Moving frames and invariants for submanifolds in parabolic homogeneous spaces Lecture 3

Boris Doubrov

Belarusian State University
GRIEG seminar, December 3, 2021

Outline

(1) Revised definitions

- Revised definitions
- Constant symbol assumption
- Lifting the submanifolds to correspondence spaces
(2) Construction of the canonical moving frame
- Normalization conditions
- Existence of the normal moving frame
(3) Applications
- Deformations of rational homogeneous varieties
- Infinite-dimensional case

Submanifolds in parabolic homogeneous spaces

- Let $M=G / P$ be an arbitrary parabolic homogeneous space: $\mathfrak{g}=\sum_{i \in \mathbb{Z}} \mathfrak{g}_{i}$ is a graded semisimple Lie algebra of the Lie group G and $\mathfrak{p}=\sum_{i \geq 0} \mathfrak{g}$ is a parabolic subalgebra of \mathfrak{g}.
- M is naturally equipped with a a structure of a filtered manifold

$$
0 \subset T^{-1} M \subset \cdots \subset T^{-\nu} M=T M
$$

defined as a flag of G-invariant vector distributions equal to $\oplus_{i \leq k} \mathfrak{g}_{-i}$ $\bmod \mathfrak{p}$ at $o=e P$.

- Given a submanifold $N \subset M$ we define its symbol at $x \in N$ as $\operatorname{gr} T_{x} N$ viewed as a graded subspace in \mathfrak{g}_{-}.
- The symbol is a graded subalgebra in \mathfrak{g}_{-}, viewed up to the action of G_{0}. In general, it depends on a point $x \in N$.

Assumption of constant symbol

- Let \mathfrak{n} be a graded subalgebra in \mathfrak{g}_{-}. We say that N has constant symbol \mathfrak{n}, if $\operatorname{gr} T_{x} N$ is G_{0}-equivalent to \mathfrak{n} for any $x \in N$. In the following we shall always assume that N has a constant symbol, which is the only assumption on N.
- Unlike the case of curves, the assumption of constant symbol for submanifolds of dimension ≥ 2 is restrictive.
- Example 1. Generic r-dimensional submanifolds in $\operatorname{Gr}(k, n)$ will not have a constant symbol. Indeed, the symbol in this case is an r-dimensional subspace in $\operatorname{Mat}(k, n-k)$, viewed up to the action of $S L(k) \times S L(n-k) \subset G_{0}$. For dimensional reasons (eg. already for 3-dim submanifolds in $\operatorname{Gr}(3,6)$) such orbits have continuous parameters, that become functional invariants for a generic submanifold.

Submanifolds in projective spaces

- Assume that G / P is the projective space P^{n}, and $\operatorname{dim} N=r$. Here $G=P G L(n+1, \mathbb{R})$ and $P=P_{1}$. We identify $\mathfrak{g}_{-}=\mathfrak{g}_{-1}$ with \mathbb{R}^{n} as follows:

$$
\mathfrak{g}_{-1}=\left(\begin{array}{ll}
0 & 0 \\
X & 0
\end{array}\right) \subset \mathfrak{g l}(n+1, \mathbb{R}), \quad X \in \operatorname{Mat}_{n, 1}(\mathbb{R})
$$

- It is clear that $G_{0}=G L(n, \mathbb{R})$ acts transitively on all subspaces of dimension r in \mathfrak{g}_{-1}. Let us fix \mathfrak{n} as a subspace spanned by the first r coordinate vectors in \mathbb{R}^{n} :

$$
\mathfrak{n}=\left(\begin{array}{lll}
0 & 0 & 0 \\
Y & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \subset \mathfrak{g}_{-1}, \quad Y \in \operatorname{Mat}_{r, 1}(\mathbb{R})
$$

- The most symmetric submanifold with this symbol is just an r-dim linear space in P^{n}. Note that its symmetry group is yet another parabolic subgroup P_{n} in G. The intersection $P_{1, r+1}=P_{1} \cap P_{r+1}$ is another parabolic. The space $G / P_{1, r+1}$ can be naturally identified with the jet space $J^{1}\left(P^{n}, r\right)$ of 1 -jets of r-dim submanifolds in P^{n}.
- We have a natural lift of $N \hookrightarrow G / P_{1, r+1}$, which takes N into its 1 -st jet $j^{1} N$. It is clear that (local) projective geometry of submanifolds in P^{n} coincides with the (local) geometry of r-dim submanifolds in $M=G / P_{1, r+1}=J^{1}\left(P^{n}, r\right)$, which are tangent to $T^{-1} M$ and are transversal to the fibers of the projection $J^{1}\left(P^{n}, r\right) \rightarrow P^{n}$.
- Looking now at possible symbols of such submanifolds in $G / P_{1, r+1}$, we see that any such symbol has the form:

$$
\mathfrak{n}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
Y & 0 & 0 \\
0 & \left(S_{1} Y\right)^{t} & 0 \\
0 & \vdots & 0 \\
0 & \left(S_{n-r} Y\right)^{t} & 0
\end{array}\right) \quad Y \in \operatorname{Mat}_{r, 1}(\mathbb{R})
$$

where S_{1}, \ldots, S_{n-r} are arbitrary symmetric matrices.

- Classifying the symbols is equivalent to classifying subspaces $\left\langle S_{1}, \ldots, S_{n-r}\right\rangle$ in the space of symmetric r by r matrices up to the action of $G L(r, \mathbb{R})$.
- Already in the case of 3 -dim submanifolds in P^{6} we get continuous parameters.

Submanifolds in G_{2} contact geometry

- Example 2. Consider symbols of submanifolds in contact G_{2} geometry $M=G_{2} / P_{2}$. Two-dimensional contact (Legendrian) submanifolds have a symbol, which is a 2-dim Legendrian subspace in the 4-dim symplectic space \mathfrak{g}_{-1} viewed up to the action of $G_{0}=G L(2)$. There is only a finite number of orbits of this action, so we can assume that sub submanifold has a constant symbol.
- However, if we consider 3-dim submanifolds, then their symbol is a 3-dim graded subalgebra $\mathfrak{n}=\mathfrak{n}_{-2}+\mathfrak{n}_{-1}$ in \mathfrak{g}_{-}, where $\mathfrak{n}_{-2}=\mathfrak{g}_{-2}$ and \mathfrak{n}_{-1} is an arbitrary 2-dim subspace in \mathfrak{g}_{-1}. The action of $G L(2)$ on $\operatorname{Gr}(2,4)$ has continuous invariants.

Intrinsic prolongation

- (Intrinsic) prolongation of \mathfrak{n} in \mathfrak{g} is a largest graded subalgebra $\operatorname{Prol}(\mathfrak{n})$ of \mathfrak{g} such that Prol_($\mathfrak{n})=\mathfrak{n}$. It can be constructed inductively as:

$$
\begin{aligned}
\operatorname{Prol}_{i}(\mathfrak{n}) & =\mathfrak{n}_{i}, \quad(i<0) \\
\operatorname{Prol}_{i}(\mathfrak{n}) & =\left\{u \in \mathfrak{g}_{i} \mid[\mathfrak{n}, u] \subset \oplus_{j<i} \operatorname{Prol}_{j}(\mathfrak{n})\right\}, \quad(i \geq 0)
\end{aligned}
$$

- Theorem. We have $\operatorname{dim} \operatorname{sym}(N) \leq \operatorname{dim} \operatorname{Prol}(\mathfrak{n})$. Moreover the equality is achieved if and only if N is locally equivalent to the orbit of the subgroup $\exp \operatorname{Prol}(\mathfrak{n}) \subset G$ through $o=e P$.
- Notation:

$$
\operatorname{Prol}(\mathfrak{n})^{(0)}=\sum_{i \geq 0} \operatorname{Prol}_{i}(\mathfrak{n})
$$

This is a subalgebra of $\operatorname{Prol}(\mathfrak{n})$ that corresponds to the stationary subalgebra of the flat model.

Notion of a normal moving frame

- $N \subset G / P$ is any submanifold with a constant symbol $\mathfrak{n} \in \mathfrak{g}_{-}$
- $\pi: G \rightarrow G / P$ is the standard principle P-bundle, and $Q_{-1}=\pi^{-1}(N)$
- $\omega: T G \rightarrow \mathfrak{g}$ is the left-invariant Maurer-Cartan form on G
- $\left.\pi\right|_{Q_{-1}}: Q_{-1} \rightarrow \gamma$ is the restriction of the principle P-bundle to γ
- Moving frame is (any) subbundle of this bundle: $E \subset Q_{-1}$
- We construct a normal moving frame $\pi: Q \rightarrow N$ by imposing conditions on $\omega\left(T_{z} Q\right) \subset \mathfrak{g}$ for $z \in Q$

Normalization conditions

- Define normalization conditions for any symbol $\mathfrak{n} \subset \mathfrak{g}_{-}$as $\operatorname{Prol}(\mathfrak{n})^{(0)}$-invariant subspaces $W_{1} \subset \mathfrak{g}$ and $W_{2} \subset C_{+}^{1}(\mathfrak{n}, \mathfrak{g} / \operatorname{Prol}(\mathfrak{n}))$ such that:

$$
\begin{aligned}
\mathfrak{g} & =\operatorname{Prol}(\mathfrak{n}) \oplus W_{1} \\
C_{+}^{1}(\mathfrak{n}, \mathfrak{g} / \operatorname{Prol}(\mathfrak{n})) & =\partial C_{+}^{0}(\mathfrak{n}, \mathfrak{g} / \operatorname{Prol}(\mathfrak{n})) \oplus W_{2} .
\end{aligned}
$$

- If $\operatorname{Prol}(\mathfrak{n})$ is reductive, then we can take W_{1} as the complement to $\operatorname{Prol}(\mathfrak{n})$ with respect to the Killing form of \mathfrak{g}.
- Next, one can prove that there exists a scalar product (,) on \mathfrak{g} preserved by the adjoint action of $\operatorname{Prol}(\mathfrak{n})^{(0)}$. It can be used to define the codifferential

$$
\partial^{*}: C^{i}(\mathfrak{n}, \mathfrak{g} / \operatorname{Prol}(\mathfrak{n})) \rightarrow C^{i-1}(\mathfrak{n}, \mathfrak{g} / \operatorname{Prol}(\mathfrak{n}))
$$

dual to the standard Lie algebra cohomology operator ∂. Then one can define $W_{2}=\operatorname{ker} \partial^{*}$.

Main result

Theorem

Fix normalization conditions W_{1}, W_{2} for a symbol $\mathfrak{n} \in \mathfrak{g}_{-}$. Then there exists a unique moving frame $Q \rightarrow N$ satisfying the following normalization condition. Decompose $\left.\omega\right|_{Q}$ as $\omega_{I}+\omega_{I I}$ according to the decomposition $\mathfrak{g}=\operatorname{Prol}(\mathfrak{n}) \oplus W_{1}$. Then:
(1) $\omega_{\text {l }}$ defines a Cartan connection on N modelled by $\operatorname{Prol}(\mathfrak{n}) / \operatorname{Prol}(\mathfrak{n})^{(0)}$. It defines induced intrinsic geometry on N.
(2) $\omega_{I I}=\chi \circ \omega_{I}$, where $\chi \in W_{2}$.

Here χ is viewed as an element of $\operatorname{Hom}\left(\mathfrak{n}, W_{1}\right)=C^{1}(\mathfrak{n}, \mathfrak{g} / \operatorname{Prol}(\mathfrak{n}))$.
(3) the part of χ taking values in $H_{+}^{1}(\mathfrak{n}, \mathfrak{g} / \operatorname{Prol}(\mathfrak{n})) \cong W_{2} \cap$ ker ∂ defines fundamental invariants of the embedding.

Explaining normalization conditions

- As mentioned before, we would like to normalize the moving frame by imposing linear conditions on the image of the Maurer-Cartan form ω.
- The condition of ω_{l} to be a Cartan connection implies that $\operatorname{Im} \omega \supset \operatorname{Im} \omega_{I}=\operatorname{Prol}(\mathfrak{n})$.
- The condition $\omega_{I I}=\chi \circ \omega_{I}$ essentially means that

$$
\operatorname{Im} \omega=\{X+\chi(X) \mid X \in \mathfrak{n}\}+\operatorname{Prol}(\mathfrak{n})^{(0)}
$$

- So, imposing the (linear) normalization conditions on χ, such as, for example, $\partial^{*} \chi=0$ is equivalent to imposing (linear) normalization conditions on $\operatorname{Im} \omega$.

Ideals of the proof

- T. Morimoto, Yu. Machida, B.D. Extrinsic geometry and linear differential equations, SIGMA, 17, Paper 061, (2021). arXiv:1904.05687.
- The idea is to start from the principal P-bundle π : $Q_{-1} \rightarrow N$, where $Q_{-1}=\pi^{-1}(N)$ and reduce it to a series of principal subbundles $\pi_{k}: Q_{k} \rightarrow N$, each with its own structure group having the Lie algebra

$$
\sum_{i=0}^{k} \operatorname{Prol}_{i}(\mathfrak{n})+\sum_{j>k} \mathfrak{g}_{j}
$$

- At each step $k \geq 0$ we define Q_{k} as the set of all such points $z \in Q_{k-1}$, that

$$
\left(\omega_{z}\right)_{I I}=\chi \circ\left(\omega_{z}\right)_{I}, \quad \text { where } \chi \in W_{2}+\sum_{i>k} C_{i}^{1}(\mathfrak{n}, \mathfrak{g} / \operatorname{Prol}(\mathfrak{n}))
$$

Algebra and moving frames of submanifolds

Algebra	Geometry
Graded subalgebra $\mathfrak{n} \subset \mathfrak{g}_{-}$	Submanifold N of a parabolic homogeneous space with con- stant symbol
Intrinsic prolongation Prol(n)	Symmetry algebra of the flat model
Normalization conditions: $\mathfrak{g}=\operatorname{Prol}(\mathfrak{n}) \oplus W_{1}$, $C_{+}^{1}(\mathfrak{n}, \mathfrak{g} / \operatorname{Prol}(\mathfrak{n}))=\partial C_{+}^{0} \oplus W_{2}$	Canonical moving frame
$H_{+}^{1}(\mathfrak{n}, \mathfrak{g} / \operatorname{Prol}(\mathfrak{n}))$	Fundamental invariants of the submanifold

Rational homogeneous varieties

- Let S be a complex semisimple Lie group and let V be its irreducible representation. Let \mathfrak{s} be the Lie algebra of S. Fix a parabolic $S^{0} \subset S$. Let $\mathfrak{s}=\sum_{i=-\mu}^{\mu}$ be the corresponding grading of \mathfrak{s}, and let $e \in \mathfrak{s}_{0}$ be the grading element. Its action induces the compatible grading on V.
- The action of S on the standard flag of V induces the embedding $S / S^{0} \rightarrow \operatorname{Flag}_{\alpha}(V)$.
- Example: the unique closed orbit (along with its osculating flag) of S acting irreducibly on $P(V)$. Such embeddings are know as rational homogeneous varieties.
- It is easy to see that the submanifold $S / S^{0} \subset \operatorname{Flag}_{\alpha}(V)$ is flat.
- One can prove that the intrinsic prolongation $\operatorname{Prol}\left(\mathfrak{s}_{-}\right)$in $\mathfrak{s l}(V)$ coincides with \mathfrak{s}.

Rigidity of rational homogeneous varieties

- Computation of $H_{+}^{1}\left(\mathfrak{s}_{-}, \mathfrak{s l}(V) / \mathfrak{s}\right)$ can be done via Kostant theorem. A rational homogeneous variety is said to be rigid, if this cohomology is trivial.
- Equivalently: any submanifold in $\mathrm{Flag}_{\alpha}(V)$ with the same symbol as $S / S^{0} \hookrightarrow \operatorname{Flag}_{\alpha}(V)$ is locally equivalent to S / S^{0}.

Theorem

The only possible non-rigid rational homogeneous varieties are P^{ℓ}, Q^{ℓ}, $F_{1, \ell}\left(\mathbb{C}^{\ell+1}\right)$ or, if S is not simple, those having these varieties in the direct product decomposition. (cf. Hwang-Yamaguchi, Landsberg-Robles)

Ideas of the proof

- Let $\mathfrak{s}=\oplus \mathfrak{s}_{i}$ be a complex simple graded Lie algebra and U an irreducible submodule of the \mathfrak{s}-module $\mathfrak{s l}(V)$. The cohomology group $H_{r}^{1}\left(\mathfrak{s}_{-}, U\right)$ vanishes for $r \geq 1$ except for the following cases:
(1) $\left(A_{3}, \Sigma\right)$ with $\Sigma=\left\{\alpha_{2}\right\}$, $\left(A_{l}, \Sigma\right)(I \geq 1)$ with $\Sigma=\left\{\alpha_{1}\right\},\left\{\alpha_{l}\right\}$, or $\left\{\alpha_{1}, \alpha_{l}\right\}$,
(2) $\left(B_{2}, \Sigma\right)$ with $\Sigma=\left\{\alpha_{1}\right\}$, or $\left\{\alpha_{2}\right\}$, $\left(B_{l}, \Sigma\right)(I \geq 3)$ with $\Sigma=\left\{\alpha_{1}\right\}$,
(3) $\left(C_{1}, \Sigma\right)(I \geq 3)$ with $\Sigma=\left\{\alpha_{1}\right\}$,
(9) ($\left.D_{4}, \Sigma\right)$ with $\Sigma=\left\{\alpha_{1}\right\}$, $\left\{\alpha_{3}\right\}$, or $\left\{\alpha_{4}\right\}$, $\left(D_{l}, \Sigma\right)(I \geq 5)$ with $\Sigma=\left\{\alpha_{1}\right\}$.
- These cases correspond exactly to $P^{\ell}, Q^{\ell}, F_{1, \ell}\left(\mathbb{C}^{\ell+1}\right)$.
- Note however, that even in these cases the corresponding rational homogeneous variety may or may not be rigid depending on the representation V. The complete classification of representations is unknown.

Extrinsic geometry of 2nd order ODEs

- Construction of moving frame works also in cases when G is an infinite-dimensional transitive Lie pseudo-group, and \mathfrak{g} is a graded Lie algebra associated with an infinite-dimensional transitive Lie algebra of vector fields.
- Let \mathfrak{g} be the Lie algebra of (polynomial) vector fields on \mathbb{R}^{2} lifted to $J^{2}(\mathbb{R}, \mathbb{R})$, and let N be a submanifold in J^{2} transversal to the fibers of the projection $J^{2} \rightarrow J^{1}$. In other words, N is a scalar second-order ODE viewed up to point transformations.
- In this case \mathfrak{g}_{-}is a 4-dim nilpotent Lie algebra ($=$the symbol of the contact distribution on $\left.J^{2}(\mathbb{R}, \mathbb{R})\right)$:

$$
\left[X, Y_{1}\right]=Y_{2},\left[X, Y_{2}\right]=Y_{3} ; \quad \operatorname{deg} X=-1, \operatorname{deg} Y_{i}=-i
$$

One can show that transversality of N to the fibers of $J^{2} \rightarrow J^{1}$ implies that N has a constant symbol $\mathfrak{g}_{-}=\left\langle X, Y_{2}, Y_{3}\right\rangle$.

- The extrinsic prolongation $\operatorname{Prol}(\mathfrak{n})$ is isomorphic to $\mathfrak{s l}(3, \mathbb{R})$ (not surprisingly). Finally, one can prove that $H^{1}(\mathfrak{n}, \mathfrak{g} / \mathfrak{s l}(3, \mathbb{R}))$ is isomorphic to $H^{2}(\mathfrak{n}, \mathfrak{s l}(3, \mathbb{R}))$. However, the gradings are different!

