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More Spinors Spinor transformations
spinors

NP formalism

From spinors to NP tetrads

For an arbitrary spin basis, (0, ¢), such that [0, (] = 1 then we can consider Sp(1)
transformations to construct a new spin basis

Q (0,/)= (Mo, A" "), A=ae?, \,0 c R
Q (0,/)=(o,.+bo), beC.
Q (0o,/)=(0o+c,t), ceC.

In particular, using the Petrov classification for Weyl spinors, we can use these
transformations to align the spin frame with the Weyl spinor.

Using the Infeld-van der Waerden symbols we can relate this to a NP frame

{¢,n,m, m}:

iy Al Al _a
2 =0%", N =7, m? =0, m=.9",

£a = 0a0pr, Na = Laly, Ma = 0palpr, Ma = tp04,
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More Spinors Spinor transformations
Covariant d d curvature spinors
NP formalism

Lorentz frame transformations

For the NP basis {¢, n, m, m} where
Gab = 2{(aNp) — M(aMp), (2
the Lorentz frame transformation group is then:
@ Boosts and Spins:
V=2 n=a?nm=e"m (3)
@ Null rotations about ¢:
¢ =4, n' =n+bm+bm+|b?¢,m =m+ bt. (4)
@ Null rotations about n:
n=n, £ =0+cm+Cm+|cPn,m =m+cn. (5)

These are the corresponding transformations we would use to build a frame adapted to
the Petrov classification of the Weyl tensor.
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More Spinors

NP formalism

How to differentiate a spinor

If 8, ¢ and v are spinor fields defined on M, where 6 and ¢ have the same valence.
The spinor covariant derivative is defined asamap Vx = Vxxs : 6... — 0 _.xxs such
that

] Vx(e + ¢) = Vx0 + Vxo

@ Vx(6v) = (Vx0) + 0V 3.

b = Vx0 implies ¢ = V0

Ve = Vyeap =0

Vx commutes with any index substitution not involving X or X’
VxVyf =V, Vxffor fascalar (torsion-free)

e © 6 o6 o

For any derivation D acting on spinor fields, there is a spinor ¢XX’ such that
Dip = XX yxrap for all op.

This identifies the 4D vector space of Hermitian spinors 744" with Tp(M) and the dual
vector space with T (M)

Good news: V exists and is unique [Penrose and Rindler 1984, section 4.4].

D.D. McNutt Cartan-Karlhede algorithm and Cartan invariants for spacetimes IIl



More Spinors Spinor transformations
Covariant derivatives and curvature spinors
NP formalism

Detour into frame fields

The tetrad formalism is one way to compute the curvature tensor.
Suppose that &', is a tetrad of vectors, with corresponding dual ef, so that

ee', =o2.
i,j, k,Ilabel the (co)vectors.
a, b, ¢, d label the components with respect to some arbitrary chosen basis.
The Ricci rotation coefficients are then

ik = 676 Ve = —%eVpe?. (6)

where V is the Levi-Civita connection for tensors.
From the Ricci identity we have

Rabca = 26iaV V) eib- (7)
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More Spinors Spinor transformations
Covariant derivatives and curvature spinors
NP formalism

Spinor dyads

Introduce the spinor dyad e,A and its symplectic dual e’A so that

A A A A A_l A
g =07, ¢ =17, ¢l g =¢€'p.

Then the spinor Ricci rotation coefficients are
c.c A
Mukk = €neg et Veore] (8)
The spinor equivalent of the curvature tensor is then
rr
Rascoarsrc'pr = 2€ip€p pr VeV (€ ge pr)
!
= 2€[A€[/A/ EIB/V[CVd]EIB + c.c. (9)
= 2€[A€A/B/V[Cvd]€l5 +cC.C.
Here, Ve = Ver and V4 = Vppr and this can be rewritten as
I I
Rascpars c'pr = €inears (ecrprOcpe'g + ecpUerpre'g) + C.C.

where Ogp = VC’(CVD(;/ and O¢grpr = VC(C’ VDC,;).
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More Spinors Spinor transformations
Covariant derivatives and curvature spinors
NP formalism

Curvature spinor

The first term e,ADCDe’B is symmetric in CD and AB.

This tensor can be decomposed as

enlope's = Wagcp — 2Ne(acep)s)- (10)
where
1
Vaseo = el(cpe's), A= 66/ADABEIB- (11

Similarly, the second term can be written as

enlcpre'y = Saperpy (12)
which is symmetric in AB and C'D’.
Thus the curvature spinor can be written as

Rascoarsrcror = easrecpr [Wasc — 2Aeacyepys)] + earsreco®ascror +c.c.. (13)
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More Spinors Spinor transformations
Covariant derivatives and curvature spinors
NP formalism

Components of the curvature spinor

Rascoarrerpr = exprecrpr [Vasc — 2Neacyepys)l + earsreco®ascrpr + .. (14)
From Rajpeq) = 0 , it follows that A € R and ® 4pa g/ is Hermitian.
Contracting two indices, we have
Raparpr = —2®pparpr + BAeppeprp > Rap = —2® 5 + 6Agap (15)

and so we recover the Ricci scalar and the trace-free Ricci tensor:

R 1 1
A=— &p=——(Ry— —R . 16
5q Pab 5 ( ab— gab) (16)
The remaining term is a Hermitian spinor which gives the Weyl tensor
WABCEA’B’EC’D/ + c.cC. (17)

The differential Bianchi identities, Rapjcq,¢) = 0 give

VDC’WABCD == VE()c‘DAB)ch’: VBB q)ABA’B’ = 73VAA//\. (18)
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More Spinors S
spinors

NP formalism

Spin coefficients

Rewrite quantities explicitly using a particular NP frame and associated derivatives:

D =13V, A =n?Vy38=mV, 6V, (19)
Then the (spinor) Ricci rotation coefficients can be written down as 12 complex-valued

scalars:

Ve | 0°Veg0a | 0Vegia=1"Vpgoa | AVagia
Vb maVpla | 5(nVpla — MAVpma) | —M3Vpna

D K € T
A T Y v (20)
J o B H
1) p a A

These are known as the NP spin coefficients.

As Vg is torsion free, we can also write down the commutators for the derivations.
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More Spinors S|

spinors
NP formalism

Curvature scalars

Using the spinor dyad (0#, :*) we can also write down the NP curvature scalars:
A =R’ —A' _p’! A —_R’
Do = Paga g 070804 08, D1y = Dpga g 0ABA B, Do = O pgag ABTATE
— Al R/ — A -t
¢01 = d)ABA/B/OAOBOA LB s ¢10 = ¢‘ABA/B/OALBOA OB s
’ / — A =R’
¢02 = q)ABA’B' OAOBZA ZB s ¢20 = q)ABA/B/LALBOA OB s

/1 _pt —Al _p!
d>12 = ¢ABA/B/ OALBZA ZB , ¢21 = ¢ABA/B/LALBOA LB .

Wo = Wapcp0?0P0C0l, Wy = Wapcp0”0BoCil,
Wo = Wagep0?0BiCil, Wy = Wypepoti Bl
Wy = WagepAiBiCiP.

We could write down the Ricci equations, Rapca = 262V (Vg e’b, and Bianchi
identities, Aap[cd.e] = 0 in terms of these quantities.
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Vacuum Type N spacetimes
An example in 4D First and second order

Higher orders

As an example, we will consider the vacuum type N spacetimes [Collins, 1991], so that
A=0, Ppgag =0and Wy =Wy =W, = W3 =0

according to the Petrov classification.

This is done using a rotation to fix the principal spinor o = 04 .

We can also employ a Lorentz transformations to set W, = 1.

The Bianchi identities, Rap|cq.¢ are then

k=0,

=0,
7 (21)
4e =p,

48 =7
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Vacuum Type N spacetimes
An example in 4D nd order

NP “field” equations

The Ricci equations, Rapca = 2€iaV[cVq) e’b, are

Dp=ip’+ipp - (24a)
Dr=3pr+7p—ipr (2.4b)
Da —}8p =}ipa +ipa —%7p+ipm : (2.4¢)
Dy—idp=irm—iyp+ra+ai +irF—iyp—ivs (2.4d)
DA - b7 =kpA+ipA+ w*+ am —iimw (2.4¢)
Dy —8m =3pu+ 7 —sppu— mwa@ +imr (2.4f)
Du=Am=mu+fu+ 7A + 1A+ ym — Jm—3pr =iy (2.4g)
AN =8y ==pA = GA—3VA + JA+3av+ mr~Fy =V, (2.4h)
5p=%rp+ﬁp-'§r (2.4i)
Sa—~ibr=3up+ad+yri—tar+yp—yo—ipp =~ (2.4j)
8\ — b =pv—pv+pum—fm+pa Hiut+Aa —irr (2.4k)
Sv—Au=p’+Ah+ypu+ Ju—dr+iv—ar (2.41)
Sy —iAr=iry—Gy+iur—ipF+irF+al (2.4m)
Sr=Xp+ir—1@ (2.4n)
Ap—br=—pa-iFr—ar+yp+p (2.40)
Ac = Sy =3py —iTA + 7& — & —iry. : : (2.4p)

Figure: Taken from [Collins, 1991]
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Vacuum Type N spacetimes
An example in 4D nd order

Type N subclasses

@ pp-wave metrics
p=0, 7=0.
@ Rotating plane-fronted wave metrics (Kundt waves)
p=0, 7#0.
@ Robinson-Trautman metrics
p#0,Im(p) = 0.
@ The twisting case
p #0,Im(p) # 0.

So far, only the Hauser metric is the sole example of vacuum type N spacetimes
with twist.
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Vacuum Type N spacetimes
An example in 4D cond order

The Cartan-Karlhede Algorithm

15/31

Denote the set of components {Rapca, Rabcd;ey s - - - € } @s RY.

The algorithm is then:
@ Letg=0.
@ Compute R9.
© Fix the frame as much as possible using Lorentz frame transformations.
@ Find the invariance group HY of the frame which leaves RY invariant.
© Find the number of functionally independent components t7 amongst the set RY.

Q If 19 # 191 or dim(H9) # dim(H9~1) then set g = g + 1 and go to step 2.
Otherwise, the algorithm stops and set g = p + 1.

Theset {H",t",R"}, r =1,...,p+ 1 classifies the solution, locally.

Definition

The set RP relative to the frame basis determined by the Cartan-Karlhede algorithm
are called Cartan invariants.
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Vacuum Type N spacetimes
An example in 4D First and second order
Higher orders

First order derivatives

16/31

7
(DW)ﬂEI = \UABCD;EE’elAEJBEKCELDE[\EEME/

, , (22)
= (WABCDG,AereKCELD);EE/eMEEA/’;:, — (e,AeJBe}?eLD)EE/e,ﬁe,V’;:, WV aBcD,
where, [i counts the appearance of .. There are 3 cases:
=5 (DV)ser = (Wa)1er — 4T 1112/ V3 + 4T 1012/ V4,
a=4:(DV)uer = (Wa) 0er — 4T 1106/ V3 + 4T 1006 V4, (23)
A<4:(DV)aer = (Wa)oer — Al 11106/ Va—1 + Al 100er Vi — (278 — 4)M 1006 Vi
+ (4 — 2)Foooe’ Wpt1-
In the vacuum type N spacetimes we find:
(DW)4or = p,
DW)so: = 4a,
(DV¥)s5pr = 4o (24)
(DW)4yr =,
(DW)sy/ = 4y
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Vacuum Type N spacetimes
An example in 4D First and second order
Higher orders

Second derivatives

U U
(D2w)ﬂE’;FF’ = WABCD;EE’;FF’ [GIAEJBGKCGLDEME]GME/ E,\';:ﬁl\;:/ 5 (25)
or with the Leibnitz rule...

2 A B C D Ey E F_F
(D) serrrr = (WaBcpeer e/ e e € entlen );FFren €nn (26)
A B C. D Ey E F_F
— (e eSe e eplen ).rrren enr Y aBcD,EE! -

With some work, this can be written as

(D2W) e = [(DV) s ). e — AT 11 (D) (5 1)er + (20 — 5)T10rr (DV) 1/

. _ r 27)
+ (5 = @)l oorr (DV) (ay1)er — TEr1rE F(DV) por + TErorpr £ (DW) iy
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An example in 4D

Vacuum type N spacetimes

18/31

(D*¥)ar 100

(D*W)40 01/
(D*W)40r 11/

(D*W) 41/ 00/

(DPW)a11:10r

=20,
= 2pT,
= 2pT,

=272,

Vacuum Type N spacetimes
First and second order
Higher orders

3 1
D 2 2

- 1
=dép+Tap— Zﬂ_'p,

3 _ _
=8p+ —Tp—ap+Tp,

4

= Dp+3yp+dar —yp+ |77,

3 _ 1_
=Dr + ZpT—T(p-‘r*pT,

4

- 1
=b7+3ar +4yp — ip+ 4|7,

D.D. McNutt
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Vacuum Type N spacetimes
An example in 4D First and second order
Higher orders

Vacuum type N spacetimes

(DPW)41r01r = 67 + %7'2 —Xp + ar,

(DPW)41r417 = AT+ Ty7 — Op + 77,

(DPW)so/,00r = 4Da — 5mp + Bap — pa,
(D2W)sgr.10r = 460 — 5Ap + 200? — 7a,
(D?W)50r.01/ = 4dac — Spp + 5ra — 4af? 4 4vp,
(D?W)50r.11/ = 4Aa — Svp 4 20y — 45 + 447,
(D?W)s1/.000 = 4Dy — 57 4 Spy — 4% + py,
(DPW)s11.40r = 48y — BAT + 20ary — 4ficx + 77,
(DPW)s511.01r = 407y — BuT + By1 — 4 + 4va,
(D2W)s1/,41/ = 407y — BuT + 207° — 4o + 4|~ 2.
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Vacuum N spacetimes
An example in 4D First e nd order
Higher orders

Linear Isotropy

We see that four spin-coefficients appear at first order:
p,a, T, and v, (28)
along with their derivatives at higher orders.
At zeroth order, we can transform the spin frame and leave the Type N condition
unchanged:
o =0,/ =1t+bo (29)

Under this transformation, the "first order" spin-coefficients above transform as

P =p
5_
o =a+ pr,
, (30)
T =71+ bp,

5- 5
r_ e > 2
~y —’y+ba+4b7‘+4|b| p.
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An example in 4D

Summary of Collins’ analysis

21/31

/ lla b Illa b

Invariant p#0 p=0 p=0 p=0 p=20
characterization =0 T=0 T#0 T#0
a#0  a=0 || # ] la = §7]

Canonical form:

Zerothorder — W;=6% W;=4% w; =44 ;=64 ;= g4

First order =0 v=0 v=0 Re(~) or Im(~) =0
Second order Re(AT)=0
Upper bound 5 4 2 B4 8583

@ In case lll, Collins (1991) provided an upper-bound of 5 and 6 for a and b
respectively.

@ Ramos and Vickers (1996) using the GHP formalism gave an upper-bound of 5 for
Il [Ramos and Vickers, 1996]

@ DDM. Milson and Coley (2013) lowered the upper-bounds and provided examples,
showing they were sharp [McNultt et al., 2013].
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Motivation

The alignment classification g assification in 4D

The Cartan-Karlhede Algorithm

22/31

Denote the set of components {Rapca, Rabcd;ey s - - - € } @s RY.

The algorithm is then:
@ Letg=0.
@ Compute R9.
© Fix the frame as much as possible using Lorentz frame transformations.
@ Find the invariance group HY of the frame which leaves RY invariant.
© Find the number of functionally independent components t7 amongst the set RY.

Q If 19 # 191 or dim(H9) # dim(H9~1) then set g = g + 1 and go to step 2.
Otherwise, the algorithm stops and set g = p + 1.

Theset {H",t",R"}, r =1,...,p+ 1 classifies the solution, locally.

Definition

The set RP relative to the frame basis determined by the Cartan-Karlhede algorithm
are called Cartan invariants.
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Motivation
Bo

The alignment classification Al A ification in 4D

4D: Higher rank spinors/tensors

23/31

We can treat the Weyl tensor, C,pcq and the Ricci tensor, R,p, as operators on some
vector space and fin canonical forms of the operators.

For example, the self dual Weyl tensor

1
Cabod = Cabed + ’5 CabefEelcd (31)

can be seen as an operator acting on the 6-dimensional space of self dual bivectors,
_ i1 d.
;b = —léeabch*C .
* odyx __ yx
ab cd — Ya (32)
Can we treat C*abcd; ¢ O Rap,e @s operators on some vector space?

In general, no.
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Motivation
Boosts!

The alignment classification Alignment classification in 4D

Recall the Weyl spinor
V= \U/JKLe’AeJBeKCeLD (33)

We can count the number of principal spinors, o and relate these to principal null
directions of the self-dual tensor

Cabcd = 2V ascpears ecrpr (34)
To count the number of appearance of 02 in each term, we can consider a boost:
o=ao, /=a i, ol =8¢ n=a>2n (35)
In this representation, we find that

vl =a'vy, Wi =22V, W=, W =atug, v =aty, (36)
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25/31

ation
Boosts!

The alignment classification Alignment ¢ cation in 4D

More generally, consider a boost for an arbitrary tensor [Milson et al., 2005],
Te,q a...an — Abayaz.-an Tajap...an: - (37)
The quantity,

ba1 ap...an — Z(5al 531

is called the boost weight (b.w) of the frame component Tz, a,...4,-

We can write the tensor T in the following decomposition:

T=> M. (38)
b

(T)p denotes the projection onto the subspace of components of boost weight b.
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Boosts!
The alignment classification Alignmer

Alignment classification

For any T we can pick an NP frame and decompose into b.w.:

T=> (M. (39)
b

Boost order, Br(£), is the maximum b.w. of a tensor, T, for a null direction £.

For a given null direction ¢, Bt (¢) is invariant under boosts, spatial rotations and null
rotations about 4.

Br(¢) is only dependent on the choice of £.
Defining

Br = max Br(2)) (40)
the existence of a ¢ with By(¢) < Br is an invariant property of the tensor T.

We will say ¢ is T-aligned if Br(¢) < Br.
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The alignment classification Alignment classification in 4D

To determine the canonical form of Ry, consider the effect of a boost on its
irreducible parts:

Boost order  Weyl Ricci
1 vy Ryj, i = 3,4
0 Wy Ror, Ry, i.j=3,4 *1)
—1 V3 Rii
-2 Yy R
Alignment types of the Weyl tensor, Cpc4, and Ricci tensor, Ry, are
e G I I M N 42)

Br(¢) 2 1 0 -1 -2
If Capeq OF Rgp vanishes, then it belongs to alignment type O.

Alignment type is not enough to reproduce Segre type for R, instead we must also
examine the algebro-geometric properties of

Ry = Roo + 2Roic’ + Rjc'c! — Rot|cf? — Ryic’|c|? + Rirle|* = 0. (43)
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The alignment classification Alignment classification in 4D

For Rapcase; ...e,» |BT(£)| may be greater than two but the alignment types are still
applicable.

For example, here are the b.w. of the first covariant derivative:

b= -3 :CYppq = 8a,

b= -2 :Clhy1z,1 = Cl01;1 = Cli2123 = Cli2zs2 = Cos121 = —2p, (44)
b=-2: C*1212;2 =8y,
b=-1: C*o112;2 = C*1201;2 = C*1212;o = C*1223;2 = C*2312;2 =27
We can consider the transformation rules from before
/
P =p,
5.
o =a+ pr,
, (45)
T =7+ bp,

5- 5
= ba + ~br + =|al?p.
¥ =7+ba+ b+ 2laPp
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n

The alignment classification nt classification in 4D

Conclusions

/ lla 1Ib Illa b

Invariant p#0 p=0 p=0 p=0 p=0

characterization =0 =0 T#0 T#0
a#0  a=0 |af# {7 laf = 37|

Canonical form:

Zerothorder W, =44 Ww;=5% w;=0s% v =44 v =64

First order =0 ~4=0 v=0 Re(v) or Im(v) =0
Second order Re(AT) =0
Upper bound 5 4 2 4 3

At first order |Bt(¢)| is not enough to distinguish some cases

Subclass I lla lIb  llla b (46)
|Br(£)] -2 -3 -2 -1 -1

Coarse canonical forms that can be refined by adding additional geometric conditions.

This is still an open question on how.
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The alignment classification
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Thank you for your attention!
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