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Preliminaries: The metric

Spacetime is a Lorentzian manifold, (M,g).

A coordinate system, x, for the manifold M,

xα, α ∈ [1, 4]. (1)

The coordinate (or holonomic) basis for TpM,

V = Vα∂xα . (2)

The dual basis for the cotangent space of one-forms, T∗p M,

w = wαdxα. (3)

The metric is:

g = g(αβ)(xγ)dxαdxβ , α, β, γ ∈ [1, 4] with det(g) 6= 0. (4)
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Preliminaries: A frame basis Perspective

Let’s pick a new basis for T∗p M, called a coframe basis, {ha} such that

ha = ha
αdxα. (5)

We want a frame basis for the tangent space, so we will assume ha
αh β

b = δa
b , then

ha = h α
a ∂xα . (6)

The coframe basis must satisfy:

gαβ = ηabha
αhb

β , η = diag(−1, 1, 1, 1), a, b ∈ [1, 4]. (7)

This will be an anholonomic frame since

[ha,hb] = Cc
abhc 6= 0. (8)

The components Ca
bc are the coefficients of anholonomy.
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The connection

To differentiate vectors and one-forms covariantly, pick a connection (∇a = ∇ha ) so
that

∇ahb = Γb
cahc , ∇ahb = −Γc

bahc . (9)

For any vector or one-form:

v ∈ TpM, ∇avb = vb
;a = ha(vb) + Γa

cbvc , (10)

w ∈ T∗p M ∇awb = wb;a = ha(wb)− Γc
bawc . (11)

General Relativity (GR) uses the Levi-Civita connection, Γ.

metric compatible : ∇agbc = gbc;a = 0,

torsion-free : T(v,w) = wbva;b − vbwa;b − [v,w] = 0, v,w ∈ TpM.
(12)

The tensor, T, is known as the torsion tensor.
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The curvature

In GR, gravity is encoded in the non-zero Riemann curvature tensor:

R(v,w)x = ∇v∇wx−∇w∇vx−∇[v,w]x. (13)

The components relative to the frame,

Ra
bcd = ec(Γa

bd )− ed (Γa
bc) + Γe

bd Γa
ec − Γe

bcΓa
ed . (14)

The Ricci tensor and Ricci scalar, respectively,

Ricab = Rc
acb, and R = Rica

b. (15)

Einstein tensor:

Gab = Ricab −
1
2

Rgab, Ga
b;a = 0. (16)
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A frame approach

Define the connection one-form relative to the frame ha,

ωa
b = Γa

bchc . (17)

Cartan’s Structure equations:

dha + ωa
c ∧ hc =

1
2

T a
bchb ∧ hc , (18)

dωa
b + ωa

c ∧ ωc
b =

1
2

Ra
bcd hc ∧ hd . (19)

The metric compatibility condition can be restated as the vanishing of the non-metricity
tensor:

Qabc = gab;d = 0↔ ωab = −ωba. (20)
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Field equations of f (R) theories

For a reasonably motivated stress-energy tensor, Tab , the Einstein field equations are,

Gab = κTab, κ =
8πG
c4

. (21)

The field equations of a gravitational theory can be derived by varying an action with a
particular function f (R)

S =

∫ [
1
κ

f (R) + Lm

]√
−gd4x . (22)

The f (R) field equations are:

df
dR

Rab −
1
2

f (R)gab + (gabgcd∇c∇d −∇a∇b)[f (R)] = κTab. (23)

If f (R) = R we recover the Einstein-Hilbert action and the standard field equations.
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The equivalence problem for Riemannian manifolds

Any diffeomorphism between two smooth manifolds, Φ : M → M, induces two related
mappings

Φ∗ : TpM → Tp̄M and Φ∗T∗p̄ M → T∗p M. (24)

For any two solutions, (M,g) and (M, ḡ), it is worthwhile to know if a diffeomorphism,
Φ, exists such that

Φ∗ḡ = g.

We call this an isometry, and we say (M,g) and (M, ḡ) are equivalent.
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Scalar polynomial curvature invariants

Definition

A scalar polynomial curvature invariant (SPI) is constructed from full contractions of
tensors constructed from copies of the Riemann tensor, its Hodge dual R∗abcd , and its
covariant derivatives, Rabcd ;e1,...ep .

We will call the set of all SPIs formed from all of the curvature tensors, I.

As an example, consider the Kretschmann scalar, K1, and the Karlhede invariant, K2:

K1 = Rabcd Rabcd and K2 = Rabcd ;eRabcd ;e. (25)

Gravitational theories can be generated by varying an action involving SPIs

Most spacetimes (but not all), can be locally characterized by I.
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Minkwowski spacetime vs a plane wave spacetime

Minkowski spacetime

gM = −dt2 + dx2 + dy2 + dz2 (26)

or equivalently,

gM = 2dudv + dy2 + dz2. (27)

homogeneous plane wave

gP = 2dudv + dy2 + dz2 + 2H(u, x , y)du2,

H =
1
2

(y2 − z2) cos(2εu)− yz sin(2εu).
(28)

where ε is some real-valued constant.
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Failure of SPI characterization

In the Riemannian signature, (+ + ++), we could (in principle) compute all SPIs and
characterize two metrics.

In the Lorentzian signature things are not as simple.

Denoting IM and IP as the set of all SPIs for the spacetimes with the metric gM and gP,
we have

IM = IP = {0}. (29)

As far as SPIs are concerned, Minkowski and the homogeneous plane-wave solution
are the same!
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Symmetries

These are different solutions.

Compute the Killing vector fields, X for each metric, i.e,

LXg = 0↔
1
2

(Xa;b + Xb;a) = 0, (30)

where L is the Lie derivative.

The set of Killing vectors forms a n-dimensional Lie algebra, with an associated
n-dimensional Lie group, Gn.

Comparing the two spacetimes we see they are inequivalent:

Minkowski spacetime G10
homogeneous plane wave spacetime G6

Could we compare two plane wave solutions with the same G6?
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A more general problem

We will consider the classification problem for a manifold, M, equipped with a (co)frame
and a structure group, G [Olver, 1995].

Definition

On a smooth m-dimensional manifold, a frame on M is an ordered set of vector fields
{ha}m

a=1 which form a basis for TpM at each point p ∈ M.

A coframe on M is an ordered set of one-forms {ha}m
a=1 which form a basis for T∗p M at

each p ∈ M.

We will assume that {ha}m
a=1 and {ha}m

a=1 are dual to each other.

Notation: (Abuse of notation) I will denote an individual (co)frame element with
arbitrary index and the (co)frame basis by ha (ha).
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The equivalence problem

We need a matrix Lie Group, G ⊂ GL(m) for the structure group.

Essentially, the structure group will act on the frame basis to produce a new frame
basis.

Definition

Let G ⊂ GL(m) be a Lie group. Let ha and h̄a be coframes defined on the
m-dimensional manifolds, M and M, respectively.

The G-valued equivalence problem for these coframes is to determine whether there
exists a (local) diffeomorphism Φ : M → M and a G-valued function g : M → G such
that

Φ∗h̄a = ga
bhb (31)

where g(x) is required to belong to the structure group G at each point x ∈ M.
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The {e}-valued equivalence problem

Suppose that Φ : M → M or xα = Φα(xβ) satisfies

Φ∗h̄a = ha. (32)

If this holds, we can take an exterior derivative

Φ∗d h̄a = dha. (33)

We have a relationship to the Ca
bc , which we will now call structure functions

dha = −Ca
bchb ∧ hc (34)

Using (32) and (33) we find

C̄a
bc(Φ(x)) = Ca

bc(x) (35)

In addition, we have derived invariants, since if I(x) is an invariant then

Φ∗dĪ = dI ↔ [h̄a (̄I)](Φ(x)) = [ha(I)](x). (36)
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Classifying manifolds

In this context, the invariants come from the structure functions,

Cσ = hds hds−1 . . . ,hd1 [Ca
bc ],where σ = (a, b, c, d1, . . . ds−1, ds). (37)

Here, σ is a non-decreasing multi-index. We say s = order σ is the order of the derived
invariant.

Definition

The sth order classifying space K (s)
m associated with M, is the Euclidean space of

dimension
1
2

m2(m − 1)
(m + s

m

)
with coordinates z(s) = (. . . , zσ , . . .).

The sth structure map associated a coframe θ on M is T(s) : M → K (s)
m whose

components are zσ = Cσ for σ ≤ s.
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Classifying manifolds

If the structure map is regular, then the coframe ha is regular.

If ρs = rank T(s) this corresponds to the number of functionally independent structure
invariants up to order s.

Definition

The sth order classifying set C(s)(ha) associated with the coframe {ha} is defined as

C(s)(ha) = {T(s)(x)|x ∈ M} ⊂ K (s). (38)

We say the order of a coframe is the smallest integer, s, where

dim C(s)(ha) = dim C(s+1)(ha).

Proposition

Let {ha} and {h̄a} be smooth, fully regular coframes defined on M and M, respectively.
There exists a local diffeomorphism Φ : M → M so that Φ∗h̄a = ha if and only if they
have the same order s̄ = s and the manifolds C(s+1)(ha) and C̄(s+1)(h̄a) overlap.
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Framing the problem: equivalence of metrics

For (M,g) and (M, ḡ), we can rephrase the problem of finding an isometry Φ : M → M
with

Φ∗ḡ = g. (39)

We employ the coframes for M and M

g = ηabhahb, and ḡ = ηabh̄ah̄b, η = diag(−1, 1, 1, 1). (40)

Then, the two metrics are equivalent if and only if the coframes satisfy

Φ∗h̄a = Λa
bhb (41)

where Λa
b is required to take values in the group SO(1, 3).
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Normalization

Instead consider the problem

ḡa
b(x̄)h̄b = ga

c(x)hc . (42)

GOAL: Find ḡ and g such that on both manifolds:

h̄
′a = ḡa

bhb, and h
′a = ga

bhb (43)

satisfying,

Φ∗h̄
′a = h

′a. (44)

Use scalar invariant combinations of g and ha such that

H(ḡ(x̄), h̄a|x̄) = H(g(x),ha|x) (45)

whenever x̄ = Φ(x) and Φ∗ḡa
bhb = ga

bhb
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Normalization

Let N denote the range of H, due to the equivalence condition ḡa
b(x̄)h̄b = ga

c(x)hc :

g∗(x) = ḡ∗(Φ(x)) = ḡ∗(x̄), (46)

and so

ḡ∗ab ḡb
c h̄c = g∗ab gb

chc . (47)

The invariant of H then implies

H(ḡ∗g, h̄a) = H(g∗g,ha) (48)

There is an induced global action of G on the range of H!

Definition

An invariant function H(g,ha) is said to define a normalization of constant type for the
coframe ha if for each x ∈ M the values H(e,ha|x) lie in a single orbit Oh ⊂ N of the
induced action of G on the range of H.
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A useful theorem

Theorem

Assume that ha and h̄a are both of constant type for the invariant function H(g,ha). If
ha and h̄a are equivalent, then on their associated orbits in N are necessarily the same
Oh̄ = Oh.

Fixing a point z in the orbit, let G̃ = Gz the associated isotropy subgroup. We can
construct smooth G-valued functions ḡ0(x̄) and g0(x) so that

H(ḡ0, h̄a) = z = H(g0,ha), (49)

which gives the following modified coframes

h
′a = ga

0 bha, and h̄
′a = ḡa

0 bh̄a. (50)

The original two coframes are equivalent if ga
bhb = ḡa

bh̄b if and only if

g̃a
bh
′a = ¯̃ga

bh̄
′a, (51)

for some g̃, ¯̃g ∈ G̃.
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Structure equations again

Consider the lifted coframe, Ha = ga
bhb then

dHa = dga
b ∧ hb + ga

bdhb. (52)

So that

dHa = γa
b ∧ Hb − ca

bc(x, g)hb ∧ Hc (53)

where γa
b = dga

c(g−1)c
b are the Maurer-Cartan forms on the structure group G or

relative to the basis αA:

dHa = Aa
bAα

A ∧ hb − ca
bc(x, g)Hb ∧ Hc . (54)

Equivalently, if we have H̄a = ḡa
bhb then we find

dH̄a = Aa
bAᾱ

A ∧ h̄b − c̄a
bc(x̄, ḡ)H̄b ∧ H̄c . (55)

Note: ca
bc(x, g) are called torsion coefficients.
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Invariant quantities

Assume a consistent definition for the group parameters is given, g(x), x ∈ M

The Maurer Cartan forms, αA, drop down to M

αA = zA
aHa (56)

then

dθa = [Ba
bc [z]− ca

bc(x, g)]θb ∧ θc , where Ba
bc = 2Aa

[b|A|z
A
c]. (57)

If the two original coframes can be mapped to each other for some choice of (unknown)
zA(x) and z̄A(x̄) so that

H̄a = Ha

then

[Ba
bc [z̄]− c̄a

bc(x̄)] = [Ba
bc [z]− ca

bc(x)], when x̄ = Φ(x). (58)
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Normalization and Absorption

If, for some fixed a, b, and c: Ba
bc = B̄a

bc = 0 then

ca
bc(x, g) = c̄a

bc(x̄, ḡ)

is essential torsion for dHa.

If ca
bc(x) then it is an invariant.

Else ca
bc(x, g) = H(g,ha) = 0 or ±1 by choosing g.

To remove inessential torsion, use absorption of torsion:

πA = αA − zA
aHa (59)

where zA
a are solutions to the absorption equations, giving

dHa = Aa
bAπ

A ∧ Hb − Ua
bcHb ∧ Hc . (60)
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Outline of the Cartan method

0) Compute structure equations

1) Check if there is essential torsion, normalize if possible

2) Eliminate inessential torsion and recompute structure equations. Go back to 1.

This process ends when

i) All group parameters have been specified, or

ii) A subset of group parameters cannot be specified [Prolongation].
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Physics and Computation

“Physical”

In GR, and other gravity theories, the Riemann tensor is seen as physical.

The frame, the coefficients of anholonomy and their derivatives are not considered
physical.

In some instances, the Cartan algorithm will not be able to fix all parameters (without
prolongation) this should say something about the symmetry group of the spacetime.

Computational

Normalization and Absorption of torsion are both problems based in linear algebra.

It would be nice to combine these steps into one and reduce the number of
calculations.
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The frame problem for spacetimes

Taking the frame basis for the metric, ha, we lift the coframe to

Ha = Λa
bhb, Λ ∈ SO(1, 3).

The structure equations become

dHa = d(Λa
c)(Λ−1)c

b ∧ Hb − ca
bcHb ∧ Hc . (61)

Notice that d(Λa
c)(Λ−1)c

b is the skew-symmetric Maurer-Cartan form on SO(1, 3).

Absorb all of the torsion:

d(Λa
c)(Λ−1)c

b = za
bcHc , with zabc = −zbac . (62)

The absorption equation (Cartan’s test) is

za
bc − za

cb = −ca
bc , (63)

where the solution is

2za
bc = ca

bc + cb
ac + cc

ba. (64)
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A connection between methods

Since
ca

bc = Λa
d (Λ−1)e

b(Λ−1)f
cCd

ef ,

this becomes

za
bc =

1
2

Λa
d (Λ−1)e

b(Λ−1)f
c [Cd

ef + Ce
df + Cf

ad ]

= Λa
d (Λ−1)e

b(Λ−1)f
cΓd

ef .

(65)

Consider a new frame problem on M1 = M × O(M) with the forms:

−ωa
b = d(Λa

c)(Λ−1)c
b − za

bcHc . (66)

We find,

dHa = −ωa
b ∧ Hb, dωa

b = −ωa
c ∧ ωc

b + Sa
bcd Hc ∧ Hd . (67)
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Use curvature instead

On M1 we have

dHa = −ωa
b ∧ Hb, dωa

b = −ωa
c ∧ ωc

b + Sa
bcd Hc ∧ Hd . (68)

where

ωa
b = −d(Λa

c)(Λ−1)c
b + [Λa

d Γd
ef (Λ−1)e

b(Λ−1)f
c ]Hc ,

Sa
bcd = Λa

a′ (Λ−1)b′
b (Λ−1)c′

c (Λ−1)d′
d Ra′

b′c′d′ .
(69)

Theorem

A complete set of structure invariants for a Lorentzian manifold are provided by the
invariant components of the higher orer curvature tensors ∇qR, p = 0, 1, 2 . . . , s + 1.

In the regular case, two Riemannian manifolds are locally isometric if and only if their
curvature tensors parameterize overlapping classifying manifolds.

Note: The order of a Riemannian metric is the order of the coframe
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The Cartan-Karlhede Algorithm

Denote the set of components {Rabcd ,Rabcd ;e1 , . . . eq } as Rq .

The algorithm is then:
1 Let q = 0.
2 Compute Rq .
3 Fix the frame as much as possible using Lorentz frame transformations.
4 Find the invariance group Hq of the frame which leaves Rq invariant.
5 Find the number of functionally independent components tq amongst the set Rq .
6 If tq 6= tq−1 or dim(Hq) 6= dim(Hq−1) then set q = q + 1 and go to step 2.

Otherwise, the algorithm stops and set q = p + 1.

The set {H r , t r ,Rr}, r = 1, ..., p + 1 classifies the solution, locally.

Definition

The set Rp relative to the frame basis determined by the Cartan-Karlhede algorithm
are called Cartan invariants.
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Lorentz frame transformations

Consider a null frame basis, {`, n,m, m̄} such that

gab = −2`(anb) + m(am̄b). (70)

For a null frame, the Lorentz frame transformation group is then:

Boosts and Spins:

`′ = λ`, n′ = λ−1n,m′ = eiθm. (71)

Null rotations about `:

`′ = `, n′ = n + Bm + B̄m̄ + |B|2`,m′ = m + B̄`. (72)

Null rotations about n:

n′ = n, `′ = `+ Cm + C̄m̄ + |C|2n,m′ = m + C̄n. (73)

In addition to a simpler form for SO(1, 3) we can use this basis and shift the problem to
spinors. This is the Newman-Penrose (NP) formalism.
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Alignment classification

To determine the canonical form of Rabcd and Rabcd ;e1...ep , consider a boost for an
arbitrary tensor [Milson et al., 2005],

T ′a1a2...an = λba1a2...an Ta1a2...an , ba1a2...an =
n∑

i=1

(δai 0 − δai 1). (74)

The quantity, ba1a2...an , is called the boost weight (b.w) of the frame component
Ta1a2...ap .

Boost order, BT(`), is the maximum b.w. of a tensor, T, for a null direction `.

Alignment types of the Weyl tensor, Cabcd , and Ricci tensor, Ricab , are

Type G I II III N
BT(`) 2 1 0 −1 −2. (75)

If T vanishes, then it belongs to alignment type O.

33 / 35 D.D. McNutt Cartan-Karlhede algorithm and Cartan invariants for spacetimes



Introduction to the problem
The Cartan algorithm

The Cartan-Karlhede algorithm

Why not just Cartan?
From Cartan to Cartan-Karlhede
The algorithm...

References

Milson, R., Coley, A., Pravda, V., and Pravdova, A. (2005).
Alignment and algebraically special tensors in Lorentzian geometry.
International Journal of Geometric Methods in Modern Physics, 2(01):41–61.

Olver, P. J. (1995).
Equivalence, invariants and symmetry.
Cambridge University Press.

34 / 35 D.D. McNutt Cartan-Karlhede algorithm and Cartan invariants for spacetimes



Introduction to the problem
The Cartan algorithm

The Cartan-Karlhede algorithm

Why not just Cartan?
From Cartan to Cartan-Karlhede
The algorithm...

Thank you for your attention!
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