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General picture
Let f be a modular form (classical, Jacobi, Siegel, Picard, . . . ) on a discrete

subgroup Γ of a Lie group G. Then f solves a nonlinear ODE/PDE system Σ such

that:

• System Σ is involutive (∼ compatible)

• System Σ is of finite type (∼ finite-dimensional solution space)

• System Σ is G-invariant, furthermore, the Lie group G acts on the solution

space of Σ locally transitively and with an open orbit (∼ dimension of the

solution space of Σ equals dimG); system Σ is expressible via differential

invariants of G

• The modular form f is a generic solution of system Σ (∼ f belongs to the open

orbit), with discrete stabilizer G

Classical modular forms f(τ), τ ∈ H: Γ = SL(2,Z), G = SL(2,R), system Σ

is a third-order nonlinear SL(2,R)-invariant ODE for f(τ).
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Modular forms
A modular form on a discrete subgroup Γ of SL(2,R) is a holomorphic

function f(τ) on the upper half-plane H that satisfies the modular transformation

property,

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ),

 a b

c d

 ∈ Γ,

where k is the weight of a modular form. An example of Γ is the Hecke congruence

subgroup of SL(2,Z) of level N , denoted Γ0(N), characterised by the condition

a, b, c, d ∈ Z, c ≡ 0 (modN); note that Γ0(1) coincides with the full modular

group SL(2,Z).
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Eisenstein series
The Eisenstein series are defined as

Ek(τ) = 1− 2k

Bk

∞∑
n=1

σk−1(n)q
n, q = e2πiτ ,

where Bk are the Bernoulli numbers and σk−1(n) denotes the sum of the

(k − 1)st powers of the positive divisors of n. Explicitly,

E2(τ) = 1− 24
∞∑

n=1

σ1(n)q
n = 1− 24q − 72q2 − . . . ,

E4(τ) = 1 + 240
∞∑

n=1

σ3(n)q
n = 1 + 240q + 2160q2 + . . . ,

E6(τ) = 1− 504

∞∑
n=1

σ5(n)q
n = 1− 504q − 16632q2 − . . . .

For every even k > 2, Ek(τ) is a modular form of weight k on SL(2,Z).
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Ramanujan equations
The Eisenstein series E2, E4 and E6 satisfy the Ramanujan equations,

E′
2 =

E2
2 − E4

12
, E′

4 =
E2E4 − E6

3
, E′

6 =
E2E6 − E2

4

2
,

here prime denotes the operator q d
dq = 1

2πi
d
dτ . These equations are invariant

under the following action of the Lie group SL(2,R):

τ̃ = aτ+b
cτ+d , Ẽ2 = (cτ + d)2E2 + 12c(cτ + d),

Ẽ4 = (cτ + d)4E4, Ẽ6 = (cτ + d)6E6.

Every modular form f on SL(2,Z) is a homogeneous polynomial in E4 and E6.

Differentiation of f with the help of Ramanujan equations gives four polynomial

expressions for f , f ′, f ′′, f ′′′ in terms of E2, E4 and E6. The elimination of E2,

E4, E6 leads to a third-order nonlinear ODE for f which inherits SL(2,R)
symmetry from the Ramanujan equations.
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Example: ODEs for the modular discriminant
The modular discriminant is a cusp form of weight k = 12 on SL(2,Z):

∆ = q

∞∏
n=1

(1− qn)24 =
1

1728
(E3

4 − E2
6).

It satisfies an SL(2,R)-invariant third-order ODE (Resnikoff),

36∆4∆′′′2 − 14(18∆∆′′ − 13∆′2)∆2∆′∆′′′ + 48∆3∆′′3

+285∆2∆′2∆′′2 − 468∆∆′4∆′′ + 169∆′6 + 48∆7 = 0,

as well as the GL(2,R)-invariant fourth-order ODE (van der Pol – Rankin),

2∆3∆′′′′ − 10∆2∆′∆′′′ − 3∆2∆′′2 + 24∆∆′2∆′′ − 13∆′4 = 0,

possessing an extra scaling symmetry ∆ → λ∆ that is not present in the

third-order ODE. Note that the fourth-order ODE is a differential consequence of the

third-order ODE.
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Modularity theorem
Every elliptic curve γ over Q possesses a modular parametrisation, that is, for some

N ≥ 11 there is a rational map

Γ0(N)\H −→ γ

such that the pull-back of the holomorphic differential from γ equals πif(τ)dτ

where f(τ) is a cusp form of weight two on Γ0(N) with integer coefficients. This is

the statement of the Taniyama-Shimura-Weyl conjecture proved by Wiles and Taylor

for semistable elliptic curves (1995), and by Breuli, Conrad, Diamond, and Taylor in

full generality (2001).

For instance, the elliptic curve y2 + y = x3 − x2 − 10x− 20 (with j-invariant

j = −21231311−5) corresponds to the cusp form of weight two on Γ0(11),

f(τ) = q
∞∏

n=1

(1− qn)2(1− q11n)2.

We will see that the ODE for f(τ) ‘knows’ the corresponding elliptic curve γ.
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Fermat’s last theorem
The most spectacular application of the modularity theorem is the proof of Fermat’s

Last Theorem. Suppose

ap + bp = cp

is a counter-example to Fermat’s Last Theorem. Then the (Hellegouarch-Frey)

elliptic curve,

y2 = x(x− ap)(x+ bp),

cannot be modular (Ribet, 1990). Thus, the modularity theorem implies Fermat’s

Last Theorem.
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Third-order ODEs for modular forms
Every modular form f(τ) of weight k satisfies a third-order ODE which can be

represented by an algebraic relation

F (Ik, Jk) = 0

where Ik and Jk are differential invariants of a certain SL(2,R)-action:

Ik = kff ′′−(k+1)f ′2

f2+ 4
k

= [f,f ]2

(k+1)f2+ 4
k
,

Jk = k2f2f ′′′−3k(k+2)ff ′f ′′+2(k+1)(k+2)f ′3

f3+ 6
k

= [f, [f,f ]2]1

(k+1)f3+ 6
k
.

Here [·, ·]i is the ith Rankin–Cohen bracket. Thus, there is a plane algebraic curve

C : F (Ik, Jk) = 0 naturally associated with every modular form (note that relation

F depends on the modular form f ).

Generic solution of this ODE: 1
(cτ+d)k

f(aτ+b
cτ+d ), a, b, c, d ∈ R, ad− bc = 1.
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Third-order ODEs for modular forms of weight k = 2
Every modular form f(τ) of weight k = 2 satisfies a third-order ODE which can be

represented by an algebraic relation

F (I2, J2) = 0

where I2 and J2 are the following modular functions:

I2 =
2ff ′′ − 3f ′2

f4
, J2 =

4f2f ′′′ − 24ff ′f ′′ + 24f ′3

f6
,

note a relation
dI2
J2

= πif(τ)dτ.

We will see that for newforms of weight k = 2 on congruence subgroups Γ0(N) of

genus ≥ 1, the corresponding curves C : F (I2, J2) = 0 have genus 1 and

holomorphic differential dI2/J2. Furthermore, equations for I2, J2 provide a

modular parametrisation of C .
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Fourth-order ODEs for modular forms
Every modular form f(τ) of weight k satisfies a fourth-order ODE which can be

represented by an algebraic relation

F(Pk, Qk) = 0

where Pk and Qk are differential invariants of a certain GL(2,R)-action,

Pk = (k2f2f ′′′−3k(k+2)ff ′f ′′+2(k+1)(k+2)f ′3)2

(kff ′′−(k+1)f ′2)3 =
(k+1)[f, [f,f ]2]

2
1

[f,f ]32
,

Qk =
f2(k(k+1)ff ′′′′−4(k+1)(k+3)f ′f ′′′+3(k+2)(k+3)f ′′2)

(kff ′′−(k+1)f ′2)2 = 12(k+1)2f2[f,f ]4
(k+2)(k+3)[f,f ]22

.

Thus, there is another plane algebraic curve C : F(Pk, Qk) = 0 naturally

associated with every modular form (turns out to be rational in all examples).

Generic solution of this ODE: 1
(cτ+d)k

f(aτ+b
cτ+d ), a, b, c, d ∈ R.

Fourth-order ODE is a differential consequence of the third-order ODE.
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Eisenstein series E4

Third-order ODE:

80E2
4E

′′′2
4 + 120(5E′3

4 − 6E4E
′
4E

′′
4 )E

′′′
4 + 576E4E

′′3
4

−20(27E′2
4 + 4E3

4)E
′′2
4 + 200E2

4E
′2
4 E′′

4 − 125E4E
′4
4 = 0.

Invariant form:

5J2
4 + 144I34 − 80I24 = 0.

Fourth-order ODE:

16Q4 − 5P4 − 144 = 0.
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Eisenstein series E6

Third-order ODE:

343(J3
6 − 216I36 ) + 2(256I36 + 7J2

6 )
2 = 0.

Fourth-order ODE:

(6Q6 − 32)2 − 7(Q6 − 4)P6 = 0.
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Modular discriminant
Third-order ODE:

36∆4∆′′′2 − 14(18∆∆′′ − 13∆′2)∆2∆′∆′′′ + 48∆3∆′′3

+285∆2∆′2∆′′2 − 468∆∆′4∆′′ + 169∆′6 + 48∆7 = 0.

Invariant form:

J2
12 + 16I312 + 27648 = 0.

Fourth-order ODE:

2∆3∆′′′′ − 10∆2∆′∆′′′ − 3∆2∆′′2 + 24∆∆′2∆′′ − 13∆′4 = 0.

Invariant form:

Q12 = 6.
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Jacobi theta constants
Jacobi theta constants (thetanulls) are modular forms of weight 1/2 defined as

θ2 =
∞∑

n=−∞
e(n−1/2)2πiτ , θ3 =

∞∑
n=−∞

en
2πiτ , θ4 =

∞∑
n=−∞

(−1)nen
2πiτ .

Third-order ODE:

(θ2θτττ −15θθτθττ +30θ3τ )
2+32(θθττ −3θ2τ )

3+π2θ10(θθττ −3θ2τ )
2 = 0.

Invariant form:

J2
1/2 + 16 I31/2 −

1

16
I21/2 = 0.

Fourth-order ODE:

θ3(θθττ − 3θ2τ )θττττ − θ4θ2τττ + 2θ2θτ (θθττ + 12θ2τ )θτττ

+θ3θ3ττ − 24θ2θ2τθ
2
ττ − 18θθ4τθττ + 18θ6τ = 0.

Invariant form:
Q1/2 − 6P1/2 − 102 = 0.
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Eisenstein series E1,3

This is a modular form of weight 1 (with character) on Γ0(3) defined as

E1,3(τ) =
∑

(α,β)∈Z2

q(α
2−αβ+β2) = 1 + 6q + 6q3 + 6q4 + 12q7 + .....

Third-order ODE:

f2f ′′′2−6f ′(3ff ′′−4f ′2)f ′′′+18ff ′′3−(f6+27f ′2)f ′′2+4f5f ′2f ′′−4f4f ′4 = 0.

Invariant form:

J2
1 + 18I31 − I21 = 0.

Fourth-order ODE:

ff ′′′′(ff ′′ − 2f ′2)− f2f ′′′2 + 2f ′(ff ′′ + 4f ′2)f ′′′ − 9f ′2f ′′2 = 0.

Invariant form:

Q1 − 2P1 − 36 = 0.
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Modular form of weight 2 on Γ0(11)
There is a unique cusp form of weight 2 on the congruence subgroup Γ0(11),

f(τ) = q
∞∏

n=1

(1− qn)2(1− q11n)2,

labelled as case 11.2.a.a in the LMFDB database. It satisfies a third-order ODE,

J4
2 + 32(I2 − 8)(I22 + 72I2 − 944)J2

2

+256(I2 + 8)(I32 + 152I22 − 704I2 + 1168)(I2 − 8)2 = 0,

which defines a singular curve C of genus 1 with j = −21231311−5. This value

coincides with the j-invariant of the curve y2 + y = x3 − x2 − 10x− 20, which

corresponds to the same cusp form f via the modularity theorem. Thus, both

curves are birationally equivalent:

I2 = −8x2 + 8x− 119

(x− 5)2
, J2 = −44(4x− 9)(2y + 1)

(x− 5)3
.
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The inverse transformation is

x =
−11J2

2 + 16(I2 − 8)(9I22 − 2468I2 + 11712)

64(I2 − 83)(I22 − 64)
,

y =
(11I2 − 264)J3

2 + 176(I2 − 8)(I32 + 80I22 − 5584I2 + 43904)J2
512(I22 − 64)2(I2 − 83)

+
1

2
.

Note that dI2/J2 = πif(τ)dτ is the holomorphic differential on C . The form

f(τ) also satisfies the fourth-order ODE,

5616022359375P 4
2 − 243553(34618195Q2 − 763426383)P 3

2

−2833(173368000Q3
2 − 8479136175Q2

2 + 183916606320Q2 − 1561600055241)P 2
2

+21232(64349800Q4
2−3828348951Q3

2+88775864253Q2
2−1000262056761Q2+4759648412715)P2

+131072(4Q2−63)(5329Q3
2−204861Q2

2+2745099Q2−14039703)(2Q2−105)2 = 0,

which defines a singular rational curve C.
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Jacobi forms
A Jacobi form of weight k and index m is a holomorphic function

f(τ, z) : H× C 7→ C with the transformation property

f

(
aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)
= (cτ+d)ke

2πim

(
c(z+λτ+µ)2

cτ+d −λ2τ−2λz−λµ

)
f(τ, z),

where

a b

c d

 ∈ SL(2,Z) and λ, µ ∈ Z.

Let us introduce the associated Gk,m-group action,

τ̃ =
aτ + b

cτ + d
, z̃ =

z + λτ + µ

cτ + d
, f̃ = (cτ+d)ke

2πim

(
c(z+λτ+µ)2

cτ+d −λ2τ−2λz−λµ

)
f,

where all parameters are arbitrary real numbers.
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Differential invariants
Second-order differential invariants:

Lk,m =
1

(2kffzz−8mπiffτ−(2k−1)f2
z )

2

(
64m2π2f3fττ+32mπif2fzfτz

−4k(k+1)f2f2
zz+4(8m(k+1)πiffτ+(2k2+k−2)f2

z )ffzz

−(16(2k+3)mπiffτ+(4k2−7)f2
z )f

2
z

)
,

Mk,m =
4mπif2fτz−ffzfzz−(4mπiffτ−f2

z )fz
(2kffzz−8mπiffτ−(2k−1)f2

z )
3/2

.

Third-order differential invariants: Nk,m, Pk,m, Qk,m, Rk,m (similar formulas).

Any generic third-order Gk,m-invariant involutive PDE system (governing Jacobi

forms) can be obtained by expressing all third-order invariants Nk,m, Pk,m, Qk,m,

Rk,m as functions of the second-order invariants Lk,m,Mk,m.

Non-generic case: the denominator 2kffzz−8mπiffτ−(2k−1)f2
z = 0.
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Jacobi form φ−1,2(τ, z)
The weak Jacobi form f(τ, z) = φ−1,2(τ, z) of weight −1 and index 2 is defined

as φ−1,2(τ, z) = ∆−1/8(τ)ϑ1(τ, 2z) where ∆ is the modular discriminant.

Third-order involutive PDE system:

2πiffτττ = 2πifτfττ + fττfzz − f2
τz,

ffττz = 3fzfττ − 2fτfτz,

ffτzz = 8πi(ffττ − f2
τ ) + 2fzfτz − fτfzz,

ffzzz = 16πi(ffτz − fτfz) + fzfzz.

Invariant form:

N−1,2 = 32M2
−1,2 − L−1,2, P−1,2 = −M−1,2,

Q−1,2 = −1

4
(L−1,2 + 1), R−1,2 = 2M−1,2.
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Jacobi theta functions
The Jacobi theta function,

ϑ3(τ, z) =
∞∑

n=−∞
e2πinz+πin2τ ,

is a Jacobi form of index 1
2 and weight 1

2 . It satisfies the heat equation

4πi(ϑ3)τ = (ϑ3)zz,

as well as a sixth-order equation involving z-derivatives of ϑ3 only,(
(lnϑ3)zzzzz
(lnϑ3)zzz

+ 12(lnϑ3)zz

)
z

= 0.

The same system holds for other Jacobi theta functions.
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