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Integral curves in parabolic homogeneous spaces

Let M = G/P be an arbitrary parabolic homogeneous space:
g =

∑
i∈Z gi is a graded semisimple Lie algebra of the Lie group G

and p =
∑

i≥0 g is a parabolic subalgebra of g.

M is naturally equipped with a a structure of a filtered manifold

0 ⊂ T−1M ⊂ · · · ⊂ T−νM = TM

defined as a flag of G -invariant vector distributions equal to ⊕i≤kg−i
mod p at o = eP.

Given a submanifold N ⊂ M we define its symbol at x ∈ N as grTxN
viewed as a graded subspace (actually a subalgebra) in g−.

To be more precise, choose g ∈ G such that g .x = o and consider
g∗(TxN) as a subspace of ToM, which can be naturally identified
with g−. As g is defined only modulo left multiplication by P, the
subspace g∗(TxN) is also defined modulo the adjoint action of P on
g− ≡ g/p. Then gr g∗(TxN) is well-defined modulo the action of G0

on g−.
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Assumption of constant symbol

Let n be a graded subalgebra in g−. We say that N has constant
symbol n, if grTxN is G0-equivalent to n for any x ∈ N. In the
following we shall always assume that N has a constant symbol,
which is the only assumption on N.

Main questions: most symmetric models, the natural moving frame,
the number of fundamental differential invariants, the induced
intrinsic geometry on the submanifolds, existence of the natural
projective parameter on curves.

(Intrinsic) prolongation of n in g is a largest graded subalgebra Prol(n)
of g such that Prol−(n) = n. It can be constructed inductively as:

Proli (n) = ni , (i < 0),

Proli (n) = {u ∈ gi | [n, u] ⊂ ⊕j<i Prolj(n)}, (i ≥ 0).

Theorem. We have dim sym(N) ≤ dim Prol(n). Moreover the
equality is achieved if and only if N is locally equivalent to the orbit
of the subgroup exp Prol(n) ⊂ G through o = eP.
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Hypersurfaces in projective spaces

Assume that G/P is the projective space Pn, and dimN = n − 1.
Here G = PGL(n + 1,R) and P = P1. We identify g− = g−1 with Rn

as follows:

g−1 =

(
0 0
X 0

)
⊂ gl(n + 1,R), X ∈ Matn,1(R).

It is clear that G0 = GL(n,R) acts transitively on all subspaces of
codimension 1 in g−1. Let us fix n as a subspace spanned by the first
n − 1 coordinate vectors in Rn:

n =

 0 0 0
Y 0 0
0 0 0

 ⊂ g−1, Y ∈ Matn−1,1(R).

The most symmetric submanifold with this symbol is just a hyperplane
in Pn. Note that its symmetry group is yet another parabolic
subgroup Pn in G . Note that the intersection P1,n = P1 ∩ Pn is
another parabolic. Note that G/P1,n can be naturally identified with
the jet space J1(Pn, n − 1) of 1-jet of hypermanifolds in Pn.
We have a natural lift of N ←↩ G/P1,n, which takes N into its 1-st jet
j1N. It is clear that (local) projective geometry of hypersurfaces in Pn

coincides with the (local) geometry of Lagrangian submanifolds in
G/P1,n.
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Looking now at possible symbols of Lagrangian submanifolds in
G/P1,n, we see that any such symbol has the form:

n =

 0 0 0
Y 0 0
0 (SY )t 0

 Y ∈ Matn−1,1(R),

where S is an arbitrary symmetric matrix. So, classifying the symbols
is equivalent to classifying the symmetric (n − 1)x(n − 1) matrices up
to the action of the (new) G0 = GL(n − 1,R). It is easy to see that
geometrically S corresponds to the second fundamental form of N.

In particular, if n = 2 we can assume that:

n =

0 0 0
y 0 0
0 y 0

 ; Prol(n) =

h x 0
y 0 x
0 y −h

 x , y , h ∈ R,

which the symmetry algebra of a non-degenerate conic in P2.

Such lift of N to a larger parabolic geometry (correspondence space)
works whenever the prolongation of the initial symbol is a paraboic
subalgebra.
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Example: symbols of curves in G2 geometry
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Classical approach of Sophus Lie

Lie developed a universal analytic technique for computing differential
invariants of submanifolds under a finite- or infinite-dimensional
transformation group. It is based on prolonging the infinitesimal
transformations to the jet spaces of sufficiently high order and
integrating them there.

Isolated orbits on jet spaces of lower dimension can be obtained via
the method of so-called Lie determinants. It computes sets of points,
where the prolonged infinitesimal transformations generate a subspace
of a lower than generic dimension. The functions defining such
“signular” orbits are known as relative invariants.
In case of projective geometry of curves one can recover two such
singular orbits:

y2 = 0, (equation on stright lines)

9y22 y5 − 45y2y3y4 + 40y23 = 0, (equation on all conics).

Here we use the standard coordinate system (x , y , y1, . . . , yk) on the
jet space Jk(R,R).
To get the first absolute invatiant one needs to go up to 7-th jet
space and integrate a codimension 1 vector distribution spanned by
prolongations of 8 infinitesimal generators of the projective action.
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Classical approach of Halphen

Encode a plane curve via a 3rd order linear differential equation:

u′′′ + p2(t)u′′ + p1(t)u′ + p0(t)u = 0

such that the basis {u0(t), u1(t), u2(t)} of its solution space gives
projective coordinates of the curve. Then this curve is defined up to
projective transformations.

Use change of variables (t, u) 7→ (λ(t), µ(t)u) to kill the coefficients
p2 and p1. This is always possible, but requires in general solving
Riccati equation. Then the remaining coefficient p0(t) would define a
5-th order relative invariant of the curve.

Explicitly, for a curve parametrized in affine coordinates as (t, u(t))
one needs to define a 3rd order linear ODE whose solution space is
{1, t, u(t)} and then go through the normalization of p1 and p2. The
recovered expression for p0 coincides with the above 5th order relative
invariant computed by Sophus Lie.
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Notion of a moving frame

Notion of a moving frame originates from Frenet frames for curves in
Euclidean plane and space. The main requirement is that for any two
frames there is a unique (or at most finite) number of transformations
that maps one frame to another.

In case of an arbitrary homogeneous space M = G/P a frame over a
point x ∈ M is just an element g ∈ G such that g .o = x . In other
words it is an element of π−1(x), where π : G → G/P is the natural
projection.

For N ⊂ M define Q−1 = π−1(N) ⊂ G . Then π : Q−1 → N is a
principal P-bundle over N, which conststs of ell frames over N. A
moving frame for N ⊂ M is just an arbitrary section s : N → Q−1.
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In case of an arbitrary homogeneous space M = G/P a frame over a
point x ∈ M is just an element g ∈ G such that g .o = x . In other
words it is an element of π−1(x), where π : G → G/P is the natural
projection.

For N ⊂ M define Q−1 = π−1(N) ⊂ G . Then π : Q−1 → N is a
principal P-bundle over N, which conststs of ell frames over N. A
moving frame for N ⊂ M is just an arbitrary section s : N → Q−1.
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Normalizing frames

Let ω be the Maurer–Cartan form on G . We try to find a canonical
moving frame s (such as a Frenet frame for Euclidean curves) by
imposing some linear conditions on the image of s∗ω.

For example, for Frenet frames s is uniquely (up to orientation)
defined by the condition that s∗ω has the form:

s∗ω =

 0 κ 0
−κ 0 τ
0 −τ 0

+

σ0
0

 .

As we can see, it is defined as a certain 3-dimensional subspace in the
6-dimensional Lie algebra so(3) oR3.

Here σ is a certain 1-form on the so far unparametrized curve. The
arc-length parametrization of the curve is just a choice of a local
coordinate s such that σ = ds.
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Approach of Élie Cartan

Projective geometry of plane curves by Cartan (Leçons sur la théorie
des espaces à connexion projective, Gauthier-Villars, 1937).

There is a canonical moving frame Q ⊂ PGL(3,R) such that the for
each section s : N → Q the pull-back s∗ω of the Maurer–Cartan form
ω on PGL(3,R) is:ω00 ω01 ω02

ω10 0 ω01

0 ω10 −ω00

 =

ω00 ω01 0
ω10 0 ω01

0 ω10 −ω00

+

0 0 ω02

0 0 0
0 0 0


The first summand is a natural projective connection on the curve. It
is necessarily flat and defines the natural projective parameter on the
curve.

The second summand defines the relative projective invariant
k = ω02/ω10. The plane curve is locally a conic if and only if k = 0.
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Frame reductions

The construction of the above frame bundle is performed iteratively.
As above, we first lift N to N(1) ⊂ J1(P2, 1) = G/P1,2 and define
Q−1 as π−1(N(1)). Then we know that ω−1 = ω|Q−1 takes values in( ∗ ∗ ∗

ω10 ∗ ∗
0 ω21 ∗

)

it is easy to see that ω21 vanishes identically iff our curve is a straight
line. Assume that ω21 6= 0 and define Q0 as all points z ∈ Q−1 where
ω−1 takes values in ( ∗ ∗ ∗

ω10 ∗ ∗
0 ω10 ∗

)
.

The set of all such points z forms a reduced principal bundle with the
structure group ( p00 p01 p02

0 1 p12
0 0 p−1

00

)
.
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Further reductions

Q1 is defined as all z ∈ Q0, where ω0 = ω|Q0 takes values in( ω00 ∗ ∗
ω10 0 ∗
0 ω10 −ω00

)
This reduces the structure group to(

p00 0 0
0 1 0
0 0 p−1

00

)(
1 p01 p02
0 1 p01
0 0 1

)
.

Finally, Q2 is defined as all z ∈ Q1, where ω1 = ω|Q1 takes values in( ω00 ω01 ∗
ω10 0 ω01
0 ω10 −ω00

)
.

The structure group is reduced to(
p00 0 0
0 1 0
0 0 p−1

00

)(
1 p01 0
0 1 p01
0 0 1

)
.
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Parametric computation in Maple
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