Dispersionless integrable systems (III)

Boris Kruglikov (UiT the Arctic University of Norway)

GRIEG seminar 2021

Boris Kruglikov (UiT Tromsø Norway)

 < □ > < ⊡ > < ⊡ > < ⊇ > < ⊇ > < ⊇ > < ⊇ </td>
 > < ○ </td>

 Dispersionless integrable systems (III) * GRIEG 2021

Jet formalism

Let $J^{\ell}M \to M$ be the bundle, whose points are ℓ -jets of functions $u: M \to \mathbb{R}$ (for systems change the target to \mathbb{R}^m or a rank m bundle \mathcal{V} over M). A choice of coordinates x^i on M leads to coordinates (x^i, u_{α}) on $J^{\ell}M$, with α being a multi-index of length $|\alpha| \leq \ell$. It is important to note that $\pi_{\ell,\ell-1}: J^{\ell}M \to J^{\ell-1}M$ is an affine bundle modelled on $S^{\ell}T^*M$.

The infinite jet bundle $J^{\infty}M$ is a projective limit of $J^{\ell}M$, and the space of functions on it is the injective limit of $C^{\infty}(J^{\ell}M)$. The bundle $J^{\infty}M$ has a canonical flat connection, the so-called Cartan distribution, for which the horizontal lift

$$\mathcal{D}(M) \ni X \dashrightarrow D_X \in \mathcal{D}(J^{\infty}M)$$

is characterized by

$$(D_X f) \circ j^{\infty} u = X(f \circ j^{\infty} u), \quad \forall f \in C^{\infty}(J^{\infty} M), u \in C^{\infty}(M).$$

In local coordinates, if $X = a^i \partial_i$, then $D_X = a^i D_i$, where $D_i = \partial_i + u_{i\alpha} \partial_{u_{\alpha}}$ is the operator of total derivative,

Boris Kruglikov (UiT Tromsø Norway)

Symbols

A (scalar) differential operator of order $\leq \ell$ on M is a function $F \in C^{\infty}(J^{\ell}M) \subset C^{\infty}(J^{\infty}M)$. It defines a PDE (system) $\mathcal{E} = \{F = 0\} \subset J^{\ell}M$, as well as its (finite and infinite) prolongation $\mathcal{E}^{(\infty)} = \{D_{\alpha}F = 0\} \subset J^{\infty}M$.

The vertical part of the 1-form $dF \in \Omega^1(J^\infty M)$ may be viewed in coordinates as a polynomial on $\pi^*_\infty T^*M$ given by

$$\sum_{j=0}^{\ell} F_{(j)}, \text{ where } F_{(j)} = \sum_{|\alpha|=j} (\partial_{u_{\alpha}} F) \partial_{\alpha} \in \Gamma(\pi_{\infty}^* S^j TM).$$

The top degree $\sigma_F = F_{(\ell)}$ is called the (order ℓ) symbol of F, and at the points of \mathcal{E} it is coordinate-independent.

For instance, for an operator F of the second order,

$$\sigma_F = \sum_{i \le j} \frac{\partial F}{\partial u_{ij}} \partial_i \partial_j = \sum_{i,j} \sigma_{ij}(u) \partial_i \otimes \partial_j$$

where $\sigma_{ij}(u) = \frac{1}{2}(1 + \delta_{ij})\partial_{u_{ij}}F$.

Boris Kruglikov (UiT Tromsø Norway)

(日) (四) (三) (三) (三) (三)

Characteristic variety

This generalizes to PDE systems of order ℓ given as a locus of a function $F: J^{k+\ell}(M, \mathcal{V}) \to J^k(M, \mathcal{W})$ for $k \ge 0$ (prolongation), where \mathcal{V}, \mathcal{W} are some (vector) bundles over M.

The symbol σ_F of F is then a homogeneous degree l polynomial on $\pi_{\infty}^*T^*M$ with values in $\operatorname{Hom}(\mathcal{V}, \mathcal{W})$. The characteristic variety of $\mathcal{E}: F = 0$ is defined by

$$\chi^{\mathcal{E}} = \{ [\theta] \in \mathbb{P}(\pi_{\infty}^* T^* M) : \sigma_F(\theta) \text{ is not injective} \}.$$

If \mathcal{V}, \mathcal{W} have the same rank ("determined system"), then $[\theta]$ is characteristic iff $\sigma_F(\theta)$ is not surjective.

For a solution $u \in \operatorname{Sol}(\mathcal{E})$ we identify $M_u \simeq j_\infty(M) \subset J^\infty M$. Thus the characteristic variety is a bundle $\chi^{\mathcal{E}} \to M_u$, whose fiber at $x \in M_u$ is the projective variety

$$\chi_x^{\mathcal{E}} = \operatorname{Char}(\mathcal{E}, u)_x = \{ [\theta] \in \mathbb{P}(T_x^* M_u) : \sigma_F(\theta) = 0 \}.$$

(日)

Quadratic characteristics

In coordinates to compute the characteristic variety one converts the symbol of linearization of F ("Fourier transform": $\partial_i \mapsto p_i$)

$$\sigma_F = \sum_{|\alpha| = \ell} \sigma_{\alpha}(u) \partial_{\alpha} \quad \text{to the polynomial} \quad \sigma_F(p) = \sum_{|\alpha| = \ell} \sigma_{\alpha}(u) p^{\alpha}$$

where $p = (p_1, \ldots, p_d)$ is a coordinate on the fiber of T^*M_u and $p^{\alpha} = p_1^{i_1} \cdots p_d^{i_d}$ for a multi-index $\alpha = (i_1, \ldots, i_d)$.

For second order PDEs the characteristic variety is a field of quadrics. We will assume it is nondegenerate and hyperbolic, i.e. $det(\sigma_{ij}(u)) \neq 0$ and $Char(\mathcal{E}^{\mathbb{C}}) = Char(\mathcal{E})^{\mathbb{C}}$, respectively.

The nondegeneracy of σ_F implies that is inverse

$$g_F = \sum_{ij} g_{ij}(u) dx^i dx^j, \qquad (g_{ij}(u)) = (\sigma_{ij}(u))^{-1},$$

defines a symmetric bilinear form on $T_x M_u$. The canonical conformal structure $c_F = [g_F]$ on solutions of \mathcal{E} is a base for geometric approach to integrability.

Boris Kruglikov (UiT Tromsø Norway)

Systems and multiple characteristics

For the system we have a matrix representation of σ_F and the characteristic condition is its non-maximal rank.

Example: 3D

The Manakov-Santini system ${\mathcal E}$

$$P(u) = -u_x^2, \ P(v) = 0; \quad P = \partial_x \partial_t - \partial_y^2 + (u - v_y)\partial_x^2 + v_x \partial_x \partial_y,$$

has
$$\sigma_F(p) = \begin{pmatrix} \sigma_P(p) & 0\\ 0 & \sigma_P(p) \end{pmatrix}$$
, where

$$\sigma_P(p) = p_x p_t - p_y^2 + (u - v_y) p_x^2 + v_x p_x p_y$$

and so the characteristic variety $\sigma_P(p) = 0$ (of multiplicity 2) is a nondegenerate quadric with the conformal structure:

$$g = -(dy - v_x dt)^2 + 4(dx - (u - v_y)dt)dt.$$

Example: 4D

The DFK master-equation ${\mathcal E}$ for SD

$$\partial_x Q(u) - \partial_y Q(v) = 0,$$

$$(\partial_w - u_y \partial_x + v_y \partial_y) Q(v) + (\partial_z + u_x \partial_x - v_x \partial_y) Q(u) = 0;$$

$$Q = \partial_x \partial_w + \partial_y \partial_z - u_y \partial_x^2 + (u_x + v_y) \partial_x \partial_y - v_x \partial_y^2,$$
has $\sigma_Q(p) = p_x p_w + p_y p_z - u_y p_x^2 + (u_x + v_y) p_x p_y - v_x p_y^2$ and
$$\sigma_F(p) = \begin{pmatrix} p_x \sigma_Q(p) & -p_y \sigma_Q(p) \\ (p_z + u_x p_x - v_x p_y) \sigma_Q(p) & (p_w - u_y p_x + v_y p_y) \sigma_Q(p) \end{pmatrix}$$
so that the abave twisting equation (a) of (af equilibrium 2) is

so that the characteristic variety $\sigma_Q(p) = 0$ (of multiplicity 3) is a nondegenerate quadric with the conformal structure on every solution of \mathcal{E} given as follows:

$$g = dx \, dw + dy \, dz + u_y dw^2 - (u_x + v_y) \, dz \, dw + v_x dz^2.$$

(日)

Definition

A dispersionless pair of order N is a bundle $\hat{\pi}: \hat{M}_u \to M_u$ (correspondence space), whose fibres are connected curves, together with a rank 2 distribution $\hat{\Pi} \subseteq T\hat{M}_u$ such that:

- $\forall \ \hat{x} \in \hat{M}_u$, $\hat{\Pi}(\hat{x})$ depends only on $j^N_{\boldsymbol{x}} u$;
- $\hat{\Pi}$ is transversal to the fibres of $\hat{\pi}$.

Thus $\Pi(\hat{x}) := (d\hat{\pi})_{\hat{x}}(\hat{\Pi}) \subset T_{x}M$ is a 2-plane congruence. A spectral parameter is a local fibre coordinate λ on $\hat{\pi}$.

- $\hat{\Pi} \sim \hat{\Pi}'$ if $\forall \ u \in \operatorname{Sol}(\mathcal{E})$: $\hat{\Pi} = \hat{\Pi}'$ on \hat{M}_u ;
- $\hat{\Pi}$ is a dispersionless Lax pair for \mathcal{E} if for any $\hat{\Pi}' \sim \hat{\Pi}$, the Frobenius integrability condition $[\Gamma(\hat{\Pi}'), \Gamma(\hat{\Pi}')] \subseteq \Gamma(\hat{\Pi}')$ is a nontrivial differential corollary of \mathcal{E} .

First crucial ingredient: characteristic condition

Claim

A dLp $\hat{\Pi}$ is characteristic for \mathcal{E} , i.e. $\forall u \in \text{Sol}(\mathcal{E})$, $\hat{x} \in \hat{M}_u$ and $\theta \in \text{Ann}(\Pi(\hat{x})) \subseteq T^*_{x}M_u$ we have $\sigma_F(\theta) = 0 \Leftrightarrow [\theta] \in \text{Char}(\mathcal{E})$.

This means that for each solution u and $\hat{x} \in \hat{M}_u$, $\Pi(\hat{x})$ is a coisotropic 2-plane for the conformal structure c_F . Such 2-planes can only exist for $2 \le d \le 4$: for d = 2 the condition is vacuous; for d = 3 the coisotropic 2-planes at each point x form a rational conic \mathbb{P}^1 ; for d = 4 the form a disjoint union of two rational curves $2 \times \mathbb{P}^1$, the so-called α -planes and β -planes.

The passage from a 2-plane congruence $\Pi = \langle X, Y \rangle$ to a dLp can be understood as a lift, with respect to the projection $\hat{\pi}$:

$$\hat{X} = X + m \,\partial_{\lambda}, \quad \hat{Y} = Y + n \,\partial_{\lambda}.$$

The resulting rank 2 distribution $\hat{\Pi} = \langle \hat{X}, \hat{Y} \rangle$ is integrable mod \mathcal{E} (on-shell), but not identically (off-shell).

Second crucial ingredient: projective condition

Definition

The dispersionless pair $\hat{\Pi} \subseteq T\hat{M}_u$ is normal if the derived distribution $\partial\hat{\Pi} = [\hat{\Pi}, \hat{\Pi}]$ is tangent to the $\hat{\pi}$ -fibres for general u (off-shell), i.e. $\forall \ \hat{x} = (x, \lambda) \in \hat{M}_u$: $\hat{\pi}_*(\partial\hat{\Pi}(\hat{x})) = \Pi(x, \lambda)$.

Thus in this case the only integrability condition is the vanishing mod \mathcal{E} of the vertical direction of the commutator $[\hat{X}, \hat{Y}] \mod \hat{\Pi}$.

Claim

Let d = 3 and let Π be a nondegenerate quadratic 2-plane congruence on a \mathbb{P}^1 -bundle $\hat{M} \to M$. Then Weyl connections parametrize normal lifts $\hat{\Pi}$ of Π such that the ∂_{λ} coefficient of a λ -independent vector field V on M_u is quadratic in λ for some choice of the spectral parameter λ (the projective property).

Note that for d = 4 no additional ingredient (connection) is required for the lift.

Theorem (D. Calderbank & BK 2016-2018)

Let $\mathcal{E} : F = 0$ be a nondegenerate determined PDE system in 3D or 4D whose characteristic variety is a quadric. Let c_F be the corresponding conformal structure. Then the integrability of \mathcal{E} by a nondegenerate dispersionless Lax pair is equivalent to

3D: the Einstein–Weyl property for c_F on any solution of the PDE;

4D: the self-duality property for c_F on any solution of the PDE.

<u>Proof:</u> Given a dLp use its characteristic property to construct the correspondence space \hat{M}_u : $\hat{\Pi}$ is c_F -coisotropic on-shell, extend to a Zariski dense set of u off-shell. $\hat{\Pi}$ yields a 2-foliation on-shell, projects to (d-1)-parametric null totally geodesic foliation of M_u . By Cartan (d=3) and Penrose (d=4) this is equiv to EW/SD.

Conversely, let $\forall u \in Sol(\mathcal{E})$ the structure c_F is EW or SD. Let $\hat{\pi}: \hat{M}_u \to M_u$ be the bundle of null 2-planes/ α -planes. The normal lifts with projective property are bijective with Weyl connections for d = 3, while for d = 4 the normal lift is unique. This lifts the 2-plane congruence Π to a dLp $\hat{\Pi}$, unique up to equivalence Π

Theorem (D. Calderbank & BK 2016-2018)

Let $\mathcal{E} : F = 0$ be a nondegenerate determined PDE system in 3D or 4D whose characteristic variety is a quadric. Let c_F be the corresponding conformal structure. Then the integrability of \mathcal{E} by a nondegenerate dispersionless Lax pair is equivalent to

3D: the Einstein–Weyl property for c_F on any solution of the PDE;

4D: the self-duality property for c_F on any solution of the PDE.

<u>Proof:</u> Given a dLp use its characteristic property to construct the correspondence space \hat{M}_u : $\hat{\Pi}$ is c_F -coisotropic on-shell, extend to a Zariski dense set of u off-shell. $\hat{\Pi}$ yields a 2-foliation on-shell, projects to (d-1)-parametric null totally geodesic foliation of M_u . By Cartan (d = 3) and Penrose (d = 4) this is equiv to EW/SD.

Conversely, let $\forall u \in Sol(\mathcal{E})$ the structure c_F is EW or SD. Let $\hat{\pi} \colon \hat{M}_u \to M_u$ be the bundle of null 2-planes/ α -planes. The normal lifts with projective property are bijective with Weyl connections for d = 3, while for d = 4 the normal lift is unique. This lifts the 2-plane congruence Π to a dLp $\hat{\Pi}$, unique up to equivalence.

Weyl potential ~~ dLp

Let \mathcal{E} be a PDE with quadratic characteristic variety and such that its conformal structure c_F has EW property, with Weyl covector $\omega = \omega_i \theta^i$. Then \mathcal{E} is integrable and the corresponding dispersionless Lax pair can be calculated explicitly (no integration).

Let us introduce the so-called null coframe $\theta^0, \theta^1, \theta^2$ (it depends on a finite jet of a solution $u \in Sol(\mathcal{E})$) such that

$$g_F = 4\theta^0 \theta^2 - (\theta^1)^2.$$

Let V_0, V_1, V_2 be the dual frame, and let c_{ij}^k be the structure functions defined by commutator expansions $[V_i, V_j] = c_{ij}^k V_k$. The Lax pair is given by vector fields

$$\hat{X} = V_0 + \lambda V_1 + m\partial_\lambda, \quad \hat{Y} = V_1 + \lambda V_2 + n\partial_\lambda,$$

where

$$\begin{split} m &= (\frac{1}{2}c_{12}^1 - \frac{1}{4}\omega_2)\lambda^3 + (\frac{1}{2}c_{02}^1 - c_{12}^2 - \frac{1}{2}\omega_1)\lambda^2 + (\frac{1}{2}c_{01}^1 - c_{02}^2 - \frac{1}{4}\omega_0)\lambda - c_{01}^2, \\ n &= -c_{12}^0\lambda^3 + (\frac{1}{2}c_{12}^1 - c_{02}^0 + \frac{1}{4}\omega_2)\lambda^2 + (\frac{1}{2}c_{02}^1 - c_{01}^0 + \frac{1}{2}\omega_1)\lambda + (\frac{1}{2}c_{01}^1 + \frac{1}{4}\omega_0)\lambda^2 + (\frac{1}{2}c_{02}^1 - c_{01}^0 + \frac{1}{4}\omega_1)\lambda + (\frac{1}{2}c_{01}^1 + \frac{1}{4}\omega_0)\lambda^2 + (\frac{1}{2}c_{02}^1 - c_{01}^0 + \frac{1}{4}\omega_1)\lambda + (\frac{1}{2}c_{01}^1 + \frac{1}{4}\omega_0)\lambda^2 + (\frac{1}{2}c_{02}^1 - c_{01}^0 + \frac{1}{4}\omega_1)\lambda + (\frac{1}{4}c_{01}^1 + \frac{1}{4}\omega_0)\lambda^2 + (\frac{1}{4}c_{01}^1 + \frac{1}{4}c_{01}^1 + \frac{1}{4}\omega_0)\lambda^2 + (\frac{1}{4}c_{01}^1 + \frac{1}{4}c_{01}^1 + \frac{1}{4}c_{0$$

General integrable systems in 3D

For Hirota type PDEs of the second order $F(u_{ij}) = 0$ in 3D integrability and Monge-Ampère property imply linearizability by a contact transformation. The general integrable equation is a modular form. The EW background structure is given by g_F and the following components of the Weyl covector

$$\omega_k = 2g_{kj}\mathcal{D}_{x^s}(g^{js}) + \mathcal{D}_{x^k}(\ln \det g_{ij}).$$

For general PDEs of second order $F(x^i, u, u_i, u_{ij}) = 0$ this formula is not applicable. Yet the EW structure can be determined.

Theorem (S.Berjawi, E.Ferapontov, BK, V.Novikov)

For nondegenerate non-Monge-Ampère equations of second order with EW property, the Weyl covector ω is algebraically determined.

Corollary

Under the above condition, the dispersionless Lax pair is algebraically determined by the equation.

General integrable systems in 4D

For Hirota type PDEs of the second order $F(u_{ij}) = 0$ in 4D integrability implies the Monge-Ampère property as proved by Ferapontov-BK-Novikov (2019). Such equations were investigated by Doubrov-Ferapontov (2010): classification over \mathbb{C} consists of 6 versions of Plebanski heavenly equation (in fact, one is linear: ultra-wave PDE) obtained by deformations of

 $\alpha u_{12}u_{34} + \beta u_{13}u_{24} + \gamma u_{14}u_{23} = 0, \quad \alpha + \beta + \gamma = 0.$

For translation non-invariant PDEs we have:

Theorem (S.Berjawi, E.Ferapontov, BK, V.Novikov)

Every nondegenerate equation of second order with SD property must be of Monge-Ampère type. Freezing 1-jet of a solution we get one gets a PDE that is contact equivalent to one of Plebanski type heavenly equations.

(日) (四) (三) (三) (三) (三)

References

- D. Calderbank, B. Kruglikov, *Integrability via geometry: dispersionless differential equations in three and four dimensions*, Comm. Math. Phys. **382** (2021)
- B. Doubrov, E. Ferapontov, On the integrability of symplectic Monge-Ampère equations, J. Geom. Phys. 60 (2010)
- F. Cléry, E. Ferapontov, *Dispersionless Hirota equations and* the genus 3 hyperelliptic divisor, Comm. Math. Phys. (2020)
- E. Ferapontov, B. Kruglikov, V. Novikov, Integrability of dispersionless Hirota type equations in 4D and the symplectic Monge-Ampère property, IMRN (2020)
- S. Berjawi, E. Ferapontov, B. Kruglikov, V. Novikov, Second-order PDEs in 4D with half-flat conformal structure, Proc. Royal Soc. A. 476 (2020)
- S. Berjawi, E. Ferapontov, B. Kruglikov, V. Novikov, Second-order PDEs in 3D with Einstein-Weyl conformal structure, arXiv:2104.02716 (2021)

GRIEG 2021

Homework: on Cartan's (2,3,5) and Engel distributions

- When d = 4, then every 2-plane congruence Π on M_u has a unique normal lift. Check that generically, off-shell, $\Delta = \pi_*^{-1}(\Pi) \subset T \hat{M}_u$ is a nonholonomic rank 3 distribution with $[\Delta, \Delta] = T \hat{M}_u$, i.e., it has the growth vector (3,5) and, following Cartan, there is a unique rank 2 subbundle $\hat{\Pi} \subset \Delta$ with $[\hat{\Pi}, \hat{\Pi}] = \Delta$. This rank 2 distribution has growth (2,3,5) off-shell and is Frobenius integrable on-shell.
- When d = 3, the normal lift of a 2-plane congruence Π is not unique. Instead, the rank 3 distribution $\Delta = \pi_*^{-1}(\Pi) \subset T \hat{M}_u$ has a unique Cauchy characteristic: a rank 1 subbundle $\mathcal{C} \subset \Delta$ with $[\mathcal{C}, \Delta] = \Delta$. For a rank 2 subbundle $\hat{\Pi} \subset \Delta$ the normality condition $[\hat{\Pi}, \hat{\Pi}] \subset \Delta$ implies that $\mathcal{C} \subset \hat{\Pi}$, but one generator of $\hat{\Pi}$ remains undetermined and is given by a choice of Weyl connection.

