}{c \tau+d}\right), a, b, c, d \in \mathbb{R}, a d-b c=1$.

Third-order ODEs for modular forms of weight $k=2$

Every modular form $f(\tau)$ of weight $k=2$ satisfies a third-order ODE which can be represented by an algebraic relation

$$
F\left(I_{2}, J_{2}\right)=0
$$

where I_{2} and J_{2} are the following modular functions:

$$
I_{2}=\frac{2 f f^{\prime \prime}-3 f^{\prime 2}}{f^{4}}, \quad J_{2}=\frac{4 f^{2} f^{\prime \prime \prime}-24 f f^{\prime} f^{\prime \prime}+24 f^{\prime 3}}{f^{6}}
$$

note a relation

$$
\frac{\mathrm{d} I_{2}}{J_{2}}=\pi i f(\tau) \mathrm{d} \tau
$$

We will see that for newforms of weight $k=2$ on congruence subgroups $\Gamma_{0}(N)$ of genus ≥ 1, the corresponding curves $C: F\left(I_{2}, J_{2}\right)=0$ have genus 1 and holomorphic differential $d I_{2} / J_{2}$. Furthermore, equations for I_{2}, J_{2} provide a modular parametrisation of C.

Fourth-order ODEs for modular forms

Every modular form $f(\tau)$ of weight k satisfies a fourth-order ODE which can be represented by an algebraic relation

$$
\mathcal{F}\left(P_{k}, Q_{k}\right)=0
$$

where P_{k} and Q_{k} are differential invariants of a certain $\mathrm{GL}(2, \mathbb{R})$-action,

$$
\begin{gathered}
P_{k}=\frac{\left(k^{2} f^{2} f^{\prime \prime \prime}-3 k(k+2) f f^{\prime} f^{\prime \prime}+2(k+1)(k+2) f^{\prime 3}\right)^{2}}{\left(k f f^{\prime \prime}-(k+1) f^{\prime 2}\right)^{3}}=\frac{(k+1)\left[f,[f, f]_{2}\right]_{1}^{2}}{[f, f]_{2}^{3}}, \\
Q_{k}=\frac{f^{2}\left(k(k+1) f f^{\prime \prime \prime \prime}-4(k+1)(k+3) f^{\prime} f^{\prime \prime \prime}+3(k+2)(k+3) f^{\prime \prime 2}\right)}{\left(k f f^{\prime \prime}-(k+1) f^{\prime 2}\right)^{2}}=\frac{12(k+1)^{2} f^{2}[f, f]_{4}}{(k+2)(k+3)[f, f]_{2}^{2}} .
\end{gathered}
$$

Thus, there is another plane algebraic curve $\mathcal{C}: \mathcal{F}\left(P_{k}, Q_{k}\right)=0$ naturally associated with every modular form (turns out to be rational in all examples).

Generic solution of this ODE: $\frac{1}{(c \tau+d)^{k}} f\left(\frac{a \tau+b}{c \tau+d}\right), a, b, c, d \in \mathbb{R}$.
Fourth-order ODE is a differential consequence of the third-order ODE.

Eisenstein series E_{4}
Third-order ODE:

$$
\begin{gathered}
80 E_{4}^{2} E_{4}^{\prime \prime \prime 2}+120\left(5 E_{4}^{\prime 3}-6 E_{4} E_{4}^{\prime} E_{4}^{\prime \prime}\right) E_{4}^{\prime \prime \prime}+576 E_{4} E_{4}^{\prime \prime 3} \\
-20\left(27 E_{4}^{\prime 2}+4 E_{4}^{3}\right) E_{4}^{\prime \prime 2}+200 E_{4}^{2} E_{4}^{\prime 2} E_{4}^{\prime \prime}-125 E_{4} E_{4}^{\prime 4}=0 .
\end{gathered}
$$

Invariant form:

$$
5 J_{4}^{2}+144 I_{4}^{3}-80 I_{4}^{2}=0
$$

Fourth-order ODE:

$$
16 Q_{4}-5 P_{4}-144=0
$$

Eisenstein series E_{6}
Third-order ODE:

$$
343\left(J_{6}^{3}-216 I_{6}^{3}\right)+2\left(256 I_{6}^{3}+7 J_{6}^{2}\right)^{2}=0 .
$$

Fourth-order ODE:

$$
\left(6 Q_{6}-32\right)^{2}-7\left(Q_{6}-4\right) P_{6}=0
$$

Modular discriminant

Third-order ODE:

$$
\begin{aligned}
& 36 \Delta^{4} \Delta^{\prime \prime \prime 2}-14\left(18 \Delta \Delta^{\prime \prime}-13 \Delta^{\prime 2}\right) \Delta^{2} \Delta^{\prime} \Delta^{\prime \prime \prime}+48 \Delta^{3} \Delta^{\prime \prime 3} \\
& \quad+285 \Delta^{2} \Delta^{\prime 2} \Delta^{\prime \prime 2}-468 \Delta \Delta^{\prime 4} \Delta^{\prime \prime}+169 \Delta^{\prime 6}+48 \Delta^{7}=0
\end{aligned}
$$

Invariant form:

$$
J_{12}^{2}+16 I_{12}^{3}+27648=0
$$

Fourth-order ODE:

$$
2 \Delta^{3} \Delta^{\prime \prime \prime \prime}-10 \Delta^{2} \Delta^{\prime} \Delta^{\prime \prime \prime}-3 \Delta^{2} \Delta^{\prime 2}+24 \Delta \Delta^{2} \Delta^{\prime \prime}-13 \Delta^{\prime 4}=0
$$

Invariant form:

$$
Q_{12}=6
$$

Jacobi theta constants

Jacobi theta constants (thetanulls) are modular forms of weight $1 / 2$ defined as
$\theta_{2}=\sum_{n=-\infty}^{\infty} \mathrm{e}^{(n-1 / 2)^{2} \pi i \tau}, \quad \theta_{3}=\sum_{n=-\infty}^{\infty} \mathrm{e}^{n^{2} \pi i \tau}, \quad \theta_{4}=\sum_{n=-\infty}^{\infty}(-1)^{n} \mathrm{e}^{n^{2} \pi i \tau}$.
Third-order ODE:
$\left(\theta^{2} \theta_{\tau \tau \tau}-15 \theta \theta_{\tau} \theta_{\tau \tau}+30 \theta_{\tau}^{3}\right)^{2}+32\left(\theta \theta_{\tau \tau}-3 \theta_{\tau}^{2}\right)^{3}+\pi^{2} \theta^{10}\left(\theta \theta_{\tau \tau}-3 \theta_{\tau}^{2}\right)^{2}=0$.
Invariant form:

$$
J_{1 / 2}^{2}+16 I_{1 / 2}^{3}-\frac{1}{16} I_{1 / 2}^{2}=0
$$

Fourth-order ODE:

$$
\begin{gathered}
\theta^{3}\left(\theta \theta_{\tau \tau}-3 \theta_{\tau}^{2}\right) \theta_{\tau \tau \tau \tau}-\theta^{4} \theta_{\tau \tau \tau}^{2}+2 \theta^{2} \theta_{\tau}\left(\theta \theta_{\tau \tau}+12 \theta_{\tau}^{2}\right) \theta_{\tau \tau \tau} \\
\quad+\theta^{3} \theta_{\tau \tau}^{3}-24 \theta^{2} \theta_{\tau}^{2} \theta_{\tau \tau}^{2}-18 \theta \theta_{\tau}^{4} \theta_{\tau \tau}+18 \theta_{\tau}^{6}=0
\end{gathered}
$$

Invariant form:

$$
Q_{1 / 2}-6 P_{1 / 2}-102=0
$$

Eisenstein series $E_{1,3}$

This is a modular form of weight 1 (with character) on $\Gamma_{0}(3)$ defined as

$$
E_{1,3}(\tau)=\sum_{(\alpha, \beta) \in \mathbb{Z}^{2}} q^{\left(\alpha^{2}-\alpha \beta+\beta^{2}\right)}=1+6 q+6 q^{3}+6 q^{4}+12 q^{7}+\ldots \ldots
$$

Third-order ODE:
$f^{2} f^{\prime \prime \prime 2}-6 f^{\prime}\left(3 f f^{\prime \prime}-4 f^{\prime 2}\right) f^{\prime \prime \prime}+18 f f^{\prime \prime 3}-\left(f^{6}+27 f^{\prime 2}\right) f^{\prime \prime 2}+4 f^{5} f^{\prime 2} f^{\prime \prime}-4 f^{4} f^{\prime 4}=0$.
Invariant form:

$$
J_{1}^{2}+18 I_{1}^{3}-I_{1}^{2}=0
$$

Fourth-order ODE:

$$
f f^{\prime \prime \prime \prime}\left(f f^{\prime \prime}-2 f^{\prime 2}\right)-f^{2} f^{\prime \prime \prime 2}+2 f^{\prime}\left(f f^{\prime \prime}+4 f^{\prime 2}\right) f^{\prime \prime \prime}-9 f^{\prime 2} f^{\prime \prime 2}=0
$$

Invariant form:

$$
Q_{1}-2 P_{1}-36=0
$$

Modular form of weight 2 on $\Gamma_{0}(11)$

There is a unique cusp form of weight 2 on the congruence subgroup $\Gamma_{0}(11)$,

$$
f(\tau)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{2}\left(1-q^{11 n}\right)^{2}
$$

labelled as case 11.2.a.a in the LMFDB database. It satisfies a third-order ODE,

$$
\begin{gathered}
J_{2}^{4}+32\left(I_{2}-8\right)\left(I_{2}^{2}+72 I_{2}-944\right) J_{2}^{2} \\
+256\left(I_{2}+8\right)\left(I_{2}^{3}+152 I_{2}^{2}-704 I_{2}+1168\right)\left(I_{2}-8\right)^{2}=0
\end{gathered}
$$

which defines a singular curve C of genus 1 with $j=-2^{12} 31^{3} 11^{-5}$. This value coincides with the j-invariant of the curve $y^{2}+y=x^{3}-x^{2}-10 x-20$, which corresponds to the same cusp form f via the modularity theorem. Thus, both curves are birationally equivalent:

$$
I_{2}=-\frac{8 x^{2}+8 x-119}{(x-5)^{2}}, \quad J_{2}=-\frac{44(4 x-9)(2 y+1)}{(x-5)^{3}}
$$

The inverse transformation is

$$
\begin{gathered}
x=\frac{-11 J_{2}^{2}+16\left(I_{2}-8\right)\left(9 I_{2}^{2}-2468 I_{2}+11712\right)}{64\left(I_{2}-83\right)\left(I_{2}^{2}-64\right)} \\
y=\frac{\left(11 I_{2}-264\right) J_{2}^{3}+176\left(I_{2}-8\right)\left(I_{2}^{3}+80 I_{2}^{2}-5584 I_{2}+43904\right) J_{2}}{512\left(I_{2}^{2}-64\right)^{2}\left(I_{2}-83\right)}+\frac{1}{2}
\end{gathered}
$$

Note that $\mathrm{d} I_{2} / J_{2}=\pi i f(\tau) \mathrm{d} \tau$ is the holomorphic differential on C. The form $f(\tau)$ also satisfies the fourth-order ODE,

$$
\begin{aligned}
& 5616022359375 P_{2}^{4}-2^{4} 3^{5} 5^{3}\left(34618195 Q_{2}-763426383\right) P_{2}^{3} \\
& \quad-2^{8} 3^{3}\left(173368000 Q_{2}^{3}-8479136175 Q_{2}^{2}+183916606320 Q_{2}-1561600055241\right) P_{2}^{2} \\
& +2^{12} 3^{2}\left(64349800 Q_{2}^{4}-3828348951 Q_{2}^{3}+88775864253 Q_{2}^{2}-1000262056761 Q_{2}+4759648412715\right) P_{2} \\
& +131072\left(4 Q_{2}-63\right)\left(5329 Q_{2}^{3}-204861 Q_{2}^{2}+2745099 Q_{2}-14039703\right)\left(2 Q_{2}-105\right)^{2}=0,
\end{aligned}
$$

which defines a singular rational curve \mathcal{C}.

Jacobi forms

A Jacobi form of weight k and index m is a holomorphic function $f(\tau, z): \mathcal{H} \times \mathbb{C} \mapsto \mathbb{C}$ with the transformation property
$f\left(\frac{a \tau+b}{c \tau+d}, \frac{z+\lambda \tau+\mu}{c \tau+d}\right)=(c \tau+d)^{k} \mathrm{e}^{2 \pi i m\left(\frac{c(z+\lambda \tau+\mu)^{2}}{c \tau+d}-\lambda^{2} \tau-2 \lambda z-\lambda \mu\right)} f(\tau, z)$,
where $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}(2, \mathbb{Z})$ and $\lambda, \mu \in \mathbb{Z}$.
Let us introduce the associated $G_{k, m}$-group action,

$$
\tilde{\tau}=\frac{a \tau+b}{c \tau+d}, \quad \tilde{z}=\frac{z+\lambda \tau+\mu}{c \tau+d}, \quad \tilde{f}=(c \tau+d)^{k} \mathrm{e}^{2 \pi i m\left(\frac{c(z+\lambda \tau+\mu)^{2}}{c \tau+d}-\lambda^{2} \tau-2 \lambda z-\lambda \mu\right)} f
$$

where all parameters are arbitrary real numbers.

Differential invariants

Second-order differential invariants:

$$
\begin{gathered}
L_{k, m}=\frac{1}{\left(2 k f f_{z z}-8 m \pi i f f_{\tau}-(2 k-1) f_{z}^{2}\right)^{2}}\left(64 m^{2} \pi^{2} f^{3} f_{\tau \tau}+32 m \pi i f^{2} f_{z} f_{\tau z}\right. \\
-4 k(k+1) f^{2} f_{z z}^{2}+4\left(8 m(k+1) \pi i f f_{\tau}+\left(2 k^{2}+k-2\right) f_{z}^{2}\right) f f_{z z} \\
\left.-\left(16(2 k+3) m \pi i f f_{\tau}+\left(4 k^{2}-7\right) f_{z}^{2}\right) f_{z}^{2}\right) \\
M_{k, m}=\frac{4 m \pi i f^{2} f_{\tau z}-f f_{z} f_{z z}-\left(4 m \pi i f f_{\tau}-f_{z}^{2}\right) f_{z}}{\left(2 k f f_{z z}-8 m \pi i f f_{\tau}-(2 k-1) f_{z}^{2}\right)^{3 / 2}} .
\end{gathered}
$$

Third-order differential invariants: $N_{k, m}, P_{k, m}, Q_{k, m}, R_{k, m}$ (similar formulas).
Any generic third-order $G_{k, m}$-invariant involutive PDE system (governing Jacobi forms) can be obtained by expressing all third-order invariants $N_{k, m}, P_{k, m}, Q_{k, m}$, $R_{k, m}$ as functions of the second-order invariants $L_{k, m}, M_{k, m}$.

Non-generic case: the denominator $2 k f f_{z z}-8 m \pi i f f_{\tau}-(2 k-1) f_{z}^{2}=0$.

Jacobi form $\varphi_{-1,2}(\tau, z)$

The weak Jacobi form $f(\tau, z)=\varphi_{-1,2}(\tau, z)$ of weight -1 and index 2 is defined as $\varphi_{-1,2}(\tau, z)=\Delta^{-1 / 8}(\tau) \vartheta_{1}(\tau, 2 z)$ where Δ is the modular discriminant.

Third-order involutive PDE system:

$$
\begin{gathered}
2 \pi i f f_{\tau \tau \tau}=2 \pi i f_{\tau} f_{\tau \tau}+f_{\tau \tau} f_{z z}-f_{\tau z}^{2} \\
f f_{\tau \tau z}=3 f_{z} f_{\tau \tau}-2 f_{\tau} f_{\tau z} \\
f f_{\tau z z}=8 \pi i\left(f f_{\tau \tau}-f_{\tau}^{2}\right)+2 f_{z} f_{\tau z}-f_{\tau} f_{z z} \\
f f_{z z z}=16 \pi i\left(f f_{\tau z}-f_{\tau} f_{z}\right)+f_{z} f_{z z}
\end{gathered}
$$

Invariant form:

$$
\begin{aligned}
N_{-1,2} & =32 M_{-1,2}^{2}-L_{-1,2}, & P_{-1,2} & =-M_{-1,2} \\
Q_{-1,2} & =-\frac{1}{4}\left(L_{-1,2}+1\right), & R_{-1,2} & =2 M_{-1,2}
\end{aligned}
$$

Jacobi theta functions

The Jacobi theta function,

$$
\vartheta_{3}(\tau, z)=\sum_{n=-\infty}^{\infty} \mathrm{e}^{2 \pi i n z+\pi i n^{2} \tau}
$$

is a Jacobi form of index $\frac{1}{2}$ and weight $\frac{1}{2}$. It satisfies the heat equation

$$
4 \pi i\left(\vartheta_{3}\right)_{\tau}=\left(\vartheta_{3}\right)_{z z}
$$

as well as a sixth-order equation involving z-derivatives of ϑ_{3} only,

$$
\left(\frac{\left(\ln \vartheta_{3}\right)_{z z z z z}}{\left(\ln \vartheta_{3}\right)_{z z z}}+12\left(\ln \vartheta_{3}\right)_{z z}\right)_{z}=0
$$

The same system holds for other Jacobi theta functions.

