# Moving frames and invariants for submanifolds in parabolic homogeneous spaces 

Boris Doubrov<br>Belarusian State University

GRIEG seminar, November 5, 2021

## Outline

(1) The problem and initial examples

- Definitions
- Lifting the submanifolds to correspondence spaces
- Example: symbols of curves in $G_{2}$ geometry
(2) Prototype: projective geometry of plane curves
- 19-th century
- Premier example of moving frame construction
- Reduction procedure
- Parametric computation in Maple


## Integral curves in parabolic homogeneous spaces

- Let $M=G / P$ be an arbitrary parabolic homogeneous space: $\mathfrak{g}=\sum_{i \in \mathbb{Z}} \mathfrak{g}_{i}$ is a graded semisimple Lie algebra of the Lie group $G$ and $\mathfrak{p}=\sum_{i \geq 0} \mathfrak{g}$ is a parabolic subalgebra of $\mathfrak{g}$.


## Integral curves in parabolic homogeneous spaces

- Let $M=G / P$ be an arbitrary parabolic homogeneous space: $\mathfrak{g}=\sum_{i \in \mathbb{Z}} \mathfrak{g}_{i}$ is a graded semisimple Lie algebra of the Lie group $G$ and $\mathfrak{p}=\sum_{i \geq 0} \mathfrak{g}$ is a parabolic subalgebra of $\mathfrak{g}$.
- $M$ is naturally equipped with a a structure of a filtered manifold

$$
0 \subset T^{-1} M \subset \cdots \subset T^{-\nu} M=T M
$$

defined as a flag of $G$-invariant vector distributions equal to $\oplus_{i \leq k} \mathfrak{g}_{-i}$ $\bmod \mathfrak{p}$ at $o=e P$.

## Integral curves in parabolic homogeneous spaces

- Let $M=G / P$ be an arbitrary parabolic homogeneous space: $\mathfrak{g}=\sum_{i \in \mathbb{Z}} \mathfrak{g}_{i}$ is a graded semisimple Lie algebra of the Lie group $G$ and $\mathfrak{p}=\sum_{i \geq 0} \mathfrak{g}$ is a parabolic subalgebra of $\mathfrak{g}$.
- $M$ is naturally equipped with a a structure of a filtered manifold

$$
0 \subset T^{-1} M \subset \cdots \subset T^{-\nu} M=T M
$$

defined as a flag of $G$-invariant vector distributions equal to $\oplus_{i \leq k} \mathfrak{g}_{-i}$ $\bmod \mathfrak{p}$ at $o=e P$.

- Given a submanifold $N \subset M$ we define its symbol at $x \in N$ as $\operatorname{gr} T_{x} N$ viewed as a graded subspace (actually a subalgebra) in $\mathfrak{g}_{-}$.


## Integral curves in parabolic homogeneous spaces

- Let $M=G / P$ be an arbitrary parabolic homogeneous space: $\mathfrak{g}=\sum_{i \in \mathbb{Z}} \mathfrak{g}_{i}$ is a graded semisimple Lie algebra of the Lie group $G$ and $\mathfrak{p}=\sum_{i \geq 0} \mathfrak{g}$ is a parabolic subalgebra of $\mathfrak{g}$.
- $M$ is naturally equipped with a a structure of a filtered manifold

$$
0 \subset T^{-1} M \subset \cdots \subset T^{-\nu} M=T M
$$

defined as a flag of $G$-invariant vector distributions equal to $\oplus_{i \leq k} \mathfrak{g}_{-i}$ $\bmod \mathfrak{p}$ at $o=e P$.

- Given a submanifold $N \subset M$ we define its symbol at $x \in N$ as $\operatorname{gr} T_{x} N$ viewed as a graded subspace (actually a subalgebra) in $\mathfrak{g}_{-}$.
- To be more precise, choose $g \in G$ such that $g . x=0$ and consider $g_{*}\left(T_{x} N\right)$ as a subspace of $T_{o} M$, which can be naturally identified with $\mathfrak{g}_{-}$. As $g$ is defined only modulo left multiplication by $P$, the subspace $g_{*}\left(T_{x} N\right)$ is also defined modulo the adjoint action of $P$ on $\mathfrak{g}_{-} \equiv \mathfrak{g} / \mathfrak{p}$. Then $\operatorname{gr} g_{*}\left(T_{\chi} N\right)$ is well-defined modulo the action of $G_{0}$ on $\mathfrak{g}_{-}$.


## Assumption of constant symbol

- Let $\mathfrak{n}$ be a graded subalgebra in $\mathfrak{g}_{-}$. We say that $N$ has constant symbol $\mathfrak{n}$, if $\mathfrak{g r} T_{x} N$ is $G_{0}$-equivalent to $\mathfrak{n}$ for any $x \in N$. In the following we shall always assume that $N$ has a constant symbol, which is the only assumption on $N$.


## Assumption of constant symbol

- Let $\mathfrak{n}$ be a graded subalgebra in $\mathfrak{g}_{-}$. We say that $N$ has constant symbol $\mathfrak{n}$, if $\operatorname{gr} T_{x} N$ is $G_{0}$-equivalent to $\mathfrak{n}$ for any $x \in N$. In the following we shall always assume that $N$ has a constant symbol, which is the only assumption on $N$.
- Main questions: most symmetric models, the natural moving frame, the number of fundamental differential invariants, the induced intrinsic geometry on the submanifolds, existence of the natural projective parameter on curves.


## Assumption of constant symbol

- Let $\mathfrak{n}$ be a graded subalgebra in $\mathfrak{g}_{-}$. We say that $N$ has constant symbol $\mathfrak{n}$, if $\operatorname{gr} T_{x} N$ is $G_{0}$-equivalent to $\mathfrak{n}$ for any $x \in N$. In the following we shall always assume that $N$ has a constant symbol, which is the only assumption on $N$.
- Main questions: most symmetric models, the natural moving frame, the number of fundamental differential invariants, the induced intrinsic geometry on the submanifolds, existence of the natural projective parameter on curves.
- (Intrinsic) prolongation of $\mathfrak{n}$ in $\mathfrak{g}$ is a largest graded subalgebra $\operatorname{Prol}(\mathfrak{n})$ of $\mathfrak{g}$ such that $\operatorname{Prol}_{-}(\mathfrak{n})=\mathfrak{n}$. It can be constructed inductively as:

$$
\begin{aligned}
\operatorname{Prol}_{i}(\mathfrak{n}) & =\mathfrak{n}_{i}, \quad(i<0) \\
\operatorname{Prol}_{i}(\mathfrak{n}) & =\left\{u \in \mathfrak{g}_{i} \mid[\mathfrak{n}, u] \subset \oplus_{j<i} \operatorname{Prol}_{j}(\mathfrak{n})\right\}, \quad(i \geq 0)
\end{aligned}
$$

## Assumption of constant symbol

- Let $\mathfrak{n}$ be a graded subalgebra in $\mathfrak{g}_{-}$. We say that $N$ has constant symbol $\mathfrak{n}$, if $\operatorname{gr} T_{x} N$ is $G_{0}$-equivalent to $\mathfrak{n}$ for any $x \in N$. In the following we shall always assume that $N$ has a constant symbol, which is the only assumption on $N$.
- Main questions: most symmetric models, the natural moving frame, the number of fundamental differential invariants, the induced intrinsic geometry on the submanifolds, existence of the natural projective parameter on curves.
- (Intrinsic) prolongation of $\mathfrak{n}$ in $\mathfrak{g}$ is a largest graded subalgebra $\operatorname{Prol}(\mathfrak{n})$ of $\mathfrak{g}$ such that Prol_( $\mathfrak{n})=\mathfrak{n}$. It can be constructed inductively as:

$$
\begin{aligned}
\operatorname{Prol}_{i}(\mathfrak{n}) & =\mathfrak{n}_{i}, \quad(i<0) \\
\operatorname{Prol}_{i}(\mathfrak{n}) & =\left\{u \in \mathfrak{g}_{i} \mid[\mathfrak{n}, u] \subset \oplus_{j<i} \operatorname{Prol}_{j}(\mathfrak{n})\right\}, \quad(i \geq 0)
\end{aligned}
$$

- Theorem. We have $\operatorname{dim} \operatorname{sym}(N) \leq \operatorname{dim} \operatorname{Prol}(\mathfrak{n})$. Moreover the equality is achieved if and only if $N$ is locally equivalent to the orbit of the subgroup $\exp \operatorname{Prol}(\mathfrak{n}) \subset G$ through $o=e P$.


## Hypersurfaces in projective spaces

- Assume that $G / P$ is the projective space $P^{n}$, and $\operatorname{dim} N=n-1$. Here $G=P G L(n+1, \mathbb{R})$ and $P=P_{1}$. We identify $\mathfrak{g}_{-}=\mathfrak{g}_{-1}$ with $\mathbb{R}^{n}$ as follows:

$$
\mathfrak{g}_{-1}=\left(\begin{array}{ll}
0 & 0 \\
X & 0
\end{array}\right) \subset \mathfrak{g l}(n+1, \mathbb{R}), \quad X \in \operatorname{Mat}_{n, 1}(\mathbb{R})
$$

## Hypersurfaces in projective spaces

- Assume that $G / P$ is the projective space $P^{n}$, and $\operatorname{dim} N=n-1$. Here $G=P G L(n+1, \mathbb{R})$ and $P=P_{1}$. We identify $\mathfrak{g}_{-}=\mathfrak{g}_{-1}$ with $\mathbb{R}^{n}$ as follows:

$$
\mathfrak{g}_{-1}=\left(\begin{array}{ll}
0 & 0 \\
X & 0
\end{array}\right) \subset \mathfrak{g l}(n+1, \mathbb{R}), \quad X \in \operatorname{Mat}_{n, 1}(\mathbb{R})
$$

- It is clear that $G_{0}=G L(n, \mathbb{R})$ acts transitively on all subspaces of codimension 1 in $\mathfrak{g}_{-1}$. Let us fix $\mathfrak{n}$ as a subspace spanned by the first $n-1$ coordinate vectors in $\mathbb{R}^{n}$ :

$$
\mathfrak{n}=\left(\begin{array}{lll}
0 & 0 & 0 \\
Y & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \subset \mathfrak{g}_{-1}, \quad Y \in \operatorname{Mat}_{n-1,1}(\mathbb{R})
$$

## Hypersurfaces in projective spaces

- Assume that $G / P$ is the projective space $P^{n}$, and $\operatorname{dim} N=n-1$. Here $G=P G L(n+1, \mathbb{R})$ and $P=P_{1}$. We identify $\mathfrak{g}_{-}=\mathfrak{g}_{-1}$ with $\mathbb{R}^{n}$ as follows:

$$
\mathfrak{g}_{-1}=\left(\begin{array}{ll}
0 & 0 \\
X & 0
\end{array}\right) \subset \mathfrak{g l}(n+1, \mathbb{R}), \quad X \in \operatorname{Mat}_{n, 1}(\mathbb{R})
$$

- It is clear that $G_{0}=G L(n, \mathbb{R})$ acts transitively on all subspaces of codimension 1 in $\mathfrak{g}_{-1}$. Let us fix $\mathfrak{n}$ as a subspace spanned by the first $n-1$ coordinate vectors in $\mathbb{R}^{n}$ :

$$
\mathfrak{n}=\left(\begin{array}{lll}
0 & 0 & 0 \\
Y & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \subset \mathfrak{g}_{-1}, \quad Y \in \operatorname{Mat}_{n-1,1}(\mathbb{R})
$$

- The most symmetric submanifold with this symbol is just a hyperplane in $P^{n}$. Note that its symmetry group is yet another parabolic subgroup $P_{n}$ in $G$. Note that the intersection $P_{1, n}=P_{1} \cap P_{n}$ is another parabolic. Note that $G / P_{1, n}$ can be naturally identified with the jet space $J^{1}\left(P^{n}, n-1\right)$ of 1 -jet of hypermanifolds in $P^{n}$.


## Hypersurfaces in projective spaces

- Assume that $G / P$ is the projective space $P^{n}$, and $\operatorname{dim} N=n-1$. Here $G=P G L(n+1, \mathbb{R})$ and $P=P_{1}$. We identify $\mathfrak{g}_{-}=\mathfrak{g}_{-1}$ with $\mathbb{R}^{n}$ as follows:

$$
\mathfrak{g}_{-1}=\left(\begin{array}{ll}
0 & 0 \\
X & 0
\end{array}\right) \subset \mathfrak{g l}(n+1, \mathbb{R}), \quad X \in \operatorname{Mat}_{n, 1}(\mathbb{R})
$$

- It is clear that $G_{0}=G L(n, \mathbb{R})$ acts transitively on all subspaces of codimension 1 in $\mathfrak{g}_{-1}$. Let us fix $\mathfrak{n}$ as a subspace spanned by the first $n-1$ coordinate vectors in $\mathbb{R}^{n}$ :

$$
\mathfrak{n}=\left(\begin{array}{lll}
0 & 0 & 0 \\
Y & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \subset \mathfrak{g}_{-1}, \quad Y \in \operatorname{Mat}_{n-1,1}(\mathbb{R})
$$

- The most symmetric submanifold with this symbol is just a hyperplane in $P^{n}$. Note that its symmetry group is yet another parabolic subgroup $P_{n}$ in $G$. Note that the intersection $P_{1, n}=P_{1} \cap P_{n}$ is another parabolic. Note that $G / P_{1, n}$ can be naturally identified with the jet space $J^{1}\left(P^{n}, n-1\right)$ of 1 -jet of hypermanifolds in $P^{n}$.
- Looking now at possible symbols of Lagrangian submanifolds in $G / P_{1, n}$, we see that any such symbol has the form:

$$
\mathfrak{n}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
Y & 0 & 0 \\
0 & (S Y)^{t} & 0
\end{array}\right) \quad Y \in \operatorname{Mat}_{n-1,1}(\mathbb{R})
$$

where $S$ is an arbitrary symmetric matrix. So, classifying the symbols is equivalent to classifying the symmetric $(n-1) \times(n-1)$ matrices up to the action of the (new) $G_{0}=G L(n-1, \mathbb{R})$. It is easy to see that geometrically $S$ corresponds to the second fundamental form of $N$.

- Looking now at possible symbols of Lagrangian submanifolds in $G / P_{1, n}$, we see that any such symbol has the form:

$$
\mathfrak{n}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
Y & 0 & 0 \\
0 & (S Y)^{t} & 0
\end{array}\right) \quad Y \in \operatorname{Mat}_{n-1,1}(\mathbb{R})
$$

where $S$ is an arbitrary symmetric matrix. So, classifying the symbols is equivalent to classifying the symmetric $(n-1) \times(n-1)$ matrices up to the action of the (new) $G_{0}=G L(n-1, \mathbb{R})$. It is easy to see that geometrically $S$ corresponds to the second fundamental form of $N$.

- In particular, if $n=2$ we can assume that:

$$
\mathfrak{n}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
y & 0 & 0 \\
0 & y & 0
\end{array}\right) ; \quad \operatorname{Prol}(\mathfrak{n})=\left(\begin{array}{ccc}
h & x & 0 \\
y & 0 & x \\
0 & y & -h
\end{array}\right) \quad x, y, h \in \mathbb{R}
$$

which the symmetry algebra of a non-degenerate conic in $P^{2}$.

- Looking now at possible symbols of Lagrangian submanifolds in $G / P_{1, n}$, we see that any such symbol has the form:

$$
\mathfrak{n}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
Y & 0 & 0 \\
0 & (S Y)^{t} & 0
\end{array}\right) \quad Y \in \operatorname{Mat}_{n-1,1}(\mathbb{R})
$$

where $S$ is an arbitrary symmetric matrix. So, classifying the symbols is equivalent to classifying the symmetric $(n-1) \times(n-1)$ matrices up to the action of the (new) $G_{0}=G L(n-1, \mathbb{R})$. It is easy to see that geometrically $S$ corresponds to the second fundamental form of $N$.

- In particular, if $n=2$ we can assume that:

$$
\mathfrak{n}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
y & 0 & 0 \\
0 & y & 0
\end{array}\right) ; \quad \operatorname{Prol}(\mathfrak{n})=\left(\begin{array}{ccc}
h & x & 0 \\
y & 0 & x \\
0 & y & -h
\end{array}\right) \quad x, y, h \in \mathbb{R},
$$

which the symmetry algebra of a non-degenerate conic in $P^{2}$.

- Such lift of $N$ to a larger parabolic geometry (correspondence space) works whenever the prolongation of the initial symbol is a paraboic subalgebra.


## Example: symbols of curves in $G_{2}$ geometry

## Classical approach of Sophus Lie

- Lie developed a universal analytic technique for computing differential invariants of submanifolds under a finite- or infinite-dimensional transformation group. It is based on prolonging the infinitesimal transformations to the jet spaces of sufficiently high order and integrating them there.


## Classical approach of Sophus Lie

- Lie developed a universal analytic technique for computing differential invariants of submanifolds under a finite- or infinite-dimensional transformation group. It is based on prolonging the infinitesimal transformations to the jet spaces of sufficiently high order and integrating them there.
- Isolated orbits on jet spaces of lower dimension can be obtained via the method of so-called Lie determinants. It computes sets of points, where the prolonged infinitesimal transformations generate a subspace of a lower than generic dimension. The functions defining such "signular" orbits are known as relative invariants.


## Classical approach of Sophus Lie

- Lie developed a universal analytic technique for computing differential invariants of submanifolds under a finite- or infinite-dimensional transformation group. It is based on prolonging the infinitesimal transformations to the jet spaces of sufficiently high order and integrating them there.
- Isolated orbits on jet spaces of lower dimension can be obtained via the method of so-called Lie determinants. It computes sets of points, where the prolonged infinitesimal transformations generate a subspace of a lower than generic dimension. The functions defining such "signular" orbits are known as relative invariants.
- In case of projective geometry of curves one can recover two such singular orbits:

$$
\begin{aligned}
& y_{2}=0, \quad \text { (equation on stright lines) } \\
& 9 y_{2}^{2} y_{5}-45 y_{2} y_{3} y_{4}+40 y_{3}^{2}=0, \quad \text { (equation on all conics). }
\end{aligned}
$$

Here we use the standard coordinate system $\left(x, y, y_{1}, \ldots, y_{k}\right)$ on the jet space $J^{k}(\mathbb{R}, \mathbb{R})$.

## Classical approach of Sophus Lie

- Lie developed a universal analytic technique for computing differential invariants of submanifolds under a finite- or infinite-dimensional transformation group. It is based on prolonging the infinitesimal transformations to the jet spaces of sufficiently high order and integrating them there.
- Isolated orbits on jet spaces of lower dimension can be obtained via the method of so-called Lie determinants. It computes sets of points, where the prolonged infinitesimal transformations generate a subspace of a lower than generic dimension. The functions defining such "signular" orbits are known as relative invariants.
- In case of projective geometry of curves one can recover two such singular orbits:

$$
\begin{aligned}
& y_{2}=0, \quad \text { (equation on stright lines) } \\
& 9 y_{2}^{2} y_{5}-45 y_{2} y_{3} y_{4}+40 y_{3}^{2}=0, \quad \text { (equation on all conics). }
\end{aligned}
$$

Here we use the standard coordinate system $\left(x, y, y_{1}, \ldots, y_{k}\right)$ on the jet space $J^{k}(\mathbb{R}, \mathbb{R})$.

## Classical approach of Halphen

- Encode a plane curve via a 3rd order linear differential equation:

$$
u^{\prime \prime \prime}+p_{2}(t) u^{\prime \prime}+p_{1}(t) u^{\prime}+p_{0}(t) u=0
$$

such that the basis $\left\{u_{0}(t), u_{1}(t), u_{2}(t)\right\}$ of its solution space gives projective coordinates of the curve. Then this curve is defined up to projective transformations.

## Classical approach of Halphen

- Encode a plane curve via a 3rd order linear differential equation:

$$
u^{\prime \prime \prime}+p_{2}(t) u^{\prime \prime}+p_{1}(t) u^{\prime}+p_{0}(t) u=0
$$

such that the basis $\left\{u_{0}(t), u_{1}(t), u_{2}(t)\right\}$ of its solution space gives projective coordinates of the curve. Then this curve is defined up to projective transformations.

- Use change of variables $(t, u) \mapsto(\lambda(t), \mu(t) u)$ to kill the coefficients $p_{2}$ and $p_{1}$. This is always possible, but requires in general solving Riccati equation. Then the remaining coefficient $p_{0}(t)$ would define a 5 -th order relative invariant of the curve.


## Classical approach of Halphen

- Encode a plane curve via a 3rd order linear differential equation:

$$
u^{\prime \prime \prime}+p_{2}(t) u^{\prime \prime}+p_{1}(t) u^{\prime}+p_{0}(t) u=0
$$

such that the basis $\left\{u_{0}(t), u_{1}(t), u_{2}(t)\right\}$ of its solution space gives projective coordinates of the curve. Then this curve is defined up to projective transformations.

- Use change of variables $(t, u) \mapsto(\lambda(t), \mu(t) u)$ to kill the coefficients $p_{2}$ and $p_{1}$. This is always possible, but requires in general solving Riccati equation. Then the remaining coefficient $p_{0}(t)$ would define a 5-th order relative invariant of the curve.
- Explicitly, for a curve parametrized in affine coordinates as $(t, u(t))$ one needs to define a 3rd order linear ODE whose solution space is $\{1, t, u(t)\}$ and then go through the normalization of $p_{1}$ and $p_{2}$. The recovered expression for $p_{0}$ coincides with the above 5 th order relative invariant computed by Sophus Lie.


## Notion of a moving frame

- Notion of a moving frame originates from Frenet frames for curves in Euclidean plane and space. The main requirement is that for any two frames there is a unique (or at most finite) number of transformations that maps one frame to another.


## Notion of a moving frame

- Notion of a moving frame originates from Frenet frames for curves in Euclidean plane and space. The main requirement is that for any two frames there is a unique (or at most finite) number of transformations that maps one frame to another.
- In case of an arbitrary homogeneous space $M=G / P$ a frame over a point $x \in M$ is just an element $g \in G$ such that $g . o=x$. In other words it is an element of $\pi^{-1}(x)$, where $\pi: G \rightarrow G / P$ is the natural projection.


## Notion of a moving frame

- Notion of a moving frame originates from Frenet frames for curves in Euclidean plane and space. The main requirement is that for any two frames there is a unique (or at most finite) number of transformations that maps one frame to another.
- In case of an arbitrary homogeneous space $M=G / P$ a frame over a point $x \in M$ is just an element $g \in G$ such that $g . o=x$. In other words it is an element of $\pi^{-1}(x)$, where $\pi: G \rightarrow G / P$ is the natural projection.
- For $N \subset M$ define $Q_{-1}=\pi^{-1}(N) \subset G$. Then $\pi: Q_{-1} \rightarrow N$ is a principal $P$-bundle over $N$, which conststs of ell frames over $N$. A moving frame for $N \subset M$ is just an arbitrary section $s: N \rightarrow Q_{-1}$.


## Normalizing frames

- Let $\omega$ be the Maurer-Cartan form on G. We try to find a canonical moving frame $s$ (such as a Frenet frame for Euclidean curves) by imposing some linear conditions on the image of $s^{*} \omega$.


## Normalizing frames

- Let $\omega$ be the Maurer-Cartan form on G. We try to find a canonical moving frame $s$ (such as a Frenet frame for Euclidean curves) by imposing some linear conditions on the image of $s^{*} \omega$.
- For example, for Frenet frames $s$ is uniquely (up to orientation) defined by the condition that $s^{*} \omega$ has the form:

$$
s^{*} \omega=\left(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)+\left(\begin{array}{l}
\sigma \\
0 \\
0
\end{array}\right)
$$

## Normalizing frames

- Let $\omega$ be the Maurer-Cartan form on G. We try to find a canonical moving frame $s$ (such as a Frenet frame for Euclidean curves) by imposing some linear conditions on the image of $s^{*} \omega$.
- For example, for Frenet frames $s$ is uniquely (up to orientation) defined by the condition that $s^{*} \omega$ has the form:

$$
s^{*} \omega=\left(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)+\left(\begin{array}{l}
\sigma \\
0 \\
0
\end{array}\right)
$$

- As we can see, it is defined as a certain 3-dimensional subspace in the 6-dimensional Lie algebra $\mathfrak{s o}(3) \rtimes \mathbb{R}^{3}$.


## Normalizing frames

- Let $\omega$ be the Maurer-Cartan form on G. We try to find a canonical moving frame $s$ (such as a Frenet frame for Euclidean curves) by imposing some linear conditions on the image of $s^{*} \omega$.
- For example, for Frenet frames $s$ is uniquely (up to orientation) defined by the condition that $s^{*} \omega$ has the form:

$$
s^{*} \omega=\left(\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)+\left(\begin{array}{l}
\sigma \\
0 \\
0
\end{array}\right)
$$

- As we can see, it is defined as a certain 3-dimensional subspace in the 6-dimensional Lie algebra $\mathfrak{s o}(3) \rtimes \mathbb{R}^{3}$.
- Here $\sigma$ is a certain 1-form on the so far unparametrized curve. The arc-length parametrization of the curve is just a choice of a local coordinate $s$ such that $\sigma=d s$.


## Approach of Élie Cartan

- Projective geometry of plane curves by Cartan (Leçons sur la théorie des espaces à connexion projective, Gauthier-Villars, 1937).


## Approach of Élie Cartan

- Projective geometry of plane curves by Cartan (Leçons sur la théorie des espaces à connexion projective, Gauthier-Villars, 1937).
- There is a canonical moving frame $Q \subset \operatorname{PGL}(3, \mathbb{R})$ such that the for each section $s: N \rightarrow Q$ the pull-back $s^{*} \omega$ of the Maurer-Cartan form $\omega$ on $\operatorname{PGL}(3, \mathbb{R})$ is:

$$
\left(\begin{array}{ccc}
\omega_{00} & \omega_{01} & \omega_{02} \\
\omega_{10} & 0 & \omega_{01} \\
0 & \omega_{10} & -\omega_{00}
\end{array}\right)=\left(\begin{array}{ccc}
\omega_{00} & \omega_{01} & 0 \\
\omega_{10} & 0 & \omega_{01} \\
0 & \omega_{10} & -\omega_{00}
\end{array}\right)+\left(\begin{array}{ccc}
0 & 0 & \omega_{02} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

## Approach of Élie Cartan

- Projective geometry of plane curves by Cartan (Leçons sur la théorie des espaces à connexion projective, Gauthier-Villars, 1937).
- There is a canonical moving frame $Q \subset \operatorname{PGL}(3, \mathbb{R})$ such that the for each section $s: N \rightarrow Q$ the pull-back $s^{*} \omega$ of the Maurer-Cartan form $\omega$ on $\operatorname{PGL}(3, \mathbb{R})$ is:

$$
\left(\begin{array}{ccc}
\omega_{00} & \omega_{01} & \omega_{02} \\
\omega_{10} & 0 & \omega_{01} \\
0 & \omega_{10} & -\omega_{00}
\end{array}\right)=\left(\begin{array}{ccc}
\omega_{00} & \omega_{01} & 0 \\
\omega_{10} & 0 & \omega_{01} \\
0 & \omega_{10} & -\omega_{00}
\end{array}\right)+\left(\begin{array}{ccc}
0 & 0 & \omega_{02} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

- The first summand is a natural projective connection on the curve. It is necessarily flat and defines the natural projective parameter on the curve.


## Approach of Élie Cartan

- Projective geometry of plane curves by Cartan (Leçons sur la théorie des espaces à connexion projective, Gauthier-Villars, 1937).
- There is a canonical moving frame $Q \subset \operatorname{PGL}(3, \mathbb{R})$ such that the for each section $s: N \rightarrow Q$ the pull-back $s^{*} \omega$ of the Maurer-Cartan form $\omega$ on $\operatorname{PGL}(3, \mathbb{R})$ is:

$$
\left(\begin{array}{ccc}
\omega_{00} & \omega_{01} & \omega_{02} \\
\omega_{10} & 0 & \omega_{01} \\
0 & \omega_{10} & -\omega_{00}
\end{array}\right)=\left(\begin{array}{ccc}
\omega_{00} & \omega_{01} & 0 \\
\omega_{10} & 0 & \omega_{01} \\
0 & \omega_{10} & -\omega_{00}
\end{array}\right)+\left(\begin{array}{ccc}
0 & 0 & \omega_{02} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

- The first summand is a natural projective connection on the curve. It is necessarily flat and defines the natural projective parameter on the curve.
- The second summand defines the relative projective invariant $k=\omega_{02} / \omega_{10}$. The plane curve is locally a conic if and only if $k=0$.


## Frame reductions

- The construction of the above frame bundle is performed iteratively. As above, we first lift $N$ to $N^{(1)} \subset J^{1}\left(P^{2}, 1\right)=G / P_{1,2}$ and define $Q_{-1}$ as $\pi^{-1}\left(N^{(1)}\right)$. Then we know that $\omega_{-1}=\left.\omega\right|_{Q_{-1}}$ takes values in

$$
\left(\begin{array}{ccc}
* & * & * \\
\omega_{10} & * & * \\
0 & \omega_{21} & *
\end{array}\right)
$$

## Frame reductions

- The construction of the above frame bundle is performed iteratively. As above, we first lift $N$ to $N^{(1)} \subset J^{1}\left(P^{2}, 1\right)=G / P_{1,2}$ and define $Q_{-1}$ as $\pi^{-1}\left(N^{(1)}\right)$. Then we know that $\omega_{-1}=\left.\omega\right|_{Q_{-1}}$ takes values in

$$
\left(\begin{array}{ccc}
* & * & * \\
\omega_{10} & * & * \\
0 & \omega_{21} & *
\end{array}\right)
$$

- it is easy to see that $\omega_{21}$ vanishes identically iff our curve is a straight line. Assume that $\omega_{21} \neq 0$ and define $Q_{0}$ as all points $z \in Q_{-1}$ where $\omega_{-1}$ takes values in

$$
\left(\begin{array}{ccc}
* & * & * \\
\omega_{10} & * & * \\
0 & \omega_{10} & *
\end{array}\right) .
$$

The set of all such points $z$ forms a reduced principal bundle with the structure group

$$
\left(\begin{array}{ccc}
p_{00} & p_{01} & p_{02} \\
0 & 1 & p_{12} \\
0 & 0 & p_{00}^{-1}
\end{array}\right) .
$$

## Further reductions

- $Q_{1}$ is defined as all $z \in Q_{0}$, where $\omega_{0}=\left.\omega\right|_{Q_{0}}$ takes values in

$$
\left(\begin{array}{ccc}
\omega_{00} & * & * \\
\omega_{10} & 0 & * \\
0 & \omega_{10} & -\omega_{00}
\end{array}\right)
$$

This reduces the structure group to

$$
\left(\begin{array}{ccc}
p_{00} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & p_{00}^{-1}
\end{array}\right)\left(\begin{array}{ccc}
1 & p_{01} & p_{02} \\
0 & 1 & p_{01} \\
0 & 0 & 1
\end{array}\right) .
$$

## Further reductions

- $Q_{1}$ is defined as all $z \in Q_{0}$, where $\omega_{0}=\left.\omega\right|_{Q_{0}}$ takes values in

$$
\left(\begin{array}{ccc}
\omega_{00} & * & * \\
\omega_{10} & 0 & * \\
0 & \omega_{10} & -\omega_{00}
\end{array}\right)
$$

This reduces the structure group to

$$
\left(\begin{array}{ccc}
p_{00} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & p_{00}^{-1}
\end{array}\right)\left(\begin{array}{ccc}
1 & p_{01} & p_{02} \\
0 & 1 & p_{01} \\
0 & 0 & 1
\end{array}\right) .
$$

- Finally, $Q_{2}$ is defined as all $z \in Q_{1}$, where $\omega_{1}=\left.\omega\right|_{Q_{1}}$ takes values in

$$
\left(\begin{array}{ccc}
\omega_{00} & \omega_{01} & * \\
\omega_{10} & 0 & \omega_{01} \\
0 & \omega_{10} & -\omega_{00}
\end{array}\right) .
$$

The structure group is reduced to

$$
\left(\begin{array}{ccc}
p_{00} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & p_{00}^{-1}
\end{array}\right)\left(\begin{array}{ccc}
1 & p_{01} & 0 \\
0 & 1 & p_{01} \\
0 & 0 & 1
\end{array}\right) .
$$

## Parametric computation in Maple

