Dispersionless integrable systems (II)

Boris Kruglikov (UiT the Arctic University of Norway)

GRIEG seminar 2021

Boris Kruglikov (UiT Tromsø Norway)

ব া চ ব লী চ ব ই চ ব ই চ হ তিও Dispersionless integrable systems (II) * GRIEG 2021

Systems of hydrodynamic type: 1 + 1 D

Systems of hydrodynamic type ${\ensuremath{\mathcal E}}$ in 2D have the form

$$U_t = A(U)U_x \quad \Leftrightarrow u_t^i = a_j^i(u^1, \dots, u^n)u_x^j.$$

This first order evolutionary PDE is translationally invariant, and its characteristic variety is completely reducible over \mathbb{C} :

$$\operatorname{Char}(\mathcal{E}) = \{ [p_t : p_x] \mid \det \left(A - \frac{p_t}{p_x} \mathbb{1} \right) = 0 \}.$$

We consider systems that by a change of dependent variables $U \mapsto V(U)$ transform into a diagonal form in Riemann invariants

$$r_t^i = \lambda^i(\boldsymbol{r}) r_x^i, \quad \boldsymbol{r} = (r^1, \dots, r^n) \tag{(\dagger)}$$

(no summation by i). Then $\operatorname{Char}(\mathcal{E}) = \bigcup_{i=1}^{n} [\lambda^{i} : 1] \subset \mathbb{P}^{1}$.

The criterion of diagonalizability of the endomorphism field on the space of dependent vairables $\mathbb{R}^n(U)$ is the vanishing of the Haantjes tenor $0 = H_A \in \Lambda^2 \mathbb{R}_n \otimes \mathbb{R}^n$, where

 $N_A(v, w) = [Av, Aw] - A[v, Aw] - A[Av, w] + A^2[v, w],$ $H_A(v, w) = N_A(Av, Aw) - AN_A(v, Aw) - AN_A(Av, w) + A^2N_A(v, w).$ Contrary to dispersive equations, dispersionless PDEs often exhibit blow-up of solutions in finite time or gradient blow-up/singularities.

Example: Hopf (or inviscid Burgers') equation $r_t = r r_x$ can be rewritten as $dr \wedge (dx + r dt) = 0$, so that $dr = 0 \Leftrightarrow dx + r dt = 0$. This leads to multi-valued solutions given implicitly x + rt = f(r). (See Maple for plots.)

Hugoniot-Rankine conditions use conservation laws to produce single-valued shock wave solutions. Dispersive perturbations lead to regularization of shocks.

Linearly degenerate systems are characterised by the condition $\partial_i \lambda_i = 0$, where $\partial_i = \partial_{r^i}$, for i = 1, ..., n. Linear degeneracy prevents breakdown of smooth initial data $r^i(x, 0)$.

(日) (四) (三) (三) (三) (三)

2D: Semi-Hamiltonian property

Diagonal system (†) is called semi-Hamiltonian if its characteristic speeds $\lambda^i(\mathbf{r})$ satisfy the relations (again $\partial_i = \partial_{r^i}$)

$$\partial_i \left(\frac{\partial_j \lambda^k}{\lambda^j - \lambda^k} \right) = \partial_j \left(\frac{\partial_i \lambda^k}{\lambda^i - \lambda^k} \right) \quad \forall i \neq j \neq k \neq i.$$
(‡)

For instance, $\forall c_i = \text{const}$ and function ϕ of 1 argument the diagonal system with $\lambda^i = r^i + \phi(c_i r^i)$ is semi-Hamiltonian.

Relation to integrablity and Hamiltonian property.

Novikov conjecture: PDE system ${\cal E}$ is Hamiltonian and diagonalizable \Rightarrow integrable.

Tsarev: Hamiltonian and diagonalizable \Rightarrow semi-Hamiltonian with ∞ hydrodynamic conservation laws and symmetries.

Ferapontov: Reverse statement is wrong, but true for non-local Hamiltonians expressed as ∞ tail pseudo-differential operator.

(日)

Symmetries and conservation laws

Hydrodynamic symmetry corresponds to commuting flow

$$r_t^i = \lambda^i(\boldsymbol{r}) r_x^i, \quad r_\tau^i = \mu^i(\boldsymbol{r}) r_x^i \qquad (\triangle)$$

meaning compatibility $r_{t\tau}^i = r_{\tau t}^i$ due to (\triangle), i.e. equation \mathcal{E} together with its symmetry. This is equivalent to the relations

$$\frac{\partial_j \mu^i}{\mu^j - \mu^i} = \frac{\partial_j \lambda^i}{\lambda^j - \lambda^i} \quad \forall i \neq j.$$

Given $\lambda^i(\mathbf{r})$ this is an overdetermined (for n > 2) linear PDE system on $\mu^i(\mathbf{r})$. It is compatible iff $\lambda^i(\mathbf{r})$ satisfy the semi-Hamiltonian property (‡). The travelling wave reductions correspond to $\lambda^i/\mu^i = \text{const:} \ r^i = r^i(x, t + c\tau)$.

Thus system (\dagger) is semi-Hamiltonian iff it possesses infinitely many symmetries parametrized by n functions of 1 variable.

▶ ★ □ ▶ ★ □ ▶ ★ □ ▶ → □

Symmetries and conservation laws

Conservation laws $\omega = g dt + h dx$ with density $h(\mathbf{r})$ and flux $g(\mathbf{r})$ satisfy $d\omega = 0$ by virtue of (†) iff the following relations hold

$$\partial_i g = \lambda^i \partial_i h \tag{(\nabla)}$$

(no summation), which by elimination of g (compatibility conditions) yields

$$\partial_i \partial_j h = \frac{\partial_j \lambda^i}{\lambda^j - \lambda^i} \partial_i h + \frac{\partial_i \lambda^j}{\lambda^i - \lambda^j} \partial_j h \quad \forall i \neq j.$$

Involutivity of this overdetermined PDE system is equivalent to the semi-Hamiltonian property (\ddagger) .

Thus system (\dagger) is semi-Hamiltonian iff it possesses infinitely many conservation laws parametrized by n functions of 1 variable.

(日) (四) (三) (三) (三) (三)

Hydrodynamic systems: Exact solutions

Given a hydrodynamic symmetry (riangle) the following implicit relation

$$x + \lambda^i(\mathbf{r})t = \mu^i(\mathbf{r}), \quad 1 \le i \le n$$

provides a solution $r^i = r^i(t, x)$, $i = 1, \ldots, n$, to the PDE \mathcal{E} given by (†). This is the generalized hodograph formula of Tsarev.

Since for semi-Hamiltonian systems, commuting flows μ^i depend on n arbitrary functions of 1 variable, the generalised hodograph formula provides a generic solution of system \mathcal{E} .

Similarly given a conservation law (∇) the nonlocal first integrals $f = \int \omega \Leftrightarrow \omega = df$ provide solutions to (†). Note that if $\partial_i \lambda^j$ is symmetric in i, j (for instance when $N_A = 0$, which is a stronger condition than $H_A = 0$) then the equation for symmetries implies the equation for conservation laws (like in Noether theorem) with $\mu^i = \partial_i h$.

(日) (四) (三) (三) (三) (三)

3D: hydrodynamic reductions

The method of hydrodynamic reductions in 3D applies to quasilinear differential equations ${\cal E}$ of the form

 $A(U)U_x + B(U)U_y + C(U)U_t = 0,$

where (not necessary square) matrices A,B,C are such that the general solution of ${\mathcal E}$ depends on $m\geq 2$ functions of 2 variables. The method consists of reductions of the form

$$U = U(r^1, \dots, r^n)$$

and the phases satisfy a pair of commuting equations

$$r_t^i = \lambda^i(\boldsymbol{r})r_x^i, \quad r_y^i = \mu^i(\boldsymbol{r})r_x^i.$$

The commutativity condition of this system are precisely the same as for hydrodynamic symmetries of 1+1 dimensional systems.

Definition

System \mathcal{E} is integrable in hydrodynamic sense if $\forall n \exists n$ -component reductions are parametrized by n arbitrary functions of 1 argument.

Multi-phase solutions: 3 implies ∞

One-phase solutions U = U(r), r = r(x, y, t), satisfy

$$r_t = \lambda(r)r_x, \quad r_y = \mu(r)r_x.$$

No obstructions. Such solutions are constant along one-parameter family of planes

$$x + \lambda(r)t + \mu(r)y + \nu(r) = 0$$

Two-phase solutions $U = U(r^1, r^2)$, $r^i = r^i(x, y, t)$, satisfy

$$r_t^i = \lambda^i(\boldsymbol{r}) r_x, \quad r_y^i = \mu^i(\boldsymbol{r}) r_x \quad (i = 1, 2).$$

Again, no obstructions. Such solutions are constant along two-parameter family of lines

$$x + \lambda^{1}(\mathbf{r})t + \mu^{1}(\mathbf{r})y + \nu^{1}(\mathbf{r}) = 0, \ x + \lambda^{2}(\mathbf{r})t + \mu^{2}(\mathbf{r})y + \nu^{2}(\mathbf{r}) = 0.$$

Three-phase solutions may not exist in general. In fact they impact integrability: the existence of general 3-phase solutions implies the existence of *n*-phase solutions for any $n \ge 3$.

Boris Kruglikov (UiT Tromsø Norway)

Dispersionless integrable systems (II) * GRIEG 2021

Example of dKP

The dKP equation $(u_t - uu_x)_x = u_{yy}$ can be rewritten in the first-order (hydrodynamic) form

$$u_t - uu_x = v_y, \qquad u_y = v_x.$$

Then *n*-phase solutions $u = u(r^1, \ldots, r^n)$, $v = v(r^1, \ldots, r^n)$

$$r_t^i = \lambda^i(\boldsymbol{r}) r_x^i, \qquad r_y^i = \mu^i(\boldsymbol{r}) r_x^i.$$

satisfy the following relations eliminating $\lambda^i({\bm r}), v({\bm r})$

$$\lambda^i = u + (\mu^i)^2, \qquad \partial_i v = \mu^i \partial_i u_i$$

together with the following constraints on $u(\mathbf{r}), \mu^i(\mathbf{r})$ for $i \neq j$:

$$\partial_j \mu^i = \frac{\partial_j u}{\mu^j - \mu^i}, \qquad \partial_{ij} u = \frac{2 \partial_i u \partial_j u}{(\mu^j - \mu^i)^2}.$$

This Gibbons-Tsarev system is in involution, so its general local solution depends on 2n *n* functions of 1 variable.

Boris Kruglikov (UiT Tromsø Norway)

Dispersionless integrable systems (II) * GRIEG 2021

Higher dimensional hydrodynamic reductions

Similarly we can treat higher dimensional cases. For instance in 4D the first Plebansky heavenly equation

$$u_{tx}u_{yz} - u_{ty}u_{xz} = 1$$

can be rewritten in the first order quasi-linear form via the substitution $u_{tx} = a$, $u_{uz} = b$, $u_{ty} = c$, $u_{xz} = \frac{ab-1}{c}$:

$$a_y = c_x, \ a_z = \left(\frac{ab-1}{c}\right)_t, \ b_t = c_z, \ b_x = \left(\frac{ab-1}{c}\right)_y.$$

Expressing these in terms of Riemann invariants r^i subject to

$$r^i_t = \lambda^i(\boldsymbol{r})r^i_x, \quad r^i_y = \mu^i(\boldsymbol{r})r^i_x, \quad r^i_z = \eta^i(\boldsymbol{r})r^i_x,$$

we obtain another Gibbons-Tsarev system in involution, whence a general local solution depending on $\frac{3n}{2n} 2n$ functions of 1 variable.

Definition

System \mathcal{E} with d independent variables is integrable in hydrodynamic sense if $\forall n \exists n$ -component reductions are parametrized by (d-2)n arbitrary functions of 1 argument.

Boris Kruglikov (UiT Tromsø Norway)

Equivalence of approaches

There are several types of PDE systems that are subject to the method of hydrodynamic reductions. For instance, Hirotha type equations

$$F(\partial^2 u) = 0$$
, where $\partial^2 u = (u_{ij} : 1 \le i \le j \le d)$

or quasilinear second order PDE

$$\sum a^{ij}(\partial u)u_{ij} = 0,$$
 where $\partial u = (u_i : 1 \le i \le d).$

Theorem (E. Ferapontov & BK 2014)

Let \mathcal{E} be a nondegenerate determined PDE system in 3D or 4D of one of the above types. Then its integrability by the method of hydrodynamic reductions is equivalent to the existence of a dispersionless Lax pair (dLp). Moreover, the PDE is a reduction of an integrable background geometry: EW in 3D and SD in 4D.

In 3D the Lax pair can be also taken as dZp in 3D.

Boris Kruglikov (UiT Tromsø Norway)

Dispersionless integrable systems (II) * GRIEG 2021

3D) Einstein-Weyl equation (EW)

A Weyl structure on M^3 is the pair $([g], \mathbb{D})$: a conformal structure and a linear connection preserving it. This condition writes so:

 $\mathbb{D}g = \omega \otimes g.$

A choice of via 1-form ω is equivalent to a choice of \mathbb{D} .

For the general linear connection \mathbb{D} , its Ricci tensor $\operatorname{Ric}_{\mathbb{D}}$ needs not be symmetric: $\operatorname{Ric}_{\mathbb{D}}^{\operatorname{alt}} \sim d\omega$. The Einstein-Weyl equation is

$$\operatorname{Ric}_{\mathbb{D}}^{\operatorname{sym}} = \Lambda g$$
 for some $\Lambda \in C^{\infty}(M)$.

The pair $([g], \mathbb{D})$ is an Einstein-Weyl structure if it satisfies the above 5 second order PDEs on 5 entries of the conformal structure and 3 of the covector.

For $\omega = 0$ the connection \mathbb{D} is Levi-Civita, and the above is just the Einstein equation. EW are generalize Einstein structures.

In 4D the Weyl curvature W is the fundamental invariant of a conformal structure [g]. The Hodge operator acts on the space $(S^2\Lambda^2TM)_0$ of Weyl tensors and it is an involution for Riemannian or neutral signature, whence the split $W = W_+ + W_-$ into self-dual and anti-self-dual parts. The structure [g] is self-dual if $W_- = 0$. These are 5 second order PDEs on the 9 entries of [g]:

$$*W_g = W_g.$$

Both EW and SD (or ASD) equations are Lax-integrable, as well as some of their reductions, e.g. anti-self dual Einstein (=heavenly) equations. Several other PDEs have been obtained as (symmetry) reductions of the two equations, allowing to think of them as master-equations in 3D and 4D respectively.

(日)

Explicit form of EW system

According to Hitchin, the system of EW equations is integrable (via twistor theory). We will write its PDEs in a proper gauge.

Theorem (M. Dunajski, E. Ferapontov & BK 2015)

Any Lorentzian Einstein-Weyl structure is locally of the form

$$g = -(dy - v_x dt)^2 + 4(dx - (u - v_y)dt)dt,$$

$$\omega = -v_{xx}dy + (4u_x - 2v_{xy} + v_x v_{xx})dt,$$

where the functions u, v on M^3 satisfy

$$P(u) = -u_x^2, \ P(v) = 0; \quad P = \partial_x \partial_t - \partial_y^2 + (u - v_y) \partial_x^2 + v_x \partial_x \partial_y.$$

The above coupled second-order PDE system, known as the Manakov-Santini (MS) system, has the Lax pair

$$L_1 = \partial_y - (\lambda + v_x)\partial_x - u_x\partial_\lambda,$$

$$L_2 = \partial_t - (\lambda^2 + v_x\lambda - u + v_y)\partial_x - (u_x\lambda + u_y)\partial_\lambda.$$

Explicit form of SD/ASD equations

According to Penrose, the system of (A)SD equations is integrable (via twistor theory). We will write its PDEs in a proper gauge.

Theorem (M. Dunajski, E. Ferapontov & BK 2015)

Any ASD conformal structure of signature (2,2) has local form

$$g = dx \, dw + dy \, dz + u_y dw^2 - (u_x + v_y) \, dz \, dw + v_x dz^2,$$

where the functions u, v on M^4 satisfy

$$\partial_x Q(u) - \partial_y Q(v) = 0,$$

$$(\partial_w - u_y \partial_x + v_y \partial_y) Q(v) + (\partial_z + u_x \partial_x - v_x \partial_y) Q(u) = 0,$$

$$Q = \partial_x \partial_w + \partial_y \partial_z - u_y \partial_x^2 + (u_x + v_y) \partial_x \partial_y - v_x \partial_y^2.$$

The above coupled third-order PDE system (DFK) has the Lax pair

$$L_1 = \partial_w - u_y \partial_x + (\lambda + v_y) \partial_y + Q(u) \partial_\lambda,$$

$$L_2 = \partial_z + (\lambda + u_x) \partial_x - v_x \partial_y - Q(v) \partial_\lambda.$$

References

- B. Dubrovin, S. Novikov, *Hydrodynamics of weakly deformed* soliton lattices, Russ. Math. Surv. **44** (1989)
- S. Tsarev, Geometry of Hamiltonian systems of hydrodynamic type. Generalized hodograph, Izvestija AN USSR **54** (1990)
- E. Ferapontov, K. Khusnutdinova, On integrability of (2+1)-dimensional quasilinear systems, Comm. Math. Phys. 248 (2004)
- M.Pavlov, Algebro-Geometric Approach in the Theory of Integrable Hydrodynamic Type Systems, Comm. Math. Phys. 272 (2007)
- E. Ferapontov, B. Kruglikov, Dispersionless integrable systems in 3D and Einstein-Weyl geometry, J. Diff. Geom. 97, (2014)
- M. Dunajski, E. Ferapontov, B. Kruglikov, On Einstein-Weyl and conformal self-duality equations, J. Math. Phys. 56 (2015)

- $\mathbb{C}P^2$ has SD structure, and $\overline{\mathbb{C}P^2}$ has ASD structure. What about $\mathbb{C}P^2 \# \overline{\mathbb{C}P^2}$?
- Quotient $\mathbb{C}P^2 = SU(3)/U(2)$ equipped with FS metric by the Killing field from SO(2). What's the corresponding EW str?
- Consider the round metric on S^3 . How many Weyl covectors ω satisfying EW does it possess mod isometry group SO(3)?

