Dispersionless integrable systems (III)

Boris Kruglikov
(UiT the Arctic University of Norway)

GRIEG seminar 2021

Jet formalism

Let $J^{\ell} M \rightarrow M$ be the bundle, whose points are ℓ-jets of functions $u: M \rightarrow \mathbb{R}$ (for systems change the target to \mathbb{R}^{m} or a rank m bundle \mathcal{V} over M). A choice of coordinates x^{i} on M leads to coordinates $\left(x^{i}, u_{\alpha}\right)$ on $J^{\ell} M$, with α being a multi-index of length $|\alpha| \leq \ell$. It is important to note that $\pi_{\ell, \ell-1}: J^{\ell} M \rightarrow J^{\ell-1} M$ is an affine bundle modelled on $S^{\ell} T^{*} M$.
The infinite jet bundle $J^{\infty} M$ is a projective limit of $J^{\ell} M$, and the space of functions on it is the injective limit of $C^{\infty}\left(J^{\ell} M\right)$. The bundle $J^{\infty} M$ has a canonical flat connection, the so-called Cartan distribution, for which the horizontal lift

$$
\mathcal{D}(M) \ni X \rightarrow D_{X} \in \mathcal{D}\left(J^{\infty} M\right)
$$

is characterized by

$$
\left(D_{X} f\right) \circ j^{\infty} u=X\left(f \circ j^{\infty} u\right), \quad \forall f \in C^{\infty}\left(J^{\infty} M\right), u \in C^{\infty}(M)
$$

In local coordinates, if $X=a^{i} \partial_{i}$, then $D_{X}=a^{i} D_{i}$, where $D_{i}=\partial_{i}+u_{i \alpha} \partial_{u_{\alpha}}$ is the operator of total derivative,

Symbols

A (scalar) differential operator of order $\leq \ell$ on M is a function $F \in C^{\infty}\left(J^{\ell} M\right) \subset C^{\infty}\left(J^{\infty} M\right)$. It defines a PDE (system)
$\mathcal{E}=\{F=0\} \subset J^{\ell} M$, as well as its (finite and infinite)
prolongation $\mathcal{E}^{(\infty)}=\left\{D_{\alpha} F=0\right\} \subset J^{\infty} M$.
The vertical part of the 1-form $d F \in \Omega^{1}\left(J^{\infty} M\right)$ may be viewed in coordinates as a polynomial on $\pi_{\infty}^{*} T^{*} M$ given by

$$
\sum_{j=0}^{\ell} F_{(j)}, \text { where } F_{(j)}=\sum_{|\alpha|=j}\left(\partial_{u_{\alpha}} F\right) \partial_{\alpha} \in \Gamma\left(\pi_{\infty}^{*} S^{j} T M\right)
$$

The top degree $\sigma_{F}=F_{(\ell)}$ is called the (order ℓ) symbol of F, and at the points of \mathcal{E} it is coordinate-independent.

For instance, for an operator F of the second order,

$$
\sigma_{F}=\sum_{i \leq j} \frac{\partial F}{\partial u_{i j}} \partial_{i} \partial_{j}=\sum_{i, j} \sigma_{i j}(u) \partial_{i} \otimes \partial_{j}
$$

where $\sigma_{i j}(u)=\frac{1}{2}\left(1+\delta_{i j}\right) \partial_{u_{i j}} F$.

Characteristic variety

This generalizes to PDE systems of order ℓ given as a locus of a function $F: J^{k+\ell}(M, \mathcal{V}) \rightarrow J^{k}(M, \mathcal{W})$ for $k \geq 0$ (prolongation), where \mathcal{V}, \mathcal{W} are some (vector) bundles over M.

The symbol σ_{F} of F is then a homogeneous degree l polynomial on $\pi_{\infty}^{*} T^{*} M$ with values in $\operatorname{Hom}(\mathcal{V}, \mathcal{W})$. The characteristic variety of $\mathcal{E}: F=0$ is defined by

$$
\chi^{\mathcal{E}}=\left\{[\theta] \in \mathbb{P}\left(\pi_{\infty}^{*} T^{*} M\right): \sigma_{F}(\theta) \text { is not injective }\right\} .
$$

If \mathcal{V}, \mathcal{W} have the same rank ("determined system"), then $[\theta]$ is characteristic iff $\sigma_{F}(\theta)$ is not surjective.

For a solution $u \in \operatorname{Sol}(\mathcal{E})$ we identify $M_{u} \simeq j_{\infty}(M) \subset J^{\infty} M$. Thus the characteristic variety is a bundle $\chi^{\mathcal{E}} \rightarrow M_{u}$, whose fiber at $x \in M_{u}$ is the projective variety

$$
\chi_{x}^{\mathcal{E}}=\operatorname{Char}(\mathcal{E}, u)_{x}=\left\{[\theta] \in \mathbb{P}\left(T_{x}^{*} M_{u}\right): \sigma_{F}(\theta)=0\right\}
$$

Quadratic characteristics

In coordinates to compute the characteristic variety one converts the symbol of linearization of F ("Fourier transform": $\partial_{i} \mapsto p_{i}$)

$$
\sigma_{F}=\sum_{|\alpha|=\ell} \sigma_{\alpha}(u) \partial_{\alpha} \quad \text { to the polynomial } \quad \sigma_{F}(p)=\sum_{|\alpha|=\ell} \sigma_{\alpha}(u) p^{\alpha}
$$

where $p=\left(p_{1}, \ldots, p_{d}\right)$ is a coordinate on the fiber of $T^{*} M_{u}$ and $p^{\alpha}=p_{1}^{i_{1}} \cdots p_{d}^{i_{d}}$ for a multi-index $\alpha=\left(i_{1}, \ldots, i_{d}\right)$.
For second order PDEs the characteristic variety is a field of quadrics. We will assume it is nondegenerate and hyperbolic, i.e. $\operatorname{det}\left(\sigma_{i j}(u)\right) \neq 0$ and $\operatorname{Char}\left(\mathcal{E}^{\mathbb{C}}\right)=\operatorname{Char}(\mathcal{E})^{\mathbb{C}}$, respectively.
The nondegeneracy of σ_{F} implies that is inverse

$$
g_{F}=\sum_{i j} g_{i j}(u) d x^{i} d x^{j}, \quad\left(g_{i j}(u)\right)=\left(\sigma_{i j}(u)\right)^{-1}
$$

defines a symmetric bilinear form on $T_{x} M_{u}$. The canonical conformal structure $c_{F}=\left[g_{F}\right]$ on solutions of \mathcal{E} is a base for geometric approach to integrability.

Systems and multiple characteristics

For the system we have a matrix representation of σ_{F} and the characteristic condition is its non-maximal rank.

Example: 3D

The Manakov-Santini system \mathcal{E}
$P(u)=-u_{x}^{2}, P(v)=0 ; \quad P=\partial_{x} \partial_{t}-\partial_{y}^{2}+\left(u-v_{y}\right) \partial_{x}^{2}+v_{x} \partial_{x} \partial_{y}$,
has $\sigma_{F}(p)=\left(\begin{array}{cc}\sigma_{P}(p) & 0 \\ 0 & \sigma_{P}(p)\end{array}\right)$, where

$$
\sigma_{P}(p)=p_{x} p_{t}-p_{y}^{2}+\left(u-v_{y}\right) p_{x}^{2}+v_{x} p_{x} p_{y}
$$

and so the characteristic variety $\sigma_{P}(p)=0$ (of multiplicity 2) is a nondegenerate quadric with the conformal structure:

$$
g=-\left(d y-v_{x} d t\right)^{2}+4\left(d x-\left(u-v_{y}\right) d t\right) d t .
$$

Example: 4D

The DFK master-equation \mathcal{E} for SD

$$
\begin{gathered}
\partial_{x} Q(u)-\partial_{y} Q(v)=0 \\
\left(\partial_{w}-u_{y} \partial_{x}+v_{y} \partial_{y}\right) Q(v)+\left(\partial_{z}+u_{x} \partial_{x}-v_{x} \partial_{y}\right) Q(u)=0 \\
Q=\partial_{x} \partial_{w}+\partial_{y} \partial_{z}-u_{y} \partial_{x}^{2}+\left(u_{x}+v_{y}\right) \partial_{x} \partial_{y}-v_{x} \partial_{y}^{2}
\end{gathered}
$$

has $\sigma_{Q}(p)=p_{x} p_{w}+p_{y} p_{z}-u_{y} p_{x}^{2}+\left(u_{x}+v_{y}\right) p_{x} p_{y}-v_{x} p_{y}^{2}$ and

$$
\sigma_{F}(p)=\left(\begin{array}{cc}
p_{x} \sigma_{Q}(p) & -p_{y} \sigma_{Q}(p) \\
\left(p_{z}+u_{x} p_{x}-v_{x} p_{y}\right) \sigma_{Q}(p) & \left(p_{w}-u_{y} p_{x}+v_{y} p_{y}\right) \sigma_{Q}(p)
\end{array}\right)
$$

so that the characteristic variety $\sigma_{Q}(p)=0$ (of multiplicity 3) is a nondegenerate quadric with the conformal structure on every solution of \mathcal{E} given as follows:

$$
g=d x d w+d y d z+u_{y} d w^{2}-\left(u_{x}+v_{y}\right) d z d w+v_{x} d z^{2} .
$$

Dispersionless Lax pairs (dLp)

Definition

A dispersionless pair of order N is a bundle $\hat{\pi}: \hat{M}_{u} \rightarrow M_{u}$ (correspondence space), whose fibres are connected curves, together with a rank 2 distribution $\hat{\Pi} \subseteq T \hat{M}_{u}$ such that:

- $\forall \hat{\boldsymbol{x}} \in \hat{M}_{u}, \hat{\Pi}(\hat{\boldsymbol{x}})$ depends only on $j_{\boldsymbol{x}}^{N} u$;
- $\hat{\Pi}$ is transversal to the fibres of $\hat{\pi}$.

Thus $\Pi(\hat{\boldsymbol{x}}):=(d \hat{\pi})_{\hat{\boldsymbol{x}}}(\hat{\Pi}) \subset T_{\boldsymbol{x}} M$ is a 2 -plane congruence.
A spectral parameter is a local fibre coordinate λ on $\hat{\pi}$.

- $\hat{\Pi} \sim \hat{\Pi}^{\prime}$ if $\forall u \in \operatorname{Sol}(\mathcal{E}): \hat{\Pi}=\hat{\Pi}^{\prime}$ on \hat{M}_{u};
- $\hat{\Pi}$ is a dispersionless Lax pair for \mathcal{E} if for any $\hat{\Pi}^{\prime} \sim \hat{\Pi}$, the Frobenius integrability condition $\left[\Gamma\left(\hat{\Pi}^{\prime}\right), \Gamma\left(\hat{\Pi}^{\prime}\right)\right] \subseteq \Gamma\left(\hat{\Pi}^{\prime}\right)$ is a nontrivial differential corollary of \mathcal{E}.

First crucial ingredient: characteristic condition

Claim

A $d L p \hat{\Pi}$ is characteristic for \mathcal{E}, i.e. $\forall u \in \operatorname{Sol}(\mathcal{E}), \hat{\boldsymbol{x}} \in \hat{M}_{u}$ and $\theta \in \operatorname{Ann}(\Pi(\hat{\boldsymbol{x}})) \subseteq T_{\boldsymbol{x}}^{*} M_{u}$ we have $\sigma_{F}(\theta)=0 \Leftrightarrow[\theta] \in \operatorname{Char}(\mathcal{E})$.

This means that for each solution u and $\hat{\boldsymbol{x}} \in \hat{M}_{u}, \Pi(\hat{\boldsymbol{x}})$ is a coisotropic 2 -plane for the conformal structure c_{F}. Such 2-planes can only exist for $2 \leq d \leq 4$: for $d=2$ the condition is vacuous; for $d=3$ the coisotropic 2 -planes at each point \boldsymbol{x} form a rational conic \mathbb{P}^{1}; for $d=4$ the form a disjoint union of two rational curves $2 \times \mathbb{P}^{1}$, the so-called α-planes and β-planes.

The passage from a 2-plane congruence $\Pi=\langle X, Y\rangle$ to a dLp can be understood as a lift, with respect to the projection $\hat{\pi}$:

$$
\hat{X}=X+m \partial_{\lambda}, \quad \hat{Y}=Y+n \partial_{\lambda} .
$$

The resulting rank 2 distribution $\hat{\Pi}=\langle\hat{X}, \hat{Y}\rangle$ is integrable $\bmod \mathcal{E}$ (on-shell), but not identically (off-shell).

Second crucial ingredient: projective condition

Definition

The dispersionless pair $\hat{\Pi} \subseteq T \hat{M}_{u}$ is normal if the derived distribution $\partial \hat{\Pi}=[\hat{\Pi}, \hat{\Pi}]$ is tangent to the $\hat{\pi}$-fibres for general u (off-shell), i.e. $\forall \hat{\boldsymbol{x}}=(\boldsymbol{x}, \lambda) \in \hat{M}_{u}: \hat{\pi}_{*}(\partial \hat{\Pi}(\hat{\boldsymbol{x}}))=\Pi(\boldsymbol{x}, \lambda)$.

Thus in this case the only integrability condition is the vanishing $\bmod \mathcal{E}$ of the vertical direction of the commutator $[\hat{X}, \hat{Y}] \bmod \hat{\Pi}$.

Claim

Let $d=3$ and let Π be a nondegenerate quadratic 2-plane congruence on a \mathbb{P}^{1}-bundle $\hat{M} \rightarrow M$. Then Weyl connections parametrize normal lifts $\hat{\Pi}$ of Π such that the ∂_{λ} coefficient of a λ-independent vector field V on M_{u} is quadratic in λ for some choice of the spectral parameter λ (the projective property).

Note that for $d=4$ no additional ingredient (connection) is required for the lift.

Theorem (D. Calderbank \& BK 2016-2018)

Let $\mathcal{E}: F=0$ be a nondegenerate determined PDE system in 3D or 4D whose characteristic variety is a quadric. Let c_{F} be the corresponding conformal structure. Then the integrability of \mathcal{E} by a nondegenerate dispersionless Lax pair is equivalent to
3D: the Einstein-Weyl property for c_{F} on any solution of the PDE; 4D: the self-duality property for c_{F} on any solution of the PDE.
\qquad

Theorem (D. Calderbank \& BK 2016-2018)

Let $\mathcal{E}: F=0$ be a nondegenerate determined PDE system in 3D or 4D whose characteristic variety is a quadric. Let c_{F} be the corresponding conformal structure. Then the integrability of \mathcal{E} by a nondegenerate dispersionless Lax pair is equivalent to
3D: the Einstein-Weyl property for c_{F} on any solution of the $P D E$;
4D: the self-duality property for c_{F} on any solution of the PDE.
Proof: Given a dLp use its characteristic property to construct the correspondence space $\hat{M}_{u}: \hat{\Pi}$ is c_{F}-coisotropic on-shell, extend to a Zariski dense set of u off-shell. $\widehat{\Pi}$ yields a 2 -foliation on-shell, projects to $(d-1)$-parametric null totally geodesic foliation of M_{u}. By Cartan $(d=3)$ and Penrose $(d=4)$ this is equiv to EW/SD.
Conversely, let $\forall u \in \operatorname{Sol}(\mathcal{E})$ the structure c_{F} is EW or SD . Let $\hat{\pi}: \hat{M}_{u} \rightarrow M_{u}$ be the bundle of null 2 -planes/ α-planes. The normal lifts with projective property are bijective with Weyl connections for $d=3$, while for $d=4$ the normal lift is unique. This lifts the 2-plane congruence Π to a dLp $\hat{\Pi}$, unique up to equivalence. \square

Weyl potential \rightsquigarrow dLp

Let \mathcal{E} be a PDE with quadratic characteristic variety and such that its conformal structure c_{F} has EW property, with Weyl covector $\omega=\omega_{i} \theta^{i}$. Then \mathcal{E} is integrable and the corresponding dispersionless Lax pair can be calculated explicitly (no integration). Let us introduce the so-called null coframe $\theta^{0}, \theta^{1}, \theta^{2}$ (it depends on a finite jet of a solution $u \in \operatorname{Sol}(\mathcal{E}))$ such that

$$
g_{F}=4 \theta^{0} \theta^{2}-\left(\theta^{1}\right)^{2} .
$$

Let V_{0}, V_{1}, V_{2} be the dual frame, and let $c_{i j}^{k}$ be the structure functions defined by commutator expansions $\left[V_{i}, V_{j}\right]=c_{i j}^{k} V_{k}$.
The Lax pair is given by vector fields

$$
\hat{X}=V_{0}+\lambda V_{1}+m \partial_{\lambda}, \quad \hat{Y}=V_{1}+\lambda V_{2}+n \partial_{\lambda}
$$

where

$$
\begin{aligned}
m & =\left(\frac{1}{2} c_{12}^{1}-\frac{1}{4} \omega_{2}\right) \lambda^{3}+\left(\frac{1}{2} c_{02}^{1}-c_{12}^{2}-\frac{1}{2} \omega_{1}\right) \lambda^{2}+\left(\frac{1}{2} c_{01}^{1}-c_{02}^{2}-\frac{1}{4} \omega_{0}\right) \lambda-c_{01}^{2}, \\
n & =-c_{12}^{0} \lambda^{3}+\left(\frac{1}{2} c_{12}^{1}-c_{02}^{0}+\frac{1}{4} \omega_{2}\right) \lambda^{2}+\left(\frac{1}{2} c_{02}^{1}-c_{01}^{0}+\frac{1}{2} \omega_{1}\right) \lambda+\left(\frac{1}{2} c_{01}^{1}+\frac{1}{4} \omega_{0}^{2}\right)
\end{aligned}
$$

General integrable systems in 3D

For Hirota type PDEs of the second order $F\left(u_{i j}\right)=0$ in 3D integrability and Monge-Ampère property imply linearizability by a contact transformation. The general integrable equation is a modular form. The EW background structure is given by g_{F} and the following components of the Weyl covector

$$
\omega_{k}=2 g_{k j} \mathcal{D}_{x^{s}}\left(g^{j s}\right)+\mathcal{D}_{x^{k}}\left(\ln \operatorname{det} g_{i j}\right) .
$$

For general PDEs of second order $F\left(x^{i}, u, u_{i}, u_{i j}\right)=0$ this formula is not applicable. Yet the EW structure can be determined.

Theorem (S.Berjawi, E.Ferapontov, BK, V.Novikov)

For nondegenerate non-Monge-Ampère equations of second order with EW property, the Weyl covector ω is algebraically determined.

Corollary

Under the above condition, the dispersionless Lax pair is algebraically determined by the equation.

General integrable systems in 4D

For Hirota type PDEs of the second order $F\left(u_{i j}\right)=0$ in 4D integrability implies the Monge-Ampère property as proved by Ferapontov-BK-Novikov (2019). Such equations were investigated by Doubrov-Ferapontov (2010): classification over \mathbb{C} consists of 6 versions of Plebanski heavenly equation (in fact, one is linear: ultra-wave PDE) obtained by deformations of

$$
\alpha u_{12} u_{34}+\beta u_{13} u_{24}+\gamma u_{14} u_{23}=0, \quad \alpha+\beta+\gamma=0 .
$$

For translation non-invariant PDEs we have:

Theorem (S.Berjawi, E.Ferapontov, BK, V.Novikov)

Every nondegenerate equation of second order with SD property must be of Monge-Ampère type. Freezing 1-jet of a solution we get one gets a PDE that is contact equivalent to one of Plebanski type heavenly equations.

- D. Calderbank, B. Kruglikov, Integrability via geometry: dispersionless differential equations in three and four dimensions, Comm. Math. Phys. 382 (2021)
- B. Doubrov, E. Ferapontov, On the integrability of symplectic Monge-Ampère equations, J. Geom. Phys. 60 (2010)
- F. Cléry, E. Ferapontov, Dispersionless Hirota equations and the genus 3 hyperelliptic divisor, Comm. Math. Phys. (2020)
- E. Ferapontov, B. Kruglikov, V. Novikov, Integrability of dispersionless Hirota type equations in 4D and the symplectic Monge-Ampère property, IMRN (2020)
- S. Berjawi, E. Ferapontov, B. Kruglikov, V. Novikov, Second-order PDEs in 4D with half-flat conformal structure, Proc. Royal Soc. A. 476 (2020)
- S. Berjawi, E. Ferapontov, B. Kruglikov, V. Novikov, Second-order PDEs in 3D with Einstein-Weyl conformal structure, arXiv:2104.02716 (2021)

Homework: on Cartan's $(2,3,5)$ and Engel distributions

- When $d=4$, then every 2 -plane congruence Π on M_{u} has a unique normal lift. Check that generically, off-shell, $\Delta=\pi_{*}^{-1}(\Pi) \subset T \hat{M}_{u}$ is a nonholonomic rank 3 distribution with $[\Delta, \Delta]=T \hat{M}_{u}$, i.e., it has the growth vector $(3,5)$ and, following Cartan, there is a unique rank 2 subbundle $\hat{\Pi} \subset \Delta$ with $[\hat{\Pi}, \hat{\Pi}]=\Delta$. This rank 2 distribution has growth $(2,3,5)$ off-shell and is Frobenius integrable on-shell.
- When $d=3$, the normal lift of a 2-plane congruence Π is not unique. Instead, the rank 3 distribution $\Delta=\pi_{*}^{-1}(\Pi) \subset T \hat{M}_{u}$ has a unique Cauchy characteristic: a rank 1 subbundle $\mathcal{C} \subset \Delta$ with $[\mathcal{C}, \Delta]=\Delta$. For a rank 2 subbundle $\hat{\Pi} \subset \Delta$ the normality condition $[\hat{\Pi}, \hat{\Pi}] \subset \Delta$ implies that $\mathcal{C} \subset \hat{\Pi}$, but one generator of $\hat{\Pi}$ remains undetermined and is given by a choice of Weyl connection.

