Cartan-Karlhede algorithm and Cartan invariants for spacetimes III

D.D. McNutt ${ }^{1}$
${ }^{1}$ Department of Mathematics and Statistics, UiT Norges arktiske universitet,

GRIEG seminar,
7. April 2023.

Outline

(1) More Spinors

- Spinor transformations
- Covariant derivatives and curvature spinors
- NP formalism
(2) An example in 4D
- Vacuum Type N spacetimes
- First and second order
- Higher orders

3 The alignment classification

- Motivation
- Boosts!
- Alignment classification in 4D

From spinors to NP tetrads

For an arbitrary spin basis, (o, ι), such that $[0, \iota]=1$ then we can consider $\operatorname{Sp}(1)$ transformations to construct a new spin basis
(1) $\left(o^{\prime}, \iota^{\prime}\right)=\left(\lambda o, \lambda^{-1} \iota\right), \lambda=a e^{i \theta}, \lambda, \theta \in \mathbb{R}$.'
(2) $\left(o^{\prime}, \iota^{\prime}\right)=(o, \iota+b o), \quad b \in \mathbb{C}$.
(3) $\left(o^{\prime}, \iota^{\prime}\right)=(0+c \iota, \iota), \quad c \in \mathbb{C}$.

In particular, using the Petrov classification for Weyl spinors, we can use these transformations to align the spin frame with the Weyl spinor.

Using the Infeld-van der Waerden symbols we can relate this to a NP frame $\{\ell, n, m, \bar{m}\}$:

$$
\begin{align*}
& \ell^{a}=o^{A} \bar{o}^{A^{\prime}}, n^{a}=\iota_{A} \bar{l}^{A^{\prime}}, m^{a}=o^{A} \bar{\iota}^{A^{\prime}}, \bar{m}^{a}=\iota^{A} \bar{o}^{A^{\prime}} \tag{1}\\
& \ell_{a}=o_{A} \bar{o}_{A^{\prime}}, n_{a}=\iota_{A} \bar{l}_{A^{\prime}}, m_{a}=o_{A} \bar{l}_{A^{\prime}}, \bar{m}_{a}=\iota_{A} \bar{o}_{A^{\prime}}
\end{align*}
$$

Lorentz frame transformations

For the NP basis $\{\ell, n, m, \bar{m}\}$ where

$$
\begin{equation*}
g_{a b}=2 \ell_{(a} n_{b)}-m_{(a} \bar{m}_{b)} \tag{2}
\end{equation*}
$$

the Lorentz frame transformation group is then:

- Boosts and Spins:

$$
\begin{equation*}
\ell^{\prime}=a^{2} \ell, \quad n^{\prime}=a^{-2} n, m^{\prime}=e^{2 i \theta} m \tag{3}
\end{equation*}
$$

- Null rotations about ℓ :

$$
\begin{equation*}
\ell^{\prime}=\ell, \quad n^{\prime}=n+b m+\bar{b} \bar{m}+|b|^{2} \ell, m^{\prime}=m+\bar{b} \ell . \tag{4}
\end{equation*}
$$

- Null rotations about n :

$$
\begin{equation*}
n^{\prime}=n, \quad \ell^{\prime}=\ell+c m+\bar{c} \bar{m}+|c|^{2} n, m^{\prime}=m+\bar{c} n . \tag{5}
\end{equation*}
$$

These are the corresponding transformations we would use to build a frame adapted to the Petrov classification of the Weyl tensor.

How to differentiate a spinor

If θ, ϕ and ψ are spinor fields defined on M, where θ and ϕ have the same valence. The spinor covariant derivative is defined as a map $\nabla_{X}=\nabla_{X X^{\prime}}: \theta_{\ldots} \rightarrow \theta_{\ldots ; X X^{\prime}}$ such that

- $\nabla_{x}(\theta+\phi)=\nabla_{x} \theta+\nabla_{x} \phi$
- $\nabla_{x}(\theta \psi)=\left(\nabla_{x} \theta\right) \psi+\theta \nabla_{x} \psi$.
- $\psi=\nabla_{x} \theta$ implies $\bar{\psi}=\nabla_{x} \bar{\theta}$
- $\nabla_{x} \epsilon^{A B}=\nabla_{x} \epsilon_{A B}=0$
- ∇_{X} commutes with any index substitution not involving X or X^{\prime}
- $\nabla_{x} \nabla_{y} f=\nabla_{y} \nabla_{x} f$ for f a scalar (torsion-free)
- For any derivation D acting on spinor fields, there is a spinor $\zeta^{X X^{\prime}}$ such that $D \psi=\zeta^{X X^{\prime}} \nabla_{X X^{\prime}} \psi$ for all ψ.
This identifies the 4D vector space of Hermitian spinors $\tau^{A A^{\prime}}$ with $T_{p}(M)$ and the dual vector space with $T_{p}^{*}(M)$

Good news: ∇_{x} exists and is unique [Penrose and Rindler 1984, section 4.4].

Detour into frame fields

The tetrad formalism is one way to compute the curvature tensor.
Suppose that $e^{i}{ }_{a}$ is a tetrad of vectors, with corresponding dual e_{i}^{a}, so that

$$
e_{i}^{a} e_{b}^{i}=\delta_{a}^{b} .
$$

i, j, k, I label the (co)vectors.
a, b, c, d label the components with respect to some arbitrary chosen basis.
The Ricci rotation coefficients are then

$$
\begin{equation*}
\Gamma_{i j k}=e_{i}{ }^{a} e_{k}^{b} \nabla_{b} e_{j}^{a}=-e_{j}^{a} e_{k}^{b} \nabla_{b} e_{i}^{a} . \tag{6}
\end{equation*}
$$

where ∇ is the Levi-Civita connection for tensors.
From the Ricci identity we have

$$
\begin{equation*}
R_{a b c d}=2 e_{i a} \nabla_{[c} \nabla_{d]} e_{b}^{i} . \tag{7}
\end{equation*}
$$

Spinor dyads

Introduce the spinor dyad $\epsilon_{I}{ }^{A}$ and its symplectic dual ϵ_{A}^{\prime} so that

$$
\epsilon_{0}^{A}=o^{A}, \epsilon_{1}^{A}=\iota^{A}, \epsilon_{l}^{A} \epsilon_{B}^{\prime}=\epsilon_{B}^{A} .
$$

Then the spinor Ricci rotation coefficients are

$$
\begin{equation*}
\Gamma_{I J K K^{\prime}}=\epsilon_{I A} \epsilon_{K}^{C} \epsilon_{K^{\prime}}^{C^{\prime}} \nabla_{C C^{\prime}} \epsilon_{J}^{A} \tag{8}
\end{equation*}
$$

The spinor equivalent of the curvature tensor is then

$$
\begin{align*}
R_{A B C D A^{\prime} B^{\prime} C^{\prime} D^{\prime}} & =2 \epsilon_{\mid A} \epsilon_{l^{\prime} A^{\prime}} \nabla_{[c} \nabla_{d]}\left(\epsilon_{B^{\prime}}^{\prime} \epsilon_{B^{\prime}}^{I^{\prime}}\right) \\
& =2 \epsilon_{\mid A} \epsilon_{I^{\prime} A^{\prime}} \epsilon_{B^{\prime}}^{\prime^{\prime}} \nabla_{[C} \nabla_{d]} \epsilon_{B}^{\prime}+\text { c.c. } \tag{9}\\
& =2 \epsilon_{\mid A} \epsilon_{A^{\prime} B^{\prime}} \nabla_{[c} \nabla_{d]} \epsilon_{B}^{\prime}+\text { c.c. }
\end{align*}
$$

Here, $\nabla_{c}=\nabla_{C C^{\prime}}$ and $\nabla_{d}=\nabla_{D D^{\prime}}$ and this can be rewritten as

$$
R_{A B C D A^{\prime} B^{\prime} C^{\prime} D^{\prime}}=\epsilon_{I A \epsilon_{A^{\prime} B^{\prime}}}\left(\epsilon_{C^{\prime} D^{\prime}} \square_{C D} \epsilon_{B}^{\prime}+\epsilon_{C D} \square_{C^{\prime} D^{\prime}} \epsilon_{B}^{\prime}\right)+\text { c.c. }
$$

where $\square_{C D}=\nabla_{C^{\prime}(C} \nabla_{D)}^{C^{\prime}}$ and $\square_{C^{\prime} D^{\prime}}=\nabla_{C\left(C^{\prime}\right.} \nabla_{\left.D^{\prime}\right)}^{C}$.

Curvature spinor

The first term $\epsilon_{I A} \square_{C D} \epsilon_{B}^{\prime}$ is symmetric in $C D$ and $A B$.
This tensor can be decomposed as

$$
\begin{equation*}
\epsilon_{I A} \square_{C D} \epsilon_{B}^{\prime}=\Psi_{A B C D}-2 \Lambda \epsilon_{\left(A \left(C \epsilon_{D) B)} .\right.\right.} . \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
\Psi_{A B C D}=\epsilon_{I A} \square\left(C D \epsilon_{B)}^{\prime}, \quad \Lambda=\frac{1}{6} \epsilon_{I A} \square^{A B} \epsilon_{B}^{\prime} .\right. \tag{11}
\end{equation*}
$$

Similarly, the second term can be written as

$$
\begin{equation*}
\epsilon_{I A} \square_{C^{\prime} D^{\prime}} \epsilon_{B}^{\prime}=\Phi_{A B C^{\prime} D^{\prime}} \tag{12}
\end{equation*}
$$

which is symmetric in $A B$ and $C^{\prime} D^{\prime}$.
Thus the curvature spinor can be written as

$$
\begin{equation*}
R_{A B C D A^{\prime} B^{\prime} C^{\prime} D^{\prime}}=\epsilon_{A^{\prime} B^{\prime}} \epsilon_{C^{\prime} D^{\prime}}\left[\Psi_{A B C}-2 \Lambda \epsilon_{(A(C)} \epsilon_{D) B)}\right]+\epsilon_{A^{\prime} B^{\prime} \epsilon_{C D} \Phi_{A B C^{\prime} D^{\prime}}+\text { c.c.. }} \tag{13}
\end{equation*}
$$

Components of the curvature spinor

$$
\begin{equation*}
R_{A B C D A^{\prime} B^{\prime} C^{\prime} D^{\prime}}=\epsilon_{A^{\prime} B^{\prime}} \epsilon_{C^{\prime} D^{\prime}}\left[\Psi_{A B C}-2 \Lambda \epsilon_{(A(C)} \epsilon_{D) B)}\right]+\epsilon_{A^{\prime} B^{\prime}} \epsilon_{C D} \Phi_{A B C^{\prime} D^{\prime}}+\text { c.c. } \tag{14}
\end{equation*}
$$

From $R_{a[b c d]}=0$, it follows that $\Lambda \in \mathbb{R}$ and $\Phi_{A B A^{\prime} B^{\prime}}$ is Hermitian.
Contracting two indices, we have

$$
\begin{equation*}
R_{A B A^{\prime} B^{\prime}}=-2 \Phi_{A B A^{\prime} B^{\prime}}+6 \Lambda \epsilon_{A B^{\prime} \epsilon_{A^{\prime} B^{\prime}} \leftrightarrow R_{a b}=-2 \Phi_{a b}+6 \Lambda g_{a b}} \tag{15}
\end{equation*}
$$

and so we recover the Ricci scalar and the trace-free Ricci tensor:

$$
\begin{equation*}
\Lambda=\frac{R}{24}, \quad \Phi_{a b}=-\frac{1}{2}\left(R_{a b}-\frac{1}{4} R g_{a b}\right) . \tag{16}
\end{equation*}
$$

The remaining term is a Hermitian spinor which gives the Weyl tensor

$$
\begin{equation*}
\Psi_{A B C} \epsilon_{A^{\prime} B^{\prime} \epsilon_{C^{\prime} D^{\prime}}}+\text { c.c. } \tag{17}
\end{equation*}
$$

The differential Bianchi identities, $R_{a b[c d ; e]}=0$ give

$$
\begin{equation*}
\nabla_{C^{\prime}}^{D} \Psi_{A B C D}=\nabla_{(C}^{D^{\prime}} \Phi_{A B) C^{\prime} D^{\prime}}, \quad \nabla^{B B^{\prime}} \Phi_{A B A^{\prime} B^{\prime}}=-3 \nabla_{A A^{\prime}} \Lambda . \tag{18}
\end{equation*}
$$

Spin coefficients

Rewrite quantities explicitly using a particular NP frame and associated derivatives:

$$
\begin{equation*}
D=\ell^{a} \nabla_{a}, \quad \Delta=n^{a} \nabla_{a}, \delta=m^{a} \nabla_{a}, \bar{\delta} \nabla_{a} \tag{19}
\end{equation*}
$$

Then the (spinor) Ricci rotation coefficients can be written down as 12 complex-valued scalars:

$$
\left\lvert\, \begin{array}{c|c|c|c|}
\nabla_{B B^{\prime}} & o^{A} \nabla_{B B^{\prime}} O_{A} & o^{A} \nabla_{B B^{\prime} \iota} \iota_{A}=\iota^{A} \nabla_{B B^{\prime}} O_{A} & \iota^{A} \nabla_{B B^{\prime} \iota_{A}} \tag{20}\\
\nabla_{b} & m^{a} \nabla_{b} \ell_{a} & \frac{1}{2}\left(n^{a} \nabla_{b} \ell_{a}-\bar{m}^{a} \nabla_{b} m_{a}\right) & -\bar{m}^{a} \nabla_{b} n_{a} \\
D & \kappa & \epsilon & \pi \\
\Delta & \tau & \gamma & \nu \\
\delta & \tau & \beta & \mu \\
\bar{\delta} & \sigma & \alpha & \lambda
\end{array}\right.
$$

These are known as the NP spin coefficients.
As $\nabla_{B B^{\prime}}$ is torsion free, we can also write down the commutators for the derivations.

Curvature scalars

Using the spinor dyad $\left(O^{A}, \iota^{A}\right)$ we can also write down the NP curvature scalars:

$$
\begin{aligned}
& \Phi_{00}=\Phi_{A B A^{\prime} B^{\prime}} O^{A} o^{B} \bar{o}^{A^{\prime}} \bar{o}^{B^{\prime}}, \Phi_{11}=\Phi_{A B A^{\prime} B^{\prime}} O^{A} \iota^{B} \bar{o}^{A^{\prime}} \bar{\iota}^{B^{\prime}}, \Phi_{22}=\Phi_{A B A^{\prime} B^{\prime}} \iota^{A} \iota^{B} \bar{\iota}^{A^{\prime}} \bar{\iota}^{B^{\prime}}, \\
& \Phi_{01}=\Phi_{A B A^{\prime} B^{\prime} O^{A} o^{B} \bar{o}^{A^{\prime}} \bar{\iota}^{B^{\prime}}, \Phi_{10}=\Phi_{A B A^{\prime} B^{\prime}} o^{A} \iota^{B} \bar{o}^{A^{\prime}} \bar{o}^{B^{\prime}},}, \\
& \Phi_{02}=\Phi_{A B A^{\prime} B^{\prime}} O^{A} O^{B} \bar{\iota}^{A^{\prime}} \bar{\iota}^{B^{\prime}}, \Phi_{20}=\Phi_{A B A^{\prime} B^{\prime} \iota^{A} \iota^{B} \bar{o}^{A^{\prime}} \bar{o}^{B^{\prime}},}, \\
& \Phi_{12}=\Phi_{A B A^{\prime} B^{\prime}} O^{A} \iota^{B} \iota^{A^{\prime}} \bar{\iota}^{B^{\prime}}, \Phi_{21}=\Phi_{A B A^{\prime} B^{\prime} \iota^{A} \iota^{B} \bar{o}^{A^{\prime}} \bar{\iota}^{B^{\prime}} .} . \\
& \Psi_{0}=\Psi_{A B C D} O^{A} O^{B} O^{C} O^{D}, \Psi_{1}=\Psi_{A B C D} O^{A} O^{B} O^{C}{ }_{\iota}{ }^{D} \text {, } \\
& \Psi_{2}=\Psi_{A B C D} O^{A} O^{B} \iota^{C} \iota^{D}, \Psi_{3}=\Psi_{A B C D} O^{A} \iota^{B} \iota^{C} \iota^{D}, \\
& \Psi_{4}=\Psi_{A B C D} \iota^{A} \iota^{B} \iota^{C} \iota^{D} .
\end{aligned}
$$

We could write down the Ricci equations, $R_{a b c d}=2 e_{i a} \nabla_{[c} \nabla_{d]} e^{i}$, and Bianchi identities, $R_{a b[c d ; e]}=0$ in terms of these quantities.

As an example, we will consider the vacuum type N spacetimes [Collins, 1991], so that

$$
\Lambda=0, \Phi_{A B A^{\prime} B^{\prime}}=0 \text { and } \Psi_{0}=\Psi_{1}=\Psi_{2}=\Psi_{3}=0
$$

according to the Petrov classification.
This is done using a rotation to fix the principal spinor $\alpha^{A}=o^{A}$.
We can also employ a Lorentz transformations to set $\Psi_{4}=1$.
The Bianchi identities, $R_{a b[c d ; e]}$ are then

$$
\begin{align*}
& \kappa=0 \\
& \sigma=0, \\
& 4 \epsilon=\rho, \tag{21}\\
& 4 \beta=\tau
\end{align*}
$$

NP "field" equations

The Ricci equations, $R_{a b c d}=2 e_{i a} \nabla_{[c} \nabla_{d]} e_{b}^{i}$, are

$$
\begin{align*}
& D \rho=\frac{5}{4} \rho^{2}+\frac{1}{4} \rho \bar{\rho} \tag{2.4a}\\
& D \tau=\frac{5}{4} \rho \tau+\bar{\pi} \rho-\frac{1}{4} \bar{\rho} \tau \tag{2.4b}\\
& D \alpha-\frac{1}{4} \bar{\delta} \rho=\frac{1}{2} \rho \alpha+\frac{1}{4} \bar{\rho} \alpha-\frac{1}{16} \bar{\tau} \rho+\frac{5}{4} \rho \pi \tag{2.4c}\\
& D \gamma-\frac{1}{4} \Delta \rho=\frac{5}{4} \tau \pi-\frac{1}{2} \gamma \rho+\tau \alpha+\alpha \bar{\pi}+\frac{1}{4} \tau \bar{\tau}-\frac{1}{4} \bar{\gamma} \rho-\frac{1}{4} \gamma \bar{\rho} \tag{2.4d}\\
& D \lambda-\bar{\delta} \pi=\frac{1}{4} \rho \lambda+\frac{1}{4} \bar{\rho} \lambda+\pi^{2}+\alpha \pi-\frac{1}{4} \bar{\tau} \pi \tag{2.4e}\\
& D \mu-\delta \pi=\frac{3}{4} \bar{\rho} \mu+\pi \bar{\pi}-\frac{1}{4} \rho \mu-\pi \bar{\alpha}+\frac{1}{4} \pi \tau \tag{2.4f}\\
& D \nu-\Delta \pi=\pi \mu+\bar{\tau} \mu+\bar{\pi} \lambda+\tau \lambda+\gamma \pi-\bar{\gamma} \pi-\frac{3}{4} \rho \nu-\frac{1}{4} \bar{\rho} \nu \tag{2.4~g}\\
& \Delta \lambda-\bar{\delta} \nu=-\mu \lambda-\bar{\mu} \lambda-3 \gamma \lambda+\bar{\gamma} \lambda+3 \alpha \nu+\pi \nu-\frac{3}{4} \bar{\tau} \nu-\Psi_{4} \tag{2.4h}\\
& \delta \rho=\frac{5}{4} \tau \rho+\bar{\alpha} \rho-\bar{\rho} \tau \tag{2.4i}\\
& \delta \alpha-\frac{1}{4} \bar{\delta} \tau=\frac{5}{4} \mu \rho+\alpha \bar{\alpha}+\frac{1}{16} \tau \bar{\tau}-\frac{1}{2} \alpha \tau+\gamma \rho-\gamma \bar{\rho}-\frac{1}{4} \rho \bar{\mu} \tag{2.4j}\\
& \delta \lambda-\bar{\delta} \mu=\rho \nu-\bar{\rho} \nu+\mu \pi-\bar{\mu} \pi+\mu \alpha+\frac{1}{4} \mu \bar{\tau}+\lambda \bar{\alpha}-\frac{3}{4} \lambda \tau \tag{2.4k}\\
& \delta \nu-\Delta \mu=\mu^{2}+\lambda \bar{\lambda}+\gamma \mu+\bar{\gamma} \mu-\bar{\nu} \pi+\frac{1}{4} \tau \nu-\bar{\alpha} \nu \tag{2.4l}\\
& \delta \gamma-\frac{1}{4} \Delta \tau=\frac{1}{2} \tau \gamma-\bar{\alpha} \gamma+\frac{5}{4} \mu \tau-\frac{1}{4} \rho \bar{\nu}+\frac{1}{4} \tau \bar{\gamma}+\alpha \bar{\lambda} \tag{2.4m}\\
& \delta \tau=\bar{\lambda} \rho+\frac{5}{4} \tau^{2}-\tau \bar{\alpha} \tag{2.4n}\\
& \Delta \rho-\bar{\delta} \tau=-\rho \bar{\mu}-\frac{3}{4} \bar{\tau} \tau-\alpha \tau+\gamma \rho+\bar{\gamma} \rho \tag{2.40}\\
& \Delta \alpha-\bar{\delta} \gamma=\frac{5}{4} \rho \nu-\frac{5}{4} \tau \lambda+\bar{\gamma} \bar{\alpha}-\bar{\mu} \bar{\alpha}-\frac{3}{4} \tau \gamma . \tag{2.4p}
\end{align*}
$$

Figure: Taken from [Collins, 1991]

Type N subclasses

- pp-wave metrics

$$
\rho=0, \quad \tau=0
$$

- Rotating plane-fronted wave metrics (Kundt waves)

$$
\rho=0, \quad \tau \neq 0
$$

- Robinson-Trautman metrics

$$
\rho \neq 0, \operatorname{Im}(\rho)=0
$$

- The twisting case

$$
\rho \neq 0, \operatorname{Im}(\rho) \neq 0
$$

So far, only the Hauser metric is the sole example of vacuum type N spacetimes with twist.

The Cartan-Karlhede Algorithm

Denote the set of components $\left\{R_{a b c d}, R_{a b c d ; e_{1}}, \ldots e_{q}\right\}$ as R^{q}.
The algorithm is then:
(1) Let $q=0$.
(2) Compute R^{q}.
(3) Fix the frame as much as possible using Lorentz frame transformations.
(4) Find the invariance group H^{q} of the frame which leaves R^{q} invariant.
(5) Find the number of functionally independent components t^{q} amongst the set R^{q}.
(6) If $t^{q} \neq t^{q-1}$ or $\operatorname{dim}\left(H^{q}\right) \neq \operatorname{dim}\left(H^{q-1}\right)$ then set $q=q+1$ and go to step 2 .

Otherwise, the algorithm stops and set $q=p+1$.
The set $\left\{H^{r}, t^{r}, R^{r}\right\}, r=1, \ldots, p+1$ classifies the solution, locally.

Definition

The set R^{p} relative to the frame basis determined by the Cartan-Karlhede algorithm are called Cartan invariants.

First order derivatives

$$
\begin{align*}
(D \Psi)_{\hat{\mu} E^{\prime}} & =\Psi_{A B C D ; E E^{\prime}} \epsilon_{l}^{A} \epsilon_{J}^{B} \epsilon_{K}^{C} \epsilon_{L}^{D} \epsilon_{M}^{E} \epsilon_{M^{\prime}}^{E^{\prime}} \tag{22}\\
& =\left(\Psi_{A B C D} \epsilon_{l}^{A} \epsilon_{J}^{B} \epsilon_{K}^{C} \epsilon_{L}^{D}\right)_{; E E^{\prime}} \epsilon_{M}^{E} \epsilon_{M^{\prime}}^{E^{\prime}}-\left(\epsilon_{l}^{A} \epsilon_{J}^{B} \epsilon_{K}^{C} \epsilon_{L}^{D}\right)_{E E^{\prime}} \epsilon_{M}^{E} \epsilon_{M^{\prime}}^{E^{\prime}} \Psi_{A B C D}
\end{align*}
$$

where, $\hat{\mu}$ counts the appearance of ι. There are 3 cases:
$\hat{\mu}=5:(D \Psi)_{\hat{\mu} E^{\prime}}=\left(\Psi_{4}\right)_{; 1 E^{\prime}}-4 \Gamma_{111 E^{\prime}} \Psi_{3}+4 \Gamma_{101 E^{\prime}} \Psi_{4}$,
$\hat{\mu}=4:(D \Psi)_{\hat{\mu} E^{\prime}}=\left(\Psi_{4}\right)_{, 0 E^{\prime}}-4 \Gamma_{110 E^{\prime}} \Psi_{3}+4 \Gamma_{100 E^{\prime}} \Psi_{4}$,
$\hat{\mu}<4:(D \Psi)_{\hat{\mu} E^{\prime}}=\left(\Psi_{\hat{\mu}}\right)_{; 0 E^{\prime}}-\hat{\mu} \Gamma_{1110 E^{\prime}} \Psi_{\hat{\mu}-1}+\hat{\mu} \Gamma_{100 E^{\prime}} \Psi_{\hat{\mu}}-(2 \hat{\mu}-4) \Gamma_{100 E^{\prime}} \Psi_{\hat{\mu}}$

$$
\begin{equation*}
+(4-\hat{\mu}) \Gamma_{000 E^{\prime}} \Psi_{\hat{\mu}+1} \tag{23}
\end{equation*}
$$

In the vacuum type N spacetimes we find:

$$
\begin{align*}
& (D \Psi)_{40^{\prime}}=\rho, \\
& (D \Psi)_{50^{\prime}}=4 \alpha, \\
& (D \Psi)_{41^{\prime}}=\tau, \tag{24}\\
& (D \Psi)_{51^{\prime}}=4 \gamma
\end{align*}
$$

Second derivatives

$$
\begin{equation*}
\left(D^{2} \Psi\right)_{\hat{\mu} E^{\prime} ; F F^{\prime}}=\Psi_{A B C D ; E E^{\prime} ; F F^{\prime}}\left[\epsilon_{l}^{A} \epsilon_{J}^{B} \epsilon_{K}^{C} \epsilon_{L}^{D} \epsilon_{M}^{E}\right] \epsilon_{M^{\prime}}^{E^{\prime}} \epsilon_{N}^{F} \epsilon_{N^{\prime}}^{F^{\prime}} \tag{25}
\end{equation*}
$$

or with the Leibnitz rule...

$$
\begin{align*}
\left(D^{2} \Psi\right)_{\hat{\mu} E^{\prime} ; F F^{\prime}}= & \left.\left(\Psi_{A B C D ; E E^{\prime}} \epsilon_{l}^{A} \epsilon_{J}^{B} \epsilon_{K}^{C} \epsilon_{L}^{D} \epsilon_{M}^{E}\right] \epsilon_{M^{\prime}}^{E^{\prime}}\right)_{; F F^{\prime}} \epsilon_{N}^{F} \epsilon_{N^{\prime}}^{F^{\prime}} \\
& \left.-\left(\epsilon_{I} \epsilon_{J}^{B} \epsilon_{K}^{C} \epsilon_{L}^{D} \epsilon_{M}^{E}\right] \epsilon_{M^{\prime}}^{E^{\prime}}\right)_{; F F^{\prime}} \epsilon_{N}^{F} \epsilon_{N^{\prime}}^{F^{\prime}} \Psi_{A B C D ; E E^{\prime}} . \tag{26}
\end{align*}
$$

With some work, this can be written as

$$
\begin{align*}
\left(D^{2} \Psi\right)_{\hat{\mu} E^{\prime} ; F F^{\prime}}= & {\left[(D \Psi)_{\hat{\mu} E^{\prime}}\right]_{; F F^{\prime}}-\hat{\mu} \Gamma_{11 F F^{\prime}}(D \Psi)_{(\hat{\mu}-1) E^{\prime}}+(2 \hat{\mu}-5) \Gamma_{10 F F^{\prime}}(D \Psi)_{\hat{\mu} E^{\prime}} } \\
& +(5-\hat{\mu}) \Gamma_{00 F F^{\prime}}(D \Psi)_{(\hat{\mu}+1) E^{\prime}}-\bar{\Gamma}_{E^{\prime} 1^{\prime} F^{\prime} F}(D \Psi)_{\hat{\mu} 0^{\prime}}+\bar{\Gamma}_{E^{\prime} 0^{\prime} F^{\prime} F}(D \Psi)_{\hat{\mu} 1^{\prime}} \tag{27}
\end{align*}
$$

Vacuum type N spacetimes

$$
\begin{aligned}
& \left(D^{2} \Psi\right)_{30^{\prime} ; 10^{\prime}}=2 \rho^{2}, \\
& \left(D^{2} \Psi\right)_{30^{\prime} ; 11^{\prime}}=2 \rho \tau, \\
& \left(D^{2} \Psi\right)_{31^{\prime} ; 10^{\prime}}=2 \rho \tau, \\
& \left(D^{2} \Psi\right)_{31^{\prime} ; 11^{\prime}}=2 \tau^{2}, \\
& \left(D^{2} \Psi\right)_{40^{\prime} ; 0^{\prime}}=D \rho+\frac{3}{4} \rho^{2}-\frac{1}{4}|\rho|^{2}, \\
& \left(D^{2} \Psi\right)_{40^{\prime} ; 10^{\prime}}=\bar{\delta} \rho+7 \alpha \rho-\frac{1}{4} \bar{\tau} \rho, \\
& \left(D^{2} \Psi\right)_{40^{\prime} ; 0^{\prime}}=\delta \rho+\frac{3}{4} \tau \rho-\bar{\alpha} \rho+\tau \bar{\rho}, \\
& \left(D^{2} \Psi\right)_{40^{\prime} ; 11^{\prime}}=\Delta \rho+3 \gamma \rho+4 \alpha \tau-\bar{\gamma} \rho+|\tau|^{2}, \\
& \left(D^{2} \Psi\right)_{41^{\prime} ; 00^{\prime}}=D \tau+\frac{3}{4} \rho \tau-\bar{\pi} \rho+\frac{1}{4} \bar{\rho} \tau, \\
& \left(D^{2} \Psi\right)_{41^{\prime} ; 10^{\prime}}=\bar{\delta} \tau+3 \alpha \tau+4 \gamma \rho-\bar{\mu} \rho+\frac{1}{4}|\tau|^{2},
\end{aligned}
$$

Vacuum type N spacetimes

$$
\begin{aligned}
& \left(D^{2} \Psi\right)_{41^{\prime} ; 01^{\prime}}=\delta \tau+\frac{3}{4} \tau^{2}-\bar{\lambda} \rho+\bar{\alpha} \tau, \\
& \left(D^{2} \Psi\right)_{41^{\prime} ; 11^{\prime}}=\Delta \tau+7 \gamma \tau-\bar{\nu} \rho+\bar{\gamma} \tau, \\
& \left(D^{2} \Psi\right)_{50^{\prime} ; 00^{\prime}}=4 D \alpha-5 \pi \rho+5 \alpha \rho-\bar{\rho} \alpha, \\
& \left(D^{2} \Psi\right)_{50^{\prime} ; 10^{\prime}}=4 \bar{\delta} \alpha-5 \lambda \rho+20 \alpha^{2}-\bar{\tau} \alpha, \\
& \left(D^{2} \Psi\right)_{50^{\prime} ; 01^{\prime}}=4 \delta \alpha-5 \mu \rho+5 \tau \alpha-4|\alpha|^{2}+4 \gamma \bar{\rho}, \\
& \left(D^{2} \Psi\right)_{50^{\prime} ; 11^{\prime}}=4 \Delta \alpha-5 \nu \rho+20 \gamma \alpha-4 \bar{\gamma} \alpha+4 \gamma \bar{\tau}, \\
& \left(D^{2} \Psi\right)_{51^{\prime} ; 00^{\prime}}=4 D \gamma-5 \pi \tau+5 \rho \gamma-4 \bar{\pi} \alpha+\bar{\rho} \gamma, \\
& \left(D^{2} \Psi\right)_{51^{\prime} ; 10^{\prime}}=4 \bar{\delta} \gamma-5 \lambda \tau+20 \alpha \gamma-4 \bar{\mu} \alpha+\bar{\tau} \gamma, \\
& \left(D^{2} \Psi\right)_{51^{\prime} ; 01^{\prime}}=4 \delta \gamma-5 \mu \tau+5 \gamma \tau-4 \bar{\lambda} \alpha+4 \gamma \bar{\alpha}, \\
& \left(D^{2} \Psi\right)_{51^{\prime} ; 11^{\prime}}=4 \Delta \gamma-5 \nu \tau+20 \gamma^{2}-4 \bar{\nu} \alpha+4|\gamma|^{2} .
\end{aligned}
$$

Linear Isotropy

We see that four spin-coefficients appear at first order:

$$
\begin{equation*}
\rho, \alpha, \tau, \text { and } \gamma, \tag{28}
\end{equation*}
$$

along with their derivatives at higher orders.
At zeroth order, we can transform the spin frame and leave the Type N condition unchanged:

$$
\begin{equation*}
o^{\prime}=o, \iota^{\prime}=\iota+b o \tag{29}
\end{equation*}
$$

Under this transformation, the "first order" spin-coefficients above transform as

$$
\begin{align*}
\rho^{\prime} & =\rho \\
\alpha^{\prime} & =\alpha+\frac{5}{4} \bar{b} \rho \tag{30}\\
\tau^{\prime} & =\tau+b \rho \\
\gamma^{\prime} & =\gamma+b \alpha+\frac{5}{4} \bar{b} \tau+\frac{5}{4}|b|^{2} \rho .
\end{align*}
$$

Summary of Collins' analysis

	I	$I I a$	Ilb	IIla	IIIb
Invariant	$\rho \neq 0$	$\rho=0$	$\rho=0$	$\rho=0$	$\rho=0$
characterization		$\tau=0$	$\tau=0$	$\tau \neq 0$	$\tau \neq 0$
		$\alpha \neq 0$	$\alpha=0$	$\|\alpha\| \neq \frac{5}{4}\|\tau\|$	$\|\alpha\|=\frac{5}{4}\|\tau\|$

Canonical form:

Zeroth order
First order Second order
Upper bound

$$
\begin{aligned}
\Psi_{i} & =\delta_{i}^{4} & & \Psi_{i}
\end{aligned}=\delta^{4}{ }_{i}^{4}
$$

5

$$
\Psi_{i}=\delta_{i}^{4}
$$

2

$$
\begin{aligned}
\Psi_{i} & =\delta_{i}^{4} \\
\gamma & =0
\end{aligned}
$$

$\$ 4$
$\Psi_{i}=\delta_{i}^{4}$
$\operatorname{Re}(\gamma)$ or $\operatorname{Im}(\gamma)=0$
$\operatorname{Re}(\Delta \tau)=0$
653

- In case III, Collins (1991) provided an upper-bound of 5 and 6 for a and b respectively.
- Ramos and Vickers (1996) using the GHP formalism gave an upper-bound of 5 for III [Ramos and Vickers, 1996]
- DDM. Milson and Coley (2013) lowered the upper-bounds and provided examples, showing they were sharp [McNutt et al., 2013].

The Cartan-Karlhede Algorithm

Denote the set of components $\left\{R_{a b c d}, R_{a b c d ; e_{1}}, \ldots e_{q}\right\}$ as R^{q}.
The algorithm is then:
(1) Let $q=0$.
(2) Compute R^{q}.
(3) Fix the frame as much as possible using Lorentz frame transformations.
(4) Find the invariance group H^{q} of the frame which leaves R^{q} invariant.
(5) Find the number of functionally independent components t^{q} amongst the set R^{q}.
(6) If $t^{q} \neq t^{q-1}$ or $\operatorname{dim}\left(H^{q}\right) \neq \operatorname{dim}\left(H^{q-1}\right)$ then set $q=q+1$ and go to step 2 .

Otherwise, the algorithm stops and set $q=p+1$.
The set $\left\{H^{r}, t^{r}, R^{r}\right\}, r=1, \ldots, p+1$ classifies the solution, locally.

Definition

The set R^{p} relative to the frame basis determined by the Cartan-Karlhede algorithm are called Cartan invariants.

4D: Higher rank spinors/tensors

We can treat the Weyl tensor, $C_{a b c d}$ and the Ricci tensor, $R_{a b}$, as operators on some vector space and fin canonical forms of the operators.

For example, the self dual Weyl tensor

$$
\begin{equation*}
C_{a b c d}^{*}=C_{a b c d}+i \frac{1}{2} C_{a b}^{e f} \epsilon_{e f c d} \tag{31}
\end{equation*}
$$

can be seen as an operator acting on the 6-dimensional space of self dual bivectors, $X_{a b}^{*}=-i \frac{1}{2} \epsilon_{a b c d} X^{* c d}$:

$$
\begin{equation*}
C_{a b}^{*}{ }^{c d} X_{c d}^{*}=Y_{a b}^{*} \tag{32}
\end{equation*}
$$

Can we treat $C_{a b c d ; e}^{*}$ or $R_{a b ; e}$ as operators on some vector space?
In general, no.

Recall the Weyl spinor

$$
\begin{equation*}
\Psi=\Psi_{I J K L} \epsilon_{A}^{\prime} \epsilon_{B}^{J} \epsilon^{\epsilon^{K}} \epsilon^{\epsilon^{L}}{ }_{D} \tag{33}
\end{equation*}
$$

We can count the number of principal spinors, o^{A} and relate these to principal null directions of the self-dual tensor

$$
\begin{equation*}
C_{a b c d}^{*}=2 \Psi_{A B C D^{\prime} \epsilon_{A^{\prime} B^{\prime}} \epsilon_{C^{\prime} D^{\prime}}} \tag{34}
\end{equation*}
$$

To count the number of appearance of o^{a} in each term, we can consider a boost:

$$
\begin{equation*}
o^{\prime}=a o, \quad \iota^{\prime}=a^{-1} \iota, \leftrightarrow \ell^{\prime}=a^{2} \ell, \quad n^{\prime}=a^{-2} n \tag{35}
\end{equation*}
$$

In this representation, we find that

$$
\begin{equation*}
\Psi_{0}^{\prime}=a^{4} \Psi_{0}, \quad \Psi_{1}^{\prime}=a^{2} \Psi_{1}, \quad \Psi_{2}^{\prime}=\Psi_{2}, \quad \Psi_{3}^{\prime}=a^{-2} \Psi_{3}, \quad \Psi_{4}^{\prime}=a^{-4} \Psi_{4} \tag{36}
\end{equation*}
$$

More generally, consider a boost for an arbitrary tensor [Milson et al., 2005],

$$
\begin{equation*}
T_{a_{1} a_{2} \ldots a_{n}}^{\prime}=\lambda^{b_{a_{1} a_{2} \ldots a_{n}}} T_{a_{1} a_{2} \ldots a_{n}}, \tag{37}
\end{equation*}
$$

The quantity,

$$
b_{a_{1} a_{2} \ldots a_{n}}=\sum_{i=1}^{n}\left(\delta_{a_{i} 0}-\delta_{a_{i} 1}\right)
$$

is called the boost weight (b.w) of the frame component $T_{a_{1} a_{2} \ldots a_{p}}$.
We can write the tensor \mathbf{T} in the following decomposition:

$$
\begin{equation*}
\mathbf{T}=\sum_{b}(\mathbf{T})_{b} \tag{38}
\end{equation*}
$$

$(\mathbf{T})_{b}$ denotes the projection onto the subspace of components of boost weight b.

Alignment classification

For any T we can pick an NP frame and decompose into b.w.:

$$
\begin{equation*}
\mathbf{T}=\sum_{b}(\mathbf{T})_{b} \tag{39}
\end{equation*}
$$

Boost order, $\mathcal{B}_{\mathbf{T}}(\ell)$, is the maximum b.w. of a tensor, \mathbf{T}, for a null direction ℓ.
For a given null direction $\ell, \mathcal{B}_{\mathbf{T}}(\ell)$ is invariant under boosts, spatial rotations and null rotations about ℓ.
$\mathcal{B}_{\mathbf{T}}(\ell)$ is only dependent on the choice of ℓ.
Defining

$$
\begin{equation*}
\left.B_{\mathbf{T}}=\max _{\ell} \mathcal{B}_{\mathbf{T}}(\ell)\right) \tag{40}
\end{equation*}
$$

the existence of a ℓ with $\mathcal{B}_{\mathbf{T}}(\ell)<B_{\mathrm{T}}$ is an invariant property of the tensor \mathbf{T}.
We will say ℓ is \mathbf{T}-aligned if $\mathcal{B}_{\mathbf{T}}(\ell)<B_{\mathbf{T}}$.

To determine the canonical form of $R_{a b c d}$, consider the effect of a boost on its irreducible parts:

Boost order	Weyl	Ricci
2	Ψ_{0}	R_{00}
1	Ψ_{1}	$R_{0 i}, i=3,4$
0	Ψ_{2}	$R_{01}, R_{i j}, i, j=3,4$
-1	Ψ_{3}	$R_{1 i}$
-2	Ψ_{4}	R_{11}

Alignment types of the Weyl tensor, $C_{a b c d}$, and Ricci tensor, $R_{a b}$, are

$$
\begin{array}{cccccc}
\text { Type } & \mathbf{G} & \mathbf{I} & \text { II } & \text { III } & \mathbf{N} \tag{42}\\
\mathcal{B}_{\mathbf{T}}(\ell) & 2 & 1 & 0 & -1 & -2 .
\end{array}
$$

If $C_{a b c d}$ or $R_{a b}$ vanishes, then it belongs to alignment type \mathbf{O}.
Alignment type is not enough to reproduce Segre type for $R_{a b}$, instead we must also examine the algebro-geometric properties of

$$
\begin{equation*}
R_{00}^{\prime}=R_{00}+2 R_{0 i} c^{i}+R_{i j} c^{i} c^{j}-R_{01}|c|^{2}-R_{1 i} c^{i}|c|^{2}+R_{11}|c|^{4}=0 . \tag{43}
\end{equation*}
$$

For $R_{a b c d ; e_{1} \ldots e_{p}},\left|\mathcal{B}_{\mathbf{T}}(\ell)\right|$ may be greater than two but the alignment types are still applicable.

For example, here are the b.w. of the first covariant derivative:

$$
\begin{align*}
& b=-3: C_{1212 ; 1}^{*}=8 \alpha \\
& b=-2: C_{0112 ; 1}^{*}=C_{1201 ; 1}^{*}=C_{1212 ; 3}^{*}=C_{1223 ; 2}^{*}=C_{2312 ; 1}^{*}=-2 \rho, \tag{44}\\
& b=-2: C_{1212 ; 2}^{*}=8 \gamma \\
& b=-1: C_{0112 ; 2}^{*}=C_{1201 ; 2}^{*}=C_{1212 ; 0}^{*}=C_{1223 ; 2}^{*}=C_{2312 ; 2}^{*}=-2 \tau .
\end{align*}
$$

We can consider the transformation rules from before

$$
\begin{align*}
\rho^{\prime} & =\rho, \\
\alpha^{\prime} & =\alpha+\frac{5}{4} \bar{b} \rho, \tag{45}\\
\tau^{\prime} & =\tau+b \rho \\
\gamma^{\prime} & =\gamma+b \alpha+\frac{5}{4} \bar{b} \tau+\frac{5}{4}|a|^{2} \rho .
\end{align*}
$$

Conclusions

	I	IIa	Ilb	IIIa	IIIb
Invariant	$\rho \neq 0$	$\rho=0$	$\rho=0$	$\rho=0$	$\rho=0$
characterization		$\tau=0$	$\tau=0$	$\tau \neq 0$	$\tau \neq 0$
		$\alpha \neq 0$	$\alpha=0$	$\|\alpha\| \neq \frac{5}{4}\|\tau\|$	$\|\alpha\|=\frac{5}{4}\|\tau\|$

Canonical form:

Zeroth order

First order
Second order Upper bound
$\Psi_{i}=\delta_{i}^{4}$
$\tau=0$
$\Psi_{i}=\delta_{i}^{4} \quad \Psi_{i}=\delta_{i}^{4}$
$\begin{aligned} \Psi_{i} & =\delta^{4}{ }_{i} \\ \gamma & =0\end{aligned}$
2
$\rho=0$
$\rho=0$

$$
\tau \neq 0
$$

$\tau \neq 0$

$$
|\alpha| \neq \frac{5}{4}|\tau|
$$

$|\alpha|=\frac{5}{4}|\tau|$

$$
\mid
$$

l
$\rho \neq 0$

$$
\begin{aligned}
& \rho=0 \\
& \tau=0 \\
& \alpha \neq 0
\end{aligned}
$$

$$
\rho=0
$$

References

Collins, J. M. (1991).
The karlhede classification of type n vacuum spacetimes.
Classical and Quantum Gravity, 8(10):1859.
McNutt, D. D., Milson, R., and Coley, A. (2013).
Vacuum kundt waves.

Classical and Quantum Gravity, 30(5):055010.

Milson, R., Coley, A., Pravda, V., and Pravdova, A. (2005).Alignment and algebraically special tensors in Lorentzian geometry. International Journal of Geometric Methods in Modern Physics, 2(01):41-61.Ramos, M. P. M. and Vickers, J. A. G. (1996).
Invariant differential operators and the karlhede classification of type n vacuum solutions.

Classical and Quantum Gravity, 13(6):1589.

Thank you for your attention!

