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From spinors to NP tetrads

For an arbitrary spin basis, (o, ι), such that [o, ι] = 1 then we can consider Sp(1)
transformations to construct a new spin basis

1 (o′, ι′) = (λo, λ−1ι), λ = aeiθ , λ, θ ∈ R.‘
2 (o′, ι′) = (o, ι+ bo), b ∈ C.
3 (o′, ι′) = (o + cι, ι), c ∈ C.

In particular, using the Petrov classification for Weyl spinors, we can use these
transformations to align the spin frame with the Weyl spinor.

Using the Infeld-van der Waerden symbols we can relate this to a NP frame
{`, n,m, m̄}:

`a = oAōA′
, na = ιA ῑ

A′
, ma = oA ῑA

′
, m̄a = ιAōA′

,

`a = oAōA′ , na = ιA ῑA′ , ma = oA ῑA′ , m̄a = ιAōA′ ,
(1)
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Lorentz frame transformations

For the NP basis {`, n,m, m̄} where

gab = 2`(anb) −m(am̄b), (2)

the Lorentz frame transformation group is then:

Boosts and Spins:

`′ = a2`, n′ = a−2n,m′ = e2iθm. (3)

Null rotations about `:

`′ = `, n′ = n + bm + b̄m̄ + |b|2`,m′ = m + b̄`. (4)

Null rotations about n:

n′ = n, `′ = `+ cm + c̄m̄ + |c|2n,m′ = m + c̄n. (5)

These are the corresponding transformations we would use to build a frame adapted to
the Petrov classification of the Weyl tensor.
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How to differentiate a spinor

If θ, φ and ψ are spinor fields defined on M, where θ and φ have the same valence.
The spinor covariant derivative is defined as a map ∇x = ∇XX ′ : θ... → θ...;XX ′ such
that

∇x (θ + φ) = ∇xθ +∇xφ

∇x (θψ) = (∇xθ)ψ + θ∇xψ.

ψ = ∇xθ implies ψ̄ = ∇x θ̄

∇x εAB = ∇x εAB = 0

∇x commutes with any index substitution not involving X or X ′

∇x∇y f = ∇y∇x f for f a scalar (torsion-free)

For any derivation D acting on spinor fields, there is a spinor ζXX ′
such that

Dψ = ζXX ′∇XX ′ψ for all ψ.

This identifies the 4D vector space of Hermitian spinors τAA′
with Tp(M) and the dual

vector space with T∗p (M)

Good news: ∇x exists and is unique [Penrose and Rindler 1984, section 4.4].
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Detour into frame fields

The tetrad formalism is one way to compute the curvature tensor.

Suppose that ei
a is a tetrad of vectors, with corresponding dual ea

i , so that

e a
i ei

b = δ b
a .

i, j, k , l label the (co)vectors.

a, b, c, d label the components with respect to some arbitrary chosen basis.

The Ricci rotation coefficients are then

Γijk = e a
i e b

k ∇be a
j = −e a

j e b
k ∇be a

i . (6)

where ∇ is the Levi-Civita connection for tensors.

From the Ricci identity we have

Rabcd = 2eia∇[c∇d ]e
i
b. (7)
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Spinor dyads

Introduce the spinor dyad ε A
I and its symplectic dual εIA so that

ε A
0 = oA, ε A

1 = ιA, ε A
I ε

I
B = εAB .

Then the spinor Ricci rotation coefficients are

ΓIJKK ′ = εIAε
C

K ε C′

K ′ ∇CC′ε A
J (8)

The spinor equivalent of the curvature tensor is then

RABCDA′B′C′D′ = 2εIAεI′A′∇[c∇d ](ε
I
Bε

I′
B′ )

= 2εIAεI′A′εI
′
B′∇[c∇d ]ε

I
B + c.c.

= 2εIAεA′B′∇[c∇d ]ε
I
B + c.c.

(9)

Here, ∇c = ∇CC′ and ∇d = ∇DD′ and this can be rewritten as

RABCDA′B′C′D′ = εIAεA′B′ (εC′D′�CDε
I
B + εCD�C′D′εIB) + c.c.

where �CD = ∇C′(C∇ C′

D)
and �C′D′ = ∇C(C′∇ C

D′)
.
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Curvature spinor

The first term εIA�CDε
I
B is symmetric in CD and AB.

This tensor can be decomposed as

εIA�CDε
I
B = ΨABCD − 2Λε(A(CεD)B). (10)

where

ΨABCD = εIA�(CDε
I
B), Λ =

1
6
εIA�

ABεIB . (11)

Similarly, the second term can be written as

εIA�C′D′εIB = ΦABC′D′ (12)

which is symmetric in AB and C′D′.

Thus the curvature spinor can be written as

RABCDA′B′C′D′ = εA′B′εC′D′ [ΨABC − 2Λε(A(C)εD)B)] + εA′B′εCDΦABC′D′ + c.c.. (13)
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Components of the curvature spinor

RABCDA′B′C′D′ = εA′B′εC′D′ [ΨABC − 2Λε(A(C)εD)B)] + εA′B′εCDΦABC′D′ + c.c. (14)

From Ra[bcd ] = 0 , it follows that Λ ∈ R and ΦABA′B′ is Hermitian.

Contracting two indices, we have

RABA′B′ = −2ΦABA′B′ + 6ΛεABεA′B′ ↔ Rab = −2Φab + 6Λgab (15)

and so we recover the Ricci scalar and the trace-free Ricci tensor:

Λ =
R
24
, Φab = −

1
2

(
Rab −

1
4

Rgab

)
. (16)

The remaining term is a Hermitian spinor which gives the Weyl tensor

ΨABCεA′B′εC′D′ + c.c. (17)

The differential Bianchi identities, Rab[cd ;e] = 0 give

∇D
C′ΨABCD = ∇D′

(CΦAB)C′D′ , ∇BB′
ΦABA′B′ = −3∇AA′Λ. (18)
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Spin coefficients

Rewrite quantities explicitly using a particular NP frame and associated derivatives:

D = `a∇a, ∆ = na∇a, δ = ma∇a, δ̄∇a (19)

Then the (spinor) Ricci rotation coefficients can be written down as 12 complex-valued
scalars:

∇BB′ oA∇BB′oA oA∇BB′ ιA = ιA∇BB′oA ιA∇BB′ ιA
∇b ma∇b`a

1
2 (na∇b`a − m̄a∇bma) −m̄a∇bna

D κ ε π
∆ τ γ ν
δ σ β µ
δ̄ ρ α λ

(20)

These are known as the NP spin coefficients.

As ∇BB′ is torsion free, we can also write down the commutators for the derivations.
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Curvature scalars

Using the spinor dyad (oA, ιA) we can also write down the NP curvature scalars:

Φ00 = ΦABA′B′oAoB ōA′
ōB′

, Φ11 = ΦABA′B′oAιB ōA′
ῑB

′
, Φ22 = ΦABA′B′ ιAιB ῑA

′
ῑB

′
,

Φ01 = ΦABA′B′oAoB ōA′
ῑB

′
, Φ10 = ΦABA′B′oAιB ōA′

ōB′
,

Φ02 = ΦABA′B′oAoB ῑA
′
ῑB

′
, Φ20 = ΦABA′B′ ιAιB ōA′

ōB′
,

Φ12 = ΦABA′B′oAιB ῑA
′
ῑB

′
, Φ21 = ΦABA′B′ ιAιB ōA′

ῑB
′
.

Ψ0 = ΨABCDoAoBoCoD , Ψ1 = ΨABCDoAoBoCιD ,

Ψ2 = ΨABCDoAoBιCιD , Ψ3 = ΨABCDoAιBιCιD ,

Ψ4 = ΨABCDι
AιBιCιD .

We could write down the Ricci equations, Rabcd = 2eia∇[c∇d ]ei
b , and Bianchi

identities, Rab[cd ;e] = 0 in terms of these quantities.
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As an example, we will consider the vacuum type N spacetimes [Collins, 1991], so that

Λ = 0, ΦABA′B′ = 0 and Ψ0 = Ψ1 = Ψ2 = Ψ3 = 0

according to the Petrov classification.

This is done using a rotation to fix the principal spinor αA = oA .

We can also employ a Lorentz transformations to set Ψ4 = 1.

The Bianchi identities, Rab[cd ;e] are then

κ = 0,

σ = 0,

4ε = ρ,

4β = τ

(21)
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NP “field” equations

The Ricci equations, Rabcd = 2eia∇[c∇d ]ei
b , are

Figure: Taken from [Collins, 1991]
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Type N subclasses

pp-wave metrics

ρ = 0, τ = 0.

Rotating plane-fronted wave metrics (Kundt waves)

ρ = 0, τ 6= 0.

Robinson-Trautman metrics

ρ 6= 0, Im(ρ) = 0.

The twisting case

ρ 6= 0, Im(ρ) 6= 0.

So far, only the Hauser metric is the sole example of vacuum type N spacetimes
with twist.
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The Cartan-Karlhede Algorithm

Denote the set of components {Rabcd ,Rabcd ;e1 , . . . eq } as Rq .

The algorithm is then:
1 Let q = 0.
2 Compute Rq .
3 Fix the frame as much as possible using Lorentz frame transformations.
4 Find the invariance group Hq of the frame which leaves Rq invariant.
5 Find the number of functionally independent components tq amongst the set Rq .
6 If tq 6= tq−1 or dim(Hq) 6= dim(Hq−1) then set q = q + 1 and go to step 2.

Otherwise, the algorithm stops and set q = p + 1.

The set {H r , t r ,Rr}, r = 1, ..., p + 1 classifies the solution, locally.

Definition

The set Rp relative to the frame basis determined by the Cartan-Karlhede algorithm
are called Cartan invariants.

15 / 31 D.D. McNutt Cartan-Karlhede algorithm and Cartan invariants for spacetimes III



More Spinors
An example in 4D

The alignment classification

Vacuum Type N spacetimes
First and second order
Higher orders

First order derivatives

(DΨ)µ̂E′ = ΨABCD;EE′ε A
I ε

B
J ε

C
K ε D

L ε
E

M ε
E′

M′

= (ΨABCDε
A

I ε
B

J ε
C

K ε D
L );EE′ε E

M ε
E′

M′ − (ε A
I ε

B
J ε

C
K ε D

L )EE′ε E
M ε

E′
M′ ΨABCD ,

(22)

where, µ̂ counts the appearance of ι. There are 3 cases:

µ̂ = 5 : (DΨ)µ̂E′ = (Ψ4);1E′ − 4Γ111E′Ψ3 + 4Γ101E′Ψ4,

µ̂ = 4 : (DΨ)µ̂E′ = (Ψ4),0E′ − 4Γ110E′Ψ3 + 4Γ100E′Ψ4,

µ̂ < 4 : (DΨ)µ̂E′ = (Ψµ̂);0E′ − µ̂Γ1110E′Ψµ̂−1 + µ̂Γ100E′Ψµ̂ − (2µ̂− 4)Γ100E′Ψµ̂

+ (4− µ̂)Γ000E′Ψµ̂+1.

(23)

In the vacuum type N spacetimes we find:

(DΨ)40′ = ρ,

(DΨ)50′ = 4α,

(DΨ)41′ = τ,

(DΨ)51′ = 4γ.

(24)
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Second derivatives

(D2Ψ)µ̂E′;FF ′ = ΨABCD;EE′;FF ′ [ε A
I ε

B
J ε

C
K ε D

L ε
E

M ]ε E′
M′ ε

F
N ε

F ′
N′ , (25)

or with the Leibnitz rule...

(D2Ψ)µ̂E′;FF ′ = (ΨABCD;EE′ε A
I ε

B
J ε

C
K ε D

L ε
E

M ]ε E′
M′ );FF ′ε F

N ε
F ′

N′

− (ε A
I ε

B
J ε

C
K ε D

L ε
E

M ]ε E′
M′ );FF ′ε F

N ε
F ′

N′ ΨABCD;EE′ .
(26)

With some work, this can be written as

(D2Ψ)µ̂E′;FF ′ = [(DΨ)µ̂E′ ];FF ′ − µ̂Γ11FF ′ (DΨ)(µ̂−1)E′ + (2µ̂− 5)Γ10FF ′ (DΨ)µ̂E′

+ (5− µ̂)Γ00FF ′ (DΨ)(µ̂+1)E′ − Γ̄E′1′F ′F (DΨ)µ̂0′ + Γ̄E′0′F ′F (DΨ)µ̂1′ .
(27)
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Vacuum type N spacetimes

(D2Ψ)30′;10′ = 2ρ2,

(D2Ψ)30′;11′ = 2ρτ,

(D2Ψ)31′;10′ = 2ρτ,

(D2Ψ)31′;11′ = 2τ2,

(D2Ψ)40′;00′ = Dρ+
3
4
ρ2 −

1
4
|ρ|2,

(D2Ψ)40′;10′ = δ̄ρ+ 7αρ−
1
4
τ̄ρ,

(D2Ψ)40′;01′ = δρ+
3
4
τρ− ᾱρ+ τ ρ̄,

(D2Ψ)40′;11′ = ∆ρ+ 3γρ+ 4ατ − γ̄ρ+ |τ |2,

(D2Ψ)41′;00′ = Dτ +
3
4
ρτ − π̄ρ+

1
4
ρ̄τ,

(D2Ψ)41′;10′ = δ̄τ + 3ατ + 4γρ− µ̄ρ+
1
4
|τ |2,
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Vacuum type N spacetimes

(D2Ψ)41′;01′ = δτ +
3
4
τ2 − λ̄ρ+ ᾱτ,

(D2Ψ)41′;11′ = ∆τ + 7γτ − ν̄ρ+ γ̄τ,

(D2Ψ)50′;00′ = 4Dα− 5πρ+ 5αρ− ρ̄α,

(D2Ψ)50′;10′ = 4δ̄α− 5λρ+ 20α2 − τ̄α,

(D2Ψ)50′;01′ = 4δα− 5µρ+ 5τα− 4|α|2 + 4γρ̄,

(D2Ψ)50′;11′ = 4∆α− 5νρ+ 20γα− 4γ̄α+ 4γτ̄ ,

(D2Ψ)51′;00′ = 4Dγ − 5πτ + 5ργ − 4π̄α+ ρ̄γ,

(D2Ψ)51′;10′ = 4δ̄γ − 5λτ + 20αγ − 4µ̄α+ τ̄γ,

(D2Ψ)51′;01′ = 4δγ − 5µτ + 5γτ − 4λ̄α+ 4γᾱ,

(D2Ψ)51′;11′ = 4∆γ − 5ντ + 20γ2 − 4ν̄α+ 4|γ|2.
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Linear Isotropy

We see that four spin-coefficients appear at first order:

ρ, α, τ, and γ, (28)

along with their derivatives at higher orders.

At zeroth order, we can transform the spin frame and leave the Type N condition
unchanged:

o′ = o, ι′ = ι+ bo (29)

Under this transformation, the "first order" spin-coefficients above transform as

ρ′ = ρ,

α′ = α+
5
4

b̄ρ,

τ ′ = τ + bρ,

γ′ = γ + bα+
5
4

b̄τ +
5
4
|b|2ρ.

(30)
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Summary of Collins’ analysis

I IIa IIb IIIa IIIb
Invariant ρ 6= 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0

characterization τ = 0 τ = 0 τ 6= 0 τ 6= 0
α 6= 0 α = 0 |α| 6= 5

4 |τ | |α| = 5
4 |τ |

Canonical form:
Zeroth order Ψi = δ4

i Ψi = δ4
i Ψi = δ4

i Ψi = δ4
i Ψi = δ4

i
First order τ = 0 γ = 0 γ = 0 Re(γ) or Im(γ) = 0

Second order Re(∆τ) = 0
Upper bound 5 4 2 �5 4 �6 �5 3

In case III, Collins (1991) provided an upper-bound of 5 and 6 for a and b
respectively.

Ramos and Vickers (1996) using the GHP formalism gave an upper-bound of 5 for
III [Ramos and Vickers, 1996]

DDM. Milson and Coley (2013) lowered the upper-bounds and provided examples,
showing they were sharp [McNutt et al., 2013].
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The Cartan-Karlhede Algorithm

Denote the set of components {Rabcd ,Rabcd ;e1 , . . . eq } as Rq .

The algorithm is then:
1 Let q = 0.
2 Compute Rq .
3 Fix the frame as much as possible using Lorentz frame transformations.
4 Find the invariance group Hq of the frame which leaves Rq invariant.
5 Find the number of functionally independent components tq amongst the set Rq .
6 If tq 6= tq−1 or dim(Hq) 6= dim(Hq−1) then set q = q + 1 and go to step 2.

Otherwise, the algorithm stops and set q = p + 1.

The set {H r , t r ,Rr}, r = 1, ..., p + 1 classifies the solution, locally.

Definition

The set Rp relative to the frame basis determined by the Cartan-Karlhede algorithm
are called Cartan invariants.
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4D: Higher rank spinors/tensors

We can treat the Weyl tensor, Cabcd and the Ricci tensor, Rab , as operators on some
vector space and fin canonical forms of the operators.

For example, the self dual Weyl tensor

C∗abcd = Cabcd + i
1
2

C ef
ab εefcd (31)

can be seen as an operator acting on the 6-dimensional space of self dual bivectors,
X∗ab = −i 1

2 εabcd X∗cd :

C∗ cd
ab X∗cd = Y∗ab (32)

Can we treat C∗abcd ;e or Rab;e as operators on some vector space?

In general, no.
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Recall the Weyl spinor

Ψ = ΨIJKLε
I
Aε

J
Bε

K
Cε

L
D (33)

We can count the number of principal spinors, oA and relate these to principal null
directions of the self-dual tensor

C∗abcd = 2ΨABCDεA′B′εC′D′ (34)

To count the number of appearance of oa in each term, we can consider a boost:

o′ = ao, ι′ = a−1ι,↔ `′ = a2`, n′ = a−2n (35)

In this representation, we find that

Ψ′0 = a4Ψ0, Ψ′1 = a2Ψ1, Ψ′2 = Ψ2, Ψ′3 = a−2Ψ3, Ψ′4 = a−4Ψ4. (36)
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More generally, consider a boost for an arbitrary tensor [Milson et al., 2005],

T ′a1a2...an = λba1a2...an Ta1a2...an , . (37)

The quantity,

ba1a2...an =
n∑

i=1

(δai 0 − δai 1)

is called the boost weight (b.w) of the frame component Ta1a2...ap .

We can write the tensor T in the following decomposition:

T =
∑

b

(T)b. (38)

(T)b denotes the projection onto the subspace of components of boost weight b.
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Alignment classification

For any T we can pick an NP frame and decompose into b.w.:

T =
∑

b

(T)b. (39)

Boost order, BT(`), is the maximum b.w. of a tensor, T, for a null direction `.

For a given null direction `, BT(`) is invariant under boosts, spatial rotations and null
rotations about `.

BT(`) is only dependent on the choice of `.

Defining

BT = max
`
BT(`)) (40)

the existence of a ` with BT(`) < BT is an invariant property of the tensor T.

We will say ` is T-aligned if BT(`) < BT.
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To determine the canonical form of Rabcd , consider the effect of a boost on its
irreducible parts:

Boost order Weyl Ricci
2 Ψ0 R00
1 Ψ1 R0i , i = 3, 4
0 Ψ2 R01,Rij , i, j = 3, 4
−1 Ψ3 R1i
−2 Ψ4 R11

(41)

Alignment types of the Weyl tensor, Cabcd , and Ricci tensor, Rab , are

Type G I II III N
BT(`) 2 1 0 −1 −2. (42)

If Cabcd or Rab vanishes, then it belongs to alignment type O.

Alignment type is not enough to reproduce Segre type for Rab , instead we must also
examine the algebro-geometric properties of

R′00 = R00 + 2R0i c i + Rij c i c j − R01|c|2 − R1i c i |c|2 + R11|c|4 = 0. (43)

27 / 31 D.D. McNutt Cartan-Karlhede algorithm and Cartan invariants for spacetimes III



More Spinors
An example in 4D

The alignment classification

Motivation
Boosts!
Alignment classification in 4D

For Rabcd ;e1...ep , |BT(`)| may be greater than two but the alignment types are still
applicable.

For example, here are the b.w. of the first covariant derivative:

b = −3 : C∗1212;1 = 8α,

b = −2 : C∗0112;1 = C∗1201;1 = C∗1212;3 = C∗1223;2 = C∗2312;1 = −2ρ,

b = −2 : C∗1212;2 = 8γ,

b = −1 : C∗0112;2 = C∗1201;2 = C∗1212;0 = C∗1223;2 = C∗2312;2 = −2τ.

(44)

We can consider the transformation rules from before

ρ′ = ρ,

α′ = α+
5
4

b̄ρ,

τ ′ = τ + bρ,

γ′ = γ + bα+
5
4

b̄τ +
5
4
|a|2ρ.

(45)
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Conclusions

I IIa IIb IIIa IIIb
Invariant ρ 6= 0 ρ = 0 ρ = 0 ρ = 0 ρ = 0

characterization τ = 0 τ = 0 τ 6= 0 τ 6= 0
α 6= 0 α = 0 |α| 6= 5

4 |τ | |α| = 5
4 |τ |

Canonical form:
Zeroth order Ψi = δ4

i Ψi = δ4
i Ψi = δ4

i Ψi = δ4
i Ψi = δ4

i
First order τ = 0 γ = 0 γ = 0 Re(γ) or Im(γ) = 0

Second order Re(∆τ) = 0
Upper bound 5 4 2 4 3

At first order |BT(`)| is not enough to distinguish some cases

Subclass I IIa IIb IIIa IIIb
|BT(`)| −2 −3 −2 −1 −1 (46)

Coarse canonical forms that can be refined by adding additional geometric conditions.

This is still an open question on how.
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Thank you for your attention!
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