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General picture

Let f be a modular form (classical, Jacobi, Siegel, Picard, ...) on a discrete
subgroup I' of a Lie group GG. Then f solves a nonlinear ODE/PDE system . such
that:

e System X is involutive (~ compatible)
e System X is of finite type (~ finite-dimensional solution space)

e System X is GG-invariant, furthermore, the Lie group (G acts on the solution
space of > locally transitively and with an open orbit (~ dimension of the
solution space of X equals dim (7); system . is expressible via differential
invariants of GG

e The modular form f is a generic solution of system > (~ f belongs to the open
orbit), with discrete stabilizer GG

Classical modular forms f(7), 7 € H: I' = SL(2,7Z), G = SL(2,R), system X
is a third-order nonlinear SL(2, R)-invariant ODE for f (7).



Modular forms

A modular form on a discrete subgroup I" of SL(2, R) is a holomorphic
function f(7) on the upper half-plane H that satisfies the modular transformation

property,
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where k is the weight of a modular form. An example of I" is the Hecke congruence
subgroup of SL(2, Z) of level IV, denoted I'g(/V), characterised by the condition
a,b,c,d € Z,c =0 (mod N); note that I'g(1) coincides with the full modular
group SL(2,7Z).



Eisenstein series
The Eisenstein series are defined as

2k G n LT
Ey(t)=1— > ok_1(n)¢”, qg=¢€T",

n=1
where B}, are the Bernoulli numbers and o, _1(n) denotes the sum of the

(k — 1)st powers of the positive divisors of n. Explicitly,

Ey(t)=1-24) o1(n)q" =1-24¢—72¢* — ...,
n=1

Ey(t) =1+4240 ) o3(n)q" =1+ 240q + 2160¢* + .. .,

n=1

Eg(t) =1—-504 ) o05(n)q" =1 —504¢ — 16632¢> — . ...
n=1

For every even k > 2, E(7) is a modular form of weight k£ on SL(2, Z).
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Ramanujan equations
The Eisenstein series F5, /4 and Fjg satisfy the Ramanujan equations,
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here prime denotes the operator qd% = %m %. These equations are invariant

under the following action of the Lie group SL(2, R):

T = ZZIS, Ey = (e 4+ d)2Fs + 12¢(er + d),

E~'4 = (CT + d)4E4, E6 — (CT -+ d)6E6.

Every modular form f on SL(2, Z) is a homogeneous polynomial in £4 and Ej.
Differentiation of f with the help of Ramanujan equations gives four polynomial
expressions for f, f/, f, """ interms of E'5, E, and Eg. The elimination of Fs,
E4, Eg leads to a third-order nonlinear ODE for f which inherits SL(2, R)

symmetry from the Ramanujan equations.



Example: ODEs for the modular discriminant

The modular discriminant is a cusp form of weight £ = 12 on SL(2, Z):

1} (1—q" = (B} - E3).
It satisfies an SI.(2, R)-invariant third-order ODE (Resnikoff),
36A*A"? — 14(18AA" — 13A)AZA' A" + 48A3 A3
+285A2A?A"? — 468AAM A" + 169A'° + 48AT = 0,
as well as the GL(2, R)-invariant fourth-order ODE (van der Pol — Rankin),
2ASA" — 10AZA'A" — 3A2A"? + 24AANPA" —13A% =0,

possessing an extra scaling symmetry A — A\A that is not present in the
third-order ODE. Note that the fourth-order ODE is a differential consequence of the
third-order ODE.



Modularity theorem

Every elliptic curve ¥ over (Q possesses a modular parametrisation, that is, for some

N > 11 there is a rational map
Co(N\H — v

such that the pull-back of the holomorphic differential from -~y equals i f (7)dT
where f(7) is a cusp form of weight two on ' (N') with integer coefficients. This is
the statement of the Taniyama-Shimura-Weyl conjecture proved by Wiles and Taylor
for semistable elliptic curves (1995), and by Breuli, Conrad, Diamond, and Taylor in

full generality (2001).

For instance, the elliptic curve 3y + y = 2° — 2% — 102 — 20 (with j-invariant

j = —212313117°) corresponds to the cusp form of weight two on I'o(11),
fr) =q @ -q")21-q"")>
n=1

We will see that the ODE for f(7) ‘knows’ the corresponding elliptic curve .
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Fermat’s last theorem

The most spectacular application of the modularity theorem is the proof of Fermat'’s
Last Theorem. Suppose

aP + bP = P
is a counter-example to Fermat’s Last Theorem. Then the (Hellegouarch-Frey)
elliptic curve,

y* = x(z — aP)(z + bP),
cannot be modular (Ribet, 1990). Thus, the modularity theorem implies Fermat’s

Last Theorem.



Third-order ODEs for modular forms

Every modular form f(7) of weight k satisfies a third-order ODE which can be
represented by an algebraic relation

F(Ig,Jx) =0
where I, and Jy, are differential invariants of a certain SL(2, R)-action:
I, = B OS2 (S
F2rE (k1) f2F %

T, — K22 =3k(k+2)ff ' +2(k+1) (k+2)f° _ [f,[f,fl2]1
]{3 - 3_|_§ 3+§ °
PR (k+1) f3F &

Here [-, ]Z is the 7th Rankin—Cohen bracket. Thus, there is a plane algebraic curve
C': F(Iy, Ji) = 0 naturally associated with every modular form (note that relation
F' depends on the modular form f).

Generic solution of this ODE: (c7‘—|1—d)k f(‘cfig), a,b,c,d € R, ad — bc = 1.
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Third-order ODEs for modular forms of weight £ = 2

Every modular form f(7) of weight k = 2 satisfies a third-order ODE which can be
represented by an algebraic relation

F(ly,J3) =0

where I5 and J5 are the following modular functions:

2ff//_3f/2 4f2f///_24ff/f//_|_24f/3
note a relation U
=2 = i f(7)dr.
J2

We will see that for newforms of weight £ = 2 on congruence subgroups I'g(V) of
genus > 1, the corresponding curves C' : F'(I5, J2) = 0 have genus 1 and
holomorphic differential d1s /.Jo. Furthermore, equations for I, J5 provide a
modular parametrisation of C'.
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Fourth-order ODEs for modular forms

Every modular form f(7) of weight k satisfies a fourth-order ODE which can be
represented by an algebraic relation

where Py and Q) are differential invariants of a certain GL (2, R)-action,

p, = B 3k(RA2) fF P2k D) (kA2) fP)7 (DI Sl

(kff"—(k+1)f"2)? £, £15 ’
O = F2 (k1) f 1" —4(k41) (k43) £/ £ +3(k+2)(k+3) f?)  12(k+1)2f2[f,fla
k= Gff —(k+1)f2)2 — (k+2)(k+3)[f,f15

Thus, there is another plane algebraic curve C : F(Px, Q) = 0 naturally
associated with every modular form (turns out to be rational in all examples).

Generic solution of this ODE: (CT}rd)k f(g;ig), a,b,c,d € R.

Fourth-order ODE is a differential consequence of the third-order ODE.
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Eisenstein series /4
Third-order ODE:
S80EZE!"? +120(5E — 6E,E\EY)EY + 576 E4E'?
—20(27TE? + AE})E? + 200E5E2E] — 125E,E} = 0.

Invariant form:
5J2 + 14413 — 8017 = 0.

Fourth-order ODE:
16Q4 — 5Py — 144 = 0.
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Eisenstein series L

Third-order ODE:
343(J5 — 21613) + 2(25613 + 7J3)* = 0.
Fourth-order ODE:

(6Q¢ — 32)° — 7(Qs — 4)Ps = 0.
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Modular discriminant

Third-order ODE:

I6ALA2 _ 14(18AA” _ 13A/2)A2A/A/” 1+ 48A3 A3
+285A2A/2A”2 _ 468AA’4A” -+ 169A/6 -+ 48A7 = 0.

Invariant form:
Jiy + 1617, + 27648 = 0.

Fourth-order ODE:
2IASA" _T0APA'A" — 3A2A? L 2AAANPAT —13A% = 0.

Invariant form:;

Q12 = 6.
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Jacobi theta constants

Jacobi theta constants (thetanulls) are modular forms of weight 1/2 defined as

0 o o

0y = Z e(n—1/2)27m'7" 0 = Z en27r727" 0, = Z (_1)nen27m'7'.

n—=——oo n=——00 n—=—00

Third-order ODE:
(020 ,+r — 15000 +3002)* +32(00.. —302)° +726'°(00,., — 36%)* = 0.

Invariant form:

1
Fourth-order ODE:

03(00, — 302)0rrrr — 0402 __ +20%0.(00,, + 126%)0,..,
+0303_ — 246020262 — 180020, + 1805 = 0.

Invariant form:

QI/Q —6P1/2 - 102:()
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Eisenstein series £ 3

This is a modular form of weight 1 (with character) on I'g(3) defined as

Eis(r)= Y @ %) =14 6¢+6¢> +6¢* +12¢" + ...
(,8)€Z2

Third-order ODE:

fzfm2—6f/(3ff”—4f/2)f///—|—18ff//3—(f6‘|‘27f/2)f”2‘|‘4f5f/2f”—4f4f/4 — 0.

Invariant form:

JZ2 41817 —I7 = 0.
Fourth-order ODE:
ff////(ff// . 2f/2) . f2f///2 i 2f/(ff// + 4f/2)f/// . 9f/2f//2 — 0.

Invariant form:

Q1—2P1—36:O.
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Modular form of weight 2 on I'y(11)

There is a unique cusp form of weight 2 on the congruence subgroup I'g(11),

11n\2
=q H (1—¢")*(1—q""™)?,
labelled as case 11.2.a.a in the LMFDB database. It satisfies a third-order ODE,

Jy 4+ 32(Iy — 8) (12 4 7215 — 944).J3
+256 (13 + 8)(I3 + 15212 — 70415 + 1168)(Iy — 8)? = 0,

which defines a singular curve C of genus 1 with j = —212313117°. This value
coincides with the j-invariant of the curve ¥ + vy = 2> — 2% — 10z — 20, which
corresponds to the same cusp form f via the modularity theorem. Thus, both
curves are birationally equivalent:

812 + 8z — 119 44(4z — 9)(2y + 1)

b= 52 2T Gy
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The inverse transformation is

o —11J% + 16(Iy — 8)(915 — 246815 + 11712)
B 64(1> — 83)(12 — 64) !
(1115 — 264)J3 + 176(13 — 8)(I5 + 8015 — 558415 + 43904).J 1

T 512(13 — 64)7(Iz - 53) Ty

Note that d/5 /J5 = mi f(7)dT is the holomorphic differential on C'. The form
f(7) also satisfies the fourth-order ODE,

5616022359375 Py — 2%3°53(34618195Q2 — 763426383) P5
—2833(173368000Q3 — 8479136175Q3 + 183916606320Q2 — 1561600055241) P35
+21232(64349800Q5 —3828348951Q35488775864253Q2 —1000262056761Q2+4759648412715) P,
+131072(4Q2 — 63)(5329Q3 — 204861Q3 +2745099Q2 — 14039703) (2Q2 — 105)? = 0,

which defines a singular rational curve C.
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Jacobi forms

A Jacobi form of weight £ and index m is a holomorphic function
f(7,2): H x C — C with the transformation property

f(7,2),

! atr+b z4+ AT+ pu _ (CT_I_d)kezmm(C(ztj;g“)Q —>\27-—2>\z—>\p>
ct+d  cr+d

a b
where € SL(2,Z)and A\, i € Z.
c d

Let us introduce the associated Gk,m-group action,

~ Tim c(zHAT+)? “A2r—2Xz—)\
aT—|—b7 5 z—|—)\7'—|—,u7 f:(CT+d)ke2 ( s 2 u)
ct +d ct + d

7=

Y

where all parameters are arbitrary real numbers.
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Differential invariants

Second-order differential invariants:

— 1 2 2,3 . p2
Lhm = G o —8mmif foe (2h—1) f2)? (64m°n® £ -4 82mmi 2 . f -

—Ak(k+1) 22 +48m(k+1)mif fr+(2k2+k—2)f2) f f..
—(16(2k+3)mmi f f,+(4K2=7) f2) f2),

Ammif? fr.—ffofee—(Ammif fr—f2) f2
T (2kffo.—Smmif fr—(2k—1)f2)3/2

Third-order differential invariants: Ny, ,,,, Pi . Qk.m, B m (similar formulas).

k.m

Any generic third-order Gk,m—invariant involutive PDE system (governing Jacobi
forms) can be obtained by expressing all third-order invariants Ng o, Pk.m, Qk.m.,

Ry m as functions of the second-order invariants L, ,, M -

Non-generic case: the denominator 2k f f.. —8mmif fr—(2k—1) f? = 0.
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Jacobi form QO_LQ(T, Z)

The weak Jacobi form f(7,2) = ¢_1.2(7, 2) of weight —1 and index 2 is defined
as ©_19(7,2) = A7Y3(1)9(7,22) where A is the modular discriminant.

Third-order involutive PDE system:

2if frrr = 20ifr frr + frofor — 2o,
ffrre =3fofrr — 2fr frzs
[free =8mi(f fre = [2) 4+ 2fo frz — [r oz,
Flome = 16Ti(ffro — frfs) + fofone

Invariant form:

N_192= 32M31,2 —L_ 192, P_19=—-M_1p9,

1
Q_12 = _Z(L_m +1), R_12=2M_1,.
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Jacobi theta functions

The Jacobi theta function,

o

_ 27m'nz—|—7rin27'
193(7_7 Z) — E : € ’

n—=——oo

1

5 and weight % It satisfies the heat equation

47‘("1:(193)7 — (?93)227

is a Jacobi form of index

as well as a sixth-order equation involving z-derivatives of 13 only,

(lnﬁS)zzzzz .
((mﬁg)zzz 12y ) =0

The same system holds for other Jacobi theta functions.

z
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