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Jet formalism

Let J `M →M be the bundle, whose points are `-jets of functions
u : M → R (for systems change the target to Rm or a rank m
bundle V over M). A choice of coordinates xi on M leads to
coordinates (xi, uα) on J `M , with α being a multi-index of length
|α| ≤ `. It is important to note that π`,`−1 : J `M → J `−1M is an
affine bundle modelled on S`T ∗M .

The infinite jet bundle J∞M is a projective limit of J `M , and the
space of functions on it is the injective limit of C∞(J `M). The
bundle J∞M has a canonical flat connection, the so-called
Cartan distribution, for which the horizontal lift

D(M) 3 X 99K DX ∈ D(J∞M)

is characterized by

(DXf) ◦ j∞u = X(f ◦ j∞u), ∀f ∈ C∞(J∞M), u ∈ C∞(M).

In local coordinates, if X = ai∂i, then DX = aiDi, where
Di = ∂i + uiα∂uα is the operator of total derivative.
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Symbols

A (scalar) differential operator of order ≤ ` on M is a function
F ∈ C∞(J `M) ⊂ C∞(J∞M). It defines a PDE (system)
E = {F = 0} ⊂ J `M , as well as its (finite and infinite)
prolongation E(∞) = {DαF = 0} ⊂ J∞M .

The vertical part of the 1-form dF ∈ Ω1(J∞M) may be viewed in
coordinates as a polynomial on π∗∞T

∗M given by∑̀
j=0

F(j), where F(j) =
∑
|α|=j

(∂uαF )∂α ∈ Γ(π∗∞S
jTM).

The top degree σF = F(`) is called the (order `) symbol of F , and
at the points of E it is coordinate-independent.

For instance, for an operator F of the second order,

σF =
∑
i≤j

∂F

∂uij
∂i∂j =

∑
i,j

σij(u)∂i ⊗ ∂j ,

where σij(u) = 1
2(1 + δij)∂uijF .
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Characteristic variety

This generalizes to PDE systems of order ` given as a locus of a
function F : Jk+`(M,V)→ Jk(M,W) for k ≥ 0 (prolongation),
where V,W are some (vector) bundles over M .

The symbol σF of F is then a homogeneous degree l polynomial
on π∗∞T

∗M with values in Hom(V,W). The characteristic variety
of E : F = 0 is defined by

χE = {[θ] ∈ P(π∗∞T
∗M) : σF (θ) is not injective}.

If V,W have the same rank (“determined system”), then [θ] is
characteristic iff σF (θ) is not surjective.

For a solution u ∈ Sol(E) we identify Mu ' j∞(M) ⊂ J∞M .
Thus the characteristic variety is a bundle χE →Mu, whose fiber
at x ∈Mu is the projective variety

χEx = Char(E , u)x = {[θ] ∈ P(T ∗xMu) : σF (θ) = 0}.
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Quadratic characteristics
In coordinates to compute the characteristic variety one converts
the symbol of linearization of F (“Fourier transform”: ∂i 7→ pi)

σF =
∑
|α|=`

σα(u)∂α to the polynomial σF (p) =
∑
|α|=`

σα(u)pα

where p = (p1, . . . , pd) is a coordinate on the fiber of T ∗Mu and
pα = pi11 · · · p

id
d for a multi-index α = (i1, . . . , id).

For second order PDEs the characteristic variety is a field of
quadrics. We will assume it is nondegenerate and hyperbolic, i.e.
det(σij(u)) 6= 0 and Char(EC) = Char(E)C, respectively.

The nondegeneracy of σF implies that is inverse

gF =
∑
ij

gij(u)dxidxj , (gij(u)) = (σij(u))−1,

defines a symmetric bilinear form on TxMu. The canonical
conformal structure cF = [gF ] on solutions of E is a base for
geometric approach to integrability.
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Systems and multiple characteristics

For the system we have a matrix representation of σF and the
characteristic condition is its non-maximal rank.

Example: 3D

The Manakov-Santini system E

P (u) = −u2x, P (v) = 0; P = ∂x∂t − ∂2y + (u− vy)∂2x + vx∂x∂y,

has σF (p) =

(
σP (p) 0

0 σP (p)

)
, where

σP (p) = pxpt − p2y + (u− vy)p2x + vxpxpy

and so the characteristic variety σP (p) = 0 (of multiplicity 2) is a
nondegenerate quadric with the conformal structure:

g = −(dy − vxdt)2 + 4(dx− (u− vy)dt)dt.
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Example: 4D

The DFK master-equation E for SD

∂xQ(u)− ∂yQ(v) = 0,

(∂w − uy∂x + vy∂y)Q(v) + (∂z + ux∂x − vx∂y)Q(u) = 0;

Q = ∂x∂w + ∂y∂z − uy∂2x + (ux + vy)∂x∂y − vx∂2y ,

has σQ(p) = pxpw + pypz − uyp2x + (ux + vy)pxpy − vxp2y and

σF (p) =

(
pxσQ(p) −pyσQ(p)

(pz + uxpx − vxpy)σQ(p) (pw − uypx + vypy)σQ(p)

)
so that the characteristic variety σQ(p) = 0 (of multiplicity 3) is
a nondegenerate quadric with the conformal structure on every
solution of E given as follows:

g = dx dw + dy dz + uydw
2 − (ux + vy) dz dw + vxdz

2.
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Dispersionless Lax pairs (dLp)

Definition

A dispersionless pair of order N is a bundle π̂ : M̂u →Mu

(correspondence space), whose fibres are connected curves,
together with a rank 2 distribution Π̂ ⊆ TM̂u such that:

∀ x̂ ∈ M̂u, Π̂(x̂) depends only on jNx u;

Π̂ is transversal to the fibres of π̂.

Thus Π(x̂) := (dπ̂)x̂(Π̂) ⊂ TxM is a 2-plane congruence.
A spectral parameter is a local fibre coordinate λ on π̂.

Π̂ ∼ Π̂′ if ∀ u ∈ Sol(E): Π̂ = Π̂′ on M̂u;

Π̂ is a dispersionless Lax pair for E if for any Π̂′ ∼ Π̂, the
Frobenius integrability condition [Γ(Π̂′),Γ(Π̂′)] ⊆ Γ(Π̂′) is a
nontrivial differential corollary of E .
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First crucial ingredient: characteristic condition

Claim

A dLp Π̂ is characteristic for E , i.e. ∀ u ∈ Sol(E), x̂ ∈ M̂u and
θ ∈ Ann(Π(x̂)) ⊆ T ∗xMu we have σF (θ) = 0 ⇔ [θ] ∈ Char(E).

This means that for each solution u and x̂ ∈ M̂u, Π(x̂) is a
coisotropic 2-plane for the conformal structure cF . Such 2-planes
can only exist for 2 ≤ d ≤ 4: for d = 2 the condition is vacuous;
for d = 3 the coisotropic 2-planes at each point x form a rational
conic P1; for d = 4 the form a disjoint union of two rational curves
2× P1, the so-called α-planes and β-planes.

The passage from a 2-plane congruence Π = 〈X,Y 〉 to a dLp can
be understood as a lift, with respect to the projection π̂:

X̂ = X +m∂λ, Ŷ = Y + n∂λ.

The resulting rank 2 distribution Π̂ = 〈X̂, Ŷ 〉 is integrable mod E
(on-shell), but not identically (off-shell).
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Second crucial ingredient: projective condition

Definition

The dispersionless pair Π̂ ⊆ TM̂u is normal if the derived
distribution ∂Π̂ = [Π̂, Π̂] is tangent to the π̂-fibres for general u
(off-shell), i.e. ∀ x̂ = (x, λ) ∈ M̂u: π̂∗(∂Π̂(x̂)) = Π(x, λ).

Thus in this case the only integrability condition is the vanishing
mod E of the vertical direction of the commutator [X̂, Ŷ ] mod Π̂.

Claim

Let d = 3 and let Π be a nondegenerate quadratic 2-plane
congruence on a P1-bundle M̂ →M . Then Weyl connections
parametrize normal lifts Π̂ of Π such that the ∂λ coefficient of a
λ-independent vector field V on Mu is quadratic in λ for some
choice of the spectral parameter λ (the projective property).

Note that for d = 4 no additional ingredient (connection) is
required for the lift.
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Theorem (D. Calderbank & BK 2016-2018)

Let E : F = 0 be a nondegenerate determined PDE system in 3D
or 4D whose characteristic variety is a quadric. Let cF be the
corresponding conformal structure. Then the integrability of E by a
nondegenerate dispersionless Lax pair is equivalent to

3D: the Einstein–Weyl property for cF on any solution of the PDE ;

4D: the self-duality property for cF on any solution of the PDE.

Proof: Given a dLp use its characteristic property to construct the
correspondence space M̂u: Π̂ is cF -coisotropic on-shell, extend to
a Zariski dense set of u off-shell. Π̂ yields a 2-foliation on-shell,
projects to (d− 1)-parametric null totally geodesic foliation of Mu.
By Cartan (d = 3) and Penrose (d = 4) this is equiv to EW/SD.

Conversely, let ∀ u ∈ Sol(E) the structure cF is EW or SD. Let
π̂ : M̂u →Mu be the bundle of null 2-planes/α-planes. The normal
lifts with projective property are bijective with Weyl connections
for d = 3, while for d = 4 the normal lift is unique. This lifts the
2-plane congruence Π to a dLp Π̂, unique up to equivalence. �
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Weyl potential  dLp

Let E be a PDE with quadratic characteristic variety and such that
its conformal structure cF has EW property, with Weyl covector
ω = ωiθ

i. Then E is integrable and the corresponding
dispersionless Lax pair can be calculated explicitly (no integration).

Let us introduce the so-called null coframe θ0, θ1, θ2 (it depends
on a finite jet of a solution u ∈ Sol(E)) such that

gF = 4θ0θ2 − (θ1)2.

Let V0, V1, V2 be the dual frame, and let ckij be the structure

functions defined by commutator expansions [Vi, Vj ] = ckijVk.
The Lax pair is given by vector fields

X̂ = V0 + λV1 +m∂λ, Ŷ = V1 + λV2 + n∂λ,
where

m =(12c
1
12 − 1

4ω2)λ
3 + (12c

1
02 − c212 − 1

2ω1)λ
2 + (12c

1
01 − c202 − 1

4ω0)λ− c201,

n =− c012λ3 + (12c
1
12 − c002 + 1

4ω2)λ
2 + (12c

1
02 − c001 + 1

2ω1)λ+ (12c
1
01 + 1

4ω0)
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General integrable systems in 3D

For Hirota type PDEs of the second order F (uij) = 0 in 3D
integrability and Monge-Ampère property imply linearizability by a
contact transformation. The general integrable equation is a
modular form. The EW background structure is given by gF and
the following components of the Weyl covector

ωk = 2gkjDxs(gjs) +Dxk(ln det gij).

For general PDEs of second order F (xi, u, ui, uij) = 0 this formula
is not applicable. Yet the EW structure can be determined.

Theorem (S.Berjawi, E.Ferapontov, BK, V.Novikov)

For nondegenerate non-Monge-Ampère equations of second order
with EW property, the Weyl covector ω is algebraically determined.

Corollary

Under the above condition, the dispersionless Lax pair is
algebraically determined by the equation.
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General integrable systems in 4D

For Hirota type PDEs of the second order F (uij) = 0 in 4D
integrability implies the Monge-Ampère property as proved by
Ferapontov-BK-Novikov (2019). Such equations were investigated
by Doubrov-Ferapontov (2010): classification over C consists of
6 versions of Plebanski heavenly equation (in fact, one is linear:
ultra-wave PDE) obtained by deformations of

αu12u34 + βu13u24 + γu14u23 = 0, α+ β + γ = 0.

For translation non-invariant PDEs we have:

Theorem (S.Berjawi, E.Ferapontov, BK, V.Novikov)

Every nondegenerate equation of second order with SD property
must be of Monge-Ampère type. Freezing 1-jet of a solution we
get one gets a PDE that is contact equivalent to one of Plebanski
type heavenly equations.

Boris Kruglikov (UiT Tromsø Norway) Dispersionless integrable systems (III) ∗ GRIEG 2021



References

D. Calderbank, B. Kruglikov, Integrability via geometry:
dispersionless differential equations in three and four
dimensions, Comm. Math. Phys. 382 (2021)

B. Doubrov, E. Ferapontov, On the integrability of symplectic
Monge-Ampère equations, J. Geom. Phys. 60 (2010)
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Homework: on Cartan’s (2,3,5) and Engel distributions

When d = 4, then every 2-plane congruence Π on Mu has
a unique normal lift. Check that generically, off-shell,
∆ = π−1∗ (Π) ⊂ TM̂u is a nonholonomic rank 3 distribution
with [∆,∆] = TM̂u, i.e., it has the growth vector (3,5) and,
following Cartan, there is a unique rank 2 subbundle Π̂ ⊂ ∆
with [Π̂, Π̂] = ∆. This rank 2 distribution has growth (2, 3, 5)
off-shell and is Frobenius integrable on-shell.

When d = 3, the normal lift of a 2-plane congruence Π is not
unique. Instead, the rank 3 distribution ∆ = π−1∗ (Π) ⊂ TM̂u

has a unique Cauchy characteristic: a rank 1 subbundle
C ⊂ ∆ with [C,∆] = ∆. For a rank 2 subbundle Π̂ ⊂ ∆ the
normality condition [Π̂, Π̂] ⊂ ∆ implies that C ⊂ Π̂, but one
generator of Π̂ remains undetermined and is given by a choice
of Weyl connection.
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