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Dynamical systems: d = 1

Let me first recall integrability of ODEs. Locally on Mn to
integrate the differential equation ẋ = v(x) one needs n− 1 first
integrals I1, . . . , In−1, i.e. Lv(Ii) = 0 (the functions Ii are assumed
functionally independent dI1 ∧ · · · ∧ dIn−1 6≡ 0). The trajectories
are given by {Ii = ci}n−1

i=1 . When M is closed this is too restrictive:
the system would be resonant, i.e. have all trajectories periodic.

If the system is Hamiltonian ẋ = XH = ω−1dH for a symplectic
form ω on W 2n, then integrability by Liouville requires
n = 1

2 dimW first integrals, if they are in involution. Since H = E
is a trivial integral, this means the existence of I1, . . . , In−1 such
that {H, Ii} = 0 = {Ii, Ij}, where {I, J} = π(dI, dJ) for
π = ω−1 ∈ Γ(Λ2TW ); again we assume functional independence
dI1 ∧ · · · ∧ dIn−1|H=E 6≡ 0. Then the motion is quasi-periodic.

Note that {H, I} = XH(I) = −XI(H), so XI is a symmetry of H
iff I is the first integral (Noether theorem).
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2D: Integrability in 1 + 1 dimensions

Different approaches to integrability:

Lax pairs in differential operators

Infinity of higher symmetries

Infinity of conservation laws

Bi-Hamiltonian structure, recursion operator

Exact (soliton) solutions

Existence of a Bäcklund transformation

Existence of a Wahlquist-Estabrook prolongation structure

We will demonstrate this on the example of the Korteweg de Vries
equation (KdV)

ut = 6uux − uxxx (†)

note that scaling (t, x) 7→ (at, bx) changes the factors (6,−1) at
the rhs to any desired pair of nonzero numbers.
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KdV: Lax pair

A Lax pair for a nonlinear PDE is an overdetermined linear system
(depending on auxiliary spectral parameter λ) whose compatibility
condition is the given PDE. The KdV (†) has Lax pair:

vxx = (u− λ)v,

vt = 2(u+ 2λ)vx − uxv.

Geometrically the KdV equation is a submanifold E ⊂ J∞(R2
t,xR1

u)
equipped with the Cartan distribution C = 〈Dt,Dx〉, where

Dt = ∂t +
∑

uσ,t∂uσ |E , Dx = ∂x +
∑

uσ,x∂uσ |E .

Its Lax pair gives the submanifold-equation Ẽ ⊂ J∞(R2
t,xR2

u,v)

equipped with the Cartan distribution C̃ = 〈D̃t, D̃x〉. The
submersion π : (Ẽ , C̃ )→ (E ,C ) is called differential covering
(the inverse: integrable extension); it is a sign of integrability.
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KdV: Higher symmetries (commuting flows)

A symmetry of equation E ⊂ J∞ is a contact vector field Xϕ s.t.

X
(∞)
ϕ ∈ Γ(TE). If ϕ ∈ C∞(J1) then X is a classical symmetry

(point if ϕ is affine in 1-jet; contact if nonlinear - possible only for
scalar PDEs), otherwise it is called a higher symmetry.

With the notations u0 = u, u1 = ux, u2 = uxx, etc, the (first)
higher symmetries of (†) are:

S0 = u1, S1 = 6u0u1 − u3, S2 = 30u2
0u1 − 20u1u2 − 10u0u3 + u5,

S3 = 140u0u1(u2
0 − 2u2)− 70u3

1 + 70(u2 − u2
0)u3 + 42u1u4 + 14u0u5 − u7, ...

In fact, there is one new higher symmetry in every odd order.
This means the flows ut0 = S0, ut1 = S1, ut2 = S2, . . . commute.

If E = {F = 0} and `F =
∑

(∂uσF )Dσ is the linerization operator,
then the equation for symmetries sym(E) = 〈Xϕ〉 is

`F (ϕ)|E = 0 ⇔ {F,ϕ} = 0 mod E , where {F,G} = `F (G)−`G(F ).
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KdV: conservation laws

By the Noether theorem every symmetry gives a conservation law,
which is such a form ω ∈ Ωd−1

hor (E) that d̂ω = 0 mod E . For d = 1
this is a first integral, for d = 2 for an evolutionary PDE we have:

h(x, t, u, ux, . . . )t + f(x, t, u, ux, . . . )x = 0.

Here ω = fdt− hdx, h is called the conserved density, f - the flux.
The conservation law is recovered from its density h, which in turn
can be found from the generating function of a symmetry.

In the example of KdV (†) we have:

ut + (uxx − 3u2)x = 0,

(u2)t + (2uuxx − u2
x − 4u3)x = 0,

(u3 + 1
2u

2
x)t + (uxuxxx − 1

2u
2
xx + 3u2uxx − 6uu2

x − 9
2u

4)x = 0,

giving the conserved quantities
∫
u dx,

∫
u2 dx,

∫
(u3 + 1

2u
2
x) dx

known as the mass (Casimir), momentum and energy.
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KdV: Hamiltonian structures, recursion operator

The KdV equation possesses bi-Hamiltonian structure (in fact,
infinitely many of compatible Hamiltonian structures)

ut = J1
δI1

δu
= J2

δI2

δu
,

where the Poisson bracket is {F,G}J =
∫
δF
δu J

δG
δu and

J1 = Dx, I1 =

∫ ∞
−∞

(
u3 + 1

2u
2
x

)
dx;

J2 = −D3
x + 4uDx + 2ux, I2 =

1

2

∫ ∞
−∞

u2 dx.

The recursion operator R is defined as

R = J2J
−1
1 = −D2

x + 4u+ 2uxD−1
x .

With the help of this we can iterate the higher symmetries

S0
R−→ S1

R−→ S2
R−→ S3

R−→ S4
R−→ . . .
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KdV: Soliton solutions

The inverse scattering method allows to solve (†) via linear ODEs.
In particular it gives special localized solutions that retain their size
and shape all the time, even when they pass through each other.

They are among stationary points of higher symmetries.

The first soliton is obtain by symmetry reduction ut + 4k2ux = 0:

u(t, x) = −2k2 cosh(k(x− 4k2t))−2.

More general, n-soliton solutions are given by the explicit formula

un(t, x) = −2∂2
x ln detA(t, x),

where A is n× n matrix

Aij = δij +
ci

ki + kj
e−(ki+kj)x+8k3i t.

Asymptotically as t→ ±∞ we have for some q±i :

un(t, x) ∼ −2

n∑
i=1

k2
i cosh(ki(x− 4k2

i t− q±i ))−2.
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3D: integrability of KP equation

The Kadomtsev-Petviashvili equation (KP) is an extension of KdV:

(ut − 6uux + uxxx)x + 3uyy = 0. (‡)

It can be written in evolutionary form as
ut = 6uux − uxxx − 3D−1

x uyy and then one can associate
Hamiltonian formalism: non-local for this form but local for (‡).
There are infinitely many higher symmetries and conservation laws
for KP, however they are non-local.

What is more important there is still a Lax pair:

vt = −4vxxx + 6uvx + 3(ux − λ+ w)v,

vy = vxx − uv.

Compatiblity of this overdetermined system is equivalent to

ut = 6uux − uxxx − 3wy, uy = wx.

Eliminating from this w = D−1
x uy yields (‡).

Boris Kruglikov (UiT Tromsø Norway) Dispersionless integrable systems (I) ∗ GRIEG 2021



From KP to dKP: removing dispersion

Following Zakharov, consider the fast oscillation limit ε→ 0 under

v = eψ/ε, ∂t 7→ ε∂t, ∂x 7→ ε∂x, ∂y 7→ ε∂y.

This transforms the previous Lax pair (spectral parameter λ
removed) into (we call such dispersionless Zakharov coverings dZp)

G1 : ψt = −4ψ3
x + 6uψx + 3w,

G2 : ψy = ψ2
x − u.

The compatibility conditions for this system {G1, G2} = 0 mod〈G〉
are ut = 6uux − 3wy, uy = wx, yielding under elimination of w:

utx = 6(uux)x − 3uyy.

This is the dispersionless limit of the Kadomtsev-Petviashvili
equation called dKP.
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From dZp to dLp

Let E be a PDE on a manifold M , u its solution. Denote by Mu

the pair (M,u) realized as a section (submanifold) of E ⊂ J∞.

A dispersionless Lax pair (dLp) is a rank 2 distribution on a
projective line bundle M̂u →Mu for any u ∈ Γ(J∞) such that the
Frobenius integrability follows from (equivalent to) E .

For dKP, with λ the fiber-coordinate (spectral parameter):

Π̂2 = 〈∂t + (12λ2 − 6u)∂x + (6λux + 3uy)∂λ, ∂y − 2λ∂x − ux∂λ〉.

How to get this dLp from dZp? Consider the symplectic manifold
T ∗Mu ' R6(t, x, y, ψt, ψx, ψy) equipped with

Ω = dt ∧ dψt + dx ∧ dψx + dy ∧ dψy.

Then dZp determines a codim= 2 submanifold N . The restriction
Ω|N has rank 2 iff u satisfies dKP. In this case Ker(Ω|N ) is a rank
2 distribution and, denoting λ = ψx, we get the above Π̂2.
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Geometric interpretation of dLp

How to get dZp from dLp? In general this is impossible. Yet one
can get a linear covering as follows. Write the equation for integral
surfaces: Lv(λ− λ(x)) = 0 ∀v ∈ Γ(Π̂2), where x = (t, x, y):

λt = (6u− 12λ2)λx + 6λux + 3uy,

λy = 2λλx − ux. (\)

The compatibility of this system is equivalent to dKP.

The manifold M̂u is called the correspondence space, the local leaf
space of Π̂ is the twistor space. Thus we arrive at double fibration

M̂4
u

P1

~~

Π̂2

!!
M3
u Tw2

Solutions to (\) are curves in Tw2 while solutions to Lv(φ) = 0
∀v ∈ Γ(Π̂2) are functions on this (mini-)twistor space.
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Further signs of integrabiltiy
Instead of higher (local) symmetries for dispersionless systems we
get integrable hierarchies (filtered by compatible systems of
increasing size). For instance, we have the potential dKP hierarchy

ui,j+1 − uj,i+1 +

i∑
k=1

ui−kujk −
j∑

k=1

uj−kuik = 0

that is compatible for any 1 ≤ i < j ≤ n (ui = uxi , etc). Here
u = u(x1, x2, x3, x4, . . . ) and x1 = x, x2 = y, x3 = t, x4 = z, etc.
These equations have Lax representation in vector fields

Xi = ∂xi+1 − λ∂xi −
i−1∑
k=1

ui−k∂xk + u1i∂λ, i ≥ 1.

The initial equations are

uxt − uxuxx − uyy = 0,

uxz − uxuxy − uyuxx − uyt = 0, uyz − uyuxy + u2
xuxx − utt = 0,

the first being related to the dKP by a scaling and potentiation.
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4D: dispersionless integrability

In the same way integrability is accessed for d = 4. Again a dLp is
a rank 2 distribution on a projective line bundle M̂u →Mu whose
Frobenius condition implies (equivalent to) the equation E on u.
The twistor picture is as follows.

The manifold M̂u is called the correspondence space, the local leaf
space of Π̂ is the twistor space. Thus we arrive at double fibration

M̂5
u

P1

~~

Π̂2

!!
M4
u Tw3

Solutions to Lv(λ− λ(x)) = 0 ∀v ∈ Γ(Π̂2) are surfaces in Tw3;
solutions to Lv(φ) = 0 ∀v ∈ Γ(Π̂2) are functions on this twistor
space.
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Ex: Plebanski heavenly equations

For the second Plebanski equation

utx + uyz + uxxuyy − u2
xy = 0

the dLp is given by Π̂2 = 〈T̂ , Ẑ〉 with

T̂ = ∂t + uyy∂x − (uxy − λ)∂y, Ẑ = ∂z − (uxy + λ)∂x + uxx∂y.

This yields the following contact covering

qt = (uxy − q)qy − uyyqx,
qz = (uxy + q)qx − uxxqy.

Compatibility of this system (commutativity of T̂ , Ẑ) is a
consequence of the Plebanski equation.
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Homework: twistors

D3/P1,2

P1

yy

P2

%%
D3/P1 D3/P2
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