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Systems of hydrodynamic type: 1 + 1D

Systems of hydrodynamic type E in 2D have the form

Ut = A(U)Ux ⇔ uit = aij(u
1, . . . , un)ujx.

This first order evolutionary PDE is translationally invariant, and
its characteristic variety is completely reducible over C:

Char(E) = {[pt : px] | det
(
A− pt

px
1
)

= 0}.
We consider systems that by a change of dependent variables
U 7→ V (U) transform into a diagonal form in Riemann invariants

rit = λi(r)rix, r = (r1, . . . , rn) (†)
(no summation by i). Then Char(E) = ∪ni=1[λ

i : 1] ⊂ P1.

The criterion of diagonalizability of the endomorphism field on the
space of dependent vairables Rn(U) is the vanishing of the
Haantjes tenor 0 = HA ∈ Λ2Rn ⊗ Rn, where

NA(v, w) = [Av,Aw]−A[v,Aw]−A[Av,w] +A2[v, w],

HA(v, w) = NA(Av,Aw)−ANA(v,Aw)−ANA(Av,w) +A2NA(v, w).
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Gradient catastrophes

Contrary to dispersive equations, dispersionless PDEs often exhibit
blow-up of solutions in finite time or gradient blow-up/singularities.

Example: Hopf (or inviscid Burgers’) equation rt = r rx
can be rewritten as dr ∧ (dx+ r dt) = 0, so that
dr = 0 ⇔ dx+ r dt = 0. This leads to multi-valued solutions
given implicitly x+ rt = f(r). (See Maple for plots.)

Hugoniot-Rankine conditions use conservation laws to produce
single-valued shock wave solutions. Dispersive perturbations
lead to regularization of shocks.

Linearly degenerate systems are characterised by the condition
∂iλi = 0, where ∂i = ∂ri , for i = 1, . . . , n. Linear degeneracy
prevents breakdown of smooth initial data ri(x, 0).
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2D: Semi-Hamiltonian property

Diagonal system (†) is called semi-Hamiltonian if its characteristic
speeds λi(r) satisfy the relations (again ∂i = ∂ri)

∂i

( ∂jλ
k

λj − λk
)

= ∂j

( ∂iλ
k

λi − λk
)
∀i 6= j 6= k 6= i. (‡)

For instance, ∀ ci = const and function φ of 1 argument the
diagonal system with λi = ri + φ(cir

i) is semi-Hamiltonian.

Relation to integrablity and Hamiltonian property.

Novikov conjecture: PDE system E is Hamiltonian and
diagonalizable ⇒ integrable.

Tsarev: Hamiltonian and diagonalizable ⇒ semi-Hamiltonian
with ∞ hydrodynamic conservation laws and symmetries.

Ferapontov: Reverse statement is wrong, but true for non-local
Hamiltonians expressed as ∞ tail pseudo-differential operator.
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Symmetries and conservation laws

Hydrodynamic symmetry corresponds to commuting flow

rit = λi(r)rix, riτ = µi(r)rix (4)

meaning compatibility ritτ = riτt due to (4), i.e. equation E
together with its symmetry. This is equivalent to the relations

∂jµ
i

µj − µi
=

∂jλ
i

λj − λi
∀i 6= j.

Given λi(r) this is an overdetermined (for n > 2) linear PDE
system on µi(r). It is compatible iff λi(r) satisfy the
semi-Hamiltonian property (‡). The travelling wave reductions
correspond to λi/µi = const: ri = ri(x, t+ cτ).

Thus system (†) is semi-Hamiltonian iff it possesses infinitely many
symmetries parametrized by n functions of 1 variable.
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Symmetries and conservation laws

Conservation laws ω = g dt+ h dx with density h(r) and flux g(r)
satisfy dω = 0 by virtue of (†) iff the following relations hold

∂ig = λi∂ih (∇)

(no summation), which by elimination of g (compatibility
conditions) yields

∂i∂jh =
∂jλ

i

λj − λi
∂ih+

∂iλ
j

λi − λj
∂jh ∀i 6= j.

Involutivity of this overdetermined PDE system is equivalent to the
semi-Hamiltonian property (‡).

Thus system (†) is semi-Hamiltonian iff it possesses infinitely many
conservation laws parametrized by n functions of 1 variable.
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Hydrodynamic systems: Exact solutions

Given a hydrodynamic symmetry (4) the following implicit relation

x+ λi(r)t = µi(r), 1 ≤ i ≤ n

provides a solution ri = ri(t, x), i = 1, . . . , n, to the PDE E given
by (†). This is the generalized hodograph formula of Tsarev.

Since for semi-Hamiltonian systems, commuting flows µi depend
on n arbitrary functions of 1 variable, the generalised hodograph
formula provides a generic solution of system E .

Similarly given a conservation law (∇) the nonlocal first integrals
f =

∫
ω ⇔ ω = df provide solutions to (†).

Note that if ∂iλ
j is symmetric in i, j (for instance when NA = 0,

which is a stronger condition than HA = 0) then the equation for
symmetries implies the equation for conservation laws (like in
Noether theorem) with µi = ∂ih.
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3D: hydrodynamic reductions

The method of hydrodynamic reductions in 3D applies to
quasilinear differential equations E of the form

A(U)Ux +B(U)Uy + C(U)Ut = 0,

where (not necessary square) matrices A,B,C are such that the
general solution of E depends on m ≥ 2 functions of 2 variables.
The method consists of reductions of the form

U = U(r1, . . . , rn)

and the phases satisfy a pair of commuting equations

rit = λi(r)rix, riy = µi(r)rix.

The commutativity condition of this system are precisely the same
as for hydrodynamic symmetries of 1 + 1 dimensional systems.

Definition

System E is integrable in hydrodynamic sense if ∀n ∃ n-component
reductions are parametrized by n arbitrary functions of 1 argument.
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Multi-phase solutions: 3 implies ∞
One-phase solutions U = U(r), r = r(x, y, t), satisfy

rt = λ(r)rx, ry = µ(r)rx.

No obstructions. Such solutions are constant along one-parameter
family of planes

x+ λ(r)t+ µ(r)y + ν(r) = 0

Two-phase solutions U = U(r1, r2), ri = ri(x, y, t), satisfy

rit = λi(r)rx, riy = µi(r)rx (i = 1, 2).

Again, no obstructions. Such solutions are constant along
two-parameter family of lines

x+λ1(r)t+µ1(r)y+ν1(r) = 0, x+λ2(r)t+µ2(r)y+ν2(r) = 0.

Three-phase solutions may not exist in general. In fact they impact
integrability: the existence of general 3-phase solutions implies the
existence of n-phase solutions for any n ≥ 3.
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Example of dKP

The dKP equation (ut − uux)x = uyy can be rewritten in the
first-order (hydrodynamic) form

ut − uux = vy, uy = vx.

Then n-phase solutions u = u(r1, . . . , rn), v = v(r1, . . . , rn)

rit = λi(r)rix, riy = µi(r)rix.

satisfy the following relations eliminating λi(r), v(r)

λi = u+ (µi)2, ∂iv = µi∂iu,

together with the following constraints on u(r), µi(r) for i 6= j:

∂jµ
i =

∂ju

µj − µi
, ∂iju =

2 ∂i u∂ju

(µj − µi)2
.

This Gibbons-Tsarev system is in involution, so its general local
solution depends on 2n n functions of 1 variable.
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Higher dimensional hydrodynamic reductions
Similarly we can treat higher dimensional cases. For instance in 4D
the first Plebansky heavenly equation

utxuyz − utyuxz = 1

can be rewritten in the first order quasi-linear form via the
substitution utx = a, uyz = b, uty = c, uxz = ab−1

c :

ay = cx, az =
(ab− 1

c

)
t
, bt = cz, bx =

(ab− 1

c

)
y
.

Expressing these in terms of Riemann invariants ri subject to

rit = λi(r)rix, riy = µi(r)rix, riz = ηi(r)rix,

we obtain another Gibbons-Tsarev system in involution, whence a
general local solution depending on 3n 2n functions of 1 variable.

Definition

System E with d independent variables is integrable in
hydrodynamic sense if ∀n ∃ n-component reductions are
parametrized by (d− 2)n arbitrary functions of 1 argument.
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Equivalence of approaches

There are several types of PDE systems that are subject to the
method of hydrodynamic reductions. For instance, Hirotha type
equations

F (∂2u) = 0, where ∂2u = (uij : 1 ≤ i ≤ j ≤ d)

or quasilinear second order PDE∑
aij(∂u)uij = 0, where ∂u = (ui : 1 ≤ i ≤ d).

Theorem (E. Ferapontov & BK 2014)

Let E be a nondegenerate determined PDE system in 3D or 4D of
one of the above types. Then its integrability by the method of
hydrodynamic reductions is equivalent to the existence of a
dispersionless Lax pair (dLp). Moreover, the PDE is a reduction of
an integrable background geometry: EW in 3D and SD in 4D.

In 3D the Lax pair can be also taken as dZp in 3D.
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(3D) Einstein-Weyl equation (EW)

A Weyl structure on M3 is the pair ([g],D): a conformal structure
and a linear connection preserving it. This condition writes so:

Dg = ω ⊗ g.

A choice of via 1-form ω is equivalent to a choice of D.

For the general linear connection D, its Ricci tensor RicD needs not
be symmetric: RicaltD ∼ dω. The Einstein-Weyl equation is

RicsymD = Λ g for some Λ ∈ C∞(M).

The pair ([g],D) is an Einstein-Weyl structure if it satisfies the
above 5 second order PDEs on 5 entries of the conformal structure
and 3 of the covector.

For ω = 0 the connection D is Levi-Civita, and the above is just
the Einstein equation. EW are generalize Einstein structures.
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(4D) Self-duality equation (SD)

In 4D the Weyl curvature W is the fundamental invariant of a
conformal structure [g]. The Hodge operator acts on the space
(S2Λ2TM)0 of Weyl tensors and it is an involution for Riemannian
or neutral signature, whence the split W = W+ +W− into
self-dual and anti-self-dual parts. The structure [g] is self-dual if
W− = 0. These are 5 second order PDEs on the 9 entries of [g]:

∗Wg = Wg.

Both EW and SD (or ASD) equations are Lax-integrable, as well as
some of their reductions, e.g. anti-self dual Einstein (=heavenly)
equations. Several other PDEs have been obtained as (symmetry)
reductions of the two equations, allowing to think of them as
master-equations in 3D and 4D respectively.
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Explicit form of EW system

According to Hitchin, the system of EW equations is integrable
(via twistor theory). We will write its PDEs in a proper gauge.

Theorem (M. Dunajski, E. Ferapontov & BK 2015)

Any Lorentzian Einstein-Weyl structure is locally of the form

g = −(dy − vxdt)2 + 4(dx− (u− vy)dt)dt,
ω = −vxxdy + (4ux − 2vxy + vxvxx)dt,

where the functions u, v on M3 satisfy

P (u) = −u2x, P (v) = 0; P = ∂x∂t − ∂2y + (u− vy)∂2x + vx∂x∂y.

The above coupled second-order PDE system, known as the
Manakov-Santini (MS) system, has the Lax pair

L1 = ∂y − (λ+ vx)∂x − ux∂λ,
L2 = ∂t − (λ2 + vxλ− u+ vy)∂x − (uxλ+ uy)∂λ.
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Explicit form of SD/ASD equations

According to Penrose, the system of (A)SD equations is integrable
(via twistor theory). We will write its PDEs in a proper gauge.

Theorem (M. Dunajski, E. Ferapontov & BK 2015)

Any ASD conformal structure of signature (2,2) has local form

g = dx dw + dy dz + uydw
2 − (ux + vy) dz dw + vxdz

2,

where the functions u, v on M4 satisfy

∂xQ(u)− ∂yQ(v) = 0,

(∂w − uy∂x + vy∂y)Q(v) + (∂z + ux∂x − vx∂y)Q(u) = 0,

Q = ∂x∂w + ∂y∂z − uy∂2x + (ux + vy)∂x∂y − vx∂2y .

The above coupled third-order PDE system (DFK) has the Lax pair

L1 = ∂w − uy∂x + (λ+ vy)∂y +Q(u)∂λ,

L2 = ∂z + (λ+ ux)∂x − vx∂y −Q(v)∂λ.
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Homework: SD/EW

CP 2 has SD structure, and CP 2 has ASD structure.
What about CP 2#CP 2?

Quotient CP 2 = SU(3)/U(2) equipped with FS metric by the
Killing field from SO(2). What’s the corresponding EW str?

Consider the round metric on S3. How many Weyl covectors
ω satisfying EW does it possess mod isometry group SO(3)?
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