Moving frames and invariants for submanifolds in parabolic homogeneous spaces Lecture 3

Boris Doubrov

Belarusian State University

GRIEG seminar, December 3, 2021

Outline

- Revised definitions
- Constant symbol assumption
- Lifting the submanifolds to correspondence spaces

2 Construction of the canonical moving frame

- Normalization conditions
- Existence of the normal moving frame

3 Applications

- Deformations of rational homogeneous varieties
- Infinite-dimensional case

- Let M = G/P be an arbitrary parabolic homogeneous space:
 g = ∑_{i∈ℤ} g_i is a graded semisimple Lie algebra of the Lie group G and p = ∑_{i≥0} g is a parabolic subalgebra of g.
- M is naturally equipped with a a structure of a filtered manifold

$$0 \subset T^{-1}M \subset \cdots \subset T^{-\nu}M = TM$$

defined as a flag of *G*-invariant vector distributions equal to $\bigoplus_{i \le k} \mathfrak{g}_{-i}$ mod \mathfrak{p} at o = eP.

- Given a submanifold N ⊂ M we define its symbol at x ∈ N as gr T_xN viewed as a graded subspace in g₋.
- The symbol is a graded subalgebra in g_−, viewed up to the action of G₀. In general, it depends on a point x ∈ N.

- Let n be a graded subalgebra in \mathfrak{g}_- . We say that N has constant symbol n, if gr $T_x N$ is G_0 -equivalent to n for any $x \in N$. In the following we shall always assume that N has a constant symbol, which is the only assumption on N.
- Unlike the case of curves, the assumption of constant symbol for submanifolds of dimension ≥ 2 is restrictive.
- Example 1. Generic r-dimensional submanifolds in Gr(k, n) will not have a constant symbol. Indeed, the symbol in this case is an r-dimensional subspace in Mat(k, n k), viewed up to the action of SL(k) × SL(n k) ⊂ G₀. For dimensional reasons (eg. already for 3-dim submanifolds in Gr(3,6)) such orbits have continuous parameters, that become functional invariants for a generic submanifold.

Submanifolds in projective spaces

• Assume that G/P is the projective space P^n , and dim N = r. Here $G = PGL(n+1, \mathbb{R})$ and $P = P_1$. We identify $\mathfrak{g}_- = \mathfrak{g}_{-1}$ with \mathbb{R}^n as follows:

$$\mathfrak{g}_{-1} = egin{pmatrix} 0 & 0 \ X & 0 \end{pmatrix} \subset \mathfrak{gl}(n+1,\mathbb{R}), \quad X \in \mathrm{Mat}_{n,1}(\mathbb{R}).$$

 It is clear that G₀ = GL(n, ℝ) acts transitively on all subspaces of dimension r in g₋₁. Let us fix n as a subspace spanned by the first r coordinate vectors in ℝⁿ:

$$\mathfrak{n}=egin{pmatrix} 0&0&0\ Y&0&0\ 0&0&0 \end{pmatrix}\subset \mathfrak{g}_{-1},\quad Y\in \mathsf{Mat}_{r,1}(\mathbb{R}).$$

 The most symmetric submanifold with this symbol is just an r-dim linear space in Pⁿ. Note that its symmetry group is yet another parabolic subgroup P_n in G. The intersection P_{1,r+1} = P₁ ∩ P_{r+1} is another parabolic. The space G/P_{1,r+1} can be naturally identified with the jet space J¹(Pⁿ, r) of 1-jets of r-dim submanifolds in Pⁿ.

- We have a natural lift of $N \hookrightarrow G/P_{1,r+1}$, which takes N into its 1-st jet j^1N . It is clear that (local) projective geometry of submanifolds in P^n coincides with the (local) geometry of r-dim submanifolds in $M = G/P_{1,r+1} = J^1(P^n, r)$, which are tangent to $T^{-1}M$ and are transversal to the fibers of the projection $J^1(P^n, r) \to P^n$.
- Looking now at possible symbols of such submanifolds in $G/P_{1,r+1}$, we see that any such symbol has the form:

$$\mathfrak{n} = \begin{pmatrix} 0 & 0 & 0 \\ Y & 0 & 0 \\ 0 & (S_1 Y)^t & 0 \\ 0 & \vdots & 0 \\ 0 & (S_{n-r} Y)^t & 0 \end{pmatrix} \quad Y \in \mathsf{Mat}_{r,1}(\mathbb{R}),$$

where S_1, \ldots, S_{n-r} are arbitrary symmetric matrices.

- Classifying the symbols is equivalent to classifying subspaces $\langle S_1, \ldots, S_{n-r} \rangle$ in the space of symmetric r by r matrices up to the action of $GL(r, \mathbb{R})$.
- Already in the case of 3-dim submanifolds in *P*⁶ we get continuous parameters.

- Example 2. Consider symbols of submanifolds in contact G_2 geometry $M = G_2/P_2$. Two-dimensional contact (Legendrian) submanifolds have a symbol, which is a 2-dim Legendrian subspace in the 4-dim symplectic space \mathfrak{g}_{-1} viewed up to the action of $G_0 = GL(2)$. There is only a finite number of orbits of this action, so we can assume that sub submanifold has a constant symbol.
- However, if we consider 3-dim submanifolds, then their symbol is a 3-dim graded subalgebra $\mathfrak{n} = \mathfrak{n}_{-2} + \mathfrak{n}_{-1}$ in \mathfrak{g}_{-} , where $\mathfrak{n}_{-2} = \mathfrak{g}_{-2}$ and \mathfrak{n}_{-1} is an arbitrary 2-dim subspace in \mathfrak{g}_{-1} . The action of GL(2) on Gr(2,4) has continuous invariants.

Intrinsic prolongation

(Intrinsic) prolongation of n in g is a largest graded subalgebra Prol(n) of g such that Prol_(n) = n. It can be constructed inductively as:

$$\mathsf{Prol}_i(\mathfrak{n}) = \mathfrak{n}_i, \quad (i < 0),$$

 $\mathsf{Prol}_i(\mathfrak{n}) = \{ u \in \mathfrak{g}_i \mid [\mathfrak{n}, u] \subset \oplus_{j < i} \mathsf{Prol}_j(\mathfrak{n}) \}, \quad (i \ge 0).$

- Theorem. We have dim sym(N) ≤ dim Prol(n). Moreover the equality is achieved if and only if N is locally equivalent to the orbit of the subgroup exp Prol(n) ⊂ G through o = eP.
- Notation:

$$\operatorname{Prol}(\mathfrak{n})^{(0)} = \sum_{i \ge 0} \operatorname{Prol}_i(\mathfrak{n}).$$

This is a subalgebra of Prol(n) that corresponds to the stationary subalgebra of the flat model.

- $N \subset G/P$ is any submanifold with a constant symbol $\mathfrak{n} \in \mathfrak{g}_-$
- $\pi: G \to G/P$ is the standard principle *P*-bundle, and $Q_{-1} = \pi^{-1}(N)$
- $\omega \colon TG \to \mathfrak{g}$ is the left-invariant Maurer–Cartan form on G
- $\pi|_{Q_{-1}} \colon Q_{-1} \to \gamma$ is the restriction of the principle P-bundle to γ
- Moving frame is (any) subbundle of this bundle: $E \subset Q_{-1}$
- We construct a normal moving frame π: Q → N by imposing conditions on ω(T_zQ) ⊂ g for z ∈ Q

 Define normalization conditions for any symbol n ⊂ g₋ as Prol(n)⁽⁰⁾-invariant subspaces W₁ ⊂ g and W₂ ⊂ C¹₊(n, g/Prol(n)) such that:

$$\mathfrak{g} = \operatorname{Prol}(\mathfrak{n}) \oplus W_1;$$

 $C^1_+(\mathfrak{n}, \mathfrak{g}/\operatorname{Prol}(\mathfrak{n})) = \partial C^0_+(\mathfrak{n}, \mathfrak{g}/\operatorname{Prol}(\mathfrak{n})) \oplus W_2.$

- If Prol(n) is reductive, then we can take W₁ as the complement to Prol(n) with respect to the Killing form of g.
- Next, one can prove that there exists a scalar product (,) on g preserved by the adjoint action of Prol(n)⁽⁰⁾. It can be used to define the codifferential

$$\partial^* \colon C^i(\mathfrak{n},\mathfrak{g}/\operatorname{\mathsf{Prol}}(\mathfrak{n})) o C^{i-1}(\mathfrak{n},\mathfrak{g}/\operatorname{\mathsf{Prol}}(\mathfrak{n}))$$

dual to the standard Lie algebra cohomology operator ∂ . Then one can define $W_2 = \ker \partial^*$.

Theorem

Fix normalization conditions W_1 , W_2 for a symbol $\mathfrak{n} \in \mathfrak{g}_-$. Then there exists a unique moving frame $Q \to N$ satisfying the following normalization condition. Decompose $\omega|_Q$ as $\omega_I + \omega_{II}$ according to the decomposition $\mathfrak{g} = \operatorname{Prol}(\mathfrak{n}) \oplus W_1$. Then:

- ω₁ defines a Cartan connection on N modelled by Prol(n)/Prol(n)⁽⁰⁾. It defines induced intrinsic geometry on N.
- 2 $\omega_{II} = \chi \circ \omega_I$, where $\chi \in W_2$. Here χ is viewed as an element of Hom $(\mathfrak{n}, W_1) = C^1(\mathfrak{n}, \mathfrak{g}/\operatorname{Prol}(\mathfrak{n}))$.
- So the part of χ taking values in H¹₊(n, g/ Prol(n)) ≅ W₂ ∩ ker ∂ defines fundamental invariants of the embedding.

- As mentioned before, we would like to normalize the moving frame by imposing *linear* conditions on the image of the Maurer–Cartan form ω.
- The condition of ω_I to be a Cartan connection implies that Im ω ⊃ Im ω_I = Prol(n).
- The condition $\omega_{II} = \chi \circ \omega_I$ essentially means that

$$\operatorname{Im} \omega = \{X + \chi(X) \mid X \in \mathfrak{n}\} + \operatorname{Prol}(\mathfrak{n})^{(0)}.$$

• So, imposing the (linear) normalization conditions on χ , such as, for example, $\partial^* \chi = 0$ is equivalent to imposing (linear) normalization conditions on Im ω .

Ideals of the proof

- T. Morimoto, Yu. Machida, B.D. Extrinsic geometry and linear differential equations, SIGMA, 17, Paper 061, (2021). arXiv:1904.05687.
- The idea is to start from the principal *P*-bundle $\pi: Q_{-1} \to N$, where $Q_{-1} = \pi^{-1}(N)$ and reduce it to a series of principal subbundles $\pi_k: Q_k \to N$, each with its own structure group having the Lie algebra

$$\sum_{i=0}^k \operatorname{Prol}_i(\mathfrak{n}) + \sum_{j>k} \mathfrak{g}_j.$$

• At each step $k \ge 0$ we define Q_k as the set of all such points $z \in Q_{k-1}$, that

$$(\omega_z)_{II} = \chi \circ (\omega_z)_I, \quad ext{where } \chi \in W_2 + \sum_{i > k} C_i^1(\mathfrak{n}, \mathfrak{g}/\operatorname{Prol}(\mathfrak{n})).$$

Algebra	Geometry
Graded subalgebra $\mathfrak{n} \subset \mathfrak{g}$	Submanifold N of a parabolic homogeneous space with constant symbol
Intrinsic prolongation Prol(n)	Symmetry algebra of the flat model
Normalization conditions: $\mathfrak{g} = \operatorname{Prol}(\mathfrak{n}) \oplus W_1,$ $C^1_+(\mathfrak{n}, \mathfrak{g}/\operatorname{Prol}(\mathfrak{n})) = \partial C^0_+ \oplus W_2$	Canonical moving frame
$H^1_+(\mathfrak{n},\mathfrak{g}/\operatorname{Prol}(\mathfrak{n}))$	Fundamental invariants of the submanifold

- Let S be a complex semisimple Lie group and let V be its irreducible representation. Let s be the Lie algebra of S. Fix a parabolic S⁰ ⊂ S. Let s = ∑_{i=-µ}^µ be the corresponding grading of s, and let e ∈ s₀ be the grading element. Its action induces the compatible grading on V.
- The action of S on the standard flag of V induces the embedding $S/S^0 \rightarrow \operatorname{Flag}_{\alpha}(V)$.
- **Example:** the unique closed orbit (along with its osculating flag) of S acting irreducibly on P(V). Such embeddings are know as *rational homogeneous varieties*.
- It is easy to see that the submanifold $S/S^0 \subset \operatorname{Flag}_{\alpha}(V)$ is flat.
- One can prove that the intrinsic prolongation Prol(\$\$__) in \$\$I(V) coincides with \$\$.

- Computation of H¹₊(s₋, sl(V)/s) can be done via Kostant theorem.
 A rational homogeneous variety is said to be *rigid*, if this cohomology is trivial.
- Equivalently: any submanifold in $\operatorname{Flag}_{\alpha}(V)$ with the same symbol as $S/S^0 \hookrightarrow \operatorname{Flag}_{\alpha}(V)$ is locally equivalent to S/S^0 .

Theorem

The only possible non-rigid rational homogeneous varieties are P^{ℓ} , Q^{ℓ} , $F_{1,\ell}(\mathbb{C}^{\ell+1})$ or, if S is not simple, those having these varieties in the direct product decomposition. (cf. Hwang–Yamaguchi, Landsberg–Robles)

Ideas of the proof

Let s = ⊕s_i be a complex simple graded Lie algebra and U an irreducible submodule of the s-module sl(V). The cohomology group H¹_r(s₋, U) vanishes for r ≥ 1 except for the following cases:

- These cases correspond exactly to P^{ℓ} , Q^{ℓ} , $F_{1,\ell}(\mathbb{C}^{\ell+1})$.
- Note however, that even in these cases the corresponding rational homogeneous variety may or may not be rigid depending on the representation V. The complete classification of representations is unknown.

Extrinsic geometry of 2nd order ODEs

- Construction of moving frame works also in cases when G is an infinite-dimensional transitive Lie pseudo-group, and g is a graded Lie algebra associated with an infinite-dimensional transitive Lie algebra of vector fields.
- Let g be the Lie algebra of (polynomial) vector fields on ℝ² lifted to J²(ℝ, ℝ), and let N be a submanifold in J² transversal to the fibers of the projection J² → J¹. In other words, N is a scalar second-order ODE viewed up to point transformations.
- In this case g_− is a 4-dim nilpotent Lie algebra (= the symbol of the contact distribution on J²(ℝ, ℝ)):

$$[X, Y_1] = Y_2, [X, Y_2] = Y_3; \quad \deg X = -1, \deg Y_i = -i.$$

One can show that transversality of N to the fibers of $J^2 \to J^1$ implies that N has a constant symbol $\mathfrak{g}_- = \langle X, Y_2, Y_3 \rangle$.

The extrinsic prolongation Prol(n) is isomorphic to sl(3, ℝ) (not surprisingly). Finally, one can prove that H¹(n, g/sl(3, ℝ)) is isomorphic to H²(n, sl(3, ℝ)). However, the gradings are different!